

1 **Impact of hedonic value of stimuli on sampling**

2 **dynamics during a preference test**

3 Ben Ballintyn, John Ksander, Donald Katz, and Paul Miller

4 Brandeis University

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 Abstract

22 The decision of whether to continue with a current action or to stop and consider alternatives is
23 ever present in the life of an animal. Such continuous-time decision making lies at the heart of
24 food preference tests whose outcomes are typically quantified by a single variable, the total
25 amount consumed. However, the dynamics that give rise to such a quantity in terms of
26 durations of bouts of sampling at a stimulus before pauses, and the impact of alternative
27 stimuli on those bout durations and subsequent actions following a pause, can contain a
28 richness of behavior that is not captured in a single palatability measure. Here we carry out
29 multiple analyses of these dynamics, with a particular focus on assessing how the hedonic value
30 of one taste stimulus impacts the behavior of a rat sampling a second taste stimulus during a
31 preference test. We find evidence for an explicit competitive interaction between bout
32 durations, such that the more palatable a stimulus the longer the bout durations when the rat
33 samples the stimulus and the shorter the bout durations at the alternative. Such competition is
34 reproduced in a model of a neural circuit that could underlie the continuous decision of when
35 to end a sampling bout. We find that the competitive impact on bout durations is relatively
36 short-lived whereas a competitive impact on the choice of which stimulus to approach
37 following a pause persists. Such a discrepancy in the timescales for the decay of the impact of
38 the alternative stimulus suggests different neural processes are involved in the choice of which
39 stimulus to approach versus the choice of how long to sample from it. Since these two choices
40 together combine to determine net consumption and therefore the inferred palatability or
41 preference of a gustatory stimulus, our results suggest that palatability is not a unitary quantity
42 but the result of at least two distinct, context-dependent neural processes.

43 Introduction

44 The ability to efficiently forage for food and other resources is critical to most animals' survival,
45 and evolution has doubtless shaped the neural circuitry responsible for decision-making to
46 optimize this task (Hayden et al., 2011; Pearson et al., 2014). There are many types of questions
47 that an animal must answer during a foraging bout. A first class of questions lies within the
48 domain of perceptual decision-making, where an animal uses its senses to gather information
49 about the state of the environment to answer questions such as "is there a predator present?".
50 A second class of problems constitutes value-based decision-making which uses available
51 information to choose between different action plans such as "Is it worth continuing to gather
52 food here, or should I search for a more abundant area?".

53

54 Studies of value-based decision-making have typically fallen into two categories: 1) "self-
55 control" or "delay-discounting" tasks where animals tradeoff waiting times and payoff sizes
56 (Bateson & Kacelnik, 1996; Blanchard et al., 2013; Pearson et al., 2010; Stephens, 2002;
57 Stephens & Anderson, 2001) and 2) "stay-switch" or "patch-leaving" task where animals are
58 presented with a source of reward and must decide when to leave it in search of a better
59 alternative (Barack et al., 2017; Blanchard & Hayden, 2014; Constantino & Daw, 2015; Hayden
60 et al., 2011). Patch-leaving tasks better represent the natural situation where animals have
61 sequential interactions with individual reward sources as opposed to the simultaneous
62 presentation of (cued) alternatives. While these prior patch-leaving studies have helped
63 elucidate the neural circuits responsible for foraging behavior, they ubiquitously utilize a trial-
64 based structure and patch options are presented randomly, as assumed by the Marginal Value

65 Theorem (Charnov, 1976), as opposed to in the wild, where animals use their experience with
66 the environment to direct their encounters with patches. We suggest that two- or multi-bottle
67 preference tests represent a simplified naturalistic foraging scenario where an animal can
68 rapidly learn about the state of its environment and direct its encounters with reward options.

69
70 Preference tests are used widely to measure the relative hedonic values (or palatabilities) of a
71 set of stimuli, with the degree of preference based on the amount of interaction the subject has
72 with each stimulus. For example, in taste preference tests, the relative palatabilities of pairs of
73 substances are measured by the total amounts consumed or the number of licks at each food
74 source. It is assumed that the decision of the animal to lick (or eat) more of one tastant than
75 another, given equal opportunity for time with both, reflects an underlying preference. While
76 these tests have been used to determine the relative preferences of different options, little
77 attention has been paid to the decision dynamics of animals during such preference tests. The
78 lack of data quantifying the underlying behaviors that lead to the overall preference precludes
79 the assessment of models of this type of decision-making. Indeed, one of the goals of our
80 analyses is to test predictions of our recent modeling paper (Ksander et al., 2021).

81
82 Several questions can be asked about the sequences of decisions that animals make during
83 these preference tests. Perhaps the most obvious and important is: Do animals rapidly settle on
84 a favorite option or continue to switch between and sample both options? If the animal has a
85 clear preference between two options (as revealed by the total amount consumed), then an
86 intuitive and theoretically optimal strategy is to first sample both options to determine a

87 favorite and then spend all of the remaining time sampling the favored option (or until the
88 source is exhausted or the animal is sated). In this case, it would be very difficult to quantify the
89 palatability of a tastant: only a ranking would be possible. If the answer to the above question is
90 “no” (as we find in our data), then several additional questions can be asked.

91

92 The first is, given that the animals switch back and forth between the two options, how do
93 sampling times at one option depend on that option’s palatability—as measured by total
94 amount consumed in sessions without alternatives—and on the palatability of the alternative?

95 To answer this question, we analyze durations of bouts of licking, which are comprised of series
96 of rapid licks without significant pauses, to assess whether and how the behavior at one lick-
97 spout depends on the contents of the alternative lick-spout.

98

99 Separate bouts are demarcated by pauses, following which the animal can either return to a
100 new bout of licking at the same spout or switch to the alternative spout. Our analyses of bout
101 durations separately following returns versus switches provides an indication of how the
102 influence of the alternative sample on current behavior decays over time. Lastly, an analysis of
103 the choice of which spout to choose after each pause, provides an insight into how the animal
104 weighs the relative value of the two spouts. Distinct dynamics of that choice probability would
105 provide evidence that the choice of which sample to taste and the choice of for how long to
106 taste it are separate and distinct processes.

107

108 It is worth noting that competition arises in preference tests without the need for any direct
109 interaction between the hedonic value of one alternative and the behavior displayed at the
110 other. The source of implicit competition is the limited time available in most tasks, or even if
111 time were not limited in a food preference test, the total amount of food desired until satiety
112 provides a limit. Such limits mean that the more time spent and the greater the consumption at
113 one sampled stimulus, the less time available at the alternative, even if the behavioral dynamics
114 were not altered. Indeed, one can hypothesize that an association with a more appetizing
115 stimulus might boost the perceived hedonic value of a paired neutral stimulus leading to longer
116 bouts at the neutral alternative, even as total amount consumed at the neutral alternative goes
117 down due to the fewer visits there. On the contrary, if behavior in preference tests resembles
118 that during foraging, one would anticipate that the greater the value of the alternatives, the
119 less time spent at a particular source. A primary goal of this work is to identify the nature of the
120 across-stimulus interaction.

121

122 To summarize, we analyze the behavior of rats engaged in a naturalistic continuous-time taste
123 preference task. We also compare the behavioral dynamics with the dynamics of a simulated
124 circuit of model spiking neurons designed to possess two states, one representing the ongoing
125 choice to sample a stimulus, the other to leave that stimulus. Competition between successive
126 stimuli can arise in the model from adaptation-like processes, leading to predictions of a
127 competitive interaction between one bout of sampling a stimulus and the subsequent bout
128 with the alternative stimulus. We assess our behavioral findings for evidence of such a
129 competitive interaction.

130

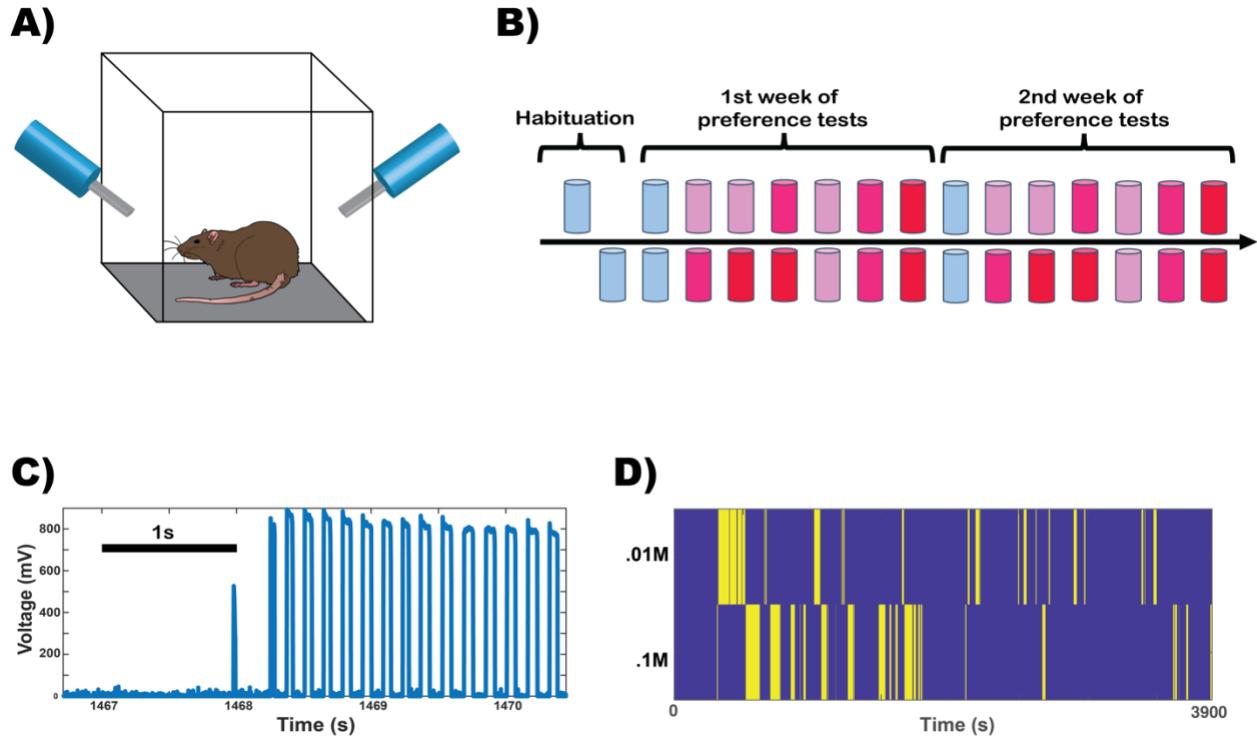
131 **Results**

132 ***Measurement of palatability***

133 To study stay-switch decision dynamics, rats were put through two weeks of preference testing
134 (Figure 1A/B). On each day, they were given one hour to freely sample a random two solutions
135 drawn (with replacement) from a possible four (0M, 0.01M, 0.1M, or 1M) NaCl solutions,
136 selected to provide three significantly different palatabilities (Sadacca et al., 2012). Licks at each
137 solution spout were recorded using a custom circuit and identified using a semi-automated
138 process (see methods).

139 As a first look at the rats' preference behavior, we confirmed the rank order of the relative
140 palatabilities of these solutions (Figure 2A), by measuring the total number of licks to each
141 solution on days where the solution was paired with itself and dividing by the mean number of
142 licks to dH₂O on dH₂O only days. The previously determined palatability ranking (0.1M > 0.01M
143 > 1M, (Sadacca et al., 2012)) was recapitulated, and no sex-specific differences were found
144 (0.01M: z = .17, p = .86; 0.1M: z = -1.056 p = .29; 1M: z = .51, p = .61); data from both sexes
145 were combined for all analyses in which different solutions were pitted against one another
146 (see Methods and Figure 1).

147



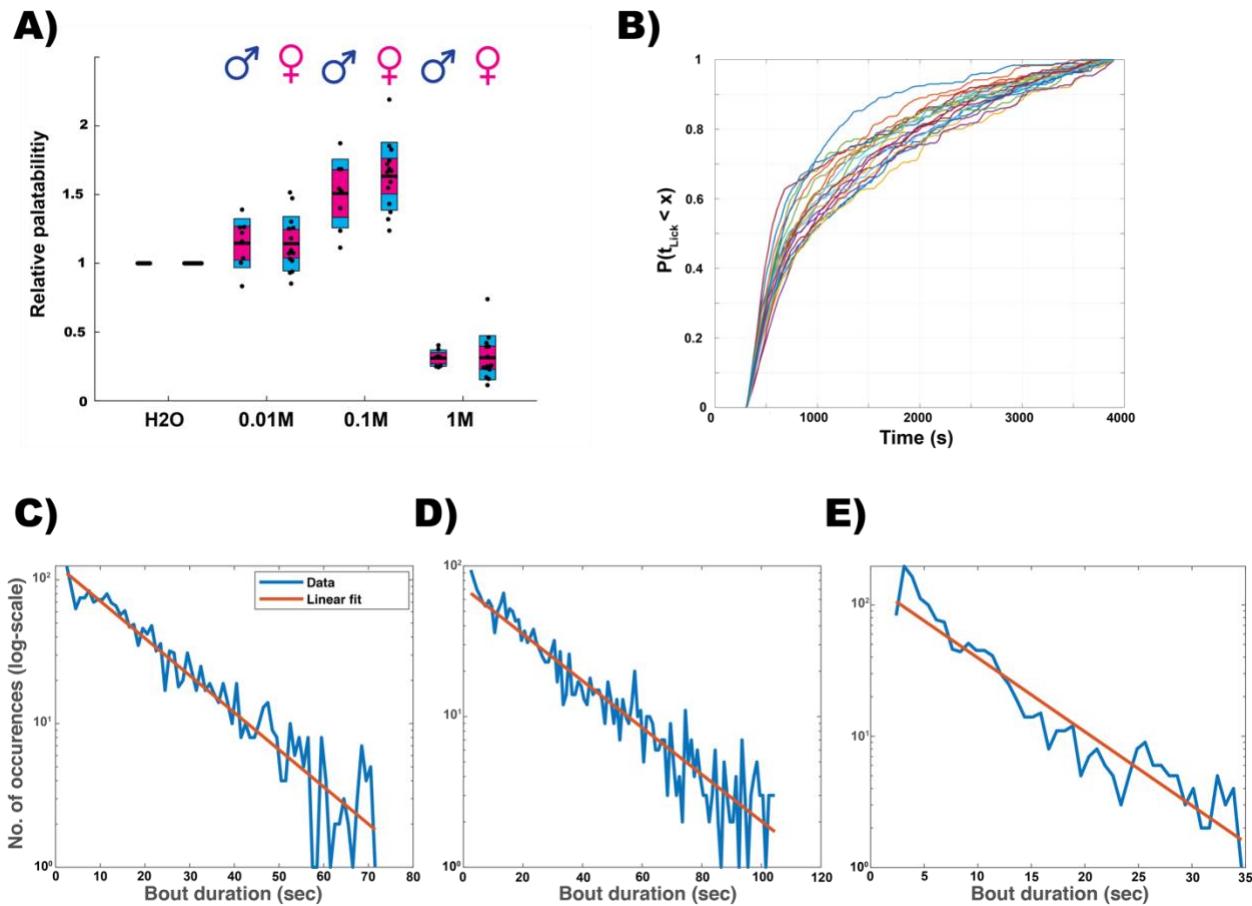
148

149 *Figure 1. Behavioral setup and example behavior. A)* 1' x 1' custom acrylic chamber had a solution spout available through the
150 left and right walls each containing 25mL of 1 of 3 different NaCl solutions (0.01M, 0.1M, 1M) or dH₂O. Rats were allowed to
151 freely move and sample from either spout over the course of 1 hour. *B)* Preference test timeline. Rats were given 2 habituation
152 days with 1 bottle of dH₂O on opposite sides across sessions. This was followed by 2 weeks of sessions where each week started
153 with a session of dH₂O only followed by all 6 combinations of NaCl solutions. *C)* Example licking data. Each rectangular
154 deflection is one lick. *D)* Example sampling data from a session with 0.01M and 0.1M NaCl solutions. Yellow stripes represent
155 active sampling at the corresponding solution.

156

157 Given the observed differences in palatabilities, we expected different distributions of sampling
158 durations, with more palatable solutions having on average longer durations of lick bouts. This
159 expectation was borne out: the distributions of bout durations of all solutions were well
160 approximated by exponential distributions (Figure 2C-E), with decay constants akin to the mean
161 time of bouts at each solution; these bout duration distributions are mostly commensurate

162 with the calculated palatability of each solution (dH₂O: mean 13.39 ± .79s, .01M: mean 24.33 ±
163 1.69s, .1M: mean 27.54 ± 1.72s, 1M: mean 4.72 ± .29s).



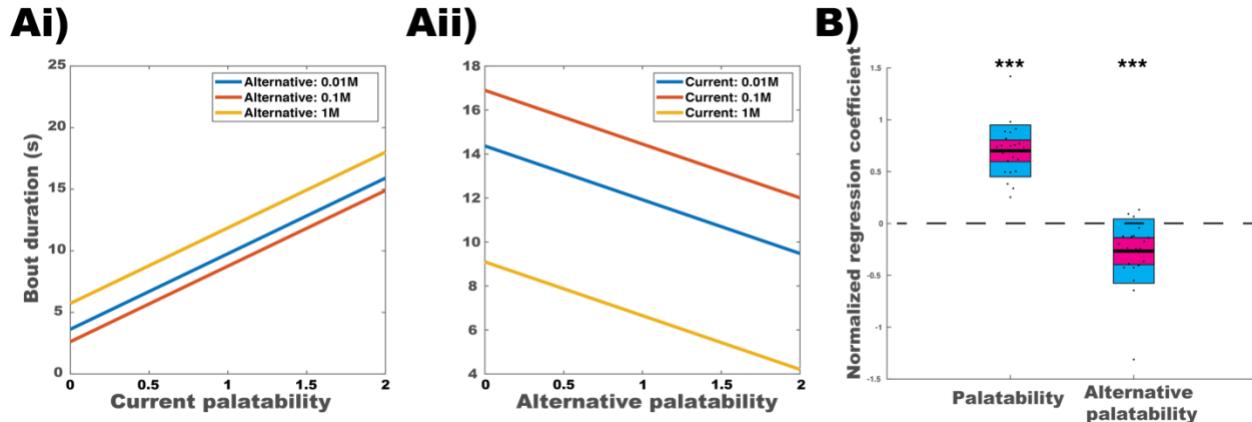
164
165 *Figure 2. Effect of palatabilities on bout duration. A) Relative palatabilities of the 3 NaCl solutions relative to water.*
166 *Palatabilities are based on the total number of licks at each solution during sessions where the solution was paired with itself.*
167 *No sex specific differences were found (0.01M: two-tailed: z = .17, p = .86, .1M: z = -1.06, p = .29, 1M: z = .51, p = .61). Based on*
168 *pairwise comparisons (the rank order of palatabilities from highest to lowest is (0.1M, 0.01M, H₂O, 1M). B) Cumulative*
169 *distribution of lick times. Rats continue to lick throughout the session but less over time. These CDFs were used to distinguish*
170 *early and late bouts for each rat. C) Bout duration distributions were fit well by exponential distributions. Frequency of each*
171 *bout duration for 0.01M NaCl with y-axis on a log-scale. Linear fits to the exponential data are shown in orange. D) Same as (C)*
172 *but for bouts at the 0.1M solution. E) Same as (C,D) but for bouts at the 1M solution.*

173 **Impact of relative palatability on bout duration**

174 While a higher palatability of the currently sampled solution translates into longer sampling
175 bouts, a critical unanswered question is how the palatability of the alternative solution in a
176 preference test impacts these sampling bout durations. We considered three possibilities: 1) a
177 high alternative palatability will have an appetitive effect, increasing the perceived palatability
178 of the current solution and leading to longer sampling bouts; 2) conversely, a higher alternative
179 palatability could reduce the perceived palatability of the current solution, leading to shorter
180 sampling bouts; and 3) the palatabilities of alternative choices could have no impact on bouts at
181 the current solution. Implied in hypotheses 1 or 2 is the maintenance of a memory of the
182 alternative solution's value (palatability).

183
184 To evaluate the above possibilities we performed multilinear regression, predicting bout
185 duration as a function of the palatability of available alternatives. As suggested by differences in
186 mean bout durations across solutions, regression coefficients for the current solution's
187 palatability were significantly positive ($z = 4.09$, $p = 2.15e-5$, mean = 15.78 ± 1.63) – that is, the
188 more palatable a stimulus the longer the bouts of licking at it (Fig. 3A). Alternative palatability
189 coefficients were found to be significantly negative (mean -5.69 ± 1.32), consistent with
190 possibility 2 above (Fig. 3B) – durations of bouts are shorter when the alternative stimulus is of
191 higher palatability.

192

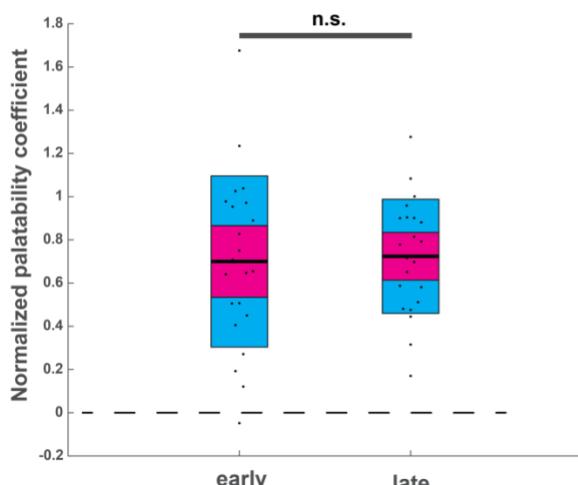


193
194 *Figure 3. Effect of current/alternative palatability on duration of lick bouts. A) Example results from 1 rat of a multilinear*
195 *regression model for predicting bout duration with the currently sampled solution's and alternative solution's palatabilities as*
196 *factors. A)i) Using best fit regression coefficients for 1 rat, bout duration is plotted against the current solution's palatability for*
197 *all 3 possible alternative solutions. A)ii) Same as (Ai) but plotting bout duration vs. the alternative solution's palatability for 2*
198 *levels of the current solution's palatability. B) Current and alternative palatability regression coefficients normalized by the*
199 *mean bout duration for each rat. Normalized coefficients for current palatability are significantly positive (right-tailed: $z = 4.09$,*
200 *$p = 2.15e-5$) and those for alternative palatability are significantly negative (left-tailed: $z = -3.57$, $p = 1.7e-4$).*

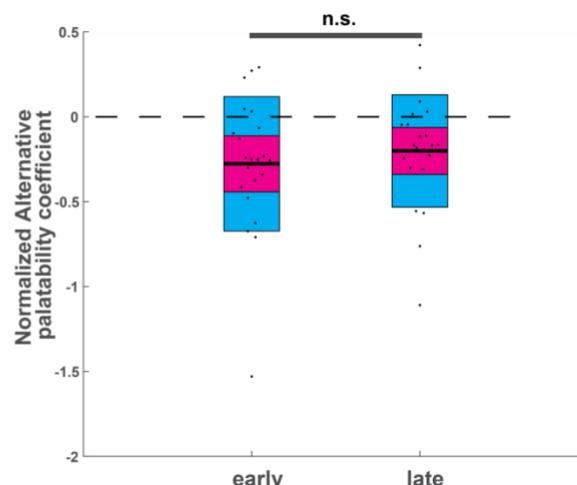
201 The above results were stable across the course of the session, even though bout durations in
202 general decreased over time (likely due to satiation). When we split sessions into 'early' and
203 'late' portions based on a per-animal criterion (we used the 2nd derivatives of each rat's
204 cumulative distribution of lick times to detect the "kink" in the curve of Fig. 2B, where licking
205 slowed from a high rate to a lower rate) and performed the same multilinear regression on
206 early/late bouts separately, we found no significant change in (normalized) regression
207 coefficients between the early and late portions of the session (Fig. 4A/B).

208

A)



B)



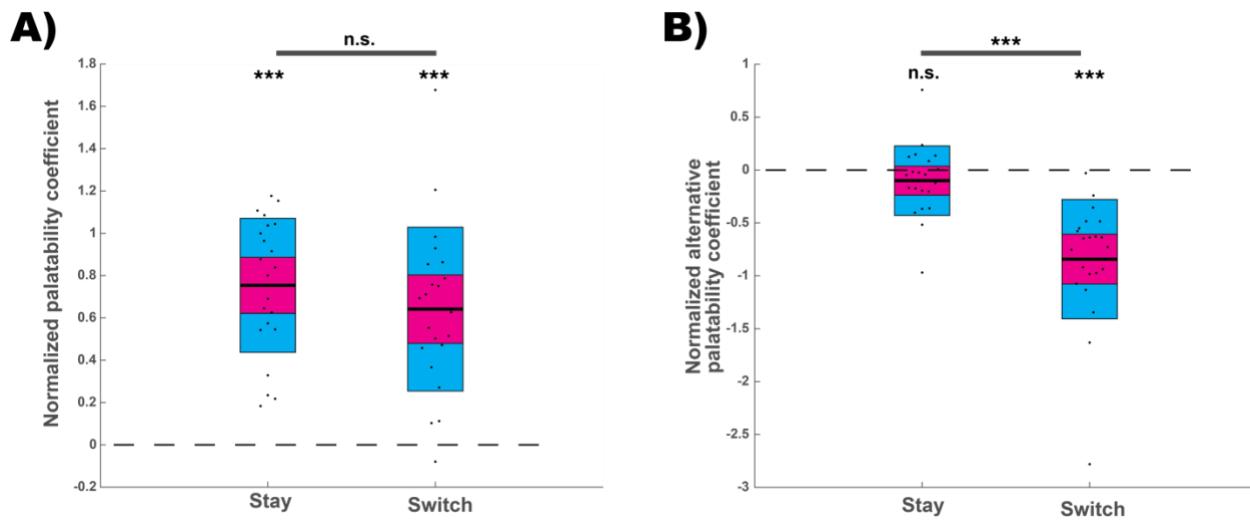
209

210 *Figure 4. Effect of palatability on bout duration is constant across early and late portions of the session. A)* Normalized
211 regression coefficients for current solution palatability for bouts in the early or late portion of the session. Current palatability
212 coefficients were significantly positive for both the early (right-tailed: $z = 4.06, p = 2.47e-5$) and late (right-tailed: $z = 4.09, p =$
213 $2.15e-5$) portions of the task. Coefficients were not significantly different across portions of the session (paired: $z = -.11, p = .91$).
214 *B)* Same as (A) but for the alternative solution's palatability. Normalized coefficients were significantly negative for both early
215 (left-tailed: $z = -2.99, p = 1.4e-3$) and late portions of the session (left-tailed: $z = -2.76, p = 2.9e-3$). Coefficients were not
216 significantly different across portions of the session (paired: $z = -.76, p = .45$).

217 We next split bouts into those following stay or switch decisions to ascertain whether the same
218 decision process was at play for each type of decision. We again repeated the multilinear
219 regression analysis on these groups individually. We found that regression coefficients for
220 current palatability are similarly positive following stays ($z = 4.09, p = 2.15e-5$, mean = $15.46 \pm$
221 1.93) and switches ($z = 4.06, p = 2.4e-5$, mean = 16.04 ± 2.38), with no significant difference
222 between the two groups ($z = .011, p = .91$, Fig. 5A). In contrast, there is a significant difference
223 in alternative palatability coefficients in the post-stay vs. post-switch bouts: coefficients for the
224 post-switch bouts were significantly more negative ($z = 4.06, p = 2.4e-5$) than those following a
225 stay decision, which were themselves not significantly different from zero ($z = -1.7, p = .088$,

226 mean = -1.09 ± 1.61 , Fig. 5B). This result suggests that information regarding the alternative
227 solution may only factor into decisions about sampling times only following a switch between
228 the two samples.

229



230

231 *Figure 5. Difference in impact of current/alternative palatability on bout duration following a stay or switch decision. A)*
232 *Normalized multilinear regression coefficients for the currently sampled solution's palatability are significantly positive following*
233 *both a stay (right-tailed: $z = 4.09, p = 2.1e-5$) and switch decision (right-tailed: $z = 4.06, p = 2.4e-5$). Coefficients were not*
234 *significantly different across stay/switch conditions (paired: $z = .011, p = .91$). B)* *Normalized multilinear regression coefficients*
235 *for the alternative solution's palatability are not significantly different from zero following a stay decision (two-tailed: $z = -1.7, p$*
236 *= .088) but are significantly negative for bouts following a switch decision (left-tailed: $z = -4.09, p = 2.1e-5$). Coefficients for bouts*
237 *following a switch decision are significantly more negative than those for bouts following a stay decision (paired right-tailed: $z =$*
238 *$4.06, p = 2.5e-5$.*

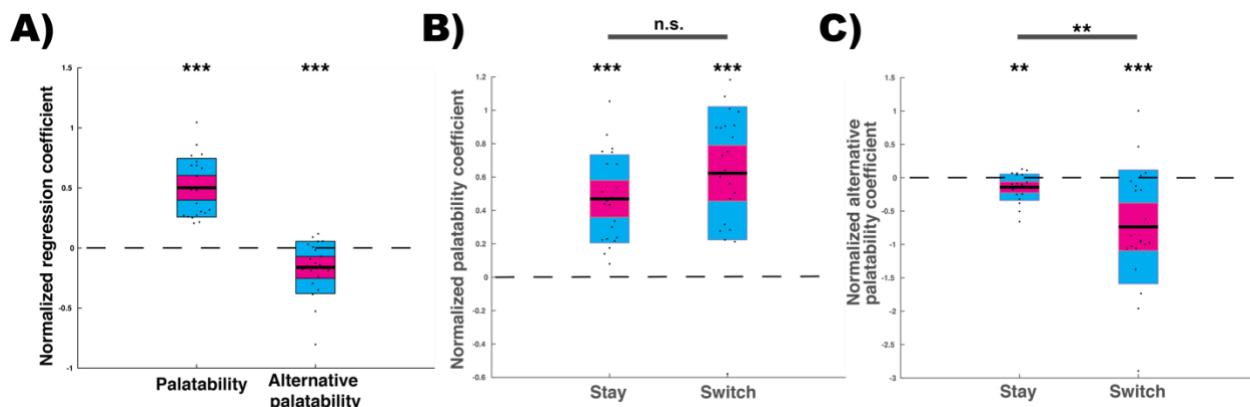
239 **Lack of dependence of results on bout definition criteria**

240 For the analyses described above, we define a 'licking bout' as sequences of licks which had no
241 period of >2s of no contact with the lick spout. Here, 'contact' includes brief periods of nose-
242 poking at the spout. While this definition of a 'licking bout' slightly overestimates the total time
243 spent licking, brief periods of nose poking in between licks represent active engagement with

244 the spout rather than a decision to stop sampling or switch to the alternative. An inter-lick-

245 interval of 2s was used as rats never switched between solutions in <2s.

246



247

248 *Figure 6. Using a 200ms ILI interval criterion to define bouts does not significantly alter the results. A) As in Fig 3B, normalized*
249 *multilinear regression coefficients for predicting bout duration using the currently sampled and alternative solutions'*
250 *palatabilities as factors are shown. Current palatability coefficients were significantly positive (right-tailed: $z = 4.09, p = 2.1e-5$)*
251 *and alternative palatability coefficients were significantly negative (left-tailed: $z = -3.15, p = 8.2e-4$). B) As in Fig 5A, normalized*
252 *multilinear regression coefficients for the currently sampled solution's palatability are significantly positive following both a stay*
253 *(right-tailed: $z = 4.09, p = 2.1e-5$) and switch decision (right-tailed: $z = 3.8, p = 7.3e-5$). Coefficients were not significantly*
254 *different across stay/switch conditions (paired two-tailed: $z = -1.7, p = .089$). C) Multilinear regression coefficients for the*
255 *alternative solution's palatability are shown for models predicting bout durations following a stay or switch decision. Using this*
256 *criterion, regression coefficients for bouts following a stay decision are significantly negative (left-tailed: $z = -3.08, p = .001$) and*
257 *following a switch decision (left-tailed: $z = -3.25, p = 5.8e-4$). Coefficients for bouts following a switch decision are significantly*
258 *more negative than those for bouts following a stay decision (paired right-tailed: $z = 2.82, p = .0024$).*

259 Of course, this is only one dividing line that could be used. Prior studies of licking

260 microstructure in rats (Davis, 1996; Davis & Smith, 1992) have grouped licks into 'bursts' or

261 'clusters' based on a <250ms or >500ms inter-lick-interval (ILI) criterion. To test that the results

262 presented above are not artifacts of our choice of bout definition, we repeated all the above

263 analyses using a 200ms ILI criterion. In this re-analysis, the magnitudes of the resulting

264 regression coefficients are much smaller, since bout lengths themselves are much shorter
265 (Supp. Fig. 1). Nonetheless, all the qualitative results presented above hold (Figs. 6/7):
266 coefficients for current palatability are significantly positive for early vs. late and stay vs. switch
267 bouts, and coefficients for alternative palatability in early and late bouts do not differ; while
268 coefficients for alternative palatability are significantly negative following a stay decision using
269 this bout criterion ($z = -3.02$, $p = .0012$, mean = $-.61 \pm .19$), they are again significantly more
270 negative (mean = $-2.6 \pm .68$) following a switch decision ($z = 2.59$, $p = .0047$).

271
272 One interesting difference did arise with this more stringent bout length criterion, as revealed
273 in Figure 6C compared with Figure 5B. The more stringent criterion split many prior single bouts
274 into multiple bouts of shorter duration. The shorter duration of bouts meant that the time
275 passed from a sampling of the alternative stimulus would often be less than previously for a
276 repeated bout of sampling at a stimulus – that is a bout of sampling following a “Stay” decision.
277 As a result, in Figure 6C we see a small significant impact of the alternative stimulus following a
278 “Stay” decision that was absent in Figure 5B where bout durations were longer. Such a finding
279 is consistent with a model in which the impact of the alternative stimulus on a current bout’s
280 duration decays gradually over a period of many seconds after leaving that stimulus.

281
282 ***Indifference of results to change in rank order of palatability***
283 As noted above, we calculated palatabilities using data from days in which identical solutions
284 were available at both spouts (this was done to separate the data used to compute
285 palatabilities from those used in the multilinear regressions). Using this method, 0.1M NaCl was

286 found to be significantly more palatable than 0.01M (Figure 2A). However, on days in which
287 0.1M NaCl was paired with 0.01M, rats licked more—on average, 1.3x as much—for 0.01M than
288 0.1M. That is, the 0.01M solution seemed more palatable than the 0.1M solution in direct
289 comparisons.

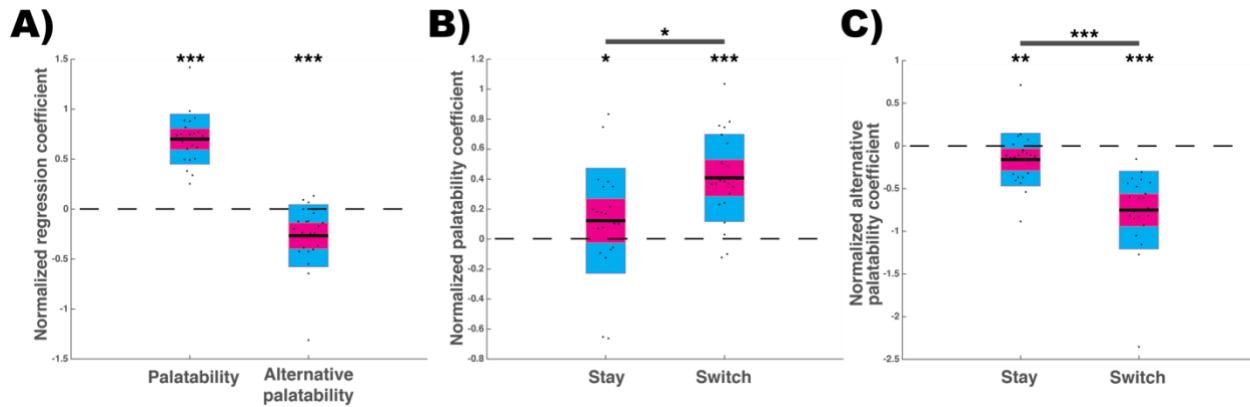
290

291 To the best of our knowledge, this is the first time a study has compared palatabilities obtained
292 by comparison to water and through direct comparison. This difference might be explained by
293 an appetitive effect whereby the palatability of the 0.1M is reduced when paired with the less
294 palatable 0.01M with the converse being true for the 0.01M (made more palatable by pairing
295 with 0.1M). Alternatively, these differences could simply represent the inherently context-
296 dependent nature of palatability.

297

298 In either case, we tested whether our prior results were impacted when the palatability of the
299 0.01M solution was defined as a factor of 1.3 times greater than that of the 0.1M solution. We
300 find that the results for the alternative palatability regression coefficients do not change. That
301 is, in aggregate, coefficients for alternative palatability are significantly negative ($z = -3.3$, $p =$
302 $4.5\text{e-}4$, mean = -5.69 ± 1.32 , Fig. 7A), coefficients for bouts following a switch decision were
303 significantly more negative than for those following a stay decision ($z = 4.09$, $p = 2.15\text{e-}5$, Fig.
304 7C), and coefficients were not significantly different between early and late portions of the
305 session ($z = -.5$, $p = .61$, Supp Fig. 2B). That is, our qualitative results are robust to whether the
306 0.01M or 0.1M solution is the more palatable and all conclusions arise from those two solutions
307 being more palatable than the 1M NaCl solution.

308



309

310 *Figure 7. Impact of current/alternative palatability on bout duration when artificially setting Palatability(.01M) = 1.3 x*
311 *Palatability(.1M). A) As in Fig 3B, multilinear regression coefficients for predicting bout duration using the currently sampled and*
312 *alternative solutions' palatabilities as factors are shown. Current palatability coefficients were significantly positive (right-tailed):*
313 *$z = 4.09, p = 2.1e-5$ and alternative palatability coefficients were significantly negative (left-tailed: $z = -3.57, p = 1.7e-4$). B) As in*
314 *Fig 5A, multilinear regression coefficients for the currently sampled solution's palatability are significantly positive following*
315 *both a stay (right-tailed: $z = 2.17, p = .0148$) and switch decision (right-tailed: $z = 3.9, p = 4.9e-5$). With these artificially altered*
316 *palatabilities, the coefficients for bouts following a switch decision were significantly more positive than those for bouts*
317 *following a stay decision (paired left-tailed: $z = -2.2, p = .014$). C) As in Fig 5B, multilinear regression coefficients for the*
318 *alternative solution's palatability are shown for models predicting bout durations following a stay or switch decision. With the*
319 *artificially altered palatabilities, regression coefficients for bouts following a stay decision (left-tailed: $z = -2.56, p = .0052$) and*
320 *following a switch decision (left-tailed: $z = -4.09, p = 2.15e-5$) are significantly negative. Coefficients for bouts following a switch*
321 *decision are significantly more negative than those for bouts following a stay decision (paired right-tailed: $z = 4.09, p = 2.15e-5$).*

322 There are however some minor differences regarding the coefficients for current palatability.

323 Coefficients for current palatability are significantly more positive following a switch decision (z
324 $= -3.05, p = .0011$, Fig. 8B) and normalized regression coefficients in the late portion of the
325 session were significantly smaller (less positive) than those in the early portion of the session (z
326 $= 3.18, p = 7.3e-4$).

327

328 ***Impact of palatability on transition probability***

329 Thus far, our results describe sampling duration as a function of the palatabilities of the two
330 solutions. To fully understand the impact of palatability on choice dynamics, we also asked
331 whether the palatability of the current or alternative solution impacted the transition
332 probabilities between the solutions. A transition could be from a solution back to the same
333 solution, if following a bout of licking there is a pause then a return to the same solution.

334 Therefore, we are assessing the degree to which, following a pause in licking, the rat returns to
335 the same solution or switches to the alternative. As with measurements of bout durations, the
336 choice to return or switch could depend on both the palatability of the most recently sampled
337 (“current”) solution and that of the alternative.

338

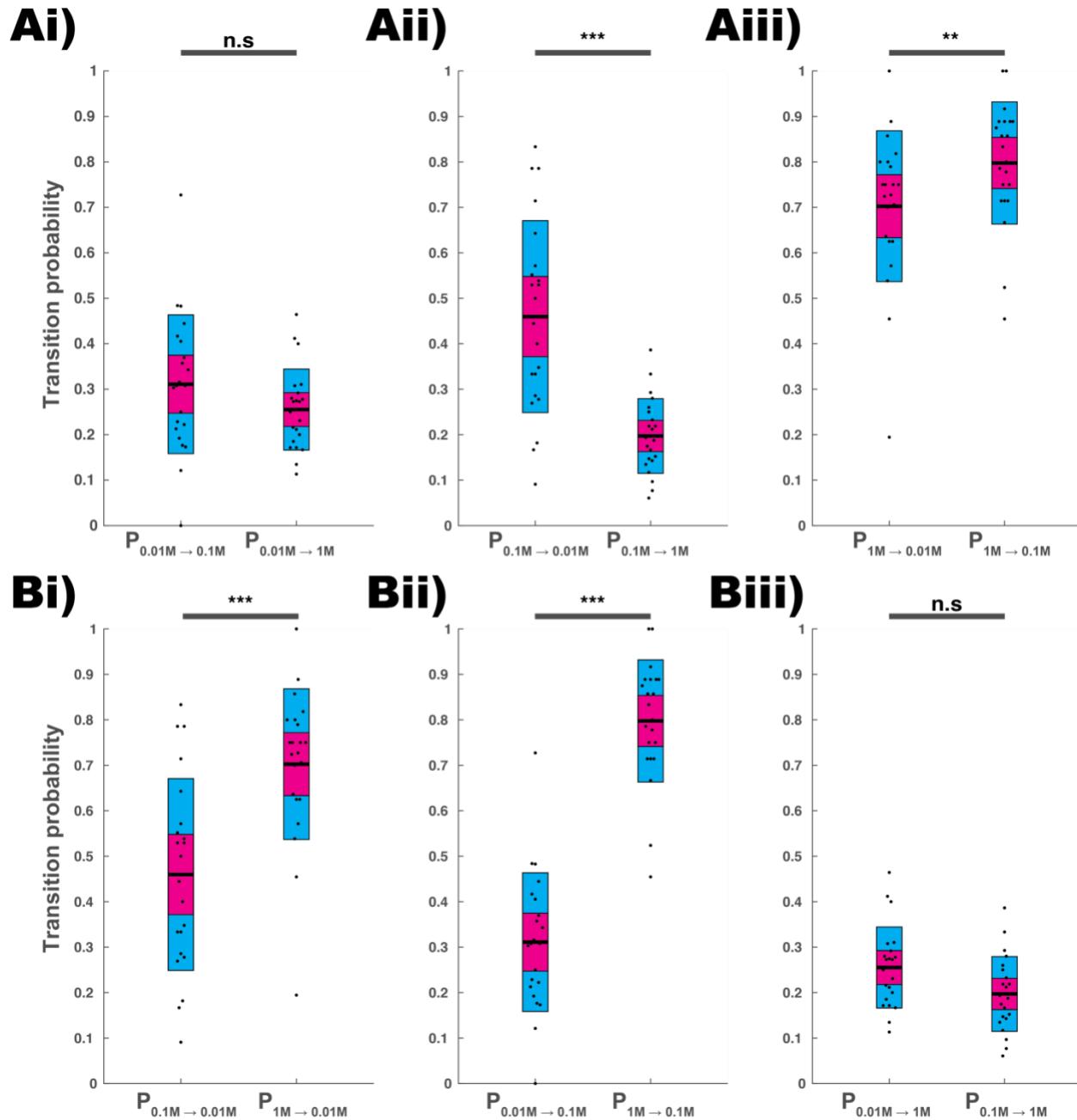
339 To dissociate the contributing factors, we compared the transition probabilities between pairs
340 of solutions with either a common source (e.g. 0.01M → 0.1M and 0.01M → 1M) or a common
341 target (e.g. 0.01M → 0.1M and 1M → 0.1M). If the palatability of the current solution was to
342 influence transition probability, this influence would be reflected in a higher probability of
343 switching to a common target taste from a taste with a low palatability than from a taste with a
344 high palatability. Similarly, if alternative palatability was to impact transition probability, this
345 would be reflected in a higher probability of switching from a common source to a solution with
346 high palatability.

347

348 We find evidence that palatability of both the current and the alternative solution impacts the
349 transition probabilities (Fig. 8A-B). These results are further supported by a logistic regression

350 model trained to predict switches based on the current and alternative palatability. In the
351 regression model, both current palatability ($p = 4.89e-31$, coefficient = -.948, 95% CI = [-1.1 -
352 .78]) and alternative palatability ($p = 3.15e-21$, coefficient = .63, 95% CI = [.5 .76]) are found to
353 be significant factors.

354

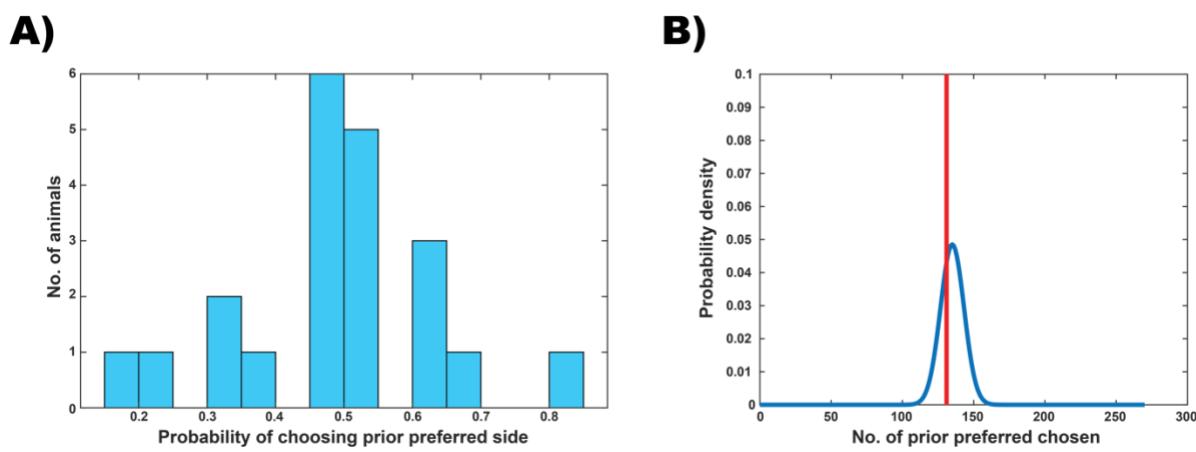


363 probability. **Bi**) $P(0.1M \rightarrow 0.01M)$ is significantly lower than $P(1M \rightarrow 0.01M)$ (paired left-tailed: $z = -3.63$, $p = 1.3e-4$). **Bii**) $P(0.01M \rightarrow 0.1M)$ is
364 $P(0.01M \rightarrow 0.1M)$ is significantly lower than $P(1M \rightarrow 0.1M)$ (paired left-tailed: $z = -4.09$, $p = 2.15e-5$). **Biii**) $P(0.01M \rightarrow 1M)$ is
365 significantly higher than $P(0.1M \rightarrow 1M)$ (paired right-tailed: $z = 2.43$, $p = 7.5e-3$).

366 **No evidence for memory across days**

367 Lastly, we investigated whether rats held a bias for the first side they visited in a session based
368 on their experience the prior day. To do this, we counted the number of times rats first visited
369 the side they preferred (had the most licks at) on the prior day and compared this to the
370 number expected. Given a null hypothesis of no memory across days, the expected number is
371 given by the binomial distribution with $p = q = 0.5$. Our results are consistent with the null
372 hypothesis that rats did not carry a preference for side across days ($\hat{p} = .485$, 95% CI =
373 [.424 .547], Fig. 9).

374



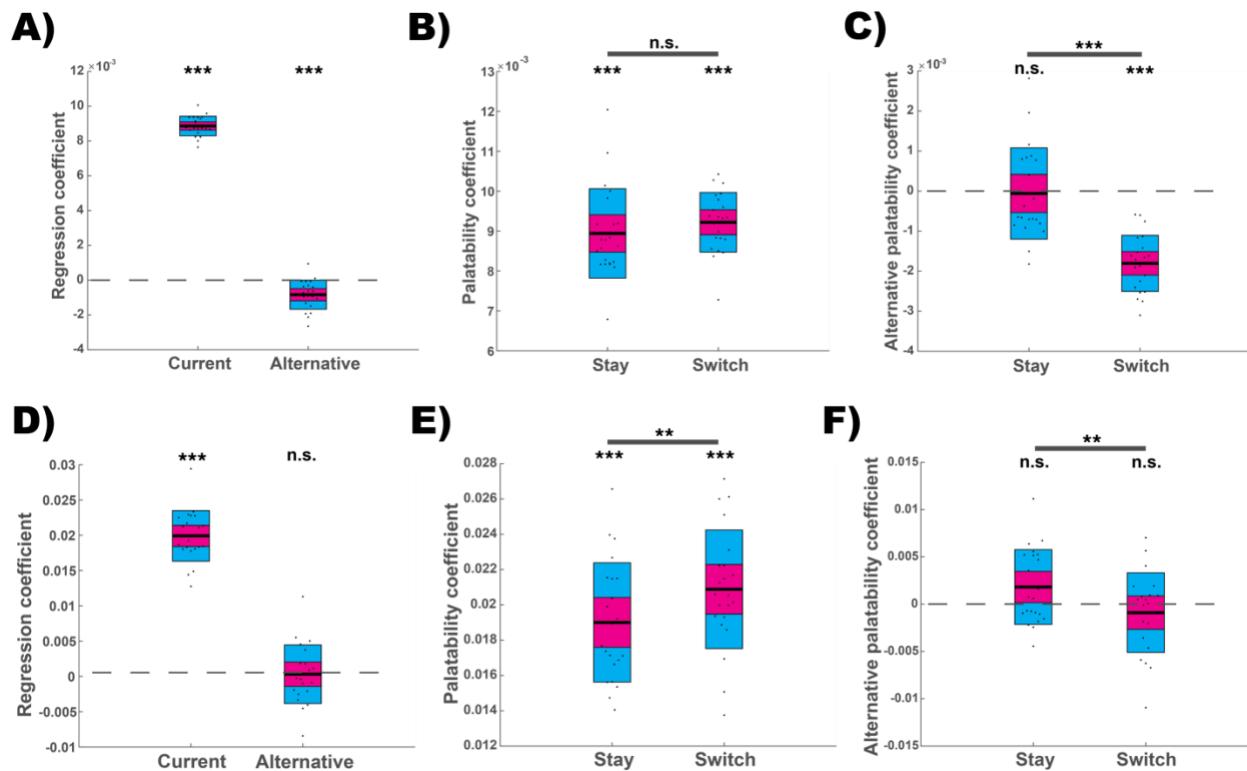
375
376 Figure 9. No evidence for preference across days. **A)** Histogram showing the fraction of times rats first sampled from the side
377 they preferred on the prior day. **B)** (blue) Probability density function for the total number of times (across all rats) that rats first
378 sampled from the side they preferred on the prior day which is given by the binomial distribution with $N = 270$, $p = q = 0.5$. (red
379 line) Total number of times rats first sampled from the preferred side from the prior day.

380 **Comparison to spiking network models**

381 In our modeling study (Ksander et al., 2021) we found competition in the durations of an
382 activity state representing bout duration in response to alternating stimuli. The competition
383 arose from a slow synaptic depression in the model so we hypothesized that the competition
384 between successive stimuli would diminish over the timescale of recovery from that synaptic
385 depression. We predicted that the impact of the alternative stimulus on bout duration would,
386 therefore, be significantly lower, during a second or later successive bout at the same stimulus,
387 as compared to the first bout at that stimulus following a switch, just as seen in the behavioral
388 data (Figs. 5-7). Therefore, we adapted the stimulus protocol in our prior study such that
389 following any state transition indicating the end of a bout of sampling, the subsequent stimulus
390 presented was chosen randomly, with a 50% probability for each of the two stimuli being
391 compared in that preference test.

392 Our results are shown in Figure 10, in which we produced regression coefficients in the
393 same manner as Figs. 5-7 but based on the state durations arising from three preference tests
394 (the distinct pairs of three stimuli of different strengths, representing different palatability) for
395 each of two types of network. Figure 10A-C depicts the results of an “entice-to-stay” network in
396 which stimuli of greater palatability were modeled by increased excitatory stimulus to neurons
397 whose activity represented a “stay” state that enhanced bout duration. The results are
398 qualitatively identical to the behavioral data (Figs. 3 and 5-7) with the alternative stimulus
399 having a competitive impact on bout duration (a negative regression coefficient, Fig. 10A) but
400 with the impact diminished following a repeat bout (a “stay” transition, Fig. 10C) at the same
401 stimulus. On the other hand, the results of a “repel-to-leave” network shown (Fig. 10D-F) did
402 not match the behavioral data well. The asymmetry between the model networks arises

403 because only in the “entice-to-stay” network does greater stimulus input correspond to longer
404 state durations, as needed to maximize the impact of synaptic depression.



405
406 *Figure 10. ‘Fast’ (‘entice-to-stay’) (A-C) but not ‘slow’ (‘repel-to-leave’) (D-F) model networks replicate rat behavior. A)* As in Fig.
407 *3B regression coefficients for predicting bout duration as a function of current and alternative palatability are shown for ‘fast’*
408 *networks. Similar to rats, coefficients for current palatability are significantly positive (right-tailed: $z = 4.09, p = 2.15e-5$) and*
409 *coefficients for alternative palatability are significantly negative (left-tailed: $z = -3.83, p = 6.38e-5$). B)* As for rats, palatability
410 *coefficients for both stay (right-tailed: $z = 4.09, p = 2.15e-5$) and switch (right-tailed: $z = 4.09, p = 2.15e-5$) bouts were*
411 *significantly positive and are not significantly different between groups (paired two-tailed: $z = -1.8, p = 0.07$). C)* As for rats,
412 *alternative palatability coefficients for bouts following a stay decision were not significantly different from zero (two-tailed: $z = -$*
413 *$1.28, p = 0.19$) whereas coefficients for bouts following a switch decision are significantly negative (left-tailed: $z = -4.06, p =$*
414 *$2.47e-5$). D)* In contrast, ‘slow’ networks did not replicate the pattern of coefficients of rats. Coefficients for current palatability
415 *were significantly positive (right-tailed: $z = 4.09, p = 2.15e-5$) but those for alternative palatability were not significantly*
416 *different from (two-tailed: $z = 0.14, p = 0.88$). E)* Palatability coefficients following both stay (right-tailed: $z = 4.09, p = 2.15e-5$)
417 *and switch (right-tailed: $z = 4.09, p = 2.15e-5$) bouts were significantly positive and coefficients for switch bouts were*
418 *significantly more positive than those for stay bouts (paired left-tailed: $z = -2.53, p = 0.0057$). F)* Alternative palatability

419 coefficients for both stay (two-tailed: $z = 1.57, p = .115$) and switch (two-tailed: $z = -0.73, p = 0.465$) bouts were not significantly
420 different from 0. Alternative palatability coefficients for switch bouts were significantly lower than for stay bouts (paired right-
421 tailed: $z = 2.89, p = 0.0019$).

422 Discussion

423 Palatability is typically measured as the amount of a food or solution consumed. The amount
424 solution consumed by a rat, for example, is equal to the number of licks taken multiplied by the
425 mean amount consumed per lick. Given that the mean amount consumed per lick has been
426 shown to vary little across stimuli or time, we assume that is constant in this study and measure
427 palatability as the number of licks of a solution. Since rats sample a solution in clearly
428 demarcated bouts of high frequency (approximately 6 Hz) regular sampling, we can identify two
429 distinct factors that impact the total number of licks and hence the palatability: the duration of
430 the bouts and the total number of bouts. In theory, bout durations could be independent of a
431 stimulus such that its palatability is only evident in the total number of bouts. However, prior
432 work (Davis, 1996) has shown that the more palatable a stimulus, the longer the bouts, a result
433 which we recapture here. In a more novel direction, we have assessed how, in a preference
434 test, the palatability of one stimulus impacts the behavior of an animal at the alternative
435 stimulus. Our main finding is that the more palatable one stimulus the shorter the bouts of
436 licking at the alternative as compared to when that alternative is paired with a less palatable
437 stimulus.

438

439 The second factor determining the number of licks at a spout is the total number of times the
440 spout is visited. Therefore, we also analyzed the transition probability during preference tests,

441 which indicates that after a bout of sampling from one lick spout how likely is an animal to
442 return to the same lick spout or to transition to the alternative. We find that the likelihood to
443 return increases with the palatability of the stimulus just tasted. In of itself such behavior would
444 produce competition in the total amount consumed, as it would produce more repeated bouts
445 at sources of high palatability, leading to fewer at an alternative. However, we also found that
446 following a pause in sampling at one lick spout memory of the alternative also impacted the
447 likelihood to return to the same spout, such that the more palatable the alternative, the less
448 likely to return. Thus, the choice of which spout to lick from is impacted by memory, which has
449 persisted beyond a single bout's duration, of the contents of both lick spouts.

450

451 Our findings of the competitive interaction between stimuli on bout durations supports a
452 recent model (Ksander et al., 2021) in which the duration of a bout is given by the duration of a
453 particular state of activity in a neural circuit. In the model, noise fluctuations terminate states of
454 activity, leading to an exponential-like distribution of state durations, just as we find in the
455 behavioral data. Moreover, the impact of the well-established neural-circuit level process of
456 synaptic depression in the model leads to a competitive impact between successive stimuli,
457 such that following a highly palatable stimulus a subsequent bout duration is shorter than
458 otherwise expected. Since the underlying biological processes have a limited timescale, we
459 tested and found in the model that such a competitive impact on bout durations diminishes
460 over time and is much weaker for bouts following a return to a stimulus when the time passed
461 since the visit to the alternative has increased. Indeed, we find in our behavioral data a similar

462 fact, with no impact of the alternative stimulus on durations of bouts of sampling that do not
463 directly follow a switch from that alternative stimulus.

464

465 When a food substance or taste stimulus is considered palatable or unpalatable, the implicit
466 suggestion is that palatability is a property of a substance to be ingested. However, in practice,
467 palatability is a measure of behavior—typically the total amount of a substance consumed—so
468 is inherently dependent on the state of an animal and the context in which the animal is
469 sampling the stimulus. In our study we find that even the rank order of palatability can be
470 altered depending on context. When a rat has two lick spouts available to it, both of which
471 contain the same solution, in accordance with prior work (Sadacca et al., 2012) we find rats lick
472 the spouts more often when the solution is 0.1M NaCl than when the solution is 0.01M NaCl
473 (Fig 1). Such a finding suggests that 0.1M NaCl is more palatable to rats than is 0.01M NaCl.
474 However, when one lick spout contains 0.1M NaCl and the other contains 0.01M NaCl, we find
475 rats lick more often at the spout containing 0.01M NaCl, suggesting a switch in relative
476 palatability and preference of the two salt solutions in the new context. Such a switch is
477 intriguing and its cause warrants further investigation. Fortunately, our findings in this paper on
478 the interactions between stimuli were robust to the switch. That is, whether we assumed 0.1M
479 NaCl was more or less palatable than 0.01M NaCl did not alter the findings on how the
480 palatability of the alternative stimulus impacted the behavior at a lick spout.

481

482 Our findings of a competitive interaction of palatability of bout durations of alternatives and
483 our model of the process contribute to the foraging literature, in which behavior is discussed

484 historically in terms of the Marginal Value Theorem (Charnov, 1976). The theorem prescribes
485 optimal behavior in an environment with multiple sources, at each of which the rate of reward
486 diminishes with the time an animal spends at the source. Specifically, an animal should only
487 stay at a food source until its rate of reward has depleted to the mean rate of reward it would
488 achieve by moving from alternative source to alternative source and remaining the optimal
489 time at the alternative sources. Our behavioral findings and model are in qualitative accordance
490 with such behavior in that the more palatable an alternative (*i.e.*, the greater the mean rate of
491 reward) the less time spent at a source while the reduction is ameliorated over time (the
492 greater the time between sources in foraging, the lower the mean rate of reward, so time spent
493 at a diminishing source increases). However, unlike in foraging studies, in preference tests the
494 potential rate of reward at a lick spout is constant, so if one spout contains more rewarding
495 solution than the other, the optimal behavior of an animal would be to stay at the more
496 rewarding spout as soon as it has sampled both. That the animals do not behave in such a
497 manner, but continue to sample even aversive stimuli many times, is either an indication of
498 limited memory duration (*i.e.*, they forget what is in each spout) or a strong drive to explore in
499 case the environment changes.

500

501 Acknowledgements

502

503 We are grateful for support from NIH (NIDA) NRSA grant DA051155 to BB, NIH (NINDS) grant
504 NS104818 via the Brain Initiative to DBK and PM, and to the Swartz Foundation for support to

505 JK. Computational resources were provided by the Brandeis HPCC which is partially supported
506 by the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC, DMR-2011846.

507

508 **Methods**

509 ***Behavioral apparatus***

510 The preference test was carried out in 1' x 1' x 1' custom acrylic chambers. Each chamber has 3
511 holes through which rats could lick a stainless steel solution spout. There is one hole on each of
512 the left, right, and back walls of the chamber. For this study, only the left and right sides ever
513 had a solution spout. In order to record licks, a custom circuit, based on a published design
514 (Hayar et al., 2006) was used. A small voltage was applied to the stainless steel floor of the
515 chamber such that when the rat licked one of the solution spouts, a voltage deflection
516 (measuring the water-metal junction potential) was recorded. A RaspberryPi was used to both
517 supply power to the floor and record licks using custom Python software.

518

519 ***Preference test***

520 22 adult Long-Evans rats (14 female, 8 male) from Charles River were water deprived for 22
521 hours prior to the first habituation session. The preference test timeline consisted of 16 1 hour
522 sessions of which the first 2 were habituation sessions with only 1 bottle of dH₂O available on
523 one side of the experimental chamber (the side was switched for the second habituation
524 session). Following each session, rats were given 1 hour of ad lib access to water in their home
525 cage such that they were deprived of water for 22 hours prior to each session. After the two

526 habituation days, the first day of the preference test was always a session with 2 bottles of
527 dH₂O. This was followed by 6 consecutive days of pairings of 3 NaCl concentrations (0.01M,
528 0.1M, 1M) including self pairings. This was then repeated for a second week such that each rat
529 experienced 2 dH₂O only sessions and 2 pairings of each combination of NaCl concentrations.
530 These concentrations were used because they had been previously measured to have different
531 palatabilities (Sadacca et al., 2012) covering both palatable and unpalatable (at least relative to
532 water) tastants.

533

534 ***Lick identification***

535 Licks were identified via a semi-automated process using custom MATLAB software. A simple
536 threshold could not be used to identify licks because both licks and nose pokes were picked up
537 as large voltage deflections. Additionally, occasionally a rat would maintain contact with the lick
538 spout while licking resulting in a sustained voltage deflection on top of which licks could be
539 seen. As a result, we produced a dataset of hand-identified licks from the data of the first few
540 rats and used MATLAB's neural network toolbox to train a bidirectional LSTM recurrent neural
541 network to predict the presence or absence of a lick at any point in time. These automatic
542 identifiers were then used as a first pass on all future data to capture presumptive licks, which
543 were then accepted/discard by eye based on the stereotypical shape and timing of licks.
544 Lastly, a final pass over the data was made by eye to ensure that no licks were missed by the
545 neural network.

546

547 ***Lick bout identification***

548 Following identification, licks were grouped together into 'bouts' based on 3 different inter-lick
549 interval (ILI) criteria. That is, we repeated all analyses described below using bouts defined by 3
550 different ILI criteria to determine how our results depended on this somewhat subjective
551 threshold. Based on previous studies of licking dynamics in rats (Davis, 1996) and our own
552 investigation of ILI distributions, we grouped together licks with 200ms or 500ms ILIs into lick
553 'bouts' (also referred to as lick clusters). We also used a more nuanced criterion which we
554 believe better represents active engagement with a lick spout (indicating an ongoing 'stay'
555 decision). This criterion consisted of grouping together adjacent licks in which there was no
556 period >2s between them in which there was no activity on the recording channel. This means
557 that if the rat nose-poked the solution spout in between licks such that the ILI was >2s but there
558 was intervening activity on the channel such that there was no period of >2s of silence, then
559 these licks would be grouped together. We included this criterion since we are primarily
560 concerned in this study with the rats' decisions to leave a solution spout and not on the
561 microstructure of their licking behavior.

562
563 ***Measurement of palatability***
564 To measure the palatability of each concentration of NaCl, we analyzed data exclusively from
565 sessions where a solution was paired with itself. The palatabilities were defined relative to
566 water such that the relative palatability of solution X was:

567
$$Palatability(X) = \frac{N_{licks}(X)}{N_{licks}(H2O)}$$

568 where $N_{licks}(X)$ is the total number of licks to tastant X across both sessions when X was paired
569 with itself. $N_{licks}(H2O)$ is the same except for H2O only sessions.

570

571 ***Linear and logistic regression models***

572 To assess the impact of the palatability of the currently sampled or alternative solution on the
573 current bout duration, we performed multilinear regressions using MATLAB's *regress* function
574 to predict bout duration with both palatabilities as factors. This was done for all bouts together
575 as well as for subsets of bouts depending on if they were 'early' or 'late' in a session or
576 following a stay or switch decision.

577

578 As one method of measuring the impact of current/alternative palatability on switch
579 probability, we performed logistic regression using MATLAB's *fitglm* function to predict a switch
580 (0 or 1) with the last sampled solution's and alternative solution's palatabilities as factors.

581

582 ***Separating early and late bouts***

583 We separated bouts for each session on a per-animal basis into 'early' or 'late' bouts by
584 analyzing the 2nd derivative of the cumulative distribution of lick times across all sessions. First,
585 a smoothed probability density function of lick onset times was computed using MATLAB's
586 *ksdensity* function with a bandwidth of 200s (controlling the amount of smoothing). The
587 cumulative density function of this pdf was then computed and its 2nd derivatives
588 approximated. The time point with the minimum 2nd derivative was then used as the divider
589 between early and late bouts.

590

591 ***Statistical tests***

592 Unless otherwise stated, all z and p-values reported in this paper are from the Wilcoxon signed
593 rank test performed using MATLAB's ***signrank*** function. Tests of whether the median of a
594 distribution is significantly positive/negative utilized the right/left-tailed test respectively. Tests
595 of differences between distributions were done using a paired test where data points were
596 paired by animal or, in the case of the spiking model, points were paired by network.

597

598 ***Simulation protocol***

599 Simulations were carried out using a recently published model (Ksander et al., 2021). In brief,
600 leaky integrate-and-fire neurons were designated excitatory or inhibitory and assigned either to
601 a group whose activity promoted a continuous decision of "Stay" at the current stimulus or a
602 group whose activity promoted a decision to "Leave" the stimulus. In the original paper the
603 "Leave" group of cells was denoted "Switch" as we had assumed that leaving one stimulus
604 meant the animal had to switch to the alternative. We produced new simulations for this paper
605 to investigate consequences of a "Return" to the same stimulus following a "Leave" decision
606 that ended a bout.

607

608 Connections between types of neurons were arranged in a manner of self-excitation and cross-
609 inhibition such that activity of one type of neurons (e.g., representing "Stay") could maintain
610 itself while at the same time suppressing activity of the other type of neurons (e.g.,
611 representing "Leave"). Activity of the "Stay" neurons while suppressing the "Leave" neurons
612 would represent a "Stay" state in which the animal continues to sample a stimulus. Noise
613 fluctuations would irregularly cause a transition from such a "Stay" state to a "Leave" state. We

614 would ensure the “Leave” state was transient by reactivating “Stay” neurons to represent the
615 animal’s commencement of the next sampling bout. As in our behavioral data, such noise-
616 induced transitions to terminate a bout of sampling resulted in an exponential-like distribution
617 of bout durations.

618

619 We assessed two types of model, in one type, the “entice-to-stay” model, the mean bout
620 durations were determined by stimulus-dependent input to excitatory neurons in the “Stay”
621 pool, such that the more palatable the represented stimulus, the greater the input. In the other
622 type, the “repel-to-leave” model, the mean bout durations were determined by stimulus-
623 dependent input to excitatory neurons in the “Leave” pool, such that the more palatable the
624 represented stimulus, the lower the input. We also test both types of model in this work.

625

626 All synapses in the model include synaptic depression, comprising a fast (300 ms) process
627 representing docking of new vesicles after vesicle release and a slow (7 sec) process
628 representing replenishment of a reserve pool of vesicles. Synaptic depression is key in
629 producing the competitive interaction across time as after a period of strong activity the
630 connections that sustain activity are weakened, impacting the response of the network to a
631 subsequent stimulus, until recovery of the supply of vesicles is complete.

632

633 ***Properties of model neurons***

634 Individual neurons were simulated with an exponential leaky integrate-and-fire model
635 (Fourcaud-Trocmé et al., 2003) following the equation:

636
$$C_m \frac{dV_m}{dt} = \frac{E_l - V_m + \Delta_{th} \exp\left(\frac{V_m - V_{th}}{\Delta_{th}}\right)}{R_m} + G_{syn} S_I (E_{rev_I} - V_m) + G_{syn} S_E (E_{rev_E} - V_m)$$

637
$$+ G_{ref} (E_K - V_m) + G_{ext_I} (E_{rev_I} - V_m) + G_{ext_E} (E_{rev_E} - V_m)$$

638 where V_m is the membrane potential, C_m is the total membrane capacitance, E_l is the leak
639 potential, R_m is the total membrane resistance, Δ_{th} is the spiking range, V_{th} is the spiking
640 threshold, S is the synaptic input variable, G_{syn} and E_{rev} are the maximal conductance and
641 reversal potential for synaptic connections, G_{ref} is the dynamic refractory conductance, E_K is
642 the potassium reversal potential, and G_{ext} is the input conductance. The “E” and “I” subscripts
643 denote the variables specific to excitatory and inhibitory channels, respectively (e.g. S_E and
644 E_{rev_E} are the synaptic input and reversal variables for excitatory channels; S_I and E_{rev_I} are the
645 corresponding inhibitory variables). This equation simulates the neuron’s membrane potential
646 until $V_m > V_{spike}$, at which point the neuron spikes.

647

648 When a neuron spikes, V_m is set to the V_{reset} value. Additionally, the neuron’s refractory
649 conductance, synaptic output, s , and synaptic depression (noted as D) are updated according
650 to the equations:

651
$$G_{ref} \mapsto G_{ref} + \Delta G_{ref}$$

652
$$s \mapsto s + p_R D_{fast} (1 - s)$$

653
$$D_{fast} \mapsto D_{fast} (1 - p_R)$$

654 where ΔG_{ref} is the increase in refractory conductance, and p_R is the vesicle release probability
655 following a spike.

656

657 In the timestep immediately following a spike, the neuron's membrane potential continues to
658 follow the exponential leaky integrate-and-fire model equation. In this equation the separate
659 excitatory ($S_{E,i}$) and inhibitory ($S_{I,i}$) synaptic inputs for cell i are obtained from the sum of all
660 presynaptic outputs multiplied by the corresponding connection strengths, W_{ij} , from neurons j
661 (see *Network architecture and connections*):

662

$$S_i = \sum_j W_{ij} s_j,$$

663 each of which decay with the appropriate (excitatory or inhibitory) synaptic gating time
664 constant τ_S according to:

665

$$\frac{ds_i}{dt} = -\frac{s_i}{\tau_S}.$$

666 Likewise, refractory conductance decays with the time constant τ_{ref} according to:

667

$$\frac{dG_{ref}}{dt} = -\frac{G_{ref}}{\tau_{ref}}$$

668 The G_{ext} input conductance serves as both noisy-background and stimulus inputs in the same
669 manner. Inputs were modeled as Poisson spike trains with rates r_{noise} and $r_{stimulus}$, which
670 produce input spikes (from all sources) at timepoints $\{t_{sp}\}$. Please note, the noisy-background
671 includes both excitatory and inhibitory spiking input (included in G_{extI} and G_{extE} , respectively);
672 the r_{noise} parameter specifies the rate for both excitatory and inhibitory background noise. The
673 input conductance values for a given timepoint, t , are updated as:

674

$$G_{ext} \mapsto G_{ext} + \Delta G_{ext} \delta(t - t_{sp})$$

675 where the conductance increases by ΔG_{ext} at the time of each input spike. The input
676 conductance otherwise decays with the time constant τ_{ext} according to:

677

$$\frac{dG_{ext}}{dt} = -\frac{G_{ext}}{\tau_{ext}}.$$

678

679 The cellular parameters with values specific to excitatory neurons (e.g. that differ from
680 inhibitory values) are: $E_{rev_E} = 0 \text{ mV}$, $\tau_s = 50 \text{ ms}$, and $\tau_{ext} = 3.5 \text{ ms}$. The complementary
681 values for inhibitory neurons are: $E_{rev_I} = -70 \text{ mV}$, $\tau_s = 10 \text{ ms}$, and $\tau_{ext} = 2 \text{ ms}$. The
682 remaining parameters applicable to both excitatory and inhibitory neurons are: $G_{syn} = 10 \text{ nS}$,
683 $p_R = .1$, $\tau_{fast} = 300 \text{ ms}$, $\tau_{slow} = 7 \text{ s}$, $p_{slow} = .5$, $E_l = -70 \text{ mV}$, $E_K = -80 \text{ mV}$, $V_{reset} =$
684 -80 mV , $R_m = 100 \text{ M}\Omega$, $C_m = 100 \text{ pF}$, $V_{spike} = 20 \text{ mV}$, $\Delta G_{ext} = 1 \text{ nS}$, $V_{th} = -50 \text{ mV}$,
685 $\Delta_{th} = 2 \text{ mV}$, $\tau_{ref} = 25 \text{ ms}$, and $\Delta G_{ref} = 12.5 \text{ nS}$. The Poisson spike-train parameters r_{noise}
686 and $r_{stimulus}$ are described in the next section. Neurons were simulated with a simulation
687 timestep $dt = .1 \text{ ms}$.

688

689 ***Synaptic depression***

690 We modeled synaptic depression using two separate timescales, noted in the previous spike-
691 update equations as D_{slow} and D_{fast} . These two variables reflect, respectively, the fraction of
692 the maximum number of vesicles available in the reserve pool and the release-ready pool.
693 Following a spike, the variables recover to a value of one with different timescales, because
694 vesicles regenerate and are replenished slowly in the reserve pool, but may dock and become
695 release-ready much more quickly once available in the reserve pool

696

697 Specifically, D_{slow} represents the ratio of currently available reserve-pool vesicles out of the
698 maximum possible, that is $D_{slow} = \frac{N_{pool}}{N_{max}}$. These dock quickly at empty docking sites on the
699 timescale τ_{fast} , but are replaced slowly on the timescale τ_{slow} . D_{fast} represents the ratio of
700 docked vesicles out of total docking sites, that is $D_{fast} = \frac{N_{docked}}{N_{sites}}$. We also incorporate the
701 constant parameter, $f_D = 0.05$, which is equal to the ratio of the number of docking sites to the
702 maximum size of the reserve pool of vesicles, $f_D = \frac{N_{sites}}{N_{max}}$. Only docked vesicles can be released
703 immediately following a spike, such that upon each spike we update $D_{fast} \mapsto D_{fast}(1 - p_R)$
704 where p_R is the vesicle release probability.

705
706 During sustained spiking, the fast-docking can maintain a firing-rate dependent supply of
707 docked vesicles until the reserve pool depletes. Vesicles dock at empty sites according to:

$$708 \quad \frac{dD_{fast}}{dt} = \frac{(D_{slow} - D_{fast})}{\tau_{fast}}$$

709 Reserve-pool vesicles fill the empty docking sites on the fast timescale τ_{fast} . On the other hand,
710 the reserve-pool regenerates much more slowly according to:

$$711 \quad \frac{dD_{slow}}{dt} = \frac{(1 - D_{slow})}{\tau_{slow}} - f_D \frac{(D_{slow} - D_{fast})}{\tau_{fast}}$$

712 The first term represents the reserve-pool vesicle regeneration on timescale τ_{slow} . The second
713 term $-f_D \frac{(D_{slow} - D_{fast})}{\tau_{fast}}$ accounts for the vesicles lost due to docking.

714
715 Our model reflects the empirical evidence showing the effects of synaptic-depression at short
716 timescales on the order of milliseconds, and longer timescales on the order of seconds (Abbott

717 et al., 1997; Varela et al., 1997); depression timescales on the order of minutes have even
718 reported in non-mammalian animals (Tabak et al., 2000). Additional, recent evidence (Kusick et
719 al., 2020) directly supports our fast-depression mechanism where available vesicles quickly refill
720 empty docking sites. Our model provides a coherent mechanism for both fast-acting and long-
721 lasting synaptic depression effects.

722

723 ***Network architecture and connections***

724 Each network consists of 250 individual neurons, split into two populations of 100 excitatory
725 cells (*i. e.*, “stay” and “switch” populations, E_{stay} and E_{switch}) and two populations of 25 inhibitory
726 cells (I_{stay} and I_{switch}). For each pair of connected populations (or for self-connected excitatory
727 populations) pairs of cells were connected probabilistically with a probability,
728 $P(\text{connection}) = .5$. The strength of connections was symmetric across “stay” and “switch”
729 populations but depended on whether presynaptic or postsynaptic cells were excitatory or
730 inhibitory, as indicated in Table 1.

731

732 **Code Availability**

733 The code used to simulate our model is freely available online at
734 <https://github.com/johnksander/naturalistic-decision-making>

735

736 **Table 1. Model neuron parameters.**

Name	Description	value
------	-------------	-------

E_{rev}	Reversal potential	Excitatory cells: 0 mV Inhibitory cells: -70 mV
E_l	Leak potential	-70 mV
E_K	Potassium potential	-80 mV
R_m	Membrane resistance	100 MΩ
C_m	Membrane capacity	100 pF
τ_s	Synaptic gating timescale	Excitatory cells: 50 ms Inhibitory cells: 10 ms
V_{reset}	Reset membrane potential	-80 mV
V_{spike}	Spike threshold	20 mV
τ_{ext}	noisy-background conductance timescale	Excitatory cells: 3.5 ms Inhibitory cells: 2 ms
G_{syn}	Synaptic max conductance	10 nS
τ_{fast}	Fast depression timescale	300 ms
τ_{slow}	Slow depression timescale	7 s
p_R	Vesicle release probability	.1
f_D	Ratio of max docked vesicles to max reserve vesicles	.05
D_{fast}	Ratio of docked vesicles out of max possible	$\frac{N_{docked}}{N_{sites}}$
D_{slow}	Ratio of reserve- vesicles out of max possible	$\frac{N_{pool}}{N_{max}}$
ΔG_{ext}	Conductance step-increase to external input spike	1 nS
V_{th}	exponential spiking-term threshold	-50 mV

Δ_{th}	spiking range	2 mV
τ_{ref}	Refractory conductance timescale	25 ms
ΔG_{ref}	Step change in refractory conductance	12.5 nS
dt	Simulation timestep	.1 ms

737

A Model summary	
Populations	Stay: 1 excitatory, 1 inhibitory Leave: 1 excitatory, 1 inhibitory
Connectivity	Within-pool (stay or leave): I-to-E and recurrent E-to-E Cross-pool (stay-to-leave or leave-to-stay): E-to-I
Neuron model	Exponential Leaky Integrate and Fire (ELIF) with dynamic refractory conductance
Synapse model	Conductance based, step increase followed by exponential decay
Plasticity	Depression with two timescales
Input	Noisy background input: fixed-rate Poisson spike trains to all cells Stimuli: Poisson spike trains to E-stay and E-leave cells
Measurements	Spike trains, activity state-durations, connection strengths

738

B Populations		
Name	Elements	Size
E-stay	ELIF neurons	100
I-stay	ELIF neurons	25

E-leave	ELIF neurons	100
I-leave	ELIF neurons	25
Noisy background input	Poisson trains	500
Aversive stimulus	Poisson trains	100
Hedonic stimulus	Poisson trains	100

739

C Connectivity			
Name	Source	Target	Pattern
E-to-I	E-stay	I-leave	Random, $p = .5$, model-dependent fixed weight:
	E-leave	I-stay	‘Entice’ network 0.0909 ‘Repel’ network 0.4242
I-to-E	I-stay	E-stay	Random, $p = .5$, model-dependent weight:
	I-leave	E-leave	‘Entice’ network 9.6192 ‘Repel’ network 9.4939
E-to-E	E-stay, E-leave	E-stay, E- leave	Random, $p = .5$, fixed weight, $W^{EE} = 0.0405$

740

D Neuron and Synapse Model	
Name	LIF neuron
Type	Dynamic leaky integrate-and-fire with dynamic refractory conductance

	$C_m \frac{dV_m}{dt} = \frac{E_L - V_m + \Delta_{th} \exp\left(\frac{V_m - V_{th}}{\Delta_{th}}\right)}{R_m} + G_{syn} \cdot S_I (E_{rev_I} - V_m)$ $+ G_{syn} \cdot S_E (E_{rev_E} - V_m) + G_{ref} (E_K - V_m) + G_{ext_I} (E_{rev_I} - V_m)$ $+ G_{ext_E} (E_{rev_E} - V_m)$ <p>Subthreshold</p> <p>dynamics</p> $\frac{dG_{ref}}{dt} = -\frac{G_{ref}}{\tau_{ref}}$ $\frac{dG_{ext}}{dt} = -\frac{G_{ext}}{\tau_{ext}}$
<p>Spiking</p>	<p>If $V_m > V_{spike}$:</p> <ol style="list-style-type: none"> 1. Emit spike with timestamp t 2. $G_{ref} \mapsto G_{ref} + \Delta G_{ref}$ 3. $V_m \mapsto V_{reset}$
<p>Synapse</p>	$S_i = \sum_j W_{ij} s_j$ <p>following a spike by neuron i:</p> $s_i \mapsto s_i + p_R D_{fast} (1 - s_i)$

	$D_{fast,i} \mapsto D_{fast,i}(1 - p_R)$ <p>Between spikes:</p> $\frac{ds_i}{dt} = -\frac{s_i}{\tau_S}$ $\frac{dD_{fast,i}}{dt} = \frac{(D_{slow,i} - D_{fast,i})}{\tau_{fast}}$ $\frac{dD_{slow,i}}{dt} = \frac{(1 - D_{slow,i})}{\tau_{slow}} - f_D \frac{(D_{slow,i} - D_{fast,i})}{\tau_{fast}}$
--	--

741

F Input	
Type	Description
All external	Input spikes increase conductance: $G_{ext} \mapsto G_{ext} + B \cdot \Delta G_{ext}$
spiking input	Conductance G_{ext} decays: $\frac{dG_{ext}}{dt} = -\frac{G_{ext}}{\tau_{ext}}$
Background	One excitatory spike-train per neuron, and one inhibitory spike-
noisy input	train per neuron (all 1540 Hz Poisson spike-trains).
Stimulus	One excitatory spike-train per neuron in the E-Stay pool (“Entice” network) or the E-Leave pool (“Repel” network). In any simulated

preference test two distinct stimulus strengths were used from the following sets of three:

“Entice” network stimulus strengths of increasing palatability were 94.35Hz, 377.4Hz, 660.45Hz.

“Repel” network stimulus strengths of increasing palatability were 198.62Hz, 113.5Hz, 28.35Hz.

742

743

G Measurements

Active state: when mean difference between E-stay and E-leave excitatory synaptic gating exceeds .02 for 50ms (consecutively).

State duration/sampling duration: time between state transitions (i.e. transitioning from E-stay to E-leave active state).

744

745 ***Network states and stimuli***

746 A network’s active state was evaluated by comparing the mean values of synaptic output, s_E ,
747 averaged across all excitatory cells in each of the two excitatory populations. Specifically, when
748 the difference between the mean output of the previously less active excitatory population
749 exceeded that of the previously more active excitatory population by a threshold of 0.02
750 consistently for 50ms, we recorded a state change.

751

752 We did not simulate the animal’s behavior in between bouts of sampling a stimulus. Once the
753 excitatory neurons in the “switch” population (E-switch cells) were recorded as more active

754 than those in the “stay” population, using the threshold mentioned above, we removed the
755 stimulus input to the network. 100 ms later, we induced a subsequent transition back to the
756 “stay” state to represent the animal initiating a new bout of stimulus sampling. The transition
757 back to sampling was accomplished by halving the noisy background input to E-switch cells until
758 the network transitioned again to the “stay” state. At all other times in simulations, the noisy
759 background input remained constant. Once a transition to the “stay” state was recorded (by
760 excitatory cells in the “stay” population being more active than those in the “switch”
761 population) input stimulus was applied to indicate the next bout of sampling. The choice of
762 subsequent next stimulus was probabilistic, with 50% probability of each of the pair being
763 compared in the simulated preference test. Individual taste preference task simulations lasted
764 1500 seconds total. Each simulation compared sampling bout durations in response to two
765 stimuli each with a fixed value across the session. For a given network the stimulus inputs
766 targeted the same population for all sessions.

767 To produce linear regression coefficients in Figure 10, we regressed the log of the state
768 duration as a function of the stimulus strengths used, because state durations depend
769 exponentially on stimulus strengths in our model, which is based on noise-induced transitions
770 between attractor states (Kramers, 1940; Miller & Wang, 2006).

771

772 **References**

773 Abbott, L. F., Varela, J., Sen, K., & Nelson, S. (1997). Synaptic depression and cortical gain control. *Science*, 275(5297), 221-224.
774 Barack, D. L., Chang, S. W. C., & Platt, M. L. (2017). Posterior Cingulate Neurons Dynamically Signal Decisions to Disengage
775 during Foraging. *Neuron*, 96(2), 339-347 e335. <https://doi.org/10.1016/j.neuron.2017.09.048>
776 Bateson, M., & Kacelnik, A. (1996). Rate currencies and the foraging starling: the fallacy of the averages revisited. *Behavioral
777 Ecology*, 7(3), 341-352. <https://doi.org/10.1093/beheco/7.3.341>
778 Blanchard, T. C., & Hayden, B. Y. (2014). Neurons in dorsal anterior cingulate cortex signal postdecisional variables in a foraging
779 task. *J Neurosci*, 34(2), 646-655. <https://doi.org/10.1523/JNEUROSCI.3151-13.2014>

780 Blanchard, T. C., Pearson, J. M., & Hayden, B. Y. (2013). Postreward delays and systematic biases in measures of animal
781 temporal discounting. *Proc Natl Acad Sci U S A*, 110(38), 15491-15496. <https://doi.org/10.1073/pnas.1310446110>

782 Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. *Theor Popul Biol*, 9(2), 129-136.
[https://doi.org/10.1016/0040-5809\(76\)90040-x](https://doi.org/10.1016/0040-5809(76)90040-x)

783 Constantino, S. M., & Daw, N. D. (2015). Learning the opportunity cost of time in a patch-foraging task. *Cogn Affect Behav
784 Neurosci*, 15(4), 837-853. <https://doi.org/10.3758/s13415-015-0350-y>

785 Davis, J. D. (1996). Deterministic and probabilistic control of the behavior of rats ingesting liquid diets. *Am J Physiol*, 270(4 Pt 2),
786 R793-800. <https://doi.org/10.1152/ajpregu.1996.270.4.R793>

787 Davis, J. D., & Smith, G. P. (1992). Analysis of the microstructure of the rhythmic tongue movements of rats ingesting maltose
788 and sucrose solutions. *Behav Neurosci*, 106(1), 217-228.

789 Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the
790 neuronal response to fluctuating inputs. *J Neurosci*, 23(37), 11628-11640. [https://doi.org/10.1523/jneurosci.23-37-11628.2003](https://doi.org/10.1523/jneurosci.23-37-
791 11628.2003)

792 Hayar, A., Bryant, J. L., Boughter, J. D., & Heck, D. H. (2006). A low-cost solution to measure mouse licking in an
793 electrophysiological setup with a standard analog-to-digital converter. *J Neurosci Methods*, 153(2), 203-207.
<https://doi.org/10.1016/j.jneumeth.2005.10.023>

794 Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2011). Neuronal basis of sequential foraging decisions in a patchy environment. *Nat
795 Neurosci*, 14(7), 933-939. <https://doi.org/10.1038/nn.2856>

796 Kramers, H. A. (1940). Brownian motion in a field of force and the diffusion model of chemical reactions. *Physica*, 7(4), 284-304.
[https://doi.org/https://doi.org/10.1016/S0031-8914\(40\)90098-2](https://doi.org/https://doi.org/10.1016/S0031-8914(40)90098-2)

797 Ksander, J., Katz, D. B., & Miller, P. (2021). A model of naturalistic decision making in preference tests. *PLoS Comput Biol*, 17(9),
798 e1009012. <https://doi.org/10.1371/journal.pcbi.1009012>

799 Kusick, G. F., Chin, M., Raychaudhuri, S., Lippmann, K., Adula, K. P., Hujber, E. J., Vu, T., Davis, M. W., Jorgensen, E. M., &
800 Watanabe, S. (2020). Synaptic vesicles transiently dock to refill release sites. *Nat Neurosci*, 23(11), 1329-1338.
<https://doi.org/10.1038/s41593-020-00716-1>

801 Miller, P., & Wang, X.-J. (2006). Stability of discrete memory states to stochastic fluctuations in neuronal systems. *Chaos
802 (Woodbury, N.Y.)*, 16(2), 026109-026109. <https://doi.org/10.1063/1.2208923>

803 Pearson, J. M., Hayden, B. Y., & Platt, M. L. (2010). Explicit information reduces discounting behavior in monkeys. *Front Psychol,
804 1*, 237. <https://doi.org/10.3389/fpsyg.2010.00237>

805 Pearson, J. M., Watson, K. K., & Platt, M. L. (2014). Decision making: the neuroethological turn. *Neuron*, 82(5), 950-965.
<https://doi.org/10.1016/j.neuron.2014.04.037>

806 Sadacca, B. F., Rothwax, J. T., & Katz, D. B. (2012). Sodium concentration coding gives way to evaluative coding in cortex and
807 amygdala. *J Neurosci*, 32(29), 9999-10011. <https://doi.org/10.1523/JNEUROSCI.6059-11.2012>

808 Stephens, D. W. (2002). Discrimination, discounting and impulsivity: a role for an informational constraint. *Philos Trans R Soc
809 Lond B Biol Sci*, 357(1427), 1527-1537. <https://doi.org/10.1098/rstb.2002.1062>

810 Stephens, D. W., & Anderson, D. (2001). The adaptive value of preference for immediacy: when shortsighted rules have
811 farsighted consequences. *Behavioral Ecology*, 12(3), 330-339. <https://doi.org/10.1093/beheco/12.3.330>

812 Tabak, J., Senn, W., O'Donovan, M. J., & Rinzel, J. (2000). Modeling of spontaneous activity in developing spinal cord using
813 activity-dependent depression in an excitatory network. *J Neurosci*, 20(8), 3041-3056.
<https://www.ncbi.nlm.nih.gov/pubmed/10751456>

814 Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L., & Nelson, S. B. (1997). A quantitative description of short-term plasticity at
815 excitatory synapses in layer 2/3 of rat primary visual cortex. *Journal of Neuroscience*, 17(20), 7926-7940.

816

817

818

819

820

821

822