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ARTICLE INFO ABSTRACT

Keywords: The growing need for personalized, accurate, and non-invasive diagnostic technology has resulted in significant
Biosensor advancements, from pushing current mechanistic limitations to innovative modality developments across various
Microfluidics disease-related biomarkers. However, there still lacks clinical solutions for analyzing multiple biomarkers
g?;fel:j]?ecres cytometry simultaneously, limiting prognosis for patients suffering with complicated diseases or comorbidities. Here, we

conceived, fabricated, and validated a multifrequency impedance cytometry apparatus with novel frequency-
sensitive barcoded metal oxide Janus particles (MOJPs) as cell-receptor targeting agents. These microparticles
are modulated by a metal oxide semi-coating which exhibit electrical property changes in a multifrequency
electric field and are functionalized to target CD11b and CD66b membrane proteins on neutrophils. A multi-
modal system utilizing supervised machine learning and simultaneous high-speed video microscopy classifies
immune-specific surface receptors targeted by MOJPs as they form neutrophil-MOJP conjugates, based on
multivariate multifrequency electrical recordings. High precision and sensitivity were determined based on the
type of MOJPs conjugated with cells (>90% accuracy between neutrophil-MOJP conjugates versus cells alone).
Remarkably, the design could differentiate the number of MOJPs conjugated per cell within the same MOJP class
(>80% accuracy); which also improved comparing electrical responses across different MOJP types (>75%
accuracy) as well. Such trends were consistent in individual blood samples and comparing consolidated data
across multiple samples, demonstrating design robustness. The configuration may further expand to include
more MOJP types targeting critical biomarker receptors in one sample and increase the modality’s multiplexing
potential.

Machine learning
Disease diagnostics

1. Introduction these diseases through receptors such as CD64 (Hassan et al., 2017;

Zeitoun et al., 2010), CD11b (Adib et al., 2007), C-type lectin (Chiffo-

Presently, several diseases are difficult to diagnose clinically due to
lacking one highly correlated biomarker that can define its condition or
state. This holds true for complicated, multifaceted diseases such as
sepsis (Biron et al., 2015; Farooq and Colén-Franco, 2019; Hung et al.,
2020; Kim and Choi, 2020), acute kidney injury (Oh, 2020; Wen and
Parikh, 2021), many cancer types (Boissiere-Michot et al., 2020; Ilie
et al., 2012), and more (Khan et al., 2018; Patel and Sebastiani, 2020).
For these conditions, a promising class of biomarkers may arise from
immune cell surface receptors, which demonstrate rapid and highly
correlated expression density responses from pathogen contact or in-
flammatory conditions (Schmidt et al., 2012; Sheneef et al., 2017;
Weirich et al., 1998). Clinical research has pointed towards identifying

leau, 2018; Tang et al., 2018), and CD66b (Schmidt et al., 2015) on
myeloid-derived cells or CTLA-4 (Chang et al., 2013; Gao et al., 2015),
CD18 (Abdel-Salam and Ebaid, 2014), and CD28 (Alegre et al., 2001;
Petersen et al., 2019) on T cells. However, higher diagnostic accuracy in
complicated diseases only comes from measuring a panel of these re-
ceptor biomarkers simultaneously. The bottleneck to collect this critical
receptor data comes a shortage of relatively inexpensive techniques
measuring multiple cell membrane proteins in one sample, explaining
why many rapidly progressing diseases remain elusive to diagnose.

To measure many disease-related receptors quickly, a promising
solution may come from point-of-care, multiplexing machines, which
can analyze multiple biomarkers simultaneously using the same
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investigative modality. Incorporating these targeting strategies on
highly compartmentalized, point-of-care devices boasts several advan-
tages including automated assay preparation (Lehmann et al., 2008; Sun
et al., 2020; van de Groep et al., 2018) and integrated signal processing
(Sun et al., 2014; Talukder et al., 2017). With these devices, diagnostics
and disease outcomes may improve from smaller sample volumes
required for miniaturized techniques (Ellett et al., 2018; Hassan et al.,
2017), faster analysis (Uddin et al., 2016; Watkins et al., 2013), greater
diagnostic accuracy by targeting multiple critical biomarkers (Cihalova
et al., 2017; Lam et al., 2013), and increasing device availability across
vast environmental and economical landscapes (Yeh et al., 2017; Zhang
et al., 2020). From the multitude of point-of-care multiplexing tech-
niques, impedance cytometry displays the highest potential for clinical
translation. It can profile biological objects such as cells down to pro-
teins and DNA nondestructively, and can provide fast electrical results
(Ashley and Hassan, 2021a; Baraket et al., 2017; Petchakup et al., 2021;
Saleh and Sohn, 2003). Additionally, fabrication upscaling makes it
appealing for point-of-care settings (Hassan et al., 2017). However,
presently its ability to discern multiple species simultaneously is limited
without the use of detection parallelization or sensitive targeting agents,
of which few options have been conceived.

For novel impedance-sensitive targeting agents with impedance
cytometry, we recently reported a multiplexing modality using micro-
particles with varying metal oxide semi-coatings that are electrically
identifiable using a multifrequency electric field (Xie et al., 2017). These
barcoded metal-oxide Janus particles (MOJPs) can be differentiated
both by metal oxide material, such as aluminum oxide, hafnium dioxide,
and titanium dioxide, or layer thickness varying from 5 to 30 nm. Their
mechanistic phenomenon arises from varying surface conductance
across metal oxide thickness and materials, causing an impedance shift
at distinct frequencies when subjected to an electric field. Furthermore,
these MOJPs may be antibody-functionalized to target multiple
cell-surface receptors at once (Ashley et al., 2022a,b), providing a so-
lution for high-receptor multiplexing detection using a singular multi-
frequency excitation and detection source.

Herein, we present a multi-modal validation of MOJP detection
when conjugated to neutrophils using multifrequency microfluidic
impedance cytometry and simultaneous high-speed video microscopy.
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Fig. 1 represents impedance detection, which demonstrates functional-
izing unique MOJPs to target CD11b and CD66b proteins on neutrophils
using a streptavidin-biotin linker (Fig. 1B) (Ashley et al., 2021). When
MOJPs conjugate to cells, unique electrical properties are recorded
specific to the frequency-sensitive amplitude shifts detected by a tuned
multifrequency electric field (Fig. 1E). High-speed video microscopy is
used in synchronization with microfluidic impedance cytometry to
confirm cell-MOJP conjugation. To achieve this, the Chronos 1.4 high
speed camera was used, which can reach frame rates up to 35000 fps
depending on resolution, along with internal storage up to 32 GB- which
translates to approximately 16 s of real time storage per experiment.
Additionally, the camera has functioned in similar applications for
capturing microfluidic characteristics, making it an ideal choice to
measuring cell and cell-MOJP conjugates under microfluidic flow (Chao
et al., 2020; Duke et al., 2019; Ma et al., 2019; Wang et al., 2023).
Conjugate identities were labeled both by MOJP type and the number of
MOJPs conjugated per cell. Notably, supervised machine learning
accomplished high-accuracy alignment of individual conjugate identi-
ties from electrical shifts alone, and differentiated across MOJP type, the
number of MOJPs conjugated per cell, and across measured samples.

2. Materials and methods
2.1. Materials

The following was purchased from Sigma Aldrich (St. Louis, USA):
phosphate buffered saline (PBS, 1X and 10X, pH = 7.2), Roswell Park
Memorial Institute medium 1640 (RPMI), Ficoll-Paque density gradient,
streptavidin, and (3-Amino-propyl) triethoxysilane (APTES). From
Thermo Fisher Sceintific (Waltam, USA), biotinylated anti-CD11b
monoclonal mouse antibody was purchased with greater than 95%
sterility. From BioLegend (San Diego, USA), biotinylated anti-CD66b
was purchased with greater than 98% sterility. From Southpoint Sur-
gical Supply (Coral Springs, USA), a NE-300 syringe pump was pur-
chased. Software used includes LabVIEW purchased and installed
through National Instruments (Austin, USA) and MATLAB (v2020B)
purchased and installed through MathWorks (Natick USA). The
following was purchased from Zurich Instruments (Zurich, SUI): a

Fig. 1. Graphical overview of electrically-sensitive
cell membrane receptor detection. (A) Polystyrene
microparticles fabricated with different aluminum
oxide-coatings (20 nm and 10 nm) are (B) function-
alized with unique antibodies (anti-CD66b for 20 nm,
anti-CD11b for 10 nm) to (C) target inflammatory-
related neutrophil receptors forming cell-particle
conjugates with receptor presence. (D) Objects are
measured individually under flow using microfluidic
impedance cytometry, with multiple frequencies
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HF2TA current amplifier and a HF2LI lock-in amplifier. A VWR Basic
Inverted Microscope was purchased from VWR International (Radnor,
USA). Through an institutional review board study, de-identified human
blood was collected from Robert Wood Johnson Hospital (New Bruns-
wick, USA). The Chronos 1.4 High Speed Camera was purchased from
Kron Technologies (Vancouver, CAN).

2.2. Microfabrication of barcoded microparticles, microelectrodes, and
microfluidic channels

Previous reports have extensively described manufacturing barcoded
microparticles (Sui et al., 2020; Xie et al., 2017). The process briefly
involves forming 3 pm polystyrene microparticles using nanosphere
lithography. Then, 20 nm of gold is patterned on top of particles using
electron-beam deposition. Finally, either 10 nm or 20 nm of aluminum
oxide is patterned on top of the gold layer using atomic layer deposition,
forming the aluminum oxide-coated Janus microparticles (MOJP).

Additionally, the procedures of fabricating gold microelectrodes and
microfluidic channels are described in previous publications (Ashley
and Hassan, 2021b). To summarize, photoresist-covered borosilicate
wafers are treated with UV light through a photomask with electrode
geometries, and chromium (250 nm) and gold (750 nm) were deposited
above (Fig. 2Ai). Similarly, the microchannel structure is rendered on
top of silicon wafers after UV exposure using photolithography. PDMS
cures over the microchannel pillars after APTES wafer treatment and is
removed with the channel dimensions. Following O, plasma exposure,
the channel and electrodes are bonded, with channel focusing regions
positioned between electrodes (Fig. 2Aii). Finally, the device is adhered
to a microscope stage using tape and connects with a lock-in amplifier
and current amplifying circuit using silver conductive epoxy (Fig. 2Aiv).

2.3. Barcoded microparticle functionalization

Functionalizing barcoded microparticles with receptor-targeting
antibodies has also been defined in previous reports (Ashley et al.,
2021, 2022). In short, 2 pL of SAv (0.1 mg/mL) is mixed with either 200
pL of 20 nm MOJPs (SAv/20 nm) or 10 nm MOJPs (SAv/10 nm), each at
a particle concentration of 6.0x10” particles/mL. These mixtures are
then centrifuged and washed to eliminate unbound SAv. After SAv
adsorption to MOJPs, antibody functionalization is achieved after
combining 10 pL of biotinylated anti-CD66b antibody (1 mg/mL in 1X
PBS) with the SAv/20 nm solution (20nmCD66b) and 10 pL of bio-
tinylated anti-CD11b antibody (1 mg/mL in 1X PBS) is combined to the
SAv/10 nm solution (10nmCD11b).

2.4. Neutrophil isolation and microparticle conjugation

To isolate neutrophils, blood samples from de-identified patients
were obtained from Robert Wood Johnson University Hospital. Once
collected, blood was mixed with 1X PBS at 1:1 ratio, and that mixture
was combined with Ficoll-Paque density gradient at a 2:3 ratio. After
centrifugation of the solution to remove plasma, platelets, and red blood
cells, non-neutrophil mononuclear cells were lysed and aspirated by
adding short durations of deionized water followed by tonicity leveling
using 10X PBS. Non-neutrophil mononuclear cell lysing steps were
repeated until a gray neutrophil pellet arose, which was then constituted
in RPMI 1640 media at a 1:10 ratio (Wagner et al., 2021).

After isolated neutrophil preparation, either 10nmCD11b particle or
20nmCD66b particle solutions were mixed with diluted neutrophils at a
10:1 particle-cell ratio and incubated for 1 h. Samples measured without
MOJPs (cells alone) consisted of neutrophils diluted in 1X PBS were also
incubated for 1 h.
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2.5. Multifrequency impedance cytometer interfacing, signal acquisition,
and signal processing

In the microelectrode configuration, the center electrode carries a
10V input with various input frequencies of 500 kHz, 7.5 MHz, 8.3 MHz,
and 9 MHz, while the exterior electrodes are grounded in series with
10kQ resistors. A LabVIEW custom script acquires the signal, which
involves current-to-voltage recording conversion and transimpedance
multiplication. Following this, a differential amplifier subtracts the in-
puts from the two grounded electrodes and is sampled at 250 kHz. The
four frequencies are then demodulated and isolated into distinct arrays
using a lock-in amplifier. Digital filters using MATLAB are applied for
signal normalization which mitigates background noise and consists of a
20 Hz 4™ order high-pass Butterworth filter, a 100 Hz 4™ order low-pass
Butterworth filter, and 1% order band-stop Butterworth filters at 60 Hz
and 120 Hz. Electrical recordings are produced for each of the selected
four frequencies. For neutrophil or neutrophil-particle conjugate
counting, a voltage bipolar amplitude 15 times greater than the noise
standard deviation indicates their presence.

2.6. Multi-modal high-speed video microscopy

A C-mount attaches the Chronos 1.4 high-speed camera to the
inverted microscope’s eyepiece, set to a 1280x360 resolution ratio, 4500
recording frames per second, and a shutter rate of 25 ps. Along with
camera specifications, a virtual Ethernet interface via micro-USB
connection along with the manufactures support for a network IP with
the camera over a local internet connection allows for remote camera
access. The camera was accessed by a LabVIEW script control for starting
and stopping recordings simultaneous to electrical recordings, ensuring
data synchronization. Cell-particle conjugation and counting the num-
ber of particles attached was performed with manual visual inspection of
images occurring at the exact time electrical pulses were recorded.

A custom MATLAB program identifies an electrical pulse threshold to
isolate neutrophil pulses from residual red blood cells (RBCs) and un-
conjugated MOJPs pulses. When neutrophil pulses are identified, the
MATLAB script extracts video frames corresponding to the triggered
electrical time point and is manually assigned to different arrays based
on visualized cell-MOJP conjugation and, if so, how many particles are
attached at once. The program then stores bipolar pulse amplitude and
pulse width data from each demodulated frequency for 4 frequency data
inputs in each classified array group.

2.7. Machine learning

Using MATLAB’s Classification Learner application, supervised ma-
chine learning was implemented and training, validation, and testing
across a myriad of support vector machines (SVM) neural network (NN)
models were performed. High-speed video microscopy images assign
neutrophil or neutrophil-MOJP conjugate identities, and the bipolar
amplitudes for each pulse across the four demodulated frequencies are
the 4 features assigned to each data point. Two-group comparisons are
assessed, with 80% of selected data for model training and 20% for
testing. Accuracy, data counts, and receiver operating characteristic
curves (ROC) are reported from the highest testing accuracy models (SI
Fig. 1). For the SVM models, all of them used 1 as a box constraint value.
For the NN models, a rectified linear unit activation function was used,
the iteration limit was capped to 1000, and a 0.01 learning rate was
used. Both SVM and NN models performed data standardization before
training and testing, and the number of data points across groups were
not selectively balanced owing to varying cellular concentrations in
each blood sample. Further SVM, and NN model parameters (SI Table 1)
and performance metric information is provided in the Supplemental
Information.
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3. Results and discussion
3.1. Multi-modal data collection and pulse amplitude representation

Fig. 2 shows the representative electrical pulse data and corre-
sponding images extracted from the saved high-speed video recordings
with the multifrequency microfluidic impedance cytometer. As pointed
out in Fig. 2B with the overlaid pulses for each frequency, neutrophil
pulse amplitudes are higher compared to other sample objects, making it
ideal to use amplitude thresholding to isolate from competing analytes
such as residual red blood cells (RBCs) and unconjugated MOJPs. With
the selected camera conditions, images have low but discernible light
exposure while producing sharp frame-to-frame object clarity (Fig. 2C),
which is most important when object identities are determined from
image frames in the video recording. Fig. 2C details different cell iden-
tities, such as individual neutrophils alone (Fig. 2Ci) shown with blue
arrows compared to neutrophils with different MOJPs attached at
different positions (Fig. 2Cii and Fig. 2Ciii), highlighted with red arrows.
The corresponding expanded electrical pulse data for each of these ob-
jects is shown by Fig. 2D.

After this manual classification, the changes in bipolar pulse ampli-
tudes related to each object are assigned and compared. SI Fig. 2 dis-
plays the bulk amplitude data for each collected object across all
conducted experiments with this design. As stated earlier, the number of
particles attached per cell were separated into different groups to
evaluate the sensitivity in electrically differentiating cell-particle
conjugation based on this, since it is expected that more MOJPs conju-
gated per cell will multiply its frequency-sensitive amplitude shifts. It is
also expected that 20 nm MOJPs will experience its lower pulse ampli-
tude shift at a lower frequency compared to the 10 nm MOJPs (Sui et al.,
2020). While loosely correlated, this is affirmed from a slightly lower
amplitude slope for cell-20nmCD66b amplitudes at the 7.5 MHz fre-
quency versus the cell-10nmCD11b amplitudes, which is no longer
apparent in at the 8.3 MHz frequency, and the average amplitude is
lower for cell-10nmCD11b pulses at 9 MHz versus the cell-20nmCD66b
data (SI Fig. 2).

When dividing by the MOJP type and the number of those particles
attached to cells, six different groups are categorized; seven when
including cells without any particles attached. There appears to be large
amplitude changes across the frequency spectra when normalized to an
objects 500 kHz amplitude (SI Fig. 2D). The first evident observation is
much larger normalized amplitudes for cells without any particles
attached, which may factor into its high differentiation determined from
the machine learning results. The lower 7.5 MHz amplitude is evident
with Cells-20nmCD66b conjugate groups, but it is also shown that the
number of MOJPs attached does indeed multiple their frequency effects,
with the relative bulk frequency reductions occurring for both
10nmCD11b and 20nmCD66b particles as the number of particles con-
jugated increases. There also appears to be more similarity in normal-
ized amplitude for the same number of particles conjugated across
MOJP types (i.e., Cells-[1] 10nmCD11b versus Cells-[1] 20nmCD11b),
although their polarization shifts towards their specific closest fre-
quency is lower than the corresponding amplitude of the other (7.5 MHz
is lower for Cells-[1] 20nmCD66b, 8.3 MHz is lower for Cells-[1]
10nmCD11b). This relationship is similar but does not hold
completely accurate as the number of particles conjugated increases
across samples, which may point towards the dynamic nature of MOJPs.
Depending on if the MOJPs are conjugated at a position where they are
in contact, this may alter their frequency impedance shift and likewise
their amplitude magnitude with the frequencies used in these
experiments.

3.2. Machine learning comparing cell-conjugate variants within individual
samples

Machine learning was then used on the more specific cell-MOJP
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conjugate groups to better determine where signal changes were origi-
nating. Here, comparisons are shown as the average accuracy across
measured neutrophil samples (n=3) by Fig. 3 and SI Table 2. Fig. 3A
dissects the accuracy in separating different numbers of particles
attached relative to cells with no particles attached. At this point, there
was higher differentiation as the number of particles conjugated
increased for both groups, which points towards the compounding effect
the number of particles has on the signal amplitude at specific fre-
quencies. This only affirms where the high signal separation comes from
when knowing if particles are attached, but it also important to find
differences within the same particle types as this may quantify a degree
of expression density on cells that could translate to clinical significance.

Fig. 3B specifies the accuracy in separating groups within the same
particle class by the number of particles conjugated to a given cell. Here,
the largest differences come from particle numbers that are non-
consecutive (i.e., 1 particle versus 3 or more particles attached),
where the degrees of separation between consecutive number of parti-
cles conjugated is lower but still all above 80% accuracy. While previ-
ously not considered to separate the number of particles attached, this
may point towards a promising system sensitivity in identifying receptor
expression density, where a proportional relationship would exist be-
tween cell-receptor expression and number of conjugated MOJPs.

The ability to differentiate signals by the different type of MOJP
conjugated demonstrates this architectures’ multiplexing potential and
clinical significance. Dividing groups by the number of particles
attached can help separate signal data across the type of MOJPs as well.
Fig. 3C shows those comparisons, with each number of particles
attached to cells being compared across MOJP type. Again, higher
comparisons are seen across cohorts with greater differences in the
number of particles attached, while the same number of particles
attached had the lowest accuracy (Fig. 3C gray bar plots). Further lim-
itations may also come from the small amplitude shifts MOJPs provide at
different frequencies relative to neutrophil pulse dominance, hindering
the sensitivity to differentiate them across MOJP types. Nonetheless,
nearly all comparisons had accuracies higher versus only considering all
number of particles conjugated to cells between the MOJP types (Fig. 3C
purple bar plot) and were better confirmed by larger changes in the
pulse amplitude data at more representative applied frequencies. SI
Table 2 also summarizes the reported average accuracy, area under the
ROC curve (AUC ROCQ), sensitivity, and specificity across different
samples. Finally, information on individual sample comparisons is
provided in the supplemental information (SI Figs. 3-5, SI Tables 3-5),
which follows average trends closely labeling cells alone and cells with
individual MOJPs conjugated.

3.3. Evaluating pooled sample data for inter-sample, repeatable accuracy

After evaluating the average machine learning outcomes from indi-
vidual samples measured, the entire data across samples were combined
to assess the impacts of sample and device variability on the sensitivity
of electrically determining cell-MOJP conjugate groups. Fig. 4 and SI
Table 6 showcases a similar methodology to the previous section but
single comparisons using the pooled data across samples to form indi-
vidual machine learning evaluations. Firstly, cells alone versus any cell-
MOJP iteration yields greater than 80% accuracy (Fig. 4A), which points
towards the ability to measure MOJP presence on a binary level and can
function as an individual biomarker detection mode. Expanding on
MOJP presence, Fig. 4B also holds similar accuracy trends comparing
the number of MOJPs conjugated per cell when making calculations
within the same MOJP class. Here, greater than 85% accuracy was re-
ported, and this defines the impedance detection sensitivity within the
same MOJP and likewise receptor expression density the MOJP targets.
Fig. 4C then disseminates the design’s multiplexing sensitivity by
reporting machine learning accuracies across MOJP types. While the
bulk comparison without considering the number of conjugated MOJPs
per cell had relatively low accuracy at 71.3% (Fig. 4C purple bar plot),
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Fig. 2. Multifrequency impedance cytometer and high-speed video microscopy instrumentation and data collection overview. (A) Gold microelectrodes with pol-
ydimethylsiloxane (PDMS)-based microfluidic channels are staged above an inverted microscope with a mounted high-speed video camera for simultaneous
electrical-video recording. Electrodes are bonded with current amplifying circuitry, with data management and processing controlled via LabVIEW and machine
learning utilized for multi-variate differentiation. (B) Blood cells and metal oxide-coated Janus microparticle (MOJP) electrical responses over four recorded voltage
frequencies at 500 kHz (gray), 7.5 MHz (red), 8.3 MHz (blue), and 9 MHz (green). (C) Microscope images (scale bar = 35 pm) captured from high-speed camera video
recordings for neutrophils (blue arrows) without or with conjugated MOJPs (red arrows) and (D) their corresponding species bipolar pulse amplitudes.
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(S.E.M.).

expanding to consider the number of conjugated MOJPs per cell then
produced higher accuracies by pinpointing multiplied amplitude effects
with increasing number of conjugated particles along with the
frequency-dependent amplitude shifts across MOJP type.

Beyond accuracy, Fig. 4D plots ROC curves for each of the compar-
isons from the pooled cell-MOJP conjugate data, with separate plots to
group results similar to the accuracy bar plots from Fig. 4A-C. While
accuracy is a significant metric for a models function, the ROC curves
and area under the ROC curves (AUC ROC) are a more discriminate
paradigm which is more robust against unequal data size comparisons
and overall a better clinical diagnostic evaluator (Ashley et al., 2022a,
b). Given this, trends with accuracy and AUC ROC hold consistent with
the pooled data, as all AUC ROCs are over 75% while many are over 95%
(total plot area = 100%). Likewise, models with high accuracy exhibited
high AUC ROCs (Cells alone vs Cells-[3+] 10nmCD11b, Cells-[3+]
10nmCD11b vs Cells-[1] 20nmCD66b), while the lowest accuracy
comparisons also had the lowest AUC ROCs (Cells-[All] 10nmCD11b vs
Cells-[All] 20nmCD66b, Cells-[3+] 10nmCD11b vs Cells-[3+]

20nmCD66b).

With the pooled data having high model accuracies and AUC ROCs,
this demonstrates the electrical variability introduced between different
sample impedance or baseline measurements from different impedance
cytometers are insignificant compared to the frequency-sensitive
amplitude effects resulting from MOJPs conjugated to cells. It also
shows that the machine learning models recognize these changes from
the unique barcoded amplitude changes from the four applied fre-
quencies and this unique response is robust compared to external noise
contributors and inter-experimental variances. Overall, there are insig-
nificant sensitivity differences electrically identifying 10nmCD11b
MOJPs versus 20nmCD66b MOJPs using this system, as similar accu-
racies and AUC ROCs were reported independent of the MOJP type.
Future studies are in progress to confirm these electrical signature trends
between conjugates in the same sample and how object electrical
identity may change if more than one MOJP type is conjugated to the
same cell.
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Fig. 4. Reported accuracy differentiating different classified groups using their multifrequency electrical data and machine learning when pooling data across all
collected samples. (A) Reported receptor presence: accuracy differentiating cells alone versus different cell-particle conjugate configurations by particle type and
number of particles conjugated. (B) Reported electrical sensitivity: accuracy comparing ability to differentiate cell-particle conjugates by the number of conjugated

particles within the same particle type. (C) Reported multiplexing potential:

accuracy differentiating cell-particle conjugates across particle types. (D) Receiver

operating characteristic curves of pooled data for the 24 unique group comparisons performed.

4. Conclusion

Electrically sensitive barcoded microparticles were measured with
multifrequency impedance cytometry, with simultaneous high-speed
video microscopy that enabled supervised machine learning to iden-
tify cell-particle configurations using their multi-parameter frequency

responses. Here, a high accuracy was found comparing 10nmCD11b-cell
and 20nmCD66b-cell conjugates to cells alone (both >90%). While bulk
comparisons of 10nmCD11b-cell and 20nmCD66b-cell conjugates were
lower (69.8% accuracy), the expansion of electrical signatures to the
number of particles attached within MOJP types increased accuracy in
identifying objects electrically (up to 98% accuracy). This demonstrated
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the ability to characterize receptor expression density as the number of
particles per cell could also be counted. High accuracy was maintained
both with replicate experiments and after pooling all sample data
together. To determine the efficacy using MOJP as cell receptor profiling
tools, more MOJP types should be characterized in future studies (i.e.,
hafnium dioxide-coated, titanium dioxide-coated), along with using
separate-sample machine learning models to validate 10nmCD11b and
20nmCD66b particles combined in the same sample for assessing the
modality’s true multiplexing potential. There will also be future char-
acterizations into MOJP conjugation rates with known receptor
expression using parallel receptor control experiments with an emphasis
on understanding a patient’s receptor expression profile.
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