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THE DOMINANT RESEARCH STRATEGY WITHIN THE

field of music perception and cognition has typically
involved new data collection and primary analysis tech-
niques. As a result, numerous information-rich yet
underexplored datasets exist in publicly accessible
online repositories. In this paper we contribute two sec-
ondary analysis methodologies to overcome two com-
mon challenges in working with previously collected
data: lack of participant stimulus ratings and lack of
physiological baseline recordings. Specifically, we focus
on methodologies that unlock previously unexplored
musical preference questions. Preferred music plays
important roles in our personal, social, and emotional
well-being, and is capable of inducing emotions that
result in psychophysiological responses. Therefore, we
select the Study Forrest dataset ‘‘auditory perception’’
extension as a case study, which provides physiological
and self-report demographics data for participants (N =
20) listening to clips from different musical genres. In
Method 1, we quantitatively model self-report genre
preferences using the MUSIC five-factor model: a tool
recognized for genre-free characterization of musical
preferences. In Method 2, we calculate synthetic base-
lines for each participant, allowing us to compare phys-
iological responses (pulse and respiration) across
individuals. With these methods, we uncover average
changes in breathing rate as high as 4.8%, which corre-
late with musical genres in this dataset (p < .001). High-
level musical characteristics from the MUSIC model
(mellowness and intensity) further reveal a linear
breathing rate trend among genres (p < .001). Although
no causation can be inferred given the nature of the
analysis, the significant results obtained demonstrate
the potential for previous datasets to be more produc-
tively harnessed for novel research.
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M
USIC IS A FORM OF HUMAN COMMUNICA-

tion that is found across cultures and eras,
actively or passively permeating aspects of

social interaction, relationships, memories, emotional
state, self-identity, and more (Cross, 2001). Our prefer-
ences for certain types of music may begin to form
relatively early on and then continue to evolve, playing
non-trivial roles throughout our life (Bonneville-Roussy
& Eerola, 2018; Bonneville-Roussy et al., 2017). For
example, musical preference has been found to reveal
some aspects of lifestyle (North & Hargreaves, 2007;
Pettijohn et al., 2012), personality (Chamorro-
Premuzic et al., 2010; North, 2010; Rentfrow & Gosling,
2003), identity and self-view (Hargreaves et al., 2008;
Rentfrow & Gosling, 2006), and cognitive style (Green-
berg et al., 2015).
Individuals also commonly use music for self-

regulation of emotional state or levels of arousal (Lons-
dale & North, 2011; Schäfer & Sedlmeier, 2009). Music
is capable of inducing a range of emotions of various
valence and arousal levels, accompanied by strong and
immediate effects on the listener’s physiology (Bigand
et al., 2005; Juslin & Laukka, 2004; Lundqvist et al.,
2009). This may be mediated by several psychological
mechanisms—most comprehensively outlined in the
BRECVEMA framework (Juslin et al., 2010; Juslin &
Västfjäll, 2008)—such as the brain stem reflex (Davis,
1984), episodic memory (Baumgartner, 1992), musical
expectancy (Steinbeis et al., 2006), and others. Two or
more of these mechanisms can be recruited simulta-
neously, which this framework suggests might explain
mixed or conflicting emotional responses to certain
stimuli (Juslin, 2013). Therefore, in music perception
and emotion research, especially that which focuses
on measuring the neurological or physiological outputs
of these mechanisms, it is critical to recognize and
attempt to isolate the involved mechanisms to avoid
conflicting or inconclusive results.
One direction of music emotion research investigates

responses to objective musical characteristics: acoustic
features like pitch, tempo, loudness, and timbre, or
event-related features like sound onsets or section tran-
sitions. For example, acoustic features such as loudness
and tempo have been shown in multiple studies to
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(2003) identified four independent dimensions of musi-
cal preference through developing the Short Test of
Musical Preferences (STOMP). Results from the
STOMP provided a clear way to translate one’s musical
preferences from genre labels to quantitative, ‘‘genre-
free’’ loadings on each of the four identified factors. The
four-factor model was eventually updated following
subsequent analyses, creating the revised STOMP
(STOMP-R) based on a better-fitting, five-factor model.
These five orthogonal factors of musical preference are
(1) Mellow, (2) Unpretentious, (3) Sophisticated, (4)
Intense, and (5) Contemporary (‘‘MUSIC’’). Styles of
music are given standardized loadings on each of these
five factors, providing a more general and quantifiable
characterization (Rentfrow et al., 2011).
In this paper, we explore physiological correlates of

both objective (musical characteristics) and subjective
(individual preference) features of musical stimuli
through the secondary analysis of the publicly available
Study Forrest dataset (Hanke et al., 2015). Secondary
analyses can be feasible, efficient, and collaborative ways
of exploring multiple questions, and can provide a facil-
itating step towards the collection of new data. However,
they may also present a unique set of challenges
depending on the design of the dataset being used and
the questions attempting to be asked. The primary
objective of this paper is to present a feasibility report
of performing these post hoc analyses on a dataset not
originally designed to answer these questions, and to
share the methodologies we developed to work with the
given data.
From the Study Forrest dataset we analyze the ‘‘audi-

tory perception’’ subtask, in which 20 participants lis-
tened to 25 short excerpts of researcher-selected songs
from five different genres of music. Functional magnetic
resonance imaging (fMRI) data, respiratory and finger
photoplethysmogram (PPG) traces are provided, along
with responses to a pre-task questionnaire where parti-
cipants report their demographics, music training, and
a list of favorite genres and musical artists. We select this
dataset as a case study for the proposed secondary anal-
ysis feasibility report on account of 1) its accessibility,
versatility, and documentation, which was of particular
significance at the time of this work when much in-
person data collection was halted due to the COVID-19
pandemic, 2) the naturalistic design of the music listen-
ing task, and 3) the types of data that were recorded
during the experiment, which support our research ques-
tions into the effects of music and preference on listener
physiology. It is important however to keep in mind the
dataset limitation of small sample size; the Discussion
section contains more details regarding limitations.
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correspond with levels of physiological arousal, as mea-
sured through heart rate, breathing, and other cardio-
respiratory metrics (Bernardi et al., 2006; Coutinho & 
Cangelosi, 2011; Juslin et al., 2014; Nyklı́ček et al., 1997; 
Russo et al., 2013). Musical biofeedback systems have 
successfully directed participants’ breathing patterns 
using music’s tempo, both with (Siwiak et al., 2009) and 
without (Leslie et al., 2019) their awareness.
Other studies explore responses to more subjective 

features of music: individual preference, appreciation, 
or familiarity. For instance, studies of affective video 
stimuli suggest that amusement may be accompanied 
by activation of the parasympathetic nervous system, 
with high heart rate variability (HRV) observed during 
approach-motivated emotions compared to avoidance-
motivated emotions (Wu et al., 2019). It has also been 
shown that pleasurable responses to preferred music 
correlate with an aroused response from the autonomic 
nervous system (increased heart rate and respiration), 
as well as activation in regions of the brain associated 
with reward (Blood & Zatorre, 2001). Lingham and 
Theorell (2009) found this physiological arousal 
response (specifically, increased heart rate) occurred for 
both high and low arousal ‘‘favorite’’ music. However, 
the effects were more pronounced (and included an 
increase in breathing rate) for high arousal favorite 
music and were smaller and less reliable for the low 
arousal favorite music. Altogether, these studies suggest 
that both subjective characteristics (such as individual 
preference) and objective musical features jointly con-
tribute to one’s psychophysiological response to music.
A recurring challenge in studies of musical preference 

is the variability and subjectivity of music style cate-
gories, or genre labels. One concern is limitations that 
may arise from trying to restrain or conform musical 
stimuli to what are often broad or ill-defined categories. 
Individuals may choose to define certain genres differ-
ently, and these definitions may drift as genres evolve 
over time. This issue is particularly apparent with 
umbrella categories such as ‘‘rock,’’ ‘‘pop,’’ ‘‘metal,’’ etc. 
These definitions might not only differ between parti-
cipants themselves, but also with the researcher’s own 
categorizations (Lamont & Greasley, 2008; Lex et al., 
2020). Several alternative methods and models have 
been developed in attempts to eliminate negative effects 
of genre labels in research, and instead capture attri-
butes of musical preference in ways that are ‘‘genre-
free.’’ One example is the three-dimensional model that 
maps various musical characteristics (such as auditory, 
affective, and instrumental descriptors) to the dimen-
sions arousal, valence, and depth (Fricke et al., 2018, 
2021; Greenberg et al., 2016). Rentfrow and Gosling



The analyses on this dataset to date have primarily
explored the fMRI BOLD responses for distinct patterns
between the five genre groups, individual songs, and
overarching musical features (Casey, 2017; Hanke
et al., 2015). In contrast, we focus on the unexplored
participant self-report musical preference information,
and the respiratory and pulse data recorded during the
music listening task. As these data were not central to
the primary analyses, we encounter two significant chal-
lenges: 1) lack of participant stimulus ratings, and 2)
lack of physiological baseline recordings. In the follow-
ing section we discuss in detail how we overcome these
by utilizing 1) the MUSIC five-factor model, and 2)
synthetic physiological baseline calculations. These
methods unlock previously unexplored analyses on
objective and subjective features of the musical stimuli,
and their physiological correlates.
To facilitate our secondary analysis feasibility report,

we develop two hypotheses with regards to the new
analyses we can conduct on this data. We hypothesize
that participants’ degree of physiological response—
absolute percent change in heart rate (HR), breathing
rate (BR), and heart rate variability (HRV)—will posi-
tively correlate with their preference for each of the
stimulus genres. In other words, a greater absolute
change from baseline physiological readings will be seen
when participants are listening to stimuli they are likely
to prefer. Previous work has suggested pleasurable
responses to observed stimuli correspond with
increased heart rate, heart rate variability, and respira-
tion (Blood & Zatorre, 2001; Wu et al., 2019). However,
there is also evidence of possible interactions or con-
flicting effects of the arousal level of the stimulus (Ling-
ham & Theorell, 2009; Russo et al., 2013). For this
reason, our hypothesis focuses on the absolute change
from baseline to account for the potential varying
effects of high and low arousal music. We also hypoth-
esize that participants’ physiological response (percent
change in HR, BR, and HRV) will correlate with the
‘‘mellow’’ and ‘‘intense’’ MUSIC factor correlations of
the stimuli. The ‘‘mellow’’ and ‘‘intense’’ factors are
more directly correlated with music loudness and
tempo than the other three factors of the MUSIC model
(Rentfrow et al., 2011). As reviewed above, these psy-
choacoustic features in particular have been found in
other research to correlate with levels of physiological
arousal. We therefore predict observing negative and
positive changes in physiological arousal for more ‘‘mel-
low’’ and more ‘‘intense’’ music, respectively.
Our hypotheses are founded on results from con-

trolled, primary studies in which stimuli and experimen-
tal conditions are designed to examine specific

physiological effects. Correlational studies, such as this
one, on the association between music and physiology
during naturalistic music listening are less common.
However, the growing availability of heterogeneous data-
sets continues to gain attention from members of the
music perception and cognition community (Greenberg
& Rentfrow, 2017; Huron, 2013). Such analyses may call
for novel data wrangling or transformation techniques to
uncover latent connections between auditory, behavioral,
and cognitive variables (for example, Liikkanen et al.,
2015). Although done on a relatively small sample size,
we believe the following methodological practices,
results, and feasibility discussion offer applicable sugges-
tions for how previous datasets may be more produc-
tively harnessed for novel research.

Method

This secondary analysis uses the physiological data (car-
diac and respiratory) collected in the ‘‘auditory percep-
tion’’ extension of the Study Forrest dataset (Hanke
et al., 2015). All data are acquired from the Study Forrest
website (www.studyforrest.org) where they have been
made available for public reuse under the ODC Public
Domain Dedication and License by the original
researchers. An overview of the study and data are given
in this paper before addressing the methods used in
this analysis.

STUDY FORREST DATASET BACKGROUND

Participants
The participants in this study were 20 right-handed,
native German-speakers (mean age: 26.6 years, 12
male). According to the pre-study questionnaire, two
participants reported being musicians with formal
music training (one with five years, the other with seven
years). Four other participants identified themselves as
musicians with at least two years of experience (mean
reported: 7.25 years, maximum reported: 12 years)
playing one or two instruments (but did not report any
formal training). Five additional participants did
not identify themselves as musicians but did report
playing one or two musical instruments for at least two
years (mean reported 5.5 years, maximum reported: 7
years). Of the remaining nine participants, seven
reported being ‘‘music lovers’’ with no music training
or experiences. Two participants did not respond to
this question.

Task
The original task of this dataset had participants listen
to the audio movie version of the film ‘‘Forrest Gump’’
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while physiological signals and high-resolution (7 Tesla)
fMRI data were recorded. For additional information on
the original study, task, or participant details, readers
are directed to the respective paper (Hanke et al., 2014).
An extension to the original dataset was published
approximately a year later with the same individuals
participating in a music listening task. The data
recorded from this task were the focus of this analysis.

Stimuli
Each participant listened to the same 25 naturalistic
music stimuli. These were six-second-long song clips,
five each from five musical genres: ambient, country,
heavy metal, rock’n’roll, and symphonic. Pieces were
selected by the researchers to be representative of nat-
uralistic music listening (i.e., commercially released
song recordings), with the clips taken from the middle
of each file and aligned to begin on a down-beat when
possible. Participant familiarity or liking for the stimuli
or five genre categories was not reported (although
some participants happened to include some of these
genres in their self-reported favorite genres). The same
stimuli had also been used in a previous study by the
research team investigating representation of different
musical styles’ auditory features (pitch, harmony, spec-
trum, timbre) in the brain (Casey et al., 2012). Spectro-
grams for all 25 stimuli are shown in Figure 1 of Hanke
et al. (2015). Country, heavy metal, and rock’n’roll
pieces contained vocals, while ambient and symphonic
pieces did not. The root mean square power of all stim-
uli was normalized.

Experiment Structure & Data Recording
There were eight repeated experimental runs, meaning
each participant heard each stimulus a total of eight
times. Separating the presentation of each stimulus was
an alternating four, six, or eight seconds of silence. fMRI
as well as PPG and respiratory trace were recorded from
the participants. It is important to note that physiolog-
ical signals were truncated to begin and end with the
first and last stimulus of the run, respectively. No base-
line physiological measurement (‘‘resting’’ measure-
ment) was included with the data. For additional
information on the ‘‘auditory perception’’ extension to
the Study Forrest dataset, readers are directed to Hanke
et al. (2015).

CALCULATING MUSICAL PREFERENCE

In the pre-study questionnaire, participants were asked
to report their top three favorite genres of music for
active, passive, and live concert listening, as well as pro-
vide examples of pieces or artists they enjoy. Overall, the
musical preference information was subjective and

highly variable with respect to the level of detail pro-
vided by each participant. On average each participant
provided four unique genres (minimum: 3, maximum:
6) and 4–5 favorite music examples (minimum: 0,
maximum: 19). Five of the 20 participants did not
provide any favorite music examples. Some partici-
pants used vague genre labels (‘‘rock,’’ ‘‘charts,’’
‘‘instrumental’’) while others referenced smaller sub-
genres (‘‘triphop,’’ ‘‘darkwave,’’ ‘‘Irish folk’’). Impor-
tantly, participants were not asked to directly rate their
liking for the 25 stimuli, or the five genres these came
from. Therefore, it was necessary for us to develop
a method for characterizing participants’ musical pre-
ferences in a generalizable and quantifiable way. This
would facilitate connecting participant preferences to
the stimuli they were presented with in the experiment,
as well as comparing preferences between participants
using a common scale.
The STOMP-R and MUSIC model were the most

feasible way of achieving this. Traditional use of the
STOMP-R involves individuals rating a set of musical
genres each on a scale from 1–7 (1: ‘‘dislike strongly,’’ 7:
‘‘like strongly’’). Each genre has a documented correla-
tion with each of the five MUSIC factors. Individuals
receive a score on each factor based on their ratings of
the genres. These scores are then a quantitative and
genre-free way of characterizing the individual’s musi-
cal preferences. Study Forrest participants did not com-
plete the STOMP-R during the original study, nor was it
possible for us to administer the test to them post hoc.
However, Rentfrow et al. (2011) provides the five-factor
correlations for 26 musical genres (see Table 4 of that
manuscript). By coding the preference information in
Study Forrest in terms of those genres, we are able to
simulate STOMP-R style results for the Study Forrest
participants. Stimulus and preference coding was done
using MATLAB (version 2019b). More details on this
method are provided below.

Defining Participant Preferences in the Five-Factor
Model
For each participant, their self-reported favorite genres
are coded in terms of the genres provided in Table 4 of
Rentfrow et al. (2011). Any music examples reported are
used to validate and inform the coding process and
perform corrections and additions if necessary. Coding
is further informed by the genre taxonomies in Silver
et al. (2016). For example, if a participant reported
enjoying rock, metal, electro, and jazz, and artists such
as The White Stripes and Muse, we select the genres ‘‘alt
rock,’’ ‘‘metal,’’ ‘‘electronica,’’ and ‘‘traditional jazz’’ from
Table 4 of Rentfrow et al. (2011). The five-factor
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correlations for each of these genres are taken from the
table. The participant’s overall ‘‘score,’’ or quantitative
representation of their preferences, is then calculated as
the five-dimensional centroid of the genres. All partici-
pants’ reported genres and music examples from the
Study Forrest dataset are weighted equally during this
process, regardless of the reported listening contexts
and listening frequency. We decide to do this given the
observed inconsistencies in the pre-study questionnaire
responses, to overcome the heterogeneity of this behav-
ioral data.

Defining Stimulus Genres in the Five-Factor Model
We apply a similar methodology to acquire five-factor
correlations for the five Study Forrest stimulus genres as
well. The correlations for heavy metal are taken from
the ‘‘heavy metal’’ entry in Table 4 of Rentfrow et al.
(2011). The correlations for rock’n’roll are taken from
the ‘‘rock’n’roll’’ table entry, after verifying there was
a common artist listed for this genre category in both
Rentfrow et al. (2011) and Hanke et al. (2015). For the
symphonic stimulus genre, we use the correlations from
the ‘‘classical’’ category in Table 4 of Rentfrow et al.
(2011).
The remaining two stimulus genres, ambient and

country, are not directly listed in the reference table and
have to be interpolated using similar genres. Similar
genres are once again informed by Silver et al. (2016).
For country, these are ‘‘mainstream country,’’ ‘‘new
country,’’ ‘‘country rock,’’ and ‘‘bluegrass.’’ For ambient,
we select ‘‘classical,’’ ‘‘avant-garde classical,’’ ‘‘electro-
nica,’’ and ‘‘adult contemporary.’’ The five-factor corre-
lations of the identified similar genres are taken from
Table 4 of Rentfrow et al. (2011) and used to calculate
five-dimensional centroids representing the country
and ambient stimulus genres, respectively.

CALCULATING PHYSIOLOGICAL RESPONSE

We analyze eight runs of physiological data for each of
the 20 participants. Three channels of physiological data
were made available for each run and subject, as well as
the volume acquisition trigger pulse emitted by the MRI
scanner. The physiological channels were (1) the respi-
ratory trace, (2) the cardiac trace, and (3) the oxygen
saturation (Hanke et al., 2015). In this analysis, we focus
on the respiratory and cardiac data.
The respiratory trace was provided by a Siemens

respiratory belt and pressure sensor (Honeywell
40PC001B1A). The cardiac trace (PPG) was measured
by a Nonin 8600 FO pulse oximeter. Both signals were
digitized with a 12-bit converter at 200 Hz and trun-
cated according to the MRI trigger pulse recorded in

channel 1. This was the state in which the data were
publicly available (Hanke et al., 2015). All pre-
processing and calculations are carried out using
MATLAB (version 2019b).

Pre-processing
We apply a lowpass filter to the raw respiratory signal
to help eliminate any high-frequency noise. We select
a second-order Butterworth filter with cutoff of 1 Hz
(Leslie et al., 2019; Russo et al., 2017). For the PPG
signal, we first apply a bandpass filter to help eliminate
powerline interference of 50–60 Hz (Nonin Operator’s
Manual: Models 8600FO and 8600FOM Pulse Oxy-
meters, 2005) as well as signal drift (Elgendi, 2012;
Elgendi et al., 2015). We select a second-order Butter-
worth filter with bandwidth of 0.5–15 Hz (Elgendi
et al., 2014). Next we calculate the acceleration plethys-
mogram (APG), which is the second derivative of the
PPG, using a three-point center derivative (Elgendi
et al., 2015). The APG is more commonly used than
the PPG and can also be more closely related to elec-
trocardiogram (ECG) (Elgendi, 2012; Elgendi et al.,
2014). Lastly, a peak detection algorithm is applied to
both the filtered respiratory signal and the APG signal
to identify breaths and heartbeats (represented by
a-waves in the APG signal), respectively. For APG
a-wave detection, the method from Elgendi et al.
(2014) is followed. Outlier detection is done on the
vectors of detected peaks to eliminate falsely detected
or missed peaks. For the APG signal, a-a intervals
shorter than 0.428 seconds and longer than 1.5 seconds
(corresponding to heart rates less than 40 bpm and
over 140 bpm) are excluded. Additionally, a moving
average for a-wave amplitude is calculated—peaks that
do not fall within þ/- 30% of this mean are rejected
(van Gent et al., 2018).

Alternative Baselines
The provided physiological data were truncated at the
beginning and end of each run by the original research-
ers, meaning that no baseline measurements were made
available in this dataset by which to normalize each
participant’s physiological response. Therefore, an alter-
native method for calculating baseline physiological
information needs to be employed. As there is no uni-
versal solution to this problem, and it is highly depen-
dent on the aims of the study (Quintana & Heathers,
2014), we ultimately opt to use the participant average
(over all eight runs) as the baseline.

Metric Calculation
From the respiratory and APG signals, we calculate four
metrics: breathing rate (BR), heart/pulse rate (HR),
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standard deviation of N-N intervals (SDNN), and root
mean square of successive R-R interval differences
(rMSSD). BR and HR represent number of breaths, or
heart beats, per minute. Because we analyze an APG
signal as opposed to an ECG signal, SDNN is instead
defined as the standard deviation of a-a intervals, and
rMSSD is defined as the root mean square of successive
a-a interval differences. Equations 1–4 show how these
metrics are calculated using the inter-respiratory (IRI)
and a-a intervals described previously (Elgendi et al.,
2010).

BR ¼
60

IRI
(1)

HR ¼
60

aa interval
(2)

SDNN ¼ stdðaa intervalsÞ (3)

rMSSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mean½ðaai � aai�1Þ
2�

q

(4)

These metrics are calculated during each six-second
window where there was a stimulus presented. Six

seconds is considered to be a relatively short measure-
ment epoch, particularly in the context of heart/pulse
rate variability (HRV/PRV) metrics (Shaffer & Gins-
berg, 2017). However, we decide to proceed with this
window size as opposed to using a slightly larger ten-
second window, which would include four seconds of
rest in addition to the six-second stimulus. This is based
on prior literature that suggests aesthetic evaluations for
music are made on a very short time scale (< 3 seconds)
(Belfi et al., 2018). The six-second measurement epoch
limits the types of HRVmeasurements that can be reli-
ably calculated, given that it falls within the lower range
of ultra-short-term HRV measurements. We therefore
decide to limit the derived metrics to SDNN and rMSSD
time-domain metrics, as previously mentioned, and not
calculate any frequency-domain metrics (Castaldo et al.,
2019; Salahuddin et al., 2007; Shaffer & Ginsberg, 2017).
PRV, or HRVmetrics derived from PPG signal analysis,
has been previously investigated as an estimate of HRV
and generally found to be a suitable alternative (Pin-
heiro et al., 2016).
Change in BR, HR, SDNN, and rMSSD is calculated

by subtracting the baseline metric from the metric dur-
ing the six-second stimulus presentation. Then a percent
change is calculated as shown in Equations 5–8, which
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creates the normalized physiological metrics we use in
our analysis.

%DBR ¼
BRstim � BRavg

BRavg
� 100 (5)

%DHR ¼
HRstim � HRavg

HRavg

� 100 (6)

%DSDNN ¼
SDNNstim � SDNNavg

SDNNavg

� 100 (7)

%DrMSSD ¼
rMSSDstim � rMSSDavg

rMSSDavg

� 100 (8)

Results

MUSIC AND MUSICAL PREFERENCE

With all 20 participants, as well as all five stimulus
genres represented using the MUSIC five-factor model
(Figure 1), a five-dimensional Euclidean distance
(Equation 9) is calculated between each participant p,
and each stimulus genre g. This results in a series of five
‘‘preference distances’’ per participant, where the lowest

of the five distances represents the stimulus genre most
likely preferred by that participant (Figure 2).

Preference Distance ðp; gÞ

¼
h

ðparticipantp;M � stimulusg;MÞ
2

þ ðparticipantp;U � stimulusg;UÞ
2

þ ðparticipantp;S � stimulusg;SÞ
2

þ ðparticipantp;I � stimulusg;I Þ
2

þ ðparticipantp;C � stimulusg;C Þ2
i1

2=
(9)

The preference distance provides a quantitative esti-
mate of the participants’ liking for the stimuli they were
shown in the experiment, based on their reported favorite
genres in the pre-study questionnaire (Figure 3). When
qualitatively compared, preference estimates mostly
appear to resemble participants’ questionnaire responses.
However, some participants who reported a wider range
of genres appear to be less well-represented by the esti-
mate. For example, Participant 2 had reported metal as
one of their favorite genres, but this is not reflected by
their calculated preference distances in Figure 3. Instead
of calculating a strong preference for metal, it appears
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FIGURE 2. Participant 08 (center point), visualized within the 5D MUSIC model space alongside the five stimulus genres. Even though Study Forrest

participants did not rate their preference for the five stimulus genres, translating the stimulus genres and participants’ general musical preferences

into the MUSIC model space allows us to quantitatively estimate this missing information. The estimate is shown via the calculated preference

distances, d, between the participant and each stimulus genre. In this example, heavy metal has the shortest preference distance, suggesting that

this participant would be most likely to prefer stimuli from this genre.
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that this was diminished in the process of averaging the
rest of the participant’s preferences, which included pop,
bluegrass, and soundtracks.
Comparing the distribution of preference distances

across all participants by genre reveals some

imbalances in the dataset (Figure 4). On average, par-
ticipants are estimated to have higher preference for
the ambient and rock stimulus genres and lower pref-
erence for the symphonic genre. This imbalance
appears to mirror the pre-study questionnaire: 16 out
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(metal, pop, bluegrass, organ music) (classical, pop-rock, jazz)

(metal, gothic rock, darkwave, Irish folk) (electronic, rock, r'n'b, hip-hop)
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FIGURE 3. Six participants’ estimated stimulus genre preferences are visualized here as an example of how different self-reported music tastes

(listed above each plot) were mapped onto five the Study Forrest genres. Inverse preference distance is represented by bar size, such that a larger bar

indicates higher estimated preference for that genre. For some participants, preference estimates appear to closely match their questionnaire

responses (e.g., Participants 9, 19). However, this appears to not be the case for participants who reported a wide range of favorite genres

(e.g., Participants 2, 11). Preference for ambient music appears to be frequently overestimated for participants (e.g., Participants 3, 20), perhaps

due to our MUSIC interpolation of the missing ambient genre from styles including classical and electronica.
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of the 20 participants included rock as one of their
favorite genres or music examples, while only six par-
ticipants included classical music styles in their
response. Although only five participants reported
ambient styles in their response, this genre has the
highest estimated preference across all participants.
The way in which we represented the ambient stimulus
genre in the MUSIC model space may be responsible
for this discrepancy. Since ambient was not one of the
genres listed in the MUSIC factor correlation table we
were referencing, we had to represent it using the aver-
age of similar genres such as classical and electronica
(see Method). Fourteen out of the 20 participants in
the dataset included electronic styles as one of their
favorite genres. In the absence of direct ratings of the
stimuli or stimulus genres, the preference distance esti-
mate is used to represent participants’ preferences in
the remainder of the analyses. All analyses are per-
formed using SPSS (version 26) and R version 4.2 fol-
lowing tests of normality.

DEGREE OF PHYSIOLOGICAL RESPONSE VS. MUSICAL PREFERENCE

We create a linear mixed effects model to test if any of
the physiological measures calculated are significant in
modelling participants preference distances. Since we
calculated the preference distance estimate on the level
of genres and not songs (stimuli), we first average
together the five stimuli per genre, per run, per partic-
ipant (resulting in 800 datapoints, 20 participants x 8
runs x 5 genres, not accounting for NAN values). Abso-
lute percent change in HR, SDNN, and BR are included
as fixed effects in the model. Absolute percent change in
RMSSD is not included because it correlates with abso-
lute percent change in SDNN (ρ = .87). Correlations
among the other three physiological variables are given
in Table 1. Random intercepts for participant and run
(nested within participant) are also included. The model
is run in R using the lmer function from the lmerTest
library. We use the maximum likelihood estimation
method since our data are balanced and have nested
random effects. Although we had hypothesized that
degree of physiological response would correlate with
preference, none of the physiological metrics in the
model reach statistical significance (Table 2).

PHYSIOLOGICAL RESPONSE VS. MUSIC FACTORS

We use a repeated measures ANOVA to determine if
characteristics of the musical stimuli—specifically how
‘‘mellow’’ or ‘‘intense’’ the stimulus was according to the
MUSIC model—have a significant effect on physiolog-
ical response. Stimulus genres are the within-subjects
factor, which has five levels (one per genre) arranged
in order from most to least ‘‘mellow.’’ The order for
‘‘intense’’ is the same but reversed. No between-
subjects factors are included. Results are summarized
in Table 3. The repeated measures ANOVA test shows

FIGURE 4. Distribution of all participants’ calculated preference

distances by stimulus genre. Note that values for preference distance

are unitless and are derived from the five-dimensional Euclidean

distance calculation shown in Equation 9. Pairwise comparisons are

indicated by the horizontal bars (Bonferroni-corrected) and the

significance is indicated by the asterisks (**p < .01, ****p < .0001). The

distribution reveals that estimated genre preferences across

participants are not balanced in this dataset, with higher estimated

preferences on average for ambient and rock music, and lower

estimated preference for symphonic and country. This trend appears

to mostly mirror qualitative information in the pre-study

questionnaire, except for the ambient genre.

TABLE 1. Pearson Correlation Coefficients for Fixed Effects in

Preference Distance Mixed Model

Physiological measure j%DHRj j%DSDNNj j%DBRj

j%DHRj 1.000
j%DSDNNj .238 1.000
j%DBRj .292 .213 1.000

TABLE 2. Results From Linear Mixed Effects Model for Preference

Distance

Fixed Effects Estimate Std. Error df t p

Intercept 0.415 0.014 78.04 29.310 < .001
j%DHRj 6.05e-04 1.55e-03 653.2 0.391 .696
j%DSDNNj 5.84e-05 1.95e-04 774.7 0.300 .764
j%DBRj 6.00e-04 4.82e-04 192.9 1.244 .215
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that stimulus genre did not have a significant effect on
percent change in HR or HRV (SDNN or rMSSD).
However, there was a significant effect on percent
change in BR, F(4, 52) = 8.902, p < .001, Zp

2 = 0.406.
The rock’n’roll genre had the highest average increase in
breathing rate at 4.82% from baseline. Ambient was the
only stimulus genre to cause an average decrease in
breathing rate at -0.135% from baseline. Furthermore,
tests of within-subjects contrasts reveal this effect to be
linear with respect to the relative ‘‘mellowness’’ or
‘‘intensity’’ of the genres, F(1, 13) = 20.65, p < 0.001,
Zp

2 = 0.614. Post hoc tests with the Bonferroni confi-
dence interval adjustment show a significant difference
between the most ‘‘mellow’’ (least ‘‘intense’’) genre,
ambient, and every other genre (p < .05) (Figure 5).
These results suggest that: 1) participants’ breathing was
affected to a greater degree than their heartrate in this
study, and 2) considering higher-level features of the
musical stimuli reveals interpretable breathing rate
trends among stimulus genres.

Discussion

In this paper, we perform two post hoc physiological
analyses on the ‘‘auditory perception’’ extension of the
Study Forrest dataset. The first analysis addresses phys-
iological correlates of individuals’ estimated preference
for the musical stimuli. Because participants did not
directly rate their preference for stimuli they heard,
we estimate this given the musical preference informa-
tion they provided in the pre-study questionnaire. Addi-
tionally, since no physiological baseline data were
provided, we calculate synthetic baselines for each par-
ticipant in order to compare responses across indivi-
duals. Our novel application of the MUSIC five-factor
model (Rentfrow et al., 2011) results in a quantitative
‘‘preference distance’’ estimate that maps participants’
general musical preferences onto the five stimulus gen-
res used in the experiment (Figure 3). Developing these
methods was critical to adapt the existing dataset to our

needs. However, given the provided data, we are unable
to objectively evaluate the reliability of our ‘‘preference
distance’’ estimate. Qualitative analyses of the metric
suggest that it was more representative for participants
that reported homogeneous favorite music styles, while
it did not fully capture the range of those who reported
varied genre preferences. Furthermore, the distribution
of calculated preference distances across all participants
(Figure 4) revealed an imbalance in preferred genres for
this participant population. Comparing the estimated
preference distributions to the pre-study questionnaire
suggested that the way in which we interpolated the
MUSIC factor correlations for the ambient genre influ-
enced the preference distances for this genre. Future
analyses should use caution and avoid such interpola-
tions if possible. Studies with more participants would
now need to be done to further develop the methods
established here and determine the most accurate cal-
culation for the preference distance. More ideas are
given in the Future Work section.
Our hypothesis that degree of physiological response

would correlate with preference for the experimental
stimuli was unsupported: the analysis of the

TABLE 3. Results From Repeated Measures ANOVA

Within-subjects Effect of Stimulus Genre on Physiology

Physiological
measure dfhypothesis dferr F ηp

2 p Power

%DHRa 2.491 27.401 1.334 0.108 .283 0.290
%DSDNN 4 44 1.229 0.100 .313 0.352
%DrMSSD 4 44 0.614 0.053 .654 0.186
%DBR 4 52 8.902 0.406 <.001 0.999

a Greenhouse-Geisser correction was used, assumption of sphericity was violated

according to Mauchly’s test, χ
2(9) = 20.23, p < .05.

FIGURE 5. A repeated measures ANOVA test revealed a significant

relationship between stimulus genre and breathing rate, analyzed as

a percent change from baseline. Specifically, the relative

“mellowness” of the genres (per the MUSIC model) had a positive

linear relationship with breathing rate. Post hoc pairwise tests showed

a significant difference between the most “mellow” genre, ambient, and

every other genre (*p < .05, **p < .01). Pairwise comparisons are

Bonferroni-corrected.
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physiological data reveal no significant correlations with
participants’ estimated preferences. However, this is
a result of limited reliability and may be significantly
influenced by limitations of the secondary analysis.
Musical preference is a complex, highly individualized
phenomenon. One possible interpretation of the null
result could be that the physiological metrics analyzed
(HR, HRV, and BR) were not optimal selections for this
particular question. Another possibility is that the
design of the original study might not facilitate this
preference analysis. Previous findings demonstrate that
people experience higher-intensity emotional responses
to familiar music, and that there is a correlation between
familiarity and preference for music (Ali & Peynircio-
ğlu, 2010). Given that all the stimuli in this experiment
were researcher selected, and that participant familiarity
was not measured, it is possible that the pieces of music
were mostly unfamiliar to the participants and therefore
did not induce a measurable response. We discuss this
in terms of directions for future work in the following
section. Additionally, since the primary focus of the
original study was not musically induced emotion, the
design did not allow for isolation of the possible emo-
tion induction mechanisms. It is possible for multiple
mechanisms to have been recruited simultaneously in
a single participant’s trial, as well as different mechan-
isms recruited across participants, leading to conflicting
physiological results (Juslin et al., 2010). Furthermore,
the relatively small sample size (N = 20 participants) of
this dataset could be another limitation.
The second analysis addresses physiological correlates

of high-level characteristics of the musical stimuli. Spe-
cifically, we compare the five stimulus genres according
to their relative ‘‘mellowness’’ or ‘‘intensity’’ from the
MUSIC model. We found significant differences
between genres in precent change in BR, but not HR
or HRV. This effect was linear with respect to the rela-
tive ‘‘mellowness’’ or ‘‘intensity’’ of the genres, with the
most ‘‘mellow’’ (least "intense") genre (ambient)
decreasing BR on average -0.135% from baseline, and
the least ‘‘mellow’’ (most ‘‘intense’’) genre (metal)
increasing BR on average 4.577% from baseline (Fig-
ure 5). An additional post hoc analysis supports that
this is not explained by mimicking or entrainment to
the stimulus tempo; a linear mixed model with fixed
effect of tempo and random intercepts of participant
and run (nested within participant) did not find tempo
to be a significant term for percent change in BR, t(2954,
3110) = 1.323, p = .186, AIC = 27746 (t-test from the R
lmerTest library uses Satterthwaite’s method). However,
we are unable to confirm that the change in BR is unre-
lated to the presence of vocals in the stimuli. Stimuli

from two (ambient and symphonic) out of the five gen-
res did not include vocals. These two genres also happen
to be the most ‘‘mellow’’ (least ‘‘intense’’) in our dataset.
Further research, likely using new stimuli controlled for
vocals, would need to be conducted in order to investi-
gate potential confounding effects.
As it stands, the current result supports part of our

second hypothesis that physiological response would
correlate with the ‘‘mellow’’ and ‘‘intense’’ MUSIC fac-
tors, and points to this being an unconscious effect of
higher-level features in the musical stimuli. Breathing is
a unique autonomic function, in that it is also able to be
consciously controlled and is sensitive to external stim-
uli, such as music. Studies have previously shown that
music can affect breathing both during focused (Etzel
et al., 2006; Russo et al., 2013) and unfocused (Leslie
et al., 2019) listening, substantiating our observation
that breathing is not necessarily consciously entrained
to the musical stimulus. While there is evidence that
respiration can mimic low-level musical characteristics
like tempo, many of the studies demonstrating this
effect have used longer stimuli than the clips in the
Study Forrest data (Bernardi et al., 2006; Etzel et al.,
2006; Sakaguchi & Aiba, 2016). This difference in stim-
ulus length could explain why we did not find a direct
influence of tempo in our analysis. Few studies have
investigated the effects of higher-level features (like style
or instrumentation) while controlling for tempo. Our
exploration of the Study Forrest dataset contributes an
analysis of breathing rate over a range of musical genres,
highlighting the roles such features can play in con-
trolled breathing practices (Russo et al., 2017), as well
as potential implications for other related autonomic
activities such as heart rate and heart rate variability
(Song & Lehrer, 2003).

Future Work

One potential limitation of the current preference dis-
tance estimate is that it reduces one’s range of musical
preferences to a single point by taking the centroid of all
the reported preferences in the MUSIC model space.
Thus, this would not capture the breadth of one’s musi-
cal preferences, but rather interpolate a single most-
representative point. This is illustrated by some of the
examples shown in Figure 3 (e.g., Participant 2). The
metric could be further developed by considering the
convex hull formed by all a person’s reported prefer-
ences in the MUSIC model space. The convex hull
would create multidimensional surfaces connecting
reported preferences, which might signify more
nuanced interpolations and preserve more details
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compared to the single-point centroid representation.
The preference distance between a person and some
unknown stimulus would then be the minimum
point-to-surface distance between the stimulus (point)
and the person’s preference (convex hull surface). This
would theoretically maintain small distance calculations
for stimuli that happen to be included in the individual’s
self-reported preferences (i.e., a distance of zero),
addressing the issue we observed in the current imple-
mentation. Furthermore, while the current preference
distance equation uses a five-dimensional Euclidean
distance, different metrics (such as cosine similarity)
should also be considered and may be more appropriate
given the dimensionality of this problem. Additional
analyses on data which include ‘‘ground truth’’ informa-
tion would need to be done to determine if this would
increase the accuracy of the preference estimate. Future
work will also test this on a greater sample size and
incorporate individualized, or participant-selected stim-
uli. This has been done in previous studies to induce
stronger emotional and physiological responses in par-
ticipants (such as Blood & Zatorre, 2001; Salimpoor
et al., 2009). The greater preference contrast that could
be provided by combining participant- and researcher-
selected stimuli (or familiar and unfamiliar stimuli) may
aid in revealing how preference distance can be mod-
eled by physiological response.

Conclusion

In this paper we present a novel methodology for quan-
titatively estimating preference for unknown musical
stimuli through the application of the MUSIC five-
factor model. This ‘‘preference distance’’ metric was
critical in facilitating our secondary analysis of the
Study Forrest dataset, and with further development
could increase feasibility of performing post hoc analy-
ses on publicly available music perception data. While

the null result from our preference and physiological
response analysis suggests that such secondary analyses
still have significant limitations when it comes to
hypothesis-driven research, we demonstrate advantages
of using such analyses to drive methodological develop-
ments. In support of our second hypothesis, our analysis
revealed that breathing rate correlated with high-level
musical features from the MUSIC five-factor model,
rather than low-level features such as stimulus tempo.
Given the substantial challenges posed by the secondary
analysis, it is particularly remarkable for this result to be
observed from a dataset whose primary studies were
unrelated. Although no causation can be inferred from
our analysis, this work adds to the large body of evi-
dence demonstrating the influence of music on respira-
tion by contributing a less-common analysis of changes
on short timescales. While the methods we outline can
certainly be improved upon, we provide these details
and discussions as suggestions for future research uti-
lizing existing, heterogeneous datasets.
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HANKE, M., DINGA, R., HÄUSLER, C., GUNTUPALLI, J. S., CASEY,

M., KAULE, F. R., & STADLER, J. (2015). High-resolution 7-

Tesla fMRI data on the perception of musical genres – An

extension to the studyforrest dataset. F1000Research, 4, 174.

https://doi.org/10.12688/f1000research.6679.1

HARGREAVES, D. J., MACDONALD, R., & MIELL, D. (2008).

Musical identities. In S. Hallam, I. Cross, & M. Thaut (Eds.),

The Oxford handbook of music psychology (1st ed., pp.

759–774). Oxford University Press.

HURON, D. (2013). On the virtuous and the vexatious in an age of

big data.Music Perception, 31(1), 4–9. https://doi.org/10.1525/

mp.2013.31.1.4

JUSLIN, P. N. (2013). From everyday emotions to aesthetic

emotions: Towards a unified theory of musical emotions.

Physics of Life Reviews, 10(3), 235–266. https://doi.org/10.

1016/j.plrev.2013.05.008

JUSLIN, P. N., HARMAT, L., & EEROLA, T. (2014). What makes

music emotionally significant? Exploring the underlying

mechanisms. Psychology of Music, 42(4), 599–623. https://doi.

org/10.1177/0305735613484548

JUSLIN, P. N., & LAUKKA, P. (2004). Expression, perception, and

induction of musical emotions: A review and a questionnaire

study of everyday listening. Journal of New Music Research,

33(3), 217–238. https://doi.org/10.1080/

0929821042000317813
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