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Synthetic Aperture Imaging of Dispersive Targets
Arnold D. Kim and Chrysoula Tsogka

Abstract—We introduce a dispersive point target model based
on scattering by a particle in the far-field. The synthetic aperture
imaging problem is then expanded to identify these targets and
recover their locations and frequency dependent reflectivities. We
show that Kirchhoff migration (KM) is able to identify dispersive
point targets in an imaging region. However, KM predicts target lo-
cations that are shifted in range from their true locations. We derive
an estimate for this range shift for a single target. We also show that
because of this range shift we cannot recover the complex-valued
frequency dependent reflectivity, but we can recover its absolute
value and hence the radar cross-section (RCS) of the target. Sim-
ulation results show that we can detect, recover the approximate
location, and recover the RCS for dispersive point targets thereby
opening opportunities to classifying important differences between
multiple targets such as their sizes or material compositions.

Index Terms—Synthetic aperture radar, dispersive targets,
kirchhoff migration, radar cross-section.

I. INTRODUCTION

SYNTHETIC aperture radar is an imaging modality in which
an airborne antenna is used to collect the reflected signal

from a region of interest on the ground. High resolution images
are reconstructed by coherently processing the signals along the
known flight trajectory [1], [2], [3], [4]. These images provide
an estimate of the spatial dependence of the reflectivity often
ignoring its frequency content. However, the dispersive nature
of the reflectivity of targets is of great interest as it can be helpful
for material identification, for example.

A natural approach that has been proposed to that effect is
based on dividing the frequency band into sub-bands and then
creating an image for each sub-band [5], [6]. Although the in-
dividual images have lower resolution, they can be successfully
used to provide information about the frequency dependence
of the reflectivity. In the same spirit, frequency and direction
dependent reflectivity has been successfully reconstructed in [7]
using sparsity constraint optimization approaches while divid-
ing the bandwidth and the array aperture in sub-bands and
sub-apertures respectively. The reflectivity in this case has a
four dimensional parametrization, i.e., space, frequency and
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direction. Computational complexity limits the applicability of
this method for on-the-fly scenarios.

Exploiting Doppler shift in the SAR ambiguity function [1]
has been extended to frequency dependent reflectivities and an
expression for the SAR point spread function in space and fre-
quency domain has been derived [8]. This point spread function
allows for reconstructing an image in which each pixel provides
frequency dependent information about the reflectivity [9]. The
approach gives promising results but achieving high range res-
olution remains a challenge.

Another way to account for dispersive targets is to consider
the signal in the time domain in which case the scattering delay
induced by the target needs to be separated from the propagation
delay. This is a challenging problem that has been addressed
in [10] provided the synthetic aperture is wide enough. The
important question of detectability of this scattering delay in
the presence of speckle has been evaluated using statistical
divergence measures in [11].

In this article we consider a realistic model for a frequency
dependent reflectivity and propose an imaging method based
on coherent back-projection. This method allows us to first
image the spatial location of the targets and then determine their
frequency dependent reflectivities. High resolution imaging of
the target location is obtained using the the tunable synthetic
aperture radar imaging approach of [12]. This method relies on a
simple mathematical transformation of the classical SAR image
depending on a user-defined parameter, ε. The resulting image
scales the traditional SAR image resolution of a point target by√
ε thus achieving sub-wavelength target localization.
Due to the frequency dependence of the reflectivity, the tar-

get’s location is reconstructed up to a shift in range. Our theo-
retical analysis provides an estimate of this shift and shows that
it is inherently connected to fundamental scattering properties
of the target, namely the reflectivity. Once the target location
is estimated, the radar cross-section (RCS) of the target can be
recovered. Promising results are obtained for single and multiple
targets scenarios. Gaining access to RCS information is very
important for some remote sensing applications as it provides
target classification information in addition to detection and
spatial localization.

The remainder of this article is as follows. In Section II
we review the elementary theory of scattering by a particle
and use that to introduce our dispersive point target model. In
Section III we describe the SAR imaging problem for dispersive
point targets. We apply Kirchhoff migration (KM) to identify
the location which, in turn, enables the recovery of the radar
cross-section for a single dispersive point target in Section IV.
There we show that KM accurately identifies the target location
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in cross-range, but may produce a shift in range. We derive an
estimate for this range shift that identifies the key mechanism
producing this shift. We extend these results for multiple targets
in Section V. For that case, we introduce an elementary linear
regression problem to obtain the radar cross-sections for each of
the targets. In Section VI we give our conclusions. Appendix A
gives a description of scalar wave scattering by a sphere which
we use to generate frequency dependent reflectivities used in the
simulations results shown here.

II. SCATTERING BY A PARTICLE

We briefly review elementary aspects of scattering by a par-
ticle and use that to introduce our dispersive point target model.
Consider the observation of the scattered field Us at distance
R away from a particle with R > d2/λ where d is the particle
diameter and λ the wavelength of the incident light. For this
case, the leading behavior of the scattered field is [13]

Us ∼ f(ô, ı̂;ω)
eiωR/c

R
(1)

where ô is the direction of observation, ı̂ is the propagation
direction of the incident plane wave, ω is the angular/circular
frequency (the ordinary frequency scaled by 2π, which we use
exclusively here and henceforth refer to as “frequency”) and c is
the wave speed. The leading behavior given by (1) is a spherical
wave modified by f , the scattering amplitude. The scattering
amplitude contains the amplitude and phase of the scattered field
in the far-field at circular frequency ω.

Both directions ô and ı̂ are vectors on the unit sphere so
they require only 2 parameters each to specify them. By also
including the angular frequencyω, we see that the scattering am-
plitude f depends on 5 parameters. In conventional mono-static
synthetic aperture imaging, we measure only the backscattered
field corresponding to ô = −ı̂, and so f(−ı̂, ı̂;ω) depends only
on 3 parameters. The radar cross-section (RCS),

σRCS(ω) = 4π|f(−ı̂, ı̂;ω)|2 (2)

gives a measure of the power backscattered by the particle. Since
it is proportional to |f(−ı̂, ı̂;ω)|2, the RCS implicitly depends
on the size, shape, and material properties of the particle.

SAR imaging methods such as KM tend to produce images of
general objects that exhibit peaks at the most singular portions
of those objects, e.g. closest boundaries, corners, etc [3]. For
this reason, point target models are commonly used for those
imaging problems. The point target model that is typically used
for SAR imaging problems assumes that the scattered field
measured at a point x is given by

Us(x) = ρ
eiω|x−y|/c

4π|x− y|U
inc(y). (3)

Here,U inc is the incident field,y is the location of the point target
and ρ is a complex scalar called the reflectivity. Comparing (3)
with (1), we see that the reflectivity is the scattering amplitude
when f is assumed to be independent of direction and frequency.

When the target distance is much larger than the synthetic
aperture, the range of directions ı̂ sampled over the synthetic

Fig. 1. Synthetic aperture radar imaging schematic.

aperture is rather small. For that case, we do not expect to
sample f(−ı̂, ı̂;ω) over a large range of ı̂ directions. In contrast,
the frequency dependence will be sampled over the system
bandwidth. Consequently, we anticipate effectively measuring
only the frequency dependence of the reflectivity corresponding
to a reduction from 3 parameters down to just 1 parameter. We
introduce an extension to (3) through inclusion of a frequency
dependent reflectivity �(ω) according to

Us(x) = �(ω)
eiω|x−y|/c

4π|x− y|U
inc(y). (4)

We call (4) the dispersive point target model. This model is
characterized by the position y and the frequency dependent
reflectivity �(ω).

In the numerical simulations that follow, we determine �(ω)
from the scattering amplitude for a dielectric sphere with radius
α and relative refractive index nrel (see Appendix A). We use
this scattering by a sphere solution only for its frequency depen-
dent reflectivity. That result is used in (4) so the spatial features of
the sphere are reduced to just a point. Using that reflectivity, we
compute the RCS through evaluation of σRCS(ω) = 4π|�(ω)|2.

III. SYNTHETIC APERTURE IMAGING

In mono-static synthetic aperture radar (SAR) imaging, a
single transmitter/receiver is used to collect the scattered elec-
tromagnetic field over a synthetic aperture that is created by a
moving platform [1], [3], [4]. The moving platform is used to
create a suite of experiments in which pulses are emitted and
resulting echoes are recorded by the transmitter/receiver at sev-
eral locations along the flight path. Letp(t)denote the broadband
pulse emitted and let d(s, t) denote the data recorded. Here, the
measurements depend on the slow time s that parameterizes the
flight path of the platform, r(s), and the fast time t in which
the round-trip travel time between the platform and the imaging
scene on the ground is measured.

High-resolution images of the probed scene can be obtained
because the data are coherently processed over a large synthetic
aperture created by the moving platform. As illustrated in Fig. 1,
the platform is moving along a trajectory probing the imaging
scene by sending a pulse p(t) and collecting the corresponding
echoes. We call range (commonly called ground range) the
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direction that is obtained by projecting on the imaging plane
the vector that connects the center of the imaging region to
the central platform location. Cross-range is the direction that
is orthogonal to the range. Denoting the size of the synthetic
aperture by a and the available bandwidth by B, the typical
resolution of the imaging system is O((c/B)(L/R)) in range
and O(λ0L/a) in cross-range. Here c is the speed of light and
λ0 the wavelength corresponding to the central frequency while
L denotes the distance between the platform and the imaging
region and R the offset in range.

In what follows, we use the start-stop approximation which
neglects displacements of the platform and targets in comparison
with the propagation of signals emitted and received on the
platform. We work exclusively in the frequency domain. Thus,
we have assumed that the discrete Fourier transform has been ap-
plied to the continuous time measurements yielding results over
a discrete set of frequencies, ωm for m = 1, . . . ,M sampling
the system bandwidth, 2πB. Let xn for n = 1, . . . , N denote
the positions of the emitter/receiver along the flight path making
up a synthetic aperture.

Suppose there is dispersive point target located at y0, a point
in the imaging region, with frequency dependent reflectivity,
�0(ω). When the signal is emitted from the emitter/receiver, it
propagates into the medium, is incident on the dispersive point
target and scatters. The field scattered by the dispersive point
target is then measured on the emitter/receiver. The resulting
measurement of the scattered field by the emitter/receiver due
to an isotropic point source at xn is

dmn = �0(ωm)
ei2ωm|xn−y0|/c

(4π|xn − y0|)2
,

m = 1, . . . ,M, n = 1, . . . , N. (5)

The matrix D ∈ CM×N whose entries are given by (5) contains
the measurements. In doing so, we have tacitly assumed that the
frequency spectrum of the source is effectively flat across the
system bandwidth.

The imaging problem is to determine the locations of targets
and the frequency dependent reflectivity in some specified imag-
ing region. We show below that we cannot recover the frequency
dependent reflectivity, in general. Instead we seek to recover the
RCS for each of the targets.

In the simulations results that follow, we use system parame-
ters based on the GOTCHA data set [14]. In particular, we have
set R = 3.55 km and H = 7.30 km, so that L =

√
H2 +R2 =

8.12 km. The synthetic aperture created by the linear flight path
is a = 0.13 km. The central frequency is ω0/(2π) = 9.6GHz
and the bandwidth isB = 622MHz. Using c = 3× 108 m/s, we
find that the central wavelength is λ0 = 3.12 cm. The imaging
region is at the ground level z = 0. We use M = 25 equi-spaced
frequencies sampling the bandwidth, and N = 32 equi-spaced
spatial measurements sampling the synthetic aperture. We show
in the results below that the imaging methods work well with
these relatively coarse samplings of the bandwidth and synthetic
aperture. For higher sampling rates, we expect that the methods
will work better.

Fig. 2. Evaluation of (6) on an imaging region that is 500/k0 × 500/k0
centered about the dispersive point target location (x0, y0) with k0 denoting the
central wavenumber. The reflectivity was computed for a sphere withk0α = 1.4
and nrel = 1.4. Measurement noise was added so that SNR = 3.73 dB.

IV. KM FOR A SINGLE DISPERSIVE POINT TARGET

Let y denote a point in the imaging region. We consider the
image formed through evaluation of the KM imaging function,

IKM(y) =

∣∣∣∣∣
M∑

m=1

N∑
n=1

dmne
−i2ωm|xn−y|/c

∣∣∣∣∣ . (6)

This imaging function is traditionally used in SAR imaging.
In (6) the entries of the data matrix dmn are back-projected
to y through multiplication by e−i2ωm|xn−y|/c and then those
back-projection results are summed over spatial locations (sum
in n) and frequencies (sum in m). Through evaluation of this
KM imaging function over a set of points and plotting those
results, we produce an image of targets in the imaging region.

In Fig. 2 we show the result of evaluating (6) for a dispersive
point target located at (k0x0, k0y0) = (273.713,−346.167)
over a 500/k0 × 500/k0 imaging region. The reflectivity �(ω)
was computed for a sphere with k0α = 1.4 and nrel = 1.4.
Using that result for �(ω) we evaluated the entries of the data
matrix given in (5). Thus, an accurate image produced by IKM

through evaluation of (6) identifies the location (x0, y0) of the
dispersive point target. Measurement noise was added prior to
evaluating IKM so that SNR = 3.73 dB. The image shown in
Fig. 2 shows IKM normalized by its maximum value. This image
indicates the presence of a target through its peak. The location
of the peak predicts the location of the target. Away from the
peak, we observe imaging artifacts as sidelobes to the peak.

We have recently introduced a modification to KM that pro-
duces tunably high-resolution images of non-dispersive point
targets [12]. Let ĨKM denote (6) normalized by its maximum
as shown in Fig. 2. The modification to KM simply requires
evaluation of

IKM
ε =

ε

1− (1− ε)ĨKM
, (7)

with ε denoting a user-defined parameter. When imaging a
single, non-dispersive point target, one can specify an exact point
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Fig. 3. Evaluation of the modified KM given in (7) with ε = 10−4 applied to
the image shown in Fig. 2 on an imaging region that is 20/k0 × 20/k0 centered
about the target location (x0, y0).

about which an image resolves that target. For this specific prob-
lem, we have shown that the resolution of the resulting image
about that point produced using (7) scales with

√
ε. This idea can

be illustrated using a simple example with the function, f(x) =
1− β2x2/2. This quadratic function attains its maximum value
of 1 on x = 0 and attains its full-width/half-max on x = ±1/β.
It follows that the function g(x) = ε/(1− (1− ε)f(x)) also
attains a maximum value of 1 on x = 0, but attains its full-
width/half-max on x ∼ √

ε/β. It is in this way that this method
has a tunably high-resolution controlled by the user-defined
parameter ε. For (7) to be effective, the original image produced
by IKM must be good and produce a pronounced maximum peak
on or near the target location.

When we plot IKM
ε with ε = 10−4 using the image shown

in Fig. 2, we obtain the image shown in Fig. 3. The original
image shown in Fig. 2 using IKM is good because it exhibits its
maximum peak on or near the target location. Consequently, we
expect that evaluating (7) will produce an image that sharpens
this peak considerably with this small value of ε. The results
shown in Fig. 3 demonstrate this sharpening. Note that the region
plotted is 20/k0 × 20/k0, which is a much smaller region than
that plotted in Fig. 2. This result shows that this modified KM
method is able to image targets with subwavelength resolution.
Moreover, since the parameter ε is user-defined, this high reso-
lution is tunable.

A. Range Shift

Because of the high-resolution capabilities of the modified
KM method, we are able to observe that the predicted tar-
get location is shifted from the exact location, especially in
range. The peak of the image shown in Fig. 3 is located at
(k0x̂, k0ŷ) = (273.113,−349.770) compared to the true lo-
cation at (k0x0, k0y0) = (273.713,−346.167). In simulations,
we find that if the SNR is larger, the cross-range coordinate
x0 becomes exact. However, the shift in the range coordi-
nate y0 remains unaltered. For example, with SNR = 13.73
dB we obtain a predicted target location at (k0x̂, k0ŷ) =
(273.713,−350.170), and with SNR = 23.73 dB, we obtain a

predicted target location at (k0x̂, k0ŷ) = (273.713,−350.170).
We find that this shift in the predicted range of the target varies
with both the size parameter, k0α, and the relative refractive
index,nrel used to generate the frequency dependent reflectivity.

To understand the cause of this shift in the range coordinate,
we substitute (5) into (6) and obtain

IKM(y) =

∣∣∣∣∣
M∑

m=1

�0(ωm)
N∑

n=1

ei2ωm(|xn−y0|−|xn−y|)/c

(4π|xn − y0|)2
∣∣∣∣∣ . (8)

Consider a coordinate system in which the origin lies at the
center of the imaging region. The coordinates of the spatial
measurements arexn = (ξn, R,H) forn = 1, . . . , N with ξn =
−a/2 + a(n− 1)/(N − 1). We writey0 = (x0, y0, 0) andy =
(x0, y0 + y, 0). Let θ denote the look angle (see Fig. 1) so that
R = L sin θ and H = L cos θ. In the asymptotic limit L → ∞,
we find that

|xn − y0| − |xn − y| = y sin θ +O(L−1). (9)

It follows that

IKM ∼ N

(4πL)2

∣∣∣∣∣
M∑

m=1

�0(ωm)ei2ωmy sin θ/c

∣∣∣∣∣ , (10)

in this asymptotic limit.
Let

a(y) =

M∑
m=1

�mei2kmy sin θ, (11)

with �m = �0(ωm) and km = ωm/c. Using

km = k0 +
2πB

c

(
−1

2
+

m− 1

M − 1

)
, (12)

for m = 1, . . . ,M, with k0 denoting the central wavenumber,
we introduce the scaled variable y sin θ = 2πBY/c and consider
instead

a

(
2πB

c sin θ
Y

)
= ei2κ0Y A(Y ), (13)

where κ0 = k0 sin θc/(2πB), and

A(Y ) =

M∑
m=1

�meiμmY . (14)

with μm = −1 + 2(m− 1)/(M − 1).
Where (10) attains its maximum is set by where |a(y)|2

and hence, |A(Y )|2, attains its maximum. To determine where
|A(Y )|2 attains its maximum, we use the approximation e−ix ≈
1− ix− x2/2 in

|A(Y )|2 =

M∑
m=1

M∑
n=1

�∗m�ne
−i(μm−μn)Y , (15)

and find that |A(Y )|2 ≈ c0 + c1Y + 1
2c2Y

2 with

c0 =

M∑
m=1

M∑
n=1

�∗m�n, (16)

c1 = −i

M∑
m=1

M∑
n=1

�∗m�n(μm − μn), (17)
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Fig. 4. Comparison of the range coordinate of the target predicted using KM
(numerical), and by computing the estimate Ŷ (estimate) over reflectivities
computed using spheres with nrel = 1.4 over a range of different sizes, k0α.

and

c2 = −
M∑

m=1

M∑
n=1

�∗m�n(μm − μn)
2. (18)

The critical point of this quadratic approximation (where its first
derivative vanishes identically) is Ŷ = −c1/c2. When c1 	= 0
we find that this critical point yields a predicted target location
that is range-shifted away from its actual position.

This critical point Ŷ gives an estimate for the range shift of
the target location predicted by KM. We show a comparison
of the numerically determined location of the predicted target
and this estimate in Fig. 4. To determine the location of the
target predicted using KM, we have evaluated (6) on the cross-
range location of the target and on a highly refined grid along
the range coordinate. We identify the range grid point where
this evaluation of (6) attains its maximum and use that as a
numerical estimate for the range location of the target which we
denote by y0 + ỹ. We then compute Ỹ = cỹ sin θ/(2πB) and
call that result the numerical prediction of the range coordinate
of the target. We then compare that numerical prediction with the
estimate Ŷ . For these comparisons, we have used the frequency
dependent reflectivity of a sphere with relative refractive index
1.4 for various non-dimensional sizes, k0α.

These results show that the estimate accurately captures the
behavior of this range shift over a broad range of sphere sizes.
However, the error of this estimate grows with the sphere size,
but especially where the range shift oscillates. These oscilla-
tions are presumably due to the complex scattering behavior
of large spheres (k0α > 1) that exhibit phenomena such as
Mie resonances. In Fig. 5 we show the RCS evaluated on the
central frequencyω0 normalized by the geometric cross-section,
σg = πα2 for spheres with nrel = 1.4 over the same range of
k0α plotted in Fig. 4. Note that the behavior of the range shifts
shown in Fig. 4 closely follow the behavior of the RCS shown
in Fig. 5. In this way, we see that the range shift in the predicted
range of the target by KM is inherently connected to fundamental
scattering properties of the target.

Fig. 5. RCS σRCS normalized by the geometric cross-section σg = πα2

evaluated on the central frequency ω0 for spheres with nrel = 1.4 over a range
of sphere sizes k0α.

B. Radar Cross-Section

We now seek to recover �(ωm) for m = 1, . . . ,M . Suppose
we have evaluated (6) and produced an image that identifies a
target and its predicted location, ŷ0. We evaluate

φm =
1

N

N∑
n=1

dmn(4π|xn − ŷ0|)2e−i2ωm|xn−ŷ0|/c, (19)

for m = 1, . . . ,M . Substituting (5) into (19) yields

φm = �0(ωm)
1

N

N∑
n=1

|xn − ŷ0|2
|xn − y0|2

ei2ωmΔτn , (20)

with Δτn = (|xn − y0| − |xn − ŷ0|)/c.
In the asymptotic limit L → ∞, we find using the same

expansions used above that

φm ∼ �0(ωm)ei2ωmΔy sin θ/c, (21)

for m = 1, . . . ,M . Here, Δy denotes the range shift associated
with the predicted location ŷ0. Because the range shift Δy is
not known, we cannot remove the factor of ei2ωmΔy sin θ/c from
the expression above. Therefore, we cannot recover the complex
values of �0(ωm). However, we find that

|φm|2 ∼ |�0(ωm)|2. (22)

Therefore, we recover the RCS given the predicted location
of the target by KM through evaluation of

σ̂RCS(ωm) = 4π|φm|2. (23)

In Fig. 6 we show the estimated RCS using (23) for the same
data used in Figs. 2 and 3. To estimate ŷ0 we use the mesh
location used to plot those images where IKM

ε attains its max-
imum value which is (x̂, ŷ) = (1.357,−1.738) cm compared
to the true location (x0, y0) = (1.360,−1.720) cm. The exact
RCS computed from the reflectivity is plotted for comparison.
The estimated RCS is indistinguishable from the exact RCS and
the relative error is on the order of 10−4.
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Fig. 6. Recovered RCS using (23) normalized by the geometric cross-section
σg = πα2 for the reflectivity used in Figs. 2 and 3 corresponding to k0α = 1.4

and nrel = 1.4. To compute σ̂RCS(ω), we estimate ŷ0 by finding where IKM
ε

attains its maximum value on the mesh used for plotting.

Fig. 7. Recovered RCS using (23) normalized by the geometric cross-section
σg = πα2 for the reflectivity corresponding to k0α = 2.8 and nrel = 1.4. To
compute σ̂RCS(ω), we estimate ŷ0 by finding where IKM

ε attains its maximum
value on the mesh used for plotting.

We consider a target whose reflectivity is computed for a
sphere of size k0α = 2.8 and relative refractive index nrel =
1.4. Measurement noise was added so that SNR = 3.72 dB.
The location predicted by finding the mesh point on which
IKM
ε attains its maximum is (x̂, ŷ) = (1.358,−1.797) cm. We

estimate the RCS through evaluation of (23) using this predicted
target location. The results are plotted in Fig. 7. Note that the
RCS for this problem is markedly different from that shown in
Fig. 6. Nonetheless, the estimated RCS is still accurate with a
relative error on the order of 10−5.

V. MULTIPLE TARGETS

Suppose now the imaging region contains Q dispersive point
targets at locationsyq with reflectivities �q(ω) for q = 1, . . . , Q.
Assuming that these targets scatter independently, measure-
ments are modeled according to

dmn =

Q∑
q=1

�q(ωm)
ei2ωm|xn−yq |/c

(4π|xn − yq|)2
. (24)

Fig. 8. Image produced by KM through evaluation of (6) over an imaging
region containing 3 dispersive point targets whose exact locations are plotted as
red “+” symbols.

Fig. 9. Images produced using modified KM given in (7) in 50/k0 × 50/k0
sub-regions centered about each of the exact target locations. The left plot
corresponds to target 1, the center plot corresponds to target 2 and the right
plot corresponds to target 3.

From our results for a single target, we anticipate that evaluat-
ing the KM imaging function given in (6) will identify and locate
targets under the condition that these targets are not too close to
one another as measured with respect to the resolution produced
by KM for a single target. In other words, two or more targets
must be separated by distances corresponding to the resolution
of the underlying point spread function for a single target.

In Fig. 8 we show a result of evaluating (6) over an imaging re-
gion containing three different dispersive point targets. The first
target is located at (k0x1, k0y1, k0z1) = (140.882, 40.252, 0).
Its reflectivity �1(ω) is computed using a sphere of size k0α1 =
0.8 and relative refractive index nrel,1 = 1.8. The second target
is located at (k0x2, k0y2, k0z2) = (−40.252,−140.882, 0). Its
reflectivity �2(ω) is computed using a sphere of size k0α1 = 1.2
and relative refractive index nrel,2 = 1.4. The third target is
located at (k0x3, k0y3, k0z3) = (−161.008, 161.008, 0). Its re-
flectivity �3(ω) is computed using a sphere of size k0α3 = 1.8
and relative refractive index nrel,3 = 1.4. Measurement noise
was added to the data so that SNR = 22.84 dB. Fig. 8 shows
three distinct peaks in the vicinity of the three targets whose
locations are plotted as red “+” symbols.

To obtain high-resolution images of individual targets, we
consider 50/k0 × 50/k0 sized sub-regions about each of the
peaks shown in Fig. 8. We normalize the portion of the image
contained in each of those sub-regions so that the maximum
value contained in that sub-region is unity. Then we apply (7)
with ε = 10−4. Those results appear in Fig. 9.
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The modified KM images produce high resolution im-
ages of the targets. However, we observed that the pre-
dicted target locations are shifted in both range and cross-
range from the exact target locations. The predicted location
for target 1 is (k0x̂1, k0ŷ1) = (141.382, 43.502), for target 2
is (k0x̂2, k0ŷ2) = (−39.002,−144.882), and for target 3 is
(k0x̂3, k0ŷ3) = (−162.758, 145.008). These shifts in the pre-
dictions from the exact locations are approximately 2λ0.

To understand why these shifts in predicted target locations
occur in both range and cross-range, suppose we evaluate (6) on
y1, the exact location for target one. The result is

IKM(y1) =
M∑

m=1

N∑
n=1

[
�1(ωm)

(4π|xn − y1|)2

+

Q∑
q=2

�q(ωm)
|xn − y1|2
|xn − yq|2

ei2ωmΔτn
1q

]
, (25)

where Δτnpq = (|xn − yq| − |xn − yp|)/c. From this result we
see that in addition to the contribution made by target 1, we
obtain small, but non-trivial contributions by all other targets,
each of which carries a phase associated with Δτnq,p. Therefore,
upon computing |IKM|, those phases mix leading to shifts in the
predicted target positions.

Even though the predicted locations of targets are not exact,
we seek to recover the RCS of each of the targets. Let ŷp denote
the approximate location of target p. Let

φm(ŷp) =
1

N

N∑
n=1

dmn(4π|xn − ŷp|)2e−i2ωm|xn−ŷp|/c. (26)

Substituting (24) into this expression, we obtain

φm(ŷp) =

Q∑
q=1

apq(ωm)�q(ωm), (27)

where

apq(ωm) =
1

N

N∑
n=1

|xn − ŷp|2
|xn − yq|2

ei2ωmΔτ̂n
q,p , (28)

and Δτ̂npq = (|xn − yq| − |xn − ŷp|)/c. Equation (27) is a lin-
ear system for the unknown reflectivities �q(ωm). Although
apq(ωm) uses the predicted target position ŷp, it uses the exact
target positions yq . Since we do not have access to those exact
target locations, we instead consider the linear system,

φm(ŷp) =

Q∑
q=1

ãpq(ωm)�̃q(ωm), (29)

where

ãpq(ωm) =
1

N

N∑
n=1

|xn − ŷp|2
|xn − ŷq|2

ei2ωmΔτ̃n
q,p , (30)

with Δτ̃npq = (|xn − ŷq| − |xn − ŷp|)/c, and

�̃q(ωm) = �q(ωm)
|xn − ŷq|2
|xn − yq|2

eiωm(Δτn
pq−Δτ̂n

pq). (31)

Fig. 10. Recovered RCS for the three targets normalized by the corresponding
geometric cross-section for the three targets whose location is recovered from
Fig. 7. Data with SNR = 22.84 dB. The left plot corresponds to target 1, the
center plot corresponds to target 2 and the right plot corresponds to target 3.

Fig. 11. Recovered RCS for the three targets normalized by the corresponding
geometric cross-section. Data with SNR = 12.84 dB. The left plot corresponds
to target 1, the center plot corresponds to target 2 and the right plot corresponds
to target 3.

When the predicted target locations are close, we expect that
|xn − ŷq|2/|xn − yq|2 ≈ 1. The difference in phase, Δτnpq −
Δτ̂npq , may be significant, so we expect that we will not be able
to recover �q(ωm) from �̃q(ωm). However, in the asymptotic
limit as L → ∞, we find that the RCS for the qth target is

σRCS,q(ωm) = 4π|�̃q(ωm)|2 +O(L−1). (32)

Hence, we use this leading behavior to estimate the RCS of
the targets.

To summarize, we give the following procedure for estimating
the RCS for each of the targets identified in the imaging region.

1) Evaluate (6) over the imaging region to identify targets.
2) Evaluate (7) in sub-regions to estimate the locations of

individual targets.
3) Solve the linear system (29) and obtain �̃q(ωm) for q =

1, . . . , Q and m = 1, . . . ,M .
4) Evaluate (32) to obtain estimates for the RCS for each of

the Q targets.
The results for the recovered RCS for the three targets shown

in Figs. 8 and 9 are shown in Fig. 10. These results are more noisy
than the ones obtained for the single target case but their accuracy
is still sufficient to help us characterize targets of different
materials/size. As the SNR of data decreases, the locations of the
targets are recovered with the same precision but the recovered
RCS’s are more noisy. For data with SNR = 12.84 dB, the pre-
dicted location for target 1 is (k0x̂1, k0ŷ1) = (141.632, 43.002),
for target 2 is (k0x̂2, k0ŷ2) = (−39.502,−144.632), and for tar-
get 3 is (k0x̂3, k0ŷ3) = (−163.508, 145.508) and the recovered
RCS are shown in Fig. 11.

We observe in Fig. 11 that the recovered RCS oscillates due to
the measurement noise. A smoothing estimate can be obtained
using quadratic regression as illustrated by the results in Fig. 12.
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Fig. 12. Recovered RCS for the three targets normalized by the correspond-
ing geometric cross-section. Data with SNR = 12.84 dB. Smoothing using
quadratic regression over the results shown in Fig. 9. The left plot corresponds
to target 1, the center plot corresponds to target 2 and the right plot corresponds
to target 3.

Those smoothed results effectively capture the behaviors of the
RCS for the individual targets.

VI. CONCLUSION

We have introduced a dispersive point target model in which
the reflectivity is dependent on frequency. We have used scalar
wave scattering by a dielectric sphere to model targets of dif-
ferent sizes and materials. Then we have applied KM and our
recent modification to KM to obtain high-resolution images of
dispersive point targets from SAR measurements. For a single
dispersive point target, we observe a shift in the predicted
location of the target in the range coordinate. We have computed
an accurate estimate for this range shift which is in terms of the
frequency dependent reflectivity. Despite the range shift in the
predicted location of a single dispersive point target, we are able
to recover its radar cross-section (RCS) using that prediction.

When we apply KM and its modification to an imaging region
containing multiple dispersive point targets, we find that we can
image each of the target locations provided that they are far
enough apart from one another with respect to the resolution of
KM. We have shown that our modification to KM works in sub-
regions that isolate an individual target. Those high resolution
images of individual targets reveal that the predicted locations
of the targets are shifted in range and cross-range. To recover
the RCS for each of the targets, we introduce a linear system
using the predicted locations. Our numerical results show that
the recovery of RCS’s for multiple targets is much more sensitive
to noise. By applying smoothing to those RCS results, we obtain
good approximations that allow one to distinguish qualitative
differences between the different targets.

By introducing the dispersive point target model and de-
veloping methods for imaging dispersive point targets, we
have opened opportunities for target classification. identifica-
tion and estimating target recovering the RCS as a function of
frequency, we may be able to distinguish targets with different
characteristics such as sizes or material properties. We believe
that this opportunity to classify in addition useful for a broad
variety of SAR imaging applications.

To consider the implementation of these ideas for more prac-
tical problems, we will need to consider important extensions
which forms the basis of future work on this topic. For example,
errors in position, navigation, and timing (so-called PNT-errors)
yield significant phase perturbations in the measurements that

adversely affect image quality. These phase perturbations are ex-
acerbated when imaging through clutter. For these problems, the
tradiational SAR imaging function used here is no longer effec-
tive. Thus, we would need to consider alternate imaging methods
that are stable to such phase perturbations. Additionally, we have
seen in our results that recovering the RCS for multiple targets
requires additional post-processing of smoothing to obtain good
results. Instead, we may consider more sophisticated Bayesian
methods to recover the RCS from multiple targets which would
produce potentially more useful interval estimates.

APPENDIX A
SCALAR WAVE SCATTERING BY A SPHERE

We briefly describe scalar wave scattering by a sphere and
explain how we generated different frequency dependent reflec-
tivities from this problem. For a fixed frequency, let k0 denote
the wavenumber in the exterior to a sphere of radius α and
k1 = k0nrel denote the wavenumber interior to that sphere. A
plane wave is incident on the sphere in direction ı̂, which we
denote by Ui. The scattered field exterior to the sphere is

Us(R, ô) =

∞∑
n=0

anh
(1)
n (k0R)Pn(ı̂ · ô), (33)

with h(1)
n denoting the spherical Hankel function of the first kind

with order n, andPn denoting the Legendre polynomial of order
n. The field interior to the sphere is

Uint(R, ô) =

∞∑
n=0

bnjn(k0R)Pn(ı̂ · ô), (34)

with jn denoting the spherical Bessel function. We determine the
expansion coefficients an and bn by requiring that Ui + Us =
Uint and ∂rUi + ∂rUs = ∂rUint on R = α. We compute a
numerical approximation by truncating the series at n = 32 and
making use of the orthogonal properties of Legendre polynomi-
als.

Using the asymptotic behaviorh(1)
n (z) ∼ i−n−1z−1eiz as z →

∞, we find that

Us(R, ô) ∼
[
1

k0

∞∑
n=0

ani
−n−1Pn(ı̂ · ô)

]
eik0R

R
, (35)

in the asymptotic limit, R → ∞. The bracketed term in the
expression above gives the scattering amplitude f . Next, we
use Pn(−1) = (−1)n to determine that

f(ı̂,−ı̂) =
1

k0

∞∑
n=0

(−1)ni−n−1an. (36)

We approximate this scattering amplitude by truncating the
series as we have done to determine the expansion coefficients.
That result is used as our frequency dependent reflectivity. We
compute different reflectivities by specifying different values of
the radius α and the reflective index nrel.

REFERENCES

[1] M. Cheney, “A mathematical tutorial on synthetic aperture radar,” SIAM
Rev., vol. 43, no. 2, pp. 301–312, 2001.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on May 13,2024 at 19:59:14 UTC from IEEE Xplore.  Restrictions apply. 



962 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

[2] I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture
Radar Data: Algorithms and Implementation. Boston, MA, USA: Artech
House, 2005.

[3] M. Cheney and B. Borden, Fundamentals of Radar Imaging, vol. 79.
Philadelphia, PA, USA: SIAM, 2009.

[4] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P.
Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci.
Remote Sens. Mag., vol. 1, no. 1, pp. 6–43, Mar. 2013.

[5] P. Sotirelis, J. T. Parker, M. Fu, X. Hu, and R. Albanese, “A study of
material identification using SAR,” in Proc. IEEE Radar Conf., 2012,
pp. 0112–0115.

[6] R. A. Albanese and R. L. Medina, “Materials identification synthetic
aperture radar: Progress toward a realized capability,” Inverse Problems,
vol. 29, 2013, Art. no. 054001.

[7] L. Borcea, M. Moscoso, G. Papanicolaou, and C. Tsogka, “Synthetic aper-
ture imaging of direction-and frequency-dependent reflectivities,” SIAM
J. Imag. Sci., vol. 9, no. 1, pp. 52–81, 2016.

[8] M. Cheney, “Imaging frequency-dependent reflectivity from synthetic-
aperture radar,” Inverse Problems, vol. 29, 2013, Art. no. 054002.

[9] P. Sotirelis, J. Parker, X. Hu, M. Cheney, and M. Ferrara, “Frequency-
dependent reflectivity image reconstruction,” Proc. SPIE, vol. 8746, 2013,
Art. no. 874602, doi: 10.1117/12.2020647.

[10] M. Gilman and S. Tsynkov, “Detection of delayed target response in SAR,”
Inverse Problems, vol. 35, 2019, Art. no. 085005.

[11] M. Gilman and S. Tsynkov, “Divergence measures and detection perfor-
mance for dispersive targets in SAR,” Radio Sci., vol. 56, no. 1, 2021,
Art. no. e2019RS007011.

[12] A. D. Kim and C. Tsogka, “Tunable high-resolution synthetic aperture
radar imaging,” Radio Sci., vol. 57, no. 11, 2022, Art. no. e2022RS007572.

[13] A. Ishimaru, Wave Propagation and Scattering in Random Media. New
York, NY, USA: Wiley-IEEE Press, 1997.

[14] C. H. Casteel Jr, L. A. Gorham, M. J. Minardi, S. M. Scarborough, K. D.
Naidu, and U. K. Majumder, “A challenge problem for 2D/3D imaging of
targets from a volumetric data set in an urban environment,” Proc. SPIE,
vol. 6568, pp. 97–103, 2007.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on May 13,2024 at 19:59:14 UTC from IEEE Xplore.  Restrictions apply. 


