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Abstract    The drivers of interannual variability static first-order ecosystem models are informa-
(IAV) of net ecosystem exchange (NEE) in forested
wetlands are poorly understood, making it dificult
to predict changes in atmospheric fluxes in response
to land use and climate change. Similarly, these eco-

tive, they fundamentally lack the ability to represent
dynamic annual changes in ecological processes that
may drive IAV of NEE through time. We aimed to
improve understanding of how forested wetlands

systems demonstrate dynamic physiological and dynamically respond to climate and which key eco-
phenological responses to climate over time yet are
typically modeled using static parameters that rep-

logical processes may contribute to IAV of NEE.
Simultaneously, we aimed to develop tools to evalu-

resent unchanging ecological conditions. Though          ate dynamically parameterized process based first-
order ecosystem models. To achieve these objec-
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pine plantations and a bottomland hardwood forest
of contrasting stand age in wetland areas of the lower
coastal plain of North Carolina. Variance decomposi-
tion was used to assess changes in large-scale ecosys-
tem drivers. To investigate individual processes, both
static and dynamic data-assimilation were conducted
to simulate time–invariant and time–varying ecologi-
cal response. Anomalies in dynamic ecosystem pro-
cess response were correlated with NEE anomalies
to attribute IAV of NEE to underlying process-based
mechanisms that may drive annual changes in NEE
across stand age and sites. Assessment of large-scale
drivers of IAV of NEE across sites demonstrated that
maximum carbon uptake (MCU) dominated IAV of
NEE in the mature pine plantation. These large-scale
NEE signals were further parsed into ecological pro-
cesses in the TECO model, where process anomaly
correlation showed that slight variations in root
maintenance respiration and woody biomass turno-
ver rates may be underlying drivers of IAV of MCU
and subsequently NEE. However, in the young pine
plantations and bottomland hardwood forest IAV of
NEE was not dominated by MCU. In contrast, IAV
of NEE in young plantations was influenced most by
annual changes in maximum carbon release (MCR)
and carbon uptake period (CUP), while IAV of NEE
in the bottomland hardwood forest was dominated
by CUP. These results demonstrate that dynamic
data assimilation (DA), variance decomposition, and
process anomaly correlation are investigative and
diagnostic tools for process-based models, though
maximum GPP was systematically underestimated
by models across sites. Despite problems with peak
GPP representation, anomaly correlation between
ecological processes and IAV of NEE allowed inves-
tigation of the specific ecological drivers of annual
variability in ecosystem-level carbon exchange. As
ecosystems show dynamic physiological and pheno-
logical properties through time, it may be important
to allow models to have dynamic/time–varying eco-
logical responses, especially if the root causes of IAV
of NEE are to be attributed to ecological processes in
process-based models.
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Introduction

At the global scale, interannual variability (IAV) in
the enrichment of atmospheric carbon dioxide (CO2)
has been attributed primarily to IAV of net ecosystem
exchange (NEE) in the terrestrial carbon (C) cycle,
and thus to changes in the size of the terrestrial C sink
(Le Quéré et al. 2018). Small annual imbalances in
ecosystem-scale gross primary productivity (GPP)
and total ecosystem respiration (RE) create annual
variability in the size and direction of NEE, and sub-
sequently determine land C sink or source capacity.
Though several climate factors have been reported to
have dominant control of IAV of NEE, including solar
radiation (Ichii et al. 2005), precipitation (Jung et al.
2017; Poulter et al. 2014), and temperature (Wang
et al. 2014), the ecological mechanisms affecting IAV
of NEE are poorly understood. Overall, despite a lack
of attribution to individual ecological processes, IAV
of NEE is expected to be predominantly controlled by
ecological factors compared to direct climate effects
(Shao et al. 2015).

Many large-scale ecological factors have been
investigated as important controls of IAV of NEE.
For example, 90% of IAV of GPP can be explained
in temperate and boreal ecosystems by the product
of maximum daily GPP (GPPmax) and growing sea-
son length (Xia et al. 2015; Zhou et al. 2016), while
GPPmax dominated IAV of GPP over mid and high
latitudes of North America at the ecosystem and
regional scales (Zhou et al. 2017). Similarly, exten-
sions of the net carbon uptake period annually may
lead to larger net land C sink capacity (Churkina
et al. 2005; Dragoni et al. 2011), with effects poten-
tially greater in water-limited systems experiencing
increased precipitation (Poulter et al. 2014; Ahl-
ström et al. 2015;). Further, increases in maximum
net C uptake tend to increase the land C sink while
increases in maximum net C release tend to reduce
the land C sink (Zscheischler et al. 2016; Fu et al.
2017). However, these large-scale factors represent
grouped effects of many phenological and physiologi-
cal processes operating at the ecosystem-scale, and
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to our knowledge no analysis has parsed IAV of NEE
to specific ecological processes within process-based
models.
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to parse large-scale ecosystem effects that may be
driving differences in IAV of NEE across stand age.
We further correlate annual anomalies of modeled

In wetlands specifically, ecological processes ecological processes to annual NEE anomalies at each
that drive IAV of NEE are uncertain, though it has
been established that stand age influences C dynam-
ics (King et al. 1999; Pregitzer and Euskirchen 2004
Magnani et al. 2007) with NEE differences between
forests often proportional to differences in stand age
(Noormets et al. 2007; Schwalm et al. 2007; Mkhab-
ela et al. 2009;). As a large component of the ter-
restrial C cycle, wetland ecosystems perform unique
biogeochemical functions (Chmura et al. 2003), are
among the most economically valued and productive
ecosystems globally (Moreno-Mateos et al. 2012),
and face multiple anthropogenic pressures (Day et al.
2008; White and Kaplan 2017). Wetlands are also
important C stores under threat of extreme weather
events, sea level rise and climate change (Miao et al.
2017), thus identifying drivers of IAV of NEE that
can be targeted by forest management or ecological
restoration activities may be important to mitigate net
C release in these ecosystems. To assess ecosystem
trajectories in these regions and parse the effects of
changing climate, land use and stand development,
eddy covariance research towers were previously
established in three managed loblolly pine plantations
and a natural mixed hardwood forest in the lower
coastal plain of North Carolina (Aguilos et al. 2020,
2021; Domec et al. 2015; Noormets et al. 2010).
These tower-based studies allow the investigation of
several key aspects of landscape ecology, including
landscape history and legacy effects in the transition
from bog hardwood forests to managed loblolly pine
plantations, as well as investigation of mechanisms
and ecological impacts of land use change.

site to delve deeper into specific ecosystem processes
that may drive IAV of NEE. As ecosystem proper-
ties are expected to change dynamically through
time (Luo and Schuur 2020), we hypothesized that
time–varying model parameterization would improve
data-model agreement. We also expect that by creat-
ing models that allow ecological properties to vary
inter-annually that we could correlate the divergence
of ecological properties and NEE from their respec-
tive long-term means to attribute IAV of NEE to
individual ecological processes. In terms of land-
scape ecology, these approaches represent innovative
methods in landscape analysis and modeling, with the
aim of developing better tools to assess accuracy and
uncertainty of tower-based landscape studies along-
side attribution of ecological processes to ecosystem
change.

Methods

Study area and data collection

Eddy-covariance towers were established at four
long-term experimental sites to study both man-
aged and unmanaged forested wetlands in the south-
ern U.S. lowlands of the North Carolina coast, from
2005 to present (Aguilos et al. 2020, 2021; Miao
et al. 2017; Noormets et al. 2012). In this study, we
modeled two young loblolly pine plantations (YP2-7,
YP2-8), one mature plantation (MP), and one bot-
tom-land hardwood forest (BHF) using long-term

To explore attribution of IAV of NEE to potential eddy-covariance and ground-based measurements
ecological drivers in these forested wetland ecosys-
tems, especially to individual ecological processes,
we investigated two data assimilation techniques
across four forested wetland sites of contrasting stand
age and community composition. Using the Total
Ecosystem (TECO) model (Weng and Luo 2008), we
conducted data-model fusion by static and dynamic
data assimilation (DA) to create model simulations
that exhibit time–invariant and time–varying eco-
logical responses, respectively. Model simulations of
NEE from both static and dynamic model parameteri-
zations were decomposed following Fu et al. (2019),

from previous work (Fig. 1). As ecosystems experi-
ence climate change, we expect changes in ecosys-
tem structure and function which may change carbon
sink/source dynamics - especially the IAV of carbon
exchanged with the atmosphere. To investigate IAV
of NEE in these ecosystems, observed NEE fluxes
were parsed into ecologically relevant ecosystem
fluxes of GPP and RE using a webtool developed by
the Max Planck Institute for Biogeochemistry named
REddyProc (Wutzler et al. 2018). Though technically
data products, GPP and RE were considered here as
observations that were fused with the TECO model
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Fig. 1 Locations of young plantations (YP2−7,YP2−8), mature plantation (MP), and bottomland hardwood forest (BHF) sites that
were modeled in this study [after Aguilos et al. (2021)]

through data assimilation. Other data, including Leaf photosynthesis is simulated using the Farquhar
aboveground biomass, root biomass, coarse woody
debris, and litterfall are described elsewhere (Aguilos
et al. 2020, 2021) and were used during model setup
and parameterization.

Ecological model

photosynthesis model (Farquhar et al. 1980) and the
Ball-Berry model of stomatal conductance (Ball et al.
1987). To capture diurnal and seasonal ecosystem
dynamics, the canopy photosynthesis and soil water
dynamic submodules are calculated on an hourly time
step, while the plant growth and soil carbon submod-
ules are calculated on a daily time step. More detailed

The process-based terrestrial ecosystem (TECO) description of the TECO model can be found in Weng
model, described by Weng and Luo (2008), was used
to investigate IAV of NEE across forested ecosystems
of contrasting stand age and community composi-
tion. Briefly, TECO has four major components that
include canopy photosynthesis, soil water dynam-
ics, plant growth (allocation and phenology) and soil
carbon transfers. Canopy photosynthesis is simulated
using a multi-layer process-based model, evolved
from Wang and Leuning (1998), that simulates trans-
mission of radiation through the canopy using Beer’s
law and divides foliage into sunlit and shaded leaves.

and Luo (2008).
Though model structure is important, the focus

of this work was to investigate ecological processes
that may influence changes in annual NEE. Thus, the
methods conducted here can be applied to any pro-
cess-based model. To force the TECO model, specifi-
cally, seven observed meteorological variables were
collected at each site, including air temperature, soil
temperature, relative humidity, vapor pressure defi-
cit, air pressure, wind speed and shortwave incoming
radiation. Meteorological observations, measured by
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eddy-covariance towers at each site, were more than
80% complete and were averaged to an hourly time-
step. Any remaining gaps in climate forcing were
filled by adjacent tower measurements or by simple
averaging of adjacent years in the rare case multiple
towers were not functioning at any given time. In
contrast, C flux measurements were averaged to daily
values and fully gap-filled as described by Aguilos
et al. (2020) for use in data assimilation.

Data assimilation

Data assimilation was accomplished using the TECO
model and a Model Independent Data Assimilation
(MIDA) framework (Huang et al. 2021). The MIDA
framework allows abstraction of the carbon-cycle
model from the Markov Chain Monte Carlo (MCMC)
procedure, which uses Bayesian inference to estimate
model parameters that maximize data-model agree-
ment. In this work GPP and RE were used as obser-
vational data for data-model fusion with initial car-
bon pool sizes estimated from C pool measurements
at each site from Aguilos et al. (2020). Data-model
fusion of GPP and RE into the TECO model was also
conducted at each site in two ways—by both static
and dynamic DA. Static DA fused model outputs and
data across all site-years, creating a single parameter
set that exhibited static ecological properties through
time. Dynamic DA fused model outputs and data
annually, creating annual parameter sets that allowed
the model to display dynamic changes in ecological
properties on an annual basis. For both approaches
the same parameters and initial values were used
(Supplementary Table S1). This approach was used
to investigate how ecological responses may change
each year and how changes in ecological response
may relate to IAV of NEE.

Variance decomposition

Interannual variability of NEE was decomposed into
phenological and physiological indicators following
Fu et al. (2019). The five indicators that affect IAV
of NEE in this method include the uptake coeficient
(alpha), release coeficient (beta), maximum carbon
uptake (MCU), maximum carbon release (MCR) and
carbon uptake period (CUP). Briefly, the alpha and
beta coeficient describe the ratio of actual C uptake
or release compared to theoretical maximum C sink
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or C source capacity, respectively. MCU and MCR
describe the maximum positive and negative C flux,
respectively, while CUP defines the number of days
where net C uptake occurred. Mathematically, the
annual NEE flux curve can be expressed as a function
of these five indicators, the differentials of which can
be estimated by anomalies of each indicator variable
from their long-term mean. The relative contribution
of each indicator to IAV of NEE is then calculated as
the consistency of each indicator’s differential with
respect to annual NEE anomaly over the period of
interest. A more detailed description can be found in
Fu et al. (2019). Applying this variance decomposi-
tion to both the NEE observations and simulated NEE
responses from the TECO model allowed diagnostics
of both the comparative influence of indicators on
IAV of NEE across forests of varying stand age and
how well our simulations captured these large-scale
effects.

Anomaly correlation

To further investigate individual ecological processes
that may drive IAV of NEE, we correlated annual
NEE anomalies to annual ecological process anoma-
lies in the TECO model when parameterized using
dynamic DA. Dynamic DA allows ecological pro-
cesses to change annually in process-based models,
like the TECO model, with annual changes in eco-
logical processes assessed in the same way as NEE
anomalies—in comparison to their long-term mean.
For example, root maintenance respiration is a param-
eter optimized in the TECO model during dynamic
DA that represents an ecological process. By fusing
data and models year-by-year, we can assess the long-
term mean of root maintenance respiration expected
by the TECO model, and how root maintenance respi-
ration may change annually. The correlation between
ecological process anomalies and simulated NEE
anomalies then indicate what processes are changing
with IAV of NEE as potential drivers in the TECO
model. Positive correlation between ecological pro-
cesses and NEE anomalies indicated ecological pro-
cesses that increased with increased net ecosystem C
loss, while negative correlations indicated ecological
processes that increased with increased net ecosystem
C storage.
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Results

Static vs. dynamic data assimilation

Compared to static parameterization, dynamic DA
of the TECO model led to better agreement between
simulated and observed ecosystem carbon fluxes at all
sites for all carbon fluxes (Figs. 2 and 3). Static DA
produced simulated NEE, GPP, and RE that showed

Fig. 2 Data-model fusion of eddy-covariance carbon flux data
and the TECO ecosystem model. Simulations were constrained
statically using multi-year data (dark blue lines) and dynami-

Landsc Ecol (2023) 38:3985–3998

0.13, 0.58, and 0.67 R2 agreement to observations
when averaged across sites, respectively (Fig. 3). In
contrast, simulated NEE, GPP, and RE from dynamic
DA showed an average R2 agreement to observations
of 0.27, 0.68, and 0.81 R2 across sites, respectively.
The average increase in R2 by dynamic DA over static
DA was 13.5%, 9.2%, and 14.3% for NEE, GPP and
RE, respectively. Allowing annual changes in eco-
logical response was the most effective at improving

cally by year (orange lines) compared to daily mean observa-
tions (light blue circles) at four sites (YP2−8, YP2−7, MP,
BHF)
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Fig. 3 Correlation between simulated and observed ecosystem
carbon fluxes at four sites (YP2−8, YP2−7, MP, BHF). In all
cases dynamic data-assimilation (orange) improved agreement

3991

between simulated and observed carbon fluxes compared to
static data-assimilation (dark blue), while RE was always bet-
ter represented than GPP by the TECO model

Vol.: (0123456789)
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simulated RE response across these forested wet-
land sites. This can be visualized by both the closer
agreement between the daily flux simulations from
dynamic DA and the rotation of the dynamic DA fit
line towards the 1:1 line compared to static DA.

Across all sites, the TECO model was generally
worse at simulating GPP compared to RE, largely
due to the mismatch between observed and simulated
peak GPP fluxes during the growing season. When
comparing the highest observed daily flux compared
to highest simulated daily flux, peak GPP was always
underestimated by the simulations. On average, simu-
lations missed observed annual peak GPP by 32% and
31% across all site-years for models parameterized
by static and dynamic DA, respectively. Simulated

Landsc Ecol (2023) 38:3985–3998

BHF, as the natural late-successional community in
the region, showed 62% IAV of NEE influenced by
CUP. Models showed mixed results in replicating these
ecosystem-level drivers based on static vs. dynamic
DA. Static DA, representing time–invariant ecological
responses to climate drivers, showed better agreement
to large-scale influences of IAV of NEE at the MP and
BHF sites that had more consistent NEE through time
(Fig. 4b). Dynamic DA, which represents time–vary-
ing ecological response, showed better agreement to
observed drivers of IAV of NEE at the YP sites, where
annual carbon fluxes were more variable (Fig. 4c).

Process anomaly correlation

peak RE was more accurate, and was both over and Root maintenance respiration was the strongest
underestimated, missing annual peak RE observations
across all site-years by an average of 19% and 23%
after static and dynamic DA, respectively. Under-
estimation of peak C fluxes contributed to lower
data-model agreement for NEE for simulations from
both static and dynamic DA using the TECO model.
Throughout the year, the combined effect of both
GPP and RE data-model mismatch also showed over-
all suppression of simulated NEE maxima, resulting
in general underestimation of maximum net ecosys-
tem uptake and loss. Despite systemic challenges in
representing peak C fluxes, dynamic DA improved
data-model agreement, most notably in the represen-
tation of RE and allowed investigation of inter-annual
changes in ecological processes.

Variance decomposition

Partitioning variance of NEE following Fu et al. (2019)
for both the observed data (Fig. 4a) and the compara-
tive contributions to IAV of NEE when simulated using
static DA (Fig. 4b) and dynamic DA (Fig. 4c) showed
large-scale drivers of ecosystem-level carbon fluxes
and how well models captured these trends. Contribu-
tion of alpha, beta, MCU, MCR, and CUP show con-
trasting contributions to IAV of NEE across stand age
and forest composition. The young loblolly plantations
(Fig. 4a; YP2−7, YP2−8), which represent managed
forest regrowth after disturbance (harvest and replant-
ing with 1 year seedlings), showed mixed contribu-
tions to IAV of NEE, generally dominated by MCR
and CUP. In contrast, MP showed IAV of NEE domi-
nated by MCU, explaining 67% of IAV of NEE. The

positive correlate between modeled ecosystem pro-
cesses and NEE departures from the mean across all
sites (i.e., increased root maintenance costs aligned
with annual increases in net ecosystem C loss at all
sites). In general, positive correlations were strong-
est between NEE anomalies and plant processes con-
trolling respiration and productivity, while negative
correlations were strongest between NEE anomalies
and soil/litter processes (Fig. 5). Increases in dead C
pool turnover times, and the rate at which C entered
slower moving pools, generally aligned with years
where net C storage was greater than the mean. At
the MP site, where NEE is dominated by high GPP
and shows consistent net C uptake, models generated
by dynamic DA showed that small annual variability
in both the rate of woody biomass turnover and root
maintenance respiration were the strongest potential
drivers of IAV of NEE. At the YP and BHF sites,
both of which experienced widespread disturbance
(i.e., harvest at YP sites and hydrologic stress and
increased tree mortality at BHF), processes strongly
correlated to NEE anomalies were more numerous,
suggesting that a confluence of factors may affect
IAV of NEE at these sites.

Discussion

Dynamic data assimilation

The inability to perfectly simulate GPP and RE C
fluxes is an ongoing dificulty for ecological and Earth
System models. As NEE is the difference between
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Fig. 4 Variance decom-
position of NEE at four
sites (YP2−8, YP2− 7, MP,
BHF) using the observed
NEE (a) and the differ-
ence of observed variance
decomposition compared to
variance decomposition of
simulated NEE from static
(b) and dynamic (c) data
assimilation. Following Fu
et al. (2019), NEE variance
was decomposed into a
carbon uptake coeficient
(alpha), carbon release
coeficient (beta), maximum
carbon uptake rate (MCU),
maximum carbon release
rate (MCR) and carbon
uptake period (CUP)

GPP and RE, inaccuracies created while simulating
either GPP or RE may lead to pronounced NEE data-
model mismatch. This can be attributed, in part, to
uncertainties in observational data and model param-
eterization, simplifications in model representations
and unknowns in terms of important or missing pro-
cesses within contrasting ecosystems. It has also been

demonstrated that ecological processes may have
a greater effect on C dynamics than direct climate
impacts (Shao et al. 2015), though whether this is
due to important missing climate drivers or a lack of
understanding with regard to indirect climate effects,
is not established. Here we show that annual eco-
logical changes can increase data-model agreement,
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Fig. 5 Correlation between annual NEE flux anomalies and
ecosystem processes anomalies across stand age and sites.
Only correlations above 50%, as an arbitrary cut off, are
shown. Negative correlations relate to process response that

allowing models to act more like the ecosystems they
are simulating, without changing observational data,
model structure, or any process-based model assump-
tions. Importantly, typical first-order ecological or
earth system models do not allow for annual changes

Landsc Ecol (2023) 38:3985–3998

increased with ecosystem C storage, while positive correlations
relate to process response that increased with net ecosystem C
loss to the atmosphere

in parameterization, and thus ecological properties,
thereby creating systems where IAV is driven exclu-
sively by climate variation. First-order kinetic models
thus have dificulties recreating IAV of NEE, largely
we expect due to static model parameterization (Luo
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and Schuur 2020), which was the impetus behind
investigating dynamic DA in these forested wetlands.

Despite increases in data-model agreement at all
sites, and for all C fluxes from dynamic DA, consist-
ent underestimation of peak GPP shows that simu-
lating annual change in ecological processes is not a
panacea. Changing processes within the GPP module
to better represent peak GPP may be an important
next step to improve fidelity of secondary analyses,
though a separate research question. Here, our focus
was to demonstrate the usefulness of variance decom-
position of observed and simulated NEE signals and
further correlate modeled ecological processes to IAV
of NEE. Comparing multiple models across regional
to global scales would be another way to investigate
systematic model errors and ecological processes that
influence IAV of NEE in different ecoregions. Future
work to integrate matrix model representations would
also provide further model diagnostics to look deeper
into model uncertainty and processes driving IAV of
NEE.

Variance decomposition of large-scale ecological
factors

Assessing the observed NEE signal in terms of large-
scale drivers of IAV of NEE across wetland forests
of varying stand age, we found that, similar to the
study from Fu et al. (2019), that MCU dominated
IAV of NEE at the MP site. However, in contrast, we
also found that IAV of NEE at the YP and BHF sites
was typically influenced most by CUP and MCR.
This suggests that fluctuating soil carbon losses and
changes in favorable growth days during the year,
where GPP can outpace RE, contributed most to

3995

approaches simulated NEE suficiently well to gen-
erally recreate ecosystem-level influences of IAV of
NEE at certain sites, they also both tended to under
and overestimate key influences. For example, both
DA approaches created simulations that underes-
timated the contribution of MCU to IAV of NEE at
the MP site compared to the observed NEE signal
(Fig. 4). Models created using dynamic DA further
overestimated the influence of alpha at the MP site,
indicating that changes in the ratio between actual
vs. hypothetical maximum uptake was the largest
contributor to IAV of NEE, which does not align
with observations. Despite challenges in replicating
observed annual C flux patterns, our results demon-
strate how variance decomposition can be used as a
benchmark for ecosystem models and their ability to
reproduce ecosystem-level influences on IAV of NEE.

Process anomaly correlation

At the MP site, small increases in C loss through
root maintenance respiration and small decreases in
C loss from woody biomass turnover were indicated
as the strongest correlates to IAV of NEE by process
anomaly correlation, aligning with the large-scale
assessment of the observed NEE signal by variance
decomposition. We cannot say with certainty that
root maintenance respiration and the turnover rate
of woody biomass are the only individual ecological
processes controlling IAV of NEE at the MP site, as
repeating the procedure with other models, process-
based assumptions and parameterization could show
contrasting outcomes (Luo and Schuur 2020). How-
ever, it is encouraging that the assessment of specific
processes showed reduced root respiration and slower

IAV of NEE during forest recovery after harvest and woody biomass turnover correlate with reduced
replanting at the YP sites. Taken together, variance
decomposition of observed NEE suggests that mature
pine plantations are insensitive to variability in cli-
mate, disturbance, or ecosystem responses throughout
the year, but are influenced by variability during peak
growing season that affects peak GPP. Whereas, both
during regrowth from disturbance (YP) and at late-
successional community in the region (BHF), daily
variability in climate and ecosystem responses influ-
ence IAV of NEE by changing the CUP, while MCR
from soils after harvest were dominate in YP sites.

Patterns in observed NEE signals were not per-
fectly recreated in simulated NEE. Though both DA

NEE, while large-scale NEE assessment showed
similarly that general carbon uptake dominated IAV
of NEE. The correlations are bidirectional so that
increased root respiration at the YP sites correlates
with increased NEE and aligns with carbon release
dominating IAV of NEE at these sites. By fusing
data and models and allowing models to demonstrate
dynamic ecology, we were able to take a first look
into what individual ecological processes in process-
based models align with IAV of NEE. Though model
identifiability issues remain, this approach allowed
us to investigate what individual ecological pro-
cesses may be driving IAV of NEE based on current
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process-based understandings and if these modeled
outcomes align with ecosystem observations and
expectations.

Conclusions

This and other works have shown that capturing peak
growing season GPP is an ongoing issue that con-
tributes to uncertainty in simulating NEE. We fur-
ther showed that allowing ecological responses to
vary year-by-year, through dynamic annual param-
eterization, did not generally improve the simulation
of peak GPP. Despite underestimation of peak GPP
response, allowing time–varying ecosystem proper-
ties did improve data-model agreement at all sites
for all carbon-flux responses. As ecosystems show
dynamic physiological and phenological properties
through time, and across space, it may be important
to allow models to do the same, especially if the root
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