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ABSTRACT

The Hyper Duplex Stainless Steel HDSS enhanced corrosion resistance and toughness relies
upon high alloying to obtain a balanced ferrite and austenite volume and pitting resistance
equivalent number PREn. However, during welding, sigma phase precipitates might form, hin-
dering corrosion and mechanical performance. Therefore, a kinetics model is developed to avoid
the sigma phase’s formation during welding and validated using physical simulation, finite
element analysis (FEA), welding, and SEM characterisation. The sigma phase kinetics model
produced calculated and validated temperature-time-transformation (TTT) and continuous-
cooling-transformation (CCT) curves from which a 4°C/s cooling rate was found as a cool-
ing rate threshold for sigma phase formation in this new material. Three-layered gas tung-
sten arc welding GTAW cladded mockup with 53 beads produced 24°C/s minimum cool-
ing rate. Moreover, microscopy, mechanical, and corrosion testing attested it as a sigma-free
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Introduction

The recently developed HDSS is tailored for use in oil
and chemical industries due to its favourable mechani-
cal properties, including high yield strength and excel-
lent corrosion resistance [1-3]. The alloying elements
Cr, Mo, and N result in a PREn value exceeding 48,
classifying it as HDSS [4,5].

However, welding manufacturing involves a com-
plex thermal history that modifies the microstructure.
During solidification, part of the ferrite (o) transforms
into austenite (), forming a duplex microstructure. In
multipass welding, reheating cycles cause partial fer-
rite dissolution [6]. Yet, rapid weld cooling rates lead to
an unbalanced microstructure due to the slower «—y
transformation during cooling. Fast cooling also signif-
icantly affects the local chemical composition due to
diffusion limitations. Yang et al. [7] correlated austen-
ite volume with an increase in pitting resistance and
demonstrated heat input PREn differences in simulated
heat-affected zones (HAZ).

Highly alloyed metastable ferrite is prone to inter-
metallic formation. Temperatures between 600°C and
1200°C can lead to the precipitation of sigma phase
(o), chi phase () ), and chromium nitride (Cr,N) [2,8].
Sigma phase, the primary intermetallic in duplex stain-
less steel (DSS), negatively affects mechanical proper-
ties due to its partially ordered structure and reduces

corrosion resistance by depleting chromium in its
vicinity [2]. Sigma phase forms at «/y interfaces in
DSS and grows into ferrite due to its higher content
and faster diffusion of chromium and molybdenum
[9]. This diffusion leads to the formation of metastable
ferrite, depleted of « stabilisers, promoting the trans-
formation to secondary austenite [10]. The resulting
microstructure (¢ and y;) is depleted in chromium
and molybdenum, increasing susceptibility to corro-
sion [11]. Fine sigma phase precipitates lead to more
pronounced intragranular corrosion, forming a net-
work structure along interfaces [12].

HDSS material was developed for tubing used
in severely corrosive environments, such as heat
exchangers. Therefore, studies have focused on eval-
uating the material's performance due to poten-
tial sigma phase formation [13-15]. Most research
focused on base material artificially aged to induce
intermetallic formation. Jeon et al. [13,16,17] stud-
ied the influence of chemical composition with addi-
tions of Cu, W, and Ce for small ingots, observ-
ing a reduction in sigma phase formation and an
increase in chi phase precipitation. Zhang et al. [14]
investigated sigma phase precipitation behaviour in
a small heat rolled to a 4mm thick plate, observing
rapid precipitation at the nose temperature of 950°C
and strong eutectoid (o+y,) formation over 30 min.
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Acuna and Ramirez [18] conducted an in-depth
kinetics analysis of sigma phase formation in HDSS
filler metals, revealing a double-stage sigma phase
kinetics mechanism involving eutectoid precipitation
and interface-controlled growth, followed by further
diffusion-controlled growth.

Limited research focused on welding, primarily
considering autogenous welding [19,20]. However,
heat exchanger applications require HDSS arc-cladded
tubesheets. Thus, this study addresses the sigma phase
precipitation kinetics in HDSS filler metal to enable the
production of sigma phase-free weld cladded tubesheet.
The analysis and results of the gas tungsten arc welding
(GTAW) cladded layer’s microstructure and kinetics
are applicable and reusable for various welding and
joining processes.

A Gleeble®-controlled isothermal sigma phase
precipitation experiment provided data for the
Kampmann-Wagner-Numerical (KWN) model imple-
mented on ThermoCalc® through a non-equilibrium
CALPHAD-based calculation [18,21]. The kinetics
of continuous-cooling-transformation (CCT) curves
were calculated and experimentally validated from
the computational time-temperature-transformation
(TTT) curves using the additive rule. Employing an
implemented finite element analysis (FEA) thermal
model, a cooling rate limit for a three-layered multi-
pass weld was determined. Consequently, a sigma-free
HDSS welded mockup was developed by avoiding the
identified cooling rate threshold.

Materials and methods

The HDSS alloy composition consisted of Fe(bal.)-
26.03Cr-6.67Ni-4.93Mo0-0.4N-1.3C0-0.94Mn with a
48.5 PREn, verified through optical emission spec-
troscopy, and nitrogen content verified on a LECO
TC600 combustion spectrometer.

Thermodynamic and kinetics calculations

Thermocalc® 2022b software, along with TCFE11 and
MOBEFES6 databases, was utilised, considering only fer-
rite, austenite, sigma, chi, and nitrides (Cr,N) as phases
and constituents in the kinetics model. Phase diagrams
were generated to determine sigma solvus tempera-
ture (o) and ferrite composition at this temperature,
providing insights into phase stability based on temper-
ature, Cr, Mo, and N contents.

Non-equilibrium sigma phase kinetics were imple-
mented using the classical nucleation theory through
the KWN model in CALPHAD, describing nucleation,
growth, and coarsening in the multi-component system
[21]. The KWN model, which determines the nucle-
ation rate primarily based on nucleation site distribu-
tion and interfacial energy, was fine-tuned according to
experimental precipitation data.

Intermetallic precipitation experimental data

The precipitation experiment was conducted on HDSS
rods using a Gleeble® 3800 physical simulator, applying
controlled isothermal heat treatments over the sigma
phase precipitation temperature range in HDSS (600C
to 1100C) for varying durations (0s to 600s), with a
heating rate of 100°C/s and a cooling rate of 37°C/s
[1,2,14,18,22].

Microscopic characterisation

Microscopy specimen preparation involved grinding
with 1200 grit sandpaper, followed by two-step pol-
ishing, namely lum manual polishing and 0.02um
colloidal silica automated polishing for three hours.
Electrochemical etching, adapted from Ramirez et al.
[6], was carried out using a solution of 40%vol.
nitric acid and 60%vol. distilled water, applied in two
steps:

e 20sat 1.3V to etch grain boundaries and interfaces.
e 300s at 0.9V for ferrite etching.

Quantitative microscopy was performed on scan-
ning electron microscope (SEM) images (FEI Apreo)
using digital analysis to calculate the volumetric frac-
tions of different phases. The volume fractions were
determined based on an average of seven field mea-
surements, with the standard error calculated for a 95%
confidence interval.

Kinetics model validation

The HDSS sigma phase kinetics CCT curves were
derived from the computational TTT curves using
the additive rule [23]. The validation process involved
applying controlled cooling rates of 4°C/s, 2.5°C/s, and
1°C/s through the sigma phase precipitation tempera-
ture range, using a Gleeble® 3800 with a thermal cycle
that included a 100°C/s heating rate up to the solution
heat treatment temperature (1200°C) to prevent sigma
phase precipitation during heating. This temperature
was held for 90s before applying the cooling rates. The
quantitative metallography on BSE SEM images com-
pared the calculated sigma phase volume fraction with
the developed CCT curve.

Furthermore, a welded mockup of a 380 mm x 254
mm x 50 mm A516 Gr.70 plate was constructed to val-
idate the kinetics model under welding thermal his-
tory. The GTAW welding process with a Miller Dynasty
power source was used for depositing the wire material
as a three-layer HDSS multipass welded mockup using
the parameters presented in Table 1.

Thermal history was acquired using four type-K
thermocouples on the mockup’s top and bottom sur-
faces (Supplementary Figure S1). This data served to



Table 1. GTAW welding parameter.
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Figure 1. Calculated equilibrium phases’ volume fraction for the HDSS. (a) at the measured chemical composition. (b) comparison

of N content of 0.2%, 0.3%, and 0.4% (in wt-%).

validate a developed finite element analysis (FEA) ther-
mal model, enabling the calculation of thermal history
and cooling rates at any node. Further details on the
FEA simulation can be found in the Supplementary
Document (Figures S2 and S3, and Table S1).

Welded mockup specimens were employed for
microstructural characterisation, subsize impact tough-
ness measurement (ASTM-E23 [24]), microhardness
mapping (Leco AMHA45, 200 g for 15s), and assessment
of critical pitting temperature (ASTM-G48 [25] method
E) to verify the presence of sigma phase and evaluate
material performance.

Results and discussion
Equilibrium calculations

There are compositional changes during the HDSS
welding. Primarily due to nitrogen variations result-
ing from diffusion as an interstitial atom, changes in
nitrogen solubility during solidification, and the loss
of lightweight elements during arc welding. Hence, the
recommendation of nitrogen addition in the shielding
gas during welding.

On the other hand, sigma phase precipitation causes
local depletion of Cr and Mo in the surrounding precip-
itate. Therefore, phase stability diagrams, depicting the
relationship between alloying content and temperature,
offer a deeper understanding of phase stabilities. The
isopleth diagram and phase equilibrium as a function of
temperature reveal the strong nitrogen dependence of
HDSS. Above 0.33%wt. N, austenite forms from the liq-
uid phase, limiting ferrite grain size and maximum Cr
and Mo content, which hinders sigma phase formation.

In Figure 1(a), the equilibrium phase diagram shows
critical features of the alloy, including the sigma

solvus temperature (o) at 1105°C, the ferrite chemi-
cal composition at o (60.3Fe-27.06Cr-5.03Ni-6.23Mo-
0.074N) used as the matrix for non-equilibrium simula-
tions, and a maximum of 40%vol. sigma phase at 804°C.
Ferrite remains the main solid-phase stable at higher
temperatures, but austenite solidification occurs below
1365°C, primarily due to the high nitrogen content.
During cooling, the solid-state «— y transformation
increases, reaching 50% at 1165°C.

The sigma phase stabilises below 1105°C, defining
the sigma phase solvus (o) temperature. The calcu-
lated ferrite composition at this temperature (Fe(bal.)-
27Cr-6.23Mo-5Ni-0.073N-1.24Co in wt-%) serves as
the matrix composition for precipitation kinetics. As
the temperature decreases, the chi phase precipitates,
reaching a maximum volume fraction of 19% at 550°C,
consuming the sigma phase.

The phase distribution and maximum sigma con-
tent align with literature calculations on SDSS and DSS
[26,27]. The sigma phase consumes the remaining fer-
rite due to its higher solubility and diffusivity of Cr
and Mo. Therefore, nitrogen, an essential austenite pro-
moter, not only reduces ferrite but also changes the Cr
and Mo partition coefficients, leading to a reduction in
ferrite Cr content [2,7,15].

During welding, nitrogen loss can occur due to dif-
fusion and the welding arc itself. Therefore, calculations
were conducted for the HDSS alloy with different nitro-
gen amounts: 0.2%, 0.3%, and 0.4% in wt. (Figure 1(b)).
Comparing the higher nitrogen content (continuous
line) with the lower nitrogen contents (dashed lines),
it is evident that higher nitrogen leads to a reduction
in the ferritic field, an expansion of the austenitic field,
and subsequently, a reduction in the sigma phase field.
Hosseini et al. [28] verified that high heat inputs cause
greater nitrogen loss, increasing ferrite and sigma phase
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10 ym

Figure 2. Microstructure characterization. (a) specimen heat-treated at 842°C for 600s presenting sigma and chi (blue arrows)
phases and chromium nitrides (red arrows). Specimen heat treated at 830°C for 500s with (b) BSE and (c) EBSD phase

identification.

volumetric fractions. In contrast, low heat inputs yield
alower sigma phase volume fraction due to their higher
nitrogen content. The calculations also illustrate the
role of nitrogen in the Cr partition, with the calculated
ferrite composition at o s temperature presenting 27.61,
27.20, and 26.92 (in wt-%) Cr for alloys with 0.2, 0.3,
and 0.4 (in wt-%) N, respectively.

Microstructural analysis

The solution-annealed material exhibited no inter-
metallics and had a 50% £ 3.33% ferrite volumetric
fraction. In Figure 2(a), a sample subjected to isother-
mal treatment at 842°C for 600 s is shown in a backscat-
tered electron (BSE) image obtained using SEM. The
BSE signal’s atomic number contrast is used for vol-
umetric phase quantification through image threshold
segmentation. In the image, phases rich in high atomic
number elements, such as Cr and Mo, appear brighter
(blue arrows), while lighter elements phases appear
darker (red arrows), as seen in the case of Cr nitrides
(Cr2N). The Sigma phase, richer in Cr and Mo, appears
as the second brightest phase. The image reveals the
significant consumption of previous ferritic grains by

the sigma phase and secondary austenite (y,) from
eutectoid decomposition.

Most of the previous ferritic grains exhibit a lamellar
structure resulting from ferrite eutectoid decomposi-
tion («—o0+y2). This process involves a cooperative
diffusion partition reaction where the sigma phase
grows, consuming Cr and Mo from the ferrite [21,29].
The resulting metastable ferrite, depleted in Cr and Mo,
transforms into secondary austenite, releasing Cr and
Mo into the ferrite to precipitate another sigma phase
grain.

In addition to the BSE image phase identification,
Figure 2(b), Electron Backscatter Diffraction (EBSD)
analysis is applied to validate the phase identification
and volumetric fraction (Figure 2(c)). A high level
of agreement was observed using both techniques for
quantification. However, diffraction indexing of the
sigma phase is challenging and time-consuming due to
its tetragonal structure.

The precipitation data, combining aging time, tem-
perature, and sigma phase volumetric fraction, were
used to generate the TTT map in Figure 3. The max-
imum sigma phase kinetics occurs at 925°C, taking
62.2 s to precipitate 1%. The HDSS alloy’s sigma phase
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Figure 3. HDSS sigma phase TTT kinetic model. The contour plot represents the experimental TTT map. The dashed lines represent
the calculated sigma phase kinetics model at 1%, 5%, and 10% volumetric fractions.

precipitation temperature range is between 600°C and
1100°C.

(For Figure 3 and further experimental information
on the precipitation contour plot, refer to Supplemental
Document Figure S3).

HDSS sigma phase kinetics model

Implementing an HDSS non-equilibrium sigma phase
kinetics model is crucial for controlling sigma phase
formation during welding. The model is derived from
CALPHAD-based calculations and adjusted with reli-
able experimental data (see supplementary document
and Figure $4 for precipitation experiment details). The
developed sigma phase kinetics model includes TTT
and CCT curves, representing isothermal and contin-
uous cooling conditions, respectively.

The kinetics model’s parameters, interfacial energy
and nucleation sites, are fine-tuned to match the TTT
curves with the experimental data, enabling accurate
estimations of precipitation volume, times, and tem-
peratures. The model’s theory and adjustment process
are detailed in the supplementary document and Figure
S5. Although the TTT kinetics model might not fully
replicate transformations beyond 1000°C and below
800°C, it shows excellent agreement with experimen-
tal results at the curves’ inflection points (indicated by
dashed lines in Figure 3) at 1%, 5%, and 10% volumetric
fractions.

However, welding involves continuous cooling
cycles, not isothermal ones, making the kinetics model

more useful in CCT form. To calculate CCT curves,
we applied the additivity rule [23,30]. Wilson and
Nilsson [23] developed a computational application
for calculating the CCT from experimental TTT data
through the additive rule. Later studies by Nilsson et al.
[31] used the application on SDSS. A similar calcu-
lation was applied by Kim et al. [32] and by Ferro
et al. [33]. In this research, we followed Wilson and
Nilsson’s [23] approach to calculate the experimental-
based CCT curves. Figure 4 presents the calculated
CCTs for sigma phase volumes of 1%, 5%, and 10%
(blue, magenta, and scarlet symbol lines, respectively).
The figure also illustrates typical cooling rates for arc
welding (100°C/s-50°C/s) and a measured GTAW weld
cladding cooling rate (20°C/s), all of which do not cause
sigma phase formation. The three cooling rates (4°C/s,
2.5°C/s, and 1°C/s) enclose the kinetics model’s 1%—-5%
volume fraction.

The kinetics model was validated by subjecting
HDSS to these cooling rates within the sigma phase
measured precipitation temperature range (1100°C-
700°C) using a Gleeble® simulator. The measured
sigma phase volumetric fractions aligned well with the
CCT kinetics model, as shown in Figure 4 table. At cool-
ing rates of 4°C/s, 2.5°C/s, and 1°C/s, the model pre-
dicted sigma phase volumetric fractions of 0%, 1%, and
5%, respectively. Experimental results showed fractions
0f 0.02% =4 0.03%, 0.82% =+ 0.40%, and 5.76% =+ 1.36%,
respectively. This indicates that the sigma phase starts
forming at the 4°C/s cooling rate, suggesting it as a
sigma phase threshold. These rates are similar to those
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Figure 4. HDSS sigma phase CCT kinetics model. Typical arc process cooling in the empty symbol lines for welding, 100°C/s-50°C/s,
and GTAW weld cladding, 20°C/s. The kinetics validation cooling rates of 4°C/s, 2.5°C/s, and 1°C/s are presented in green, orange, and
red, respectively. The detail table compares the kinetics model calculated and measured sigma phase volume fractions.

found by Wilson and Nilsson [23] and Ferro et al. [33]
for super duplex stainless steels with lower chromium
content.

The results are counterintuitive; a high Cr and Mo
alloy does not exhibit higher sigma phase kinetics. Sev-
eral hypotheses may explain this phenomenon:

(a) The presence of 0.4% N promotes significant
austenite formation [3], limiting the amount of
ferrite, which is the parent phase of the sigma
phase.

(b) Nitrogen influences the partitioning of Cr and Mo
[2,7,15], resulting in ferrite being less enriched
with these elements and reducing their diffusion
into the sigma phase.

(c) Unlike SDSS [3], HDSS lacks copper and tung-
sten additions that typically enhance intermetallic
formation [16,34].

Figure 5 shows the FEA-calculated thermal history
of the welded mockup, specifically for pass number
3. The thermal history data indicate that no bead
experienced a cooling rate within 1100°C-600°C lower
than 20°C/s. Furthermore, regardless of the thermal
history of each layer, the subsequent layer reaches
a peak temperature exceeding the sigma solvus (o)
temperature (1105°C). If sigma phase were present, it
would rapidly dissolve [35]. Therefore, in this weld-
ing configuration, only the cooling rate of the final
layer is significant for sigma phase precipitation, and
it remained higher than the established threshold
at 24°C/s.

The mockup’s microstructural analysis revealed no
evidence of sigma phase presence, observed through
both optical and electron microscopy. The microstruc-
ture, shown in Figure 6(a), displays a three-dimensional
representation of the third layer, with ferrite as the tan-
colored matrix and nucleated white phase as austenite.
Some secondary austenite (red arrow) is present due
to reheating from neighbouring overlay bead depo-
sition. The measured ferrite volumetric fraction was
51.11% % 2.74%, 51.72% =+ 1.13%, and 55.74% =+ 1.88%
for the first, second, and third layers, respectively.

Within the ferrite matrix, significant Cr,N precipita-
tion is observed, forming clusters along previous ferrite
grain boundaries (blue arrow), mainly in the third and
some in the second layer, but none were found in the
first layer. These nitrides form during cooling across all
layers, but due to reheating from subsequent layers, they
were mostly dissolved, except for the last layer [36].

Due to the total thickness of the deposited lay-
ers, only a subsize impact toughness specimen could
be machined. Figure 6(b) presents a newly developed
HDSS deposited wire ductile-to-brittle-transition-
temperature (DBTT) curve. This data, not available in
the literature, establishes the DBTT value and illustrates
the transition features as a function of temperature.
The upper shelf energy (USE) value of 68] is defined
until 0°C, with the toughness transition ranging from
0°C to —100°C, defining a DBTT value of —52.8°C.
Although no established sub-size to full-size correlation
exist for the entire DBTT curve, specific correlations
for the DBTT and USE values have been suggested in
the literature. Thus, the full-size corresponding DBTT
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of —34.8°C was calculated based on Towers [37], with
a USE value of 169.85] calculated according to Lucon
et al. [38].

Figure 6(c) shows a microhardness map across
five beads of the deposited HDSS, with an average
of 305.88 +0.322 HV ;. Subtle changes are observed
between beads, and no significant difference is found
between the layers, regardless of their varied thermal
history. An ASTM G68 testing yielded a critical pitting

temperature (CPT) of 60°C. The measured hardness
and CPT values do not indicate the presence of sigma
phase in the welded mockup.

Based on the derived experimental data, the vali-
dated kinetics model efficiently predicts sigma phase
formation, making it critical for predicting and con-
trolling the occurrence of sigma phase during weld-
ing. By combining kinetics with FEA, we can not only
determine a threshold cooling rate but also optimise
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the welding process by adjusting parameters to achieve
maximum productivity without forming the sigma
phase.

Conclusions

The sigma phase precipitation was modelled based
on experimental data and validated through weld-
clad experiments, making the kinetics results directly
applicable to welding and joining processes. The
developed kinetics model significantly enhanced our
understanding of sigma phase precipitation kinetics in
hyper duplex stainless steel, leading to the following
conclusions:

1. Thermodynamic calculations indicated that in the
equilibrium state, the HDSS wire’s chemical com-
position allows for a high volumetric percent-
age of the sigma phase formation. Additionally,
nitrogen’s presence in thermodynamic equilib-
rium reduces the sigma phase and Cr content in
the ferritic matrix.

2. Considering kinetics is crucial for understanding
sigma phase formation in HDSS, as even brief
exposure to its precipitation temperature range (as
little as 62 s) can lead to sigma phase formation.
By combining experimental data, computational
kinetics, the additive rule, and FEA thermal his-
tory, it becomes possible to predict the cooling rate
limit necessary to prevent sigma phase formation
in an HDSS welded mockup.

3. The calculated sigma phase volume percentages
from cooling rates of 4°C/s, 2.5°C/s, and 1°C/s
exhibited excellent agreement with the physical
simulator experimental results using these cooling
rates. Notably, in the three-layered weld cladding
configuration for this HDSS alloy, a threshold
cooling rate of 4°C/s was obtained, indicating
the critical cooling rate to avoid sigma phase
formation.

4. Counterintuitively, the higher Cr content of the
HDSS did not decrease sigma phase kinetics time.
Nevertheless, the kinetics model was validated
through overlay welding procedures, confirming
its accuracy. The thermal history analysis indicated
a minimal cooling rate of 20°C/s, which is faster
than the calculated 4°C/s threshold.

5. Microscopy, mechanical, and corrosion testing
conducted on the welded mockup specimens did
not indicate the presence of sigma phase, fur-
ther confirming the effectiveness of the developed
kinetics model.

6. The established CCT kinetics model allows for the
prediction of sigma phase formation based solely
on thermal history, negating the need for welding
experimental data. Therefore, sigma phase forma-
tion in HDSS can be accurately evaluated using

only thermal history, whether experimental or cal-
culated.
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