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Differences in the structural and thermodynamic properties of enzymes adapted to different temperatures

indicate that broad range temperature active enzymes can be designed by incorporating cold activity in

thermophilic enzymes. This is based on a concept that the cold activity and thermostability are not mutually

exclusive and that cold activity in psychrophilic enzymes is associated with active site flexibility. In Wang

et al. Biochem. Eng. J. 2021, 174, 10803, we identified two point mutants of Geobacillus thermocatenulatus

lipase (GTL) which were screened to improve active site flexibility. Even though the identified thermophilic

mutants had psychrophilic traits, we observed complex trends such as higher kinetic stability and substrate-

dependent activity–temperature relation on further analysis. In this work, we apply molecular dynamics

simulations and network theory to show that the changes in GTL properties with the selected mutations

cannot be directly associated with active site flexibility. Our computational results indicate the mutations

resulted in residues with both higher and lower flexibility, which are both proximal and away (>1.5 nm) from

the active site. We show that the intricate changes in the flexibility of residues distal from the mutation site

can be rationalized by the altered dependency between residue–residue fluctuations with mutation. These

alterations in residue–residue flexibility dependency are a consequence of the redistribution of the inter-

residue interactions from the mutation site to other residues, which are driven by several tightly connected

charged residues. This indicates design rules associated with residue–residue flexibility correlations are

critical in applying site-directed mutagenesis to successfully exploit active site flexibility–activity relation for

incorporating low temperature activity in thermophilic enzymes. Similarly, such correlations can be valuable

in minimizing false positives in high-throughput screening methods based on directed evolution and/or

machine learning-based engineering of enzyme activity–temperature relation.
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Design, System, Application

Enzymes are eco-friendly and natural molecules with excellent properties. It is highly desirable to rationally engineer enzymes for a target application and
its conditions. However, there are no clear design principles that enable this using rational site-directed mutagenesis approaches. In this work, we use
molecular dynamics simulations to probe the activity–temperature relation used to explain the tradeoff between activity and stability in thermophilic and
psychrophilic enzymes. Specifically, we investigate whether the conventional idea that higher active site flexibility leads to activity at low temperature in
psychrophilic enzymes can be used as a design principle to incorporate low temperature activity in a thermophilic enzyme for engineering broad range
temperature active enzymes. Our results indicate that simple design rules like reducing hydrogen bonding residues near the active site do not allow for
changing active site flexibility in isolation and lead to changes in flexibility in the entire enzyme. Consequently, undesirable functional and specificity
changes in the enzyme are observed. We demonstrate that studying residue–residue flexibility correlations can address this challenge and provide
appropriate design guidelines to rationally engineer the active site flexibility. Hence, providing an ability to engineer broad range temperature active
enzymes with potential applications in pharmaceutical, textile and food industries.
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1 Introduction

Enzymes are primarily proteins with critical biological
functions as catalysts and numerous promising industrial
applications2–7 because of their excellent specificity,
selectivity and environmentally friendly properties.8 It is of
both fundamental and commercial interest to understand
the design principles for engineering enzyme activity–
temperature relation. This is because it helps in developing
insights into the evolution of activity–stability of enzymes in
extremophiles and also in engineering enzymes to function
in a wide range of temperatures for applications such as
biosensors in wearable bioelectronics,9 detergents,10 and in
pharmaceutical industries.11 To this end, differences in the
structure of enzymes in extremophiles as well as their
activity–temperature relation are widely studied.8,10,12,13

Enzymes in thermophiles that function at high (∼318–394 K
(ref. 1)) temperatures are typically characterized by tighter
hydrophobic cores, shorter loops, a higher number of charged
residues, and an overall rigid structure relative to their
homologous enzymes in mesophiles and psychrophiles.8,13–15

These traits are considered to help in maintaining high
thermostability of thermophilic enzymes, which is required for
functioning at high temperatures.1,13 In contrast, enzymes in
psychrophiles have no selective pressure for thermostability and
have to defy the exponential activity–temperature16,17 relation to
be active at low (<293 K (ref. 18)) temperatures.13,19,20 The
thermodynamic factor responsible for the weaker exponential
dependence of activity on temperature for enzymes in
psychrophiles can be rationalized by their weaker enthalpy of
activation (ΔH‡) at a given temperature than the homologous
enzymes in thermophiles.12,13,19,21 However, the structure-
related traits responsible for low temperature activity in
psychrophilic enzymes remain elusive. Current understanding
points to a potential relationship between low temperature
activity in psychrophilic enzymes and higher flexibility in their
active site. This is supported by potential weaker interactions
within the active site of enzymes in psychrophiles relative to
mesophiles and thermophiles, as reflected by a relatively lower
enthalpy (ΔH‡) and more negative entropy (ΔS‡) of activation12

at a given temperature and a higher Michaelis–Menten (Km)
constant.1,12,19

In our previous work, we applied the knowledge of the
structure and thermodynamic differences between enzymes
in extremophiles to develop a better understanding of the
design rules required for rationally controlling activity–
temperature relation. Specifically, we relied on the concept
that low temperature activity and thermostability are mutually
exclusive1,7 for designing robust industrial enzymes capable
of functioning at a broad range of temperatures. The concept
implies low temperature activity can be incorporated into
thermostable thermophilic enzymes by simply modifying
their active site flexibility. This is in contrast to the alternative
popular strategy focused on engineering thermal stability of
mesophilic enzymes by enhancing the rigidity of certain key
residues to improve their high temperature function.22

Modulating active site flexibility without perturbing the
arrangement of the catalytic residues is however challenging
because proteins typically form small-world networks.23 To
test the concept and develop an effective approach to
modulate active site flexibility, we considered a simple
starting point by hypothesizing that reducing the number of
hydrogen bonds in a given local region would increase its
flexibility while preserving the secondary structure. For this,
we screened the residues around the active site that would
result in a lower number of hydrogen bonds when mutated
to glycine using the crystal structure as a guide. We applied
this approach to Geobacillus thermocatenulatus lipase (GTL), a
model thermophilic enzyme that has numerous industrial
applications.24–28

From screening wet-lab soluble protein expression and
activity experiments,1 we observed two point mutants E316G
and E361G of GTL preserved the overall secondary structure
and resulted in a better specific activity–temperature relation
and thermostability than the wild-type (WT) GTL.1 However,
the change in specific activity was not restricted to low
temperatures and the observed trend was specific to a short
substrate p-nitrophenol butyrate. Interestingly, we observed
traits of enzymes in psychrophiles such as lower ΔH‡ and
more negative ΔS‡ with the shorter substrate in the two
mutants relative to WT GTL. It is, however, unclear whether
the changes in the activity–temperature relation observed in
the two mutants E316G and E361G were a direct result of
their higher active site flexibility relative to WT.

In this work, our primary goal is to explore the correlation
between active site flexibility and the specific activity–
temperature relation observed in E316G and E361G mutants
relative to WT GTL. For this, we applied all-atom molecular
dynamics (MD) simulations to measure flexibility using root
mean square fluctuation (RMSF) and constraint network
analysis (CNA). We found no clear correlation between
changes in specific activity and active site flexibility measured
using RMSF at low temperatures where the mutants have
better specific activity than the WT. While both the RMSF
and CNA-based flexibility metrics revealed certain residues
proximal to the active site have more flexibility on average,
there are also residues that have less flexibility in the
mutants relative to WT that are distributed throughout the
enzyme.

To better understand the origin of the changes with the
point mutations, we applied network theory approach and
observed that the mutations resulted in both weaker and
stronger inter-residue interactions that are distributed
throughout the enzyme by a network of tightly connected
charged residues. This revealed the likely reason for the
unexpected changes in activity–temperature relation and
kinetic stability of GTL with the mutations observed in Wang
et al.1 In addition, this highlights that the context of the
mutation site is critical for inducing predictable changes in
active site flexibility. For this, information associated with
correlations between residue–residue fluctuations is crucial
along with models to predict changes in enzyme structure
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with point mutations. This can lead to the successful
exploitation of active site flexibility–activity relation to
rationally incorporate low temperature activity in
thermophilic enzymes. In the following, we first present the
details of our flexibility measurements and discuss the
observed trends in flexibility with mutation. We then present
our understanding of the changes in the structure of GTL
with mutation and conclude by presenting our outlook for
furthering hypothesis-driven approaches to rationally design
broad-range temperature active enzymes.

2 Methods
2.1 Molecular dynamics simulations

2.1.1 Initial structure of WT GTL and the mutants. Fig. 1
shows the initial structure of the thermoalkalophilic WT GTL
used in MD simulations that was obtained from the Protein
Data Bank (PDB ID 2 W22). WT GTL has a molecular weight
of ∼43 kDa with optimal activity at 338 K and pH 8–10.29 It
contains 389 residues and has a α/β hydrolase fold with two
cofactor metal ions (Zn2+ and Ca2+), where the Zn2+ ion plays
a role in the thermostability of the enzyme.29 The core of WT
GTL hydrolase fold contains seven sheets of β strands
surrounded by α helices. This is covered by a lid domain
protecting active site, which is comprised of an amphipathic
helix–loop motif as highlighted in Fig. 1a. The three catalytic
residues that are common to α/β hydrolases8 and are often
referred to as the catalytic triad are Ser114, His359, and

Asp318 (Fig. 1b). The location of the residues used for
generating the two point mutants E316G (Glu316 to Gly316)
and E361G (Glu361 to Gly361) with better activity–
temperature relation than WT observed in experiments1 are
highlighted in Fig. 1b. The residues used for creating the two
point mutants E316G and E361G are situated one residue
from the catalytic residues Asp318 and His359, respectively.
Swiss-PdbViewer30 was employed to generate the initial
mutant structures of E316G and E361G.

2.1.2 System setup for molecular dynamics simulations.
The protein atoms, and cofactor metal ions (Zn2+ and Ca2+)
were taken from the crystal structure of WT GTL. The
missing N-terminus 1Met residue in the resulting structure
was added using Swiss-PdbViewer.30 The side chains with the
lowest rotamer score in Swiss-PdbViewer were chosen for
adding 1Met and for mutation of E316G and E361G. The
protonation states of the charged residues Lys, Asp, and Glu
were determined based on their pKa values in water and pH
of ∼8 used in experiments.1,31,32 For certain His residues, we
used the local protein environment based on its ability to
form a hydrogen bond (defined using hydrogen-donor–
acceptor angle and donor–acceptor distance) with
surrounding residues to determine its protonation state.31,32

Both WT GTL and the mutants were first placed in the center
of a box with dimensions 9 × 9 × 9 nm3. The dimensions of
the box were determined by assuming that the proteins will
remain in the folded state during the course of the MD
simulations based on experimental observations,1 while

Fig. 1 Illustration of the crystal structure of WT GTL (PDB ID: 2W22) that was used for generating the structure of the two mutants E316G and
E361G and subsequently as an initial structure for performing molecular dynamics simulations of WT and mutants at different temperatures. (a)
Cartoon representation of the WT GTL with α-helices, β-sheets, and random coils colored in blue, yellow, and gray, respectively. The catalytic triad
residues are represented by a ball and stick model with carbon, nitrogen, and oxygen atoms colored in cyan, blue, and red, respectively. The two
co-factor metal ions Zn2+ and Ca2+ are represented by van der Waal spheres and colored in gray and cyan, respectively. The amphipathic helix–
loop motif protecting the active site (i.e., the lid domain) is highlighted by arrows. (b) Magnification of the region surrounding the active site of
GTL. The two point mutants E316G (Glu316 to Gly316) and E361G (Glu361 to Gly361) are separated by one residue from the catalytic residues
Asp318 and His359, respectively and are shown using a ball and stick model.
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ensuring a minimum of 2.5 nm distance between a protein
atom and the box edge to avoid system size effects. The
resulting systems were energy minimized by employing the
steepest descent algorithm until convergence or to a
maximum of 500 000 steps using GROMACS 5.0.233 for
stabilizing any high energy configurations. We employed the
standard protein force field Amberff99SB-ILDN34 for both WT
and the mutants for simulating at all the target temperatures.
The energy-minimized systems were then solvated by using
the Amberff99SB-ILDN force field compatible water model
TIP3P35 with the gmx solvate tool in GROMACS 5.0.2.33

Chloride ions were then added by replacing randomly
selected water molecules using the gmx genion tool in
GROMACS 5.0.2 (ref. 33) to neutralize the net positive charge
of each system. The resulting systems containing ∼73 070
atoms were then subjected to an additional energy
minimization run to prevent any high-energy contacts
between the water and enzyme atoms.

2.1.3 Molecular dynamics simulation details. A cutoff
distance of 1.0 nm was used for calculating the short-range
nonbonded Lennard-Jones and two-body Coulomb interactions.
Particle mesh Ewald summation method36 was employed to
compute the long-range electrostatic interactions. We applied
the LINCS algorithm37 to constrain the covalent bonds involving
hydrogen atoms in the enzyme, which allowed the usage of a
timestep of 2 fs with the leap-frog integrator.38 Neighbor lists
were updated using Verlet list method39 in GROMACS 5.0.2.33

The SETTLE40 algorithm was used to keep the water molecules
rigid.

Following energy minimization during simulation setup,
short equilibration MD simulations of 1 ns in the NVT
ensemble and 1 ns in the NPT ensemble were performed to
prepare systems at a given target temperature and target
pressure (1 bar). Five target temperatures (280 K, 300 K, 320 K,
340 K, 360 K) were used in this work to measure differences in
flexibility at a given temperature and to analyze the change in
flexibility with temperature. The canonical velocity rescaling41

thermostat and Berendsen barostat42 were used to control the
temperature and pressure during the equilibration process. The
final production simulations were performed in an NPT
ensemble for 350 to 450 ns depending on the convergence of
root mean square deviation (RMSD) with energy minimized
initial structures (ESI† Fig. S1). The Nosé–Hoover
thermostat43,44 and Parrinello–Rahman barostat45,46 were used
in production runs. Separate temperature coupling constants of
5 ps and 1 ps for protein and solvent, respectively, were applied
to minimize temperature gradients for both equilibration and
production runs as recommended by Lingenheil et al.47

Isotropic barostats with pressure coupling constant of 5 ps were
utilized in both equilibration and production runs. The
compressibility of the system was set to that of water (4.5 × 10−5

bar−1) for both equilibration and production runs. Long-range
dispersion corrections were applied for updating energy and
pressure during the simulation.

The trajectories from the production simulations were
saved every 5 ps for analysis. For temperatures 280 K, 300 K,

and 320 K, three replicate simulations of length 500 ns were
performed to estimate standard errors (S.E.). MD simulation
details used for generating the replicate trajectories are
described in ESI† section 1. GROMACS-5.0.2 (ref. 33) was
utilized for preparing and performing the simulations. Each
simulation of length 500 ns took ∼172.5 GPU-h on a node
containing 2 GPUs and 24 CPUs. In total, we performed 33
simulations of an aggregated length of 16.5 μs with an
estimated computational time of ∼5692.5 GPU-h. VMD-1.9.3
(ref. 48) and UCSF Chimera49 were used for visual analysis of
the trajectories.

2.2 Analysis of enzyme flexibility

We applied two measures for quantifying the local flexibility
of residues in the enzyme. Root mean square fluctuation
(RMSF) of residues observed in MD trajectories is a common
measure for quantifying flexibility of residues and to check
its correlations with activity–stability of proteins.50–54 We
utilized the gmx rmsf tool in GROMACS 5.0.2 (ref. 33) for
calculating the RMSF of residues in both WT and mutants
observed in MD simulations. We discarded the first 50 ns of
the trajectory as a part of the equilibration cycle.

In addition to RMSF, flexibility of enzymes or proteins can
be measured using linear response theory55 and network
theory-based metrics.56,57 In this work, we apply a network
theory approach, where atoms in proteins are represented by
nodes in a graph. The edges connecting the nodes represent
covalent and/or non-covalent bonds between the atoms.56

According to network theory-based approaches, an atom in a
protein is considered flexible if it has free degrees of freedom.
Alternatively, it can be interpreted as the ability of an atom in
the network to move upon application of external force.58 To
identify and quantify the flexibility of residues using network
theory, we applied constraint network analysis (CNA).57

2.2.1 Quantification of flexibility using constraint network
analysis. Body-and-bar is one of the common models used
for constructing the protein constraint network, where the
number of bars (constraints) between atoms are dependent
on the nature of their interaction. For capturing the relative
strength of interactions — six, five, and two bars are used for
describing covalent, hydrogen-bond or salt-bridges, and
hydrophobic interactions, respectively. Hydrogen-bonds and
salt-bridges are included as constraints within the protein
network when the strength of such interaction computed
using energy expressions defined by Dahiyat et al.59 is less
than a cutoff value (Ehb). The hydrophobic interactions are
identified by a distance criterion between carbon and/or
sulfur atoms. While initial studies used thermal energy (kBT)
as Ehb, later studies57 related Ehb to temperature. For this,
the folding–unfolding transition is simulated and the phase
transition temperature is calculated by constructing networks
at different values of Ehb. Radestock and Gohlke60 established
the relation between Ehb and temperature by comparing the
Ehb of transition and melting (or growth) temperatures of
proteins in extremophiles calculated experimentally.
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In this work, we applied the rigidity index (ri) that is
formulated by Radestock and Gohlke60 to measure flexibility
using network theory. ri is calculated for each backbone bond
of Cα atomi in the protein. The average ri of all bonds
connected to each atomi is then reported in the units of
energy, which can be interpreted as the energy required to
break a bond apart from any rigid cluster in the protein
body-bar network. We utilized an ensemble of structures
extracted every 0.5 ns starting at 50 ns from the MD
trajectories at 300 K to obtain the statistics of ri. The CNA
parameters Ehb were set to a range of −25.104 kJ mol−1 to
−0.418 kJ mol−1 with 0.418 kJ mol−1 increment. These
parameters correspond to a target temperature range of
interest ∼302 K to ∼420 K with 2 K increment and are
selected using the Ehb-temperature relation reported in prior
studies.61–63 We used the web-server https://cpclab.uni-
duesseldorf.de/cna/main.php developed by Gohlke's group to
perform CNA.

3 Results and discussion
3.1 Change in enzyme flexibility with mutation

3.1.1 Flexibility using RMSF. RMSF is calculated for each
residue at different temperatures for WT and mutants by
aligning the respective trajectories with the respective initial
structures used for the simulations. RMSF and the related
metric B-factors from crystal structures are commonly applied
for understanding the correlation between flexibility and
activity–stability of proteins.50–54,65 Fig. 2 and 3 show the
changes in RMSF of Cα atoms in each residue of the two
mutants at 280 K and 320 K, respectively. 280 K is close to the
lowest studied temperature in experiments and 320 K is around
the optimal activity temperature of WT.1 The influence of
thermal energy at lower temperatures will be minimal and
therefore can reveal inherently flexible residues in the enzyme.
On the other hand, the RMSF around optimal temperature of
WT can be used for understanding the connection between
optimal activity and flexibility of residues in the enzyme. In
addition, 280 K and 320 K are close to the temperatures at
which ΔG‡ is similar for WT and E316G, and WT and E361G,
respectively. We obtained these temperatures by extrapolating
ΔG‡–T curves linearly using the experimentally measured ΔH‡

and ΔS‡ values (Fig. S2†). A temperature at which ΔG‡ is similar
between WT and mutants is a good reference point to
understand the molecular origin for the shift in the ΔH‡–ΔS‡ in
the enzyme with mutation.13

In Fig. 2 and 3, negative and positive differences in RMSF
of residues (ΔRMSFCα(Mutant–WT)) indicate decrease and
increase in fluctuations of residues in the mutants relative to
WT, respectively. We consider the residues in WT and mutant
to have statistically different RMSF when |average of
ΔRMSFCα(Mutant–WT) ± S. E.| > 0, where average and S.E are
estimated using ΔRMSFCα(Mutant–WT) from three independent
simulations. Changes in RMSF profiles between RMSF of Cα

atoms of residues in WT and mutants (ΔRMSFCα(Mutant–WT))
for all the studied temperatures are shown in Fig. S3.†

3.1.1.1 RMSF of E316G at 280 K. Statistically significant
increase in RMSF of residues in mutant relative to WT
following E316G mutation at 280 K (Fig. 2a and b) are
observed for α3-helix residues (81, 84, 86–88), β4-sheet
residue 97, residue 107 between β4 and β5, β6-sheet residues
(154–155, 157–158), lid domain residues (199–200, 236), α7-
helix (253–256), residues between α7 and β7 (260, 262–264),
residues between β8 and α8 (286–292), between α8 and β9
(207, 327–328, 346–348) and residue 369 between β9 and α9.
Of these residues, 165, 288, 292, and 327–328 are within 1.5
nm of at least one of the catalytic residues (S114, D318, and
H359) as shown in Fig. 2a and b.

Statistically significant decrease in RMSF of residues in
mutant relative to WT following E316G mutation at 280 K
(Fig. 2a and b) are observed for residues between β1 and α1

(14–21, 26, 28–30, 32–33), around β2/α2 (53–63, 65), β3
residues (74, 79), residues around β5/α5 (111–120, 123, 125),
residues between α5 and β6 (143–146), residue 163 of β6, lid
domain residues (168, 172, 177–187, 195, 208–209), α7-helix
(244, 246, 249), residue 267 of β7, residues between α8 and β9
(313–316), and residues between β8 and α9 (361–362, 364–
365). Residues near the active site with decreased RMSF for
E316G are found in regions between β1 and α1, between β2
and α2, around β5/α5, β6, lid domain, α7, between α8 and β9,
and between α8 and β9 as highlighted in Fig. 2b.

3.1.1.2 RMSF of E361G at 280 K. Statistically significant
increase in RMSF of residues in mutant relative to WT
following E361G mutation at 280 K (Fig. 2a and c) are
observed in regions near β1 (7–9), between β1 and α1 (19–21,
23–30), between α1 and β2 (46–47), residue 55 between β2 and
α2, α2 residues (70–71), between β4 and β5 (98, 101–108), α4

residues (124–125), β5 residues (153–158), lid domain (188,
195–200, 222–228, 230), between α7 and β7 (255, 257–260,
262–264), between β8 and α8 (286–291), residue 347 between
α8 and β9, and between β9 and α9 (360, 366) (Fig. 2c). Of
these residues, 19–20, 30, 55, 288–289, 291, 360, and 366 are
within 1.5 nm of at least one of the catalytic residues (S114,
D318, and H359) as highlighted in Fig. 2a and c.

Residues with significant RMSF decreases following
E361G mutation are located near β1 (11), between β2 and α2

(57, 61–63), part of β3, α3, and β4 (74–90, 92), around α4 and
α5 (114–119, 132–148), residue 151 between α5 and β6, β6
(160, 164), lid domain (167–168, 175–182, 237), α7 (240, 246–
248), residue 267 of β7, between β8 and α8 (279–281), α8

(298–299), and between α8 and β9 (302–304, 308–309, 311–
312, 314–316, 322, 324, 341, 349) (Fig. 2c). Residues near the
active site with decreased RMSF for E361G are found in
regions near β1, between β2 and α2, around β5 and α5, β6, lid
domain, between α7 and β7, and between α8 and β9.

Compared to the E316G mutation, E361G results in
residues with decreased RMSF in the α3-, α5- and α6-helices,
along with an increase in RMSF near the β5-sheet. In
comparison to E316G, there are more residues in E361G
(109 total in E316G and 149 total in E361G) with
statistically significant changes in RMSF relative to WT at
280 K.
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3.1.1.3 RMSF of E316G and E361G at 320 K. Statistically
significant changes in RMSF of Cα of residues in mutant and
WT at 320 K are shown in Fig. 3. Residue 162 is the only
residue within 1.5 nm of the active site with a statistically
significant increase in RMSF for the E316G mutation at 320
K (Fig. 3b). For the E361G mutation, residues with
statistically significant increase in RMSF include residue 52
of the β2-sheet, residues 272, 279, 288, and 289 between β8
and α8, and residues 357–359, 361 and 366 near β9.

Both mutations result in residues with statistically
significant decrease in RMSF located between β2 and α2,
around β5 and α5, within β6, in the lid domain, between α7

and β7, and between α8 and β9. E316G additionally has
residues with significant RMSF reductions compared to WT
in the α7-helix (240, 246–247), while E361G includes residues
near β1 (16, 20) and β9 (354).

Overall, the E316G mutant has more residues with
significant RMSF changes (237 for E316G compared to 132

Fig. 2 Changes in the flexibility of GTL with E316G and E361G mutations measured using RMSF at 280 K. (a) Difference in RMSF of Cα

(ΔRMSFCα(Mutant–WT)) of residues at 280 K in E316G and WT, and E361G and WT are shown in blue and red, respectively. Error bars represent standard
errors obtained by measuring RMSF for WT and mutants using three independent MD simulation trajectories. Secondary structure of WT along the
sequence was obtained using biotite64 and is shown at the top of (a). Arrows in blue and red refer to regions with higher RMSF in mutants than WT
and that are within 1.5 nm from the active site residues in E316G and E361G, respectively. The locations of catalytic residues are shown using
vertical lines in gray. For clarity, only residues with statistically significant changes in RMSF in WT and mutants are shown. (b) Residues in the crystal
structure of WT GTL are colored according to their ΔRMSFCα(Mutant–WT) of residues in E316G relative to WT, (c) Residues in the crystal structure of WT
GTL are colored according to their ΔRMSFCα(Mutant–WT) of residues in E361G relative to WT. In (b) and (c), residues with ΔRMSFCα(Mutant–WT) > 0 and
ΔRMSFCα(Mutant–WT) < 0, i.e., more and less flexible in the mutant relative to WT are colored in green and orange, respectively.
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for E361G) at 320 K. The differences are largely from the
higher number of residues in the lid domain and between α8

and β9 with RMSF changes for E316G compared to E361G
mutant.

3.1.1.4 Change in RMSF with temperature. Analyzing RMSF
of residues with change in temperature reveals the degree of
flexibility of each residue and therefore provides another
perspective on RMSF changes with mutation. In other words,
the degree of flexibility can be interpreted as the energy

required to change the flexibility of a residue. Fig. S4† shows
the changes in RMSF of WT and the two mutants with
change in temperature starting from 300 K to 360 K using
RMSF of the respective trajectories at 280 K as reference.

In WT and mutants, we observed both an increase and
decrease in RMSF of residues that are distributed throughout
the enzyme at any temperature T ≥ 300 K relative to 280 K.
We observed that the number of residues within ∼1.5 nm of
active site that have higher RMSF at temperatures T ≥ 300 K

Fig. 3 Changes in the flexibility of GTL with E316G and E361G mutations measured using RMSF at 320 K. (a) Difference in RMSF of Cα

(ΔRMSFCα(Mutant–WT)) of residues at 320 K in E316G and WT, and E361G and WT are shown in blue and red, respectively. Error bars represent standard
errors obtained by measuring RMSF for WT and mutants using three independent MD simulation trajectories. Secondary structure of WT along the
sequence was obtained using biotite64 and is shown at the top of (a). Arrows in blue and red refer to regions with higher RMSF in mutants than WT
and that are within 1.5 nm from the active site residues in E316G and E361G, respectively. The locations of catalytic residues are shown using
vertical lines in gray. For clarity, only residues with statistically significant changes in RMSF in WT and mutants are shown. (b) Residues in the crystal
structure of WT GTL are colored according to their ΔRMSFCα(Mutant–WT) of residues in E316G relative to WT, (c) residues in the crystal structure of WT
GTL are colored according to their ΔRMSFCα(Mutant–WT) of residues in E361G relative to WT. In (b) and (c), residues with ΔRMSFCα(Mutant–WT) > 0 and
ΔRMSFCα(Mutant–WT) < 0, i.e., more and less flexible in the mutant relative to WT are colored in green and orange, respectively.
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relative to 280 K are greater (except at 320 K) in the mutants
than WT (Fig. S5–S8†). This implies the degree of flexibility
of residues closer to active site in mutants is higher than WT.

Together with the changes in RMSF of residues around
the active site observed in Fig. 2 and 3, this indicates the
mutations resulted in higher active site flexibility relative to
WT. However, the simultaneous reductions in RMSF of
residues away from the active site makes the establishment

of a concrete relation with the complex changes in enzyme
activity–temperature with mutation observed in experiments1

difficult.
3.1.2 Flexibility using rigidity index ri. As another

measure, we apply CNA metrics to capture the local flexibility
of the enzyme. CNA relies on the 3D structure utilized to
construct the body-and-bar model. For this reason, we used
an ensemble of structures in the folded state for both WT

Fig. 4 Changes in the flexibility of GTL with E316G and E361G mutations measured using CNA. (a) Difference in ri (Δri,(Mutant–WT)) of residues in
E316G and WT, and E361G and WT are shown in blue and red, respectively. Error bars represent standard errors obtained by measuring ri for WT
and mutants using three independent simulation trajectories. Secondary structure of WT along the sequence was obtained using biotite64 and is
shown at the top of (a). Arrows in blue and red refer to regions with higher ri in mutants than WT and that are within 1.5 nm from the active site
residues in E316G and E361G, respectively. The locations of catalytic residues are shown using vertical lines in gray. For clarity, only residues with
statistically significant changes in ri in WT and mutants are shown. (b) Residues in the crystal structure of WT GTL are colored according to their
Δri,(Mutant–WT) of residues in E316G relative to WT, (c) residues in the crystal structure of WT GTL are colored according to their Δri,(Mutant–WT) of
residues in E361G relative to WT. In (b) and (c), residues with Δri,(Mutant–WT) > 0 and Δri,(Mutant–WT) < 0, i.e., more and less flexible in the mutant
relative to WT are colored in green and orange, respectively.
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and mutants by extracting frames every 0.5 ns starting at 50
ns, which corresponds to the equilibrated region of the
simulation trajectory (Fig. S1†) at 300 K.

CNA-based flexibility measures are more sensitive to local
connectivity than RMSF, which does not take local
neighborhood information directly.57 We set the Ehb range
from −25.104 kJ mol−1 to −0.418 kJ mol−1 with 0.418 kJ mol−1

increment following prior work on related lipases and other
proteins61–63 for obtaining the phase transition temperature
by mimicking folding-unfolding transition with CNA. The
applied Ehb range is equivalent to a temperature range of
approximately 302–420 K with 2 K increment,60 where the
maximum temperature is well beyond the optimal activity
temperatures of WT GTL (∼320 K) and mutants (∼333 K)
observed in experiments.1

3.1.2.1 Trends in folding-unfolding transition. According to
CNA, the global indices capturing the folding-unfolding of
the enzyme (ESI† Table S1), the transition of average Ehb
follows the order E361G > WT > E316G. The lower transition
Ehb or equivalently a higher folding–unfolding transition
temperature implies a higher stability of the E316G mutant,
but not E361G mutant, compared to WT. The higher stability
of E316G mutant, but not E361G mutant, from CNA
correlates with the higher kinetic stability measured with C4
substrate in wet-lab experiments.1 We note that a caveat in
this interpretation is that higher kinetic stability can also
result from lower aggregation propensity66 that is not
captured in CNA, and therefore need not have any direct
relation with the stability of the structure.

3.1.2.2 Rigidity index ri. Fig. 4 shows the differences in Δri
of mutants and WT. A non-zero Δri on average indicates
mutations altered flexibility of the enzyme. The positive and
negative values of the average Δri imply the residues in
mutants are relatively more and less flexible than WT,
respectively. The standard error of Δri in Fig. 4a is indicative
of the differences in the distribution of ri in the WT and the
mutants. Several residues with altered ri are in similar
locations along the enzyme sequence to that identified by
RMSF analysis (Fig. 2 and 3).

3.1.2.3 Trends in ri of E316G. Residues proximal to the
active site (Fig. S9†) with a significant difference in ri with
E316G mutation include 55, 249–250, 319–320, and 360
(Fig. 4b). Most of the residues of loop regions in E316G have
negative Δri on an average indicating enhanced rigidity or a
higher Ehb is required to segregate from a rigid cluster. These
changes in loop rigidity of the mutants correlate with their
higher kinetic stability relative to WT observed in
experiments.1

3.1.2.4 Trends in ri of E361G. In the E361G mutant, residue
55 in β2 and residues in the loop between β9–α9 (354–355,
359–361) are relatively more flexible, i.e., break apart from a
rigid cluster at less negative Ehb on an average than WT
(Fig. 4c). These residues are <1.5 nm from the active site and
are highlighted in Fig. 4a. This suggests the ability of E361G
to break hydrogen-bonds or salt-bridges is relatively easier on
average at a lower temperature than WT. These identified

flexible regions around the active site (Fig. S9†) could be
associated with the large changes in ΔH‡–ΔS‡ and specific
activity at lower T (T < ∼325 K) of E361G relative to WT.1

However, similar to the RMSF changes at a given
temperature (Fig. 2 and 3) and with temperature, the CNA-
based metric ri also revealed certain residues around the
active site are more flexible than in WT. However, there are
also residues with lower and higher ri that are distributed
throughout the enzyme, which implies a non-trivial relation
between flexibility changes and activity–temperature profiles
or ΔH‡–ΔS‡ changes observed in experiments1 with
mutations.

3.2 Understanding differences in enzyme flexibility and
structure with mutation

We have established that both mutations resulted in certain
flexible residues around the active site, but there are also
residues with both lower and higher flexibilities that are
distributed throughout the enzyme. These concomitant
changes in flexibility of residues with mutation that are
distributed throughout the enzyme make it difficult to study
the relation between active site flexibility and activity–
temperature relation observed in experiments. In addition,
both the mutations also resulted in modified organization of
the catalytic triad, which are the key residues for catalyzing
the hydrolysis reaction (Fig. S10†). Another complication is
that in experiments, the two point mutants have resulted in a
substrate dependent activity–temperature relation and altered
(higher) kinetic stability than WT.1 With the shorter substrate
p-nitrophenol butyrate, we observed improved activity in the
mutants relative to WT mainly at high temperatures.1 In
contrast, the mutants have lower activity than WT at both
lower and higher temperatures than WT with the longer
substrates p-nitrophenol octanoate and p-nitrophenol
laurate.1

To better understand the changes in the enzyme structure
and the leading modes of variation with mutation, we
employed principal component analysis (PCA). ESI† Fig. S14
shows the projection of each configuration of thermophilic
WT (black) and its improved mutants (E316G-blue, E361G-
red) with psychrophilic traits sampled in MD simulations at
280 K along the top five leading shared principal
components. We obtain the shared principal components for
the three variants by performing PCA over the combined
trajectories of WT and the mutants. Each configuration in
the trajectory was featurized by the backbone Cα positions for
performing the PCA. The WT and the mutants share certain
regions along the leading five PCs. The diverging areas
indicate that the leading PCs capturing the collective linear
modes of the enzymes can be used for differentiating the WT
and the mutants (ESI† Fig. S16).

Upon further analysis, we observed variations in the
configurations of mutants compared to WT along PC1–PC2
could be attributed to the differences in the collective motions
in the lid domain relative to the core α–β hydrolase fold of GTL
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(ESI† Fig. S15). This is consistent with the RMSF and ri analysis
(Fig. 2–4) which showed that the mutations largely influence
the lid domain fluctuations indicating a potential link to the
specific activity differences between WT and the mutants.
Further details on PCA are provided in ESI.†

To minimize such drastic changes in the enzyme structure
and alter the flexibility of the enzyme in a predictable
manner using rational point mutations, it is crucial to
understand the origin of the differences in enzyme structure
and flexibility with mutation. For this reason, we first focus
on understanding the dependency between the RMSF of a
residue with that of another residue by measuring pairwise
distance correlation coefficient (dcorr)

67 between the RMSF of
two residues using the trajectories at 280 K, where both WT
and mutants are active.1 We expect the influence of thermal
energy to be relatively low at 280 K. Therefore, analysis at this
temperature could reveal differences in the inherent
flexibility correlations between residues in the enzyme. We
then focus on understanding the origin of the differences in
flexibility of residues that are located far from the mutation
site in the two mutants.

3.2.1 Distance correlation, dcorr, between residue–residue
RMSF. Distance correlation, dcorr,

67 captures non-linear
correlations between two variables. A higher dcorr implies a
stronger dependency between the two variables. Fig. 5a shows
the dcorr between RMSF of two residues of E316G and WT at
280 K in the upper and lower diagonal of the heat map,
respectively. dcorr trends at other temperatures are shown in
Fig. S11 and S12.†

The dcorr results indicate strong dependency between
RMSF of residues ∼50–90 and part of the lid domain (i.e.
residues ∼210–240) in the WT but not in E316G. In addition,
the E316G mutation resulted in altered dependency between

various other residue pairs with mostly lower (gray regions in
Fig. 5a) dcorr when compared to WT at 280 K.

Similar changes in dcorr can be observed in E361G mutant
relative to WT at 280 K (Fig. 5b). However, the changes are
greater in E361G compared to E316G at 280 K. The changes
in dependency resulting from mutation indicate modified
connectivity between residues in the mutants compared to
WT at 280 K. These changes in principle are not desired
according to the hypothesis and are likely associated with the
unexpected changes to enzyme properties such as kinetic
stability and substrate-dependent activity–temperature
relation observed in the experiments.1

3.2.2 Changes in total nonbonded interaction energy, E
with mutation. To further investigate the origin of the
changes in dcorr, we calculated the total nonbonded
interaction energies (E) between every residue–residue pair in
WT and mutants at 280 K. The total nonbonded interaction
energy E was calculated as the sum of Lennard-Jones and
Coulomb interactions. Normalized differences in interaction
energy E between WT and mutants scaled to −1 and 1 are
shown in ESI† Fig. S13. The results indicate that the
mutations caused both large and subtle differences in the
interaction energies between various residue pairs that are
spread throughout the enzyme.

While most of the residue pairs with strong interactions
(Fig. S13†) have high dcorr (Fig. 5), there are exceptions where
the residues that are not directly interacting have high dcorr.
These residue pairs show dependency in dcorr via indirect
interactions mediated by either other residues and/or water.
To illustrate this, we explored the connection between dcorr
and total E of all the residues in the enzyme with the mutant
residue 316 (Fig. 6a and b) and 361 (Fig. 6c and d) in WT and
the mutants.

Fig. 5 Distance correlation, dcorr, between RMSF of residue pairs in WT, E316G, or E361G. (a) dcorr of residues in E316G (upper diagonal) and WT
(lower diagonal) at 280 K, (b) dcorr of residues E361G (upper diagonal) and WT (lower diagonal) at 280 K. Higher dcorr values between residue pairs
implies stronger dependency between residue–residue fluctuations. The residues in the lid domain are highlighted by a box in both (a) and (b).
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3.2.2.1 Connection between dcorr and interaction energy E of
the mutant residues. Few residues, especially in the lid
domain, have higher dcorr or dependency with residue 316
in WT than in the mutant E316G (Fig. 6a). Some of these
residues are directly interacting with residue 316, as
observed from their non-zero interaction energies (Fig. 6a),
indicating spatial proximity. Other residues are indirectly
interacting, as there is no interaction energy observed yet
dependencies in dcorr are observed. The residues proximal
in sequence space to 316 have higher dcorr in both WT and
mutant E316G with minor differences between them, which
is also reflected in the change in energy (Fig. 6a). To
emphasize the differences in the interaction energy E in WT
and E316G on an average, we projected the strengths
proportional to the cylinder radius connecting residues on
the structure (Fig. 6b). The projected strengths demonstrate
the redistribution of the interaction energies after mutation.
For example, E316 has strong repulsive interactions (cyan)
with E271 in WT but not in the E316G mutant. The E316G
mutation largely influenced the interaction energies with
the polar and charged residues in the immediate vicinity,
including the loss of strong attractive interactions (orange)
with R275 following mutation.

In WT, there are several more residues along the sequence
that are correlated (although weakly) with residue 361
(Fig. 6c) than residue 316 (Fig. 6a). The mutation E361G
resulted in stronger as well as weaker correlations with the
mutated residue 361 relative to the corresponding residue in
the WT. A major loss in the attractive interaction energy
between residue E361 and R272 is observed in WT after
E361G mutation (Fig. 6c). These changes in E surrounding
the mutant residue is the likely origin in the redistribution of
E across every residue pair, and thus the dependency in the
fluctuations dcorr (Fig. 5) of the residue. These are also seen
in the visual plots with energy E projected by cylinder radius
connecting mutant residue 361 with other residues in WT
and E361G (Fig. 6d).

3.3 Understanding changes in enzyme flexibility with
mutation

To further track the propagation of the changes in enzyme
flexibility from the point of origin (mutation), we applied
network analysis to the ensemble of structures explored in
MD simulations. Network analysis is a powerful approach
that can enable access to various aspects of a protein such as

Fig. 6 Connection between distance correlation dcorr between the RMSF of residue pairs and the residue–residue interaction energies. (a) Average
dcorr of residue 316 in WT (black) and E316G (blue) and the average total non-bonded interaction energy (E, energy) with all the residues in WT and
E316G at 280 K, (b) the average total E between residue 316 and other residues shown in (a) mapped onto the energy minimized structure of WT
and E316G. The cylinders thickness is proportional to E. (c) Average dcorr of residue 361 in WT (black) and E361G (red) and the average total non-
bonded interaction energy (E, energy) with all the residues in WT and E361G at 280 K, (d) the average total E between residue 361 and other
residues shown in (c) mapped onto the energy minimized structure of WT and E361G. The cylinder thickness is proportional to E. Residue–residue
interaction energies in WT and mutants that are attractive (E < 0) or repulsive (E > 0) are colored in orange or cyan, respectively. In (a) and (c), the
vertical gray lines correspond to the three active site residues (Ser114, Asp318, and His359). Error bars represent standard errors and are obtained
from three independent simulation trajectories.
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the global topological connectivity between residues,68–71

local variation in the connectivity of each residue with its
neighboring residues,72 allosteric interactions,73 and
identification of critical residues.23,74 In protein structure
network analysis, residue interaction networks are
constructed by representing each residue as a node. The
edges between the residues or nodes are typically constructed
based on the spatial proximity of the residues using a user-
defined distance cutoff.68,72–74 In order to capture the
dynamical information associated with an ensemble of
structures accessible by MD simulations, correlation between
the residue fluctuations can be utilized to define the weight

of each edge connecting different residue pairs.73 In our
work, we use a simple alternative approach, where we define
edges between all pairs of residues in the enzyme and utilize
the change in average non-bonded interaction energies E
between residues in mutant and WT (ΔEMutant–WT) at 280 K as
weights to set their relative importance. In this way,
connections between all residue pairs are retained, and
because the weights are based on average ΔEMutant–WT, it
enables direct access to the changes in topological
connectivity of the enzyme with mutation observed in the
ensemble of structures sampled in MD simulations. For
estimating the edge weights, average ΔEMutant–WT at 280 K, we

Fig. 7 Cylinders with radius proportional to the difference in average total E between residues of mutant and WT (ΔEE316G–WT) are used for showing the
differences in the strength of interactions with mutation E316G at 280 K. Cylinder radii are normalized by the minimum value of ΔEE361G–WT. Thus, edges
connecting Cα nodes with strong attractive energy in the mutant relative to WT are represented by the cylinders with the highest radii. (a) Closer view of
residues surrounding the site of mutation. In (b) and (c), the changes in the residue–residue interactions are shown in two different perspectives focusing
on the binding site. Cyan and orange cylinders represent interactions that are stronger (ΔEE316G–WT < 0) and weaker (ΔEE316G–WT > 0) on average in E316G
than WT, respectively. (d) Betweenness value of the residues in the residue–residue network, where the value is dependent on the number of shortest
paths passing through the residue. The shortest path is defined as the path with minimum sum of weights, and therefore we have used

1

EE316G–WTj j for
edge weights. This provides more weight to edges with higher |EE316G–WT| in determining shortest paths. In (a–c), the betweenness values of each residue

are shown with blue spheres using the radius of the sphere. The betweenness values are computed from average |EE316G–WT| at 280 K, which is estimated

from three independent trajectories.
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used the average non-bonded interaction energies obtained
from three independent simulations for WT and mutants.

Fig. 7(a–c) and 8(a–c) show the resulting weighted network
mapped on the energy-minimized WT crystal structure using
cylinders proportional to the weight in the mutant E316G
and E361G, respectively. These weighted networks reveal the

changes in the total interaction energy E between every
residue–residue pair with mutation. It shows the interaction
strength between certain residue pairs increased (cyan) as
well as decreased (orange) with mutation. These networks
can be used to rationalize the simultaneous increase and
decrease in RMSF of the enzyme with mutation at 280 K. For

Fig. 8 Cylinders with radius proportional to the difference in average total E between residues of mutant and WT (ΔEE361G–WT) are used for showing the
differences in the strength of interactions with mutation E361G at 280 K. Cylinder radii are normalized by the minimum value of ΔEE361G–WT. Thus, edges
connecting Cα nodes with strong attractive energy in the mutant relative to WT are represented by the cylinders with the highest radii. (a) One
perspective of residues surrounding the site of mutation. In (b) and (c), the changes in the residue–residue interactions are shown in two other
perspectives focusing on the mutation site. Cyan and orange cylinders represent interactions that are stronger (ΔEE361G–WT < 0) and weaker (ΔEE361G–WT >

0) on an average in E361G than WT, respectively. (c) Closer view surrounding the site of mutation. (d) Betweenness value of the residues in the residue–
residue network, where the value is dependent on the number of shortest path passing through the residue. The shortest path is defined as the path with

minimum sum of weights, and therefore we have used
1

EE361G–WTj j for edge weights. This provides more weight to edges with higher |EE316G–WT| in

determining shortest paths. In (a–c), the betweenness values of each residue are shown with red spheres using the radius of the sphere. The betweenness

values are computed from average |EE316G–WT| at 280 K, which is estimated from three independent trajectories.
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example, for the E316G mutant, there are several residue
pairs with large changes in their interaction energy relative to
WT far from the mutation site as reflected in the radius of
the edges (cyan and orange cylinders) connecting nodes in
Fig. 7(a–c).

To identify residues that are strongly influenced by mutation,
we calculated betweenness centrality using NetworkX75–77 on
the network. For this, we utilize the inverse of the absolute
difference in interaction energy E between mutant and WT

1
ΔEMutant–WTj j

� �
as edge weights for computing shortest paths

and betweenness centrality in the resulting network. This allows
the usage of standard shortest path algorithms,75–77 where the
shortest paths are those that have minimum sum total edge
weights and therefore, applying an inverse to (|ΔEMutant–WT|)
provides higher weightage to edges with larger differences in
the interaction energy E. Betwenness centrality for each node k

is defined as
X
i;j∈N

σ i; j kjð Þ
σ i; jð Þ , where N is the set of nodes. σ(i, j|k)

represents the number of shortest paths between s and t
passing through a node k and σ(s, t) refers to the total number
of shortest paths between two nodes s and t.75,76

Betweenness centrality provides a value proportional to
the number of shortest paths passing through it. Residues
with higher betweenness can be considered as hubs for the
change in the total E with mutation as the number of
shortest paths passing through them are higher. According to
the betweenness of residues, a majority of the hubs are
charged residues in both E316G and E361G (Fig. 7d and 8d).
These residues are connected mainly to other charged
residues in the enzyme, which suggests a large role of
electrostatic interactions for the observed changes in the
structure–dynamics with mutation.

The weighted networks also demonstrate differences in
the mechanism of changes in the enzyme's internal network
with each mutation. In E316G (Fig. 7), the residue H113 is
the major hub that resulted in large changes near the lid
domain and other regions beyond 1.0 nm from the mutation
site E316. The charged residues such as D318, H359 and the
polar residue N60 acted as intermediate hubs. For E361G
(Fig. 8), the changes with the mutation are propagated via
several charged residues such as D318, D358, H359, and
certain polar/apolar (N60 and V357) residues adjoining E361
and H113.

4 Conclusions

Given low temperature activity in enzymes from
psychrophiles can be uniquely related to their active site
flexibility,1,8,12,19 it implies broad range temperature active
enzymes can be designed by incorporating active site
flexibility in a thermophilic enzyme. This is in contrast to the
alternative strategy of thermostabilization of psychrophilic
and mesophilic enzymes by engineering rigidity of certain
key residues to enable their high temperature function.8,22 In

our prior study,1 we exploited the potential relation between
active site flexibility and low temperature activity for
designing broad-range temperature active enzymes. With a
simple human design approach, we attempted to identify
point mutants using crystal structures that can improve
active site flexibility in a model thermophilic enzyme GTL.
Initial wet-lab tests revealed two point mutants with better
low temperature activity than WT GTL.1 However, we
observed complex trends such as an increase in high
temperature activity, substrate-dependent activity–
temperature relation, and kinetic stability in the two mutants
upon further analysis.1

In this study, we applied MD simulations and network
theory to understand the origin of the complex trends
observed in the experiments. We showed that the mutations
resulted in both an increase and decrease in the flexibility of
residues in the enzyme. We used two measures to quantify
flexibility – a conventional RMSF approach and an alternative
network theory-based technique. We found changes in the
flexibility of residues both proximal and distal to the active
site. This shows the limitations of the applied human design
approach to increase active site flexibility using only the
crystal structure of GTL. To discover the additional design
rules and understand the origin of the differences in enzyme
flexibility with mutation, we analyzed the correlation between
the flexibility of enzyme residues and the changes in enzyme
structure with mutation.

Our analysis revealed that the changes in the residue
fluctuations with mutation are a result of the changes in the
residue–residue interactions. These changes comprise both
increase and decrease in the strength of residue–residue
interactions, and are distributed throughout the enzyme.
This explains the changes in the flexibility of residues distal
from the site of mutation. Our network analysis revealed that
several charged residues, distributed throughout the enzyme,
act as mediators or hubs in propagating the changes in
residue–residue interactions from the site of the mutation.
Collectively, our results imply information associated with
correlations between residue–residue fluctuations could be
crucial in designing rational mutations for altering flexibility
in a targeted region of an enzyme. This is mainly necessary
for the successful implementation of hypothesis driven
engineering techniques requiring control over active site
flexibility using site directed mutagenesis. To this end, our
plan for future work is to utilize the discussed insights and
related dynamic flexibility metrics55,78 to construct a
computational screening approach for predicting active site
flexibility inducing mutations and thereby, successfully
exploit active site flexibility–activity relation for rationally
engineering low temperature activity into thermophilic
enzymes.
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