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Abstract 21 

The decision of whether to continue with a current action or to stop and consider alternatives is 22 

ever present in the life of an animal. Such continuous-time decision making lies at the heart of 23 

food preference tests whose outcomes are typically quantified by a single variable, the total 24 

amount consumed. However, the dynamics that give rise to such a quantity in terms of 25 

durations of bouts of sampling at a stimulus before pauses, and the impact of alternative 26 

stimuli on those bout durations and subsequent actions following a pause, can contain a 27 

richness of behavior that is not captured in a single palatability measure. Here we carry out 28 

multiple analyses of these dynamics, with a particular focus on assessing how the hedonic value 29 

of one taste stimulus impacts the behavior of a rat sampling a second taste stimulus during a 30 

preference test. We find evidence for an explicit competitive interaction between bout 31 

durations, such that the more palatable a stimulus the longer the bout durations when the rat 32 

samples the stimulus and the shorter the bout durations at the alternative. Such competition is 33 

reproduced in a model of a neural circuit that could underlie the continuous decision of when 34 

to end a sampling bout. We find that the competitive impact on bout durations is relatively 35 

short-lived whereas a competitive impact on the choice of which stimulus to approach 36 

following a pause persists. Such a discrepancy in the timescales for the decay of the impact of 37 

the alternative stimulus suggests different neural processes are involved in the choice of which 38 

stimulus to approach versus the choice of how long to sample from it. Since these two choices 39 

together combine to determine net consumption and therefore the inferred palatability or 40 

preference of a gustatory stimulus, our results suggest that palatability is not a unitary quantity 41 

but the result of at least two distinct, context-dependent neural processes. 42 
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Introduction 43 

The ability to efficiently forage for food and other resources is critical to most animals’ survival, 44 

and evolution has doubtless shaped the neural circuitry responsible for decision-making to 45 

optimize this task (Hayden et al., 2011; Pearson et al., 2014). There are many types of questions 46 

that an animal must answer during a foraging bout. A first class of questions lies within the 47 

domain of perceptual decision-making, where an animal uses its senses to gather information 48 

about the state of the environment to answer questions such as “is there a predator present?”. 49 

A second class of problems constitutes value-based decision-making which uses available 50 

information to choose between different action plans such as “Is it worth continuing to gather 51 

food here, or should I search for a more abundant area?”.  52 

 53 

Studies of value-based decision-making have typically fallen into two categories: 1) “self-54 

control” or “delay-discounting” tasks where animals tradeoff waiting times and payoff sizes 55 

(Bateson & Kacelnik, 1996; Blanchard et al., 2013; Pearson et al., 2010; Stephens, 2002; 56 

Stephens & Anderson, 2001) and 2) “stay-switch” or “patch-leaving” task where animals are 57 

presented with a source of reward and must decide when to leave it in search of a better 58 

alternative (Barack et al., 2017; Blanchard & Hayden, 2014; Constantino & Daw, 2015; Hayden 59 

et al., 2011). Patch-leaving tasks better represent the natural situation where animals have 60 

sequential interactions with individual reward sources as opposed to the simultaneous 61 

presentation of (cued) alternatives. While these prior patch-leaving studies have helped 62 

elucidate the neural circuits responsible for foraging behavior, they ubiquitously utilize a trial-63 

based structure and patch options are presented randomly, as assumed by the Marginal Value 64 
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Theorem (Charnov, 1976), as opposed to in the wild, where animals use their experience with 65 

the environment to direct their encounters with patches. We suggest that two- or multi-bottle 66 

preference tests represent a simplified naturalistic foraging scenario where an animal can 67 

rapidly learn about the state of its environment and direct its encounters with reward options. 68 

 69 

Preference tests are used widely to measure the relative hedonic values (or palatabilities) of a 70 

set of stimuli, with the degree of preference based on the amount of interaction the subject has 71 

with each stimulus. For example, in taste preference tests, the relative palatabilities of pairs of 72 

substances are measured by the total amounts consumed or the number of licks at each food 73 

source. It is assumed that the decision of the animal to lick (or eat) more of one tastant than 74 

another, given equal opportunity for time with both, reflects an underlying preference. While 75 

these tests have been used to determine the relative preferences of different options, little 76 

attention has been paid to the decision dynamics of animals during such preference tests. The 77 

lack of data quantifying the underlying behaviors that lead to the overall preference precludes 78 

the assessment of models of this type of decision-making. Indeed, one of the goals of our 79 

analyses is to test predictions of our recent modeling paper (Ksander et al., 2021). 80 

 81 

Several questions can be asked about the sequences of decisions that animals make during 82 

these preference tests. Perhaps the most obvious and important is: Do animals rapidly settle on 83 

a favorite option or continue to switch between and sample both options? If the animal has a 84 

clear preference between two options (as revealed by the total amount consumed), then an 85 

intuitive and theoretically optimal strategy is to first sample both options to determine a 86 
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favorite and then spend all of the remaining time sampling the favored option (or until the 87 

source is exhausted or the animal is sated). In this case, it would be very difficult to quantify the 88 

palatability of a tastant: only a ranking would be possible. If the answer to the above question is 89 

“no” (as we find in our data), then several additional questions can be asked.  90 

 91 

The first is, given that the animals switch back and forth between the two options, how do 92 

sampling times at one option depend on that option’s palatability—as measured by total 93 

amount consumed in sessions without alternatives—and on the palatability of the alternative? 94 

To answer this question, we analyze durations of bouts of licking, which are comprised of series 95 

of rapid licks without significant pauses, to assess whether and how the behavior at one lick-96 

spout depends on the contents of the alternative lick-spout.  97 

 98 

Separate bouts are demarcated by pauses, following which the animal can either return to a 99 

new bout of licking at the same spout or switch to the alternative spout. Our analyses of bout 100 

durations separately following returns versus switches provides an indication of how the 101 

influence of the alternative sample on current behavior decays over time. Lastly, an analysis of 102 

the choice of which spout to choose after each pause, provides an insight into how the animal 103 

weighs the relative value of the two spouts. Distinct dynamics of that choice probability would 104 

provide evidence that the choice of which sample to taste and the choice of for how long to 105 

taste it are separate and distinct processes. 106 

 107 
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It is worth noting that competition arises in preference tests without the need for any direct 108 

interaction between the hedonic value of one alternative and the behavior displayed at the 109 

other. The source of implicit competition is the limited time available in most tasks, or even if 110 

time were not limited in a food preference test, the total amount of food desired until satiety 111 

provides a limit. Such limits mean that the more time spent and the greater the consumption at 112 

one sampled stimulus, the less time available at the alternative, even if the behavioral dynamics 113 

were not altered. Indeed, one can hypothesize that an association with a more appetizing 114 

stimulus might boost the perceived hedonic value of a paired neutral stimulus leading to longer 115 

bouts at the neutral alternative, even as total amount consumed at the neutral alternative goes 116 

down due to the fewer visits there. On the contrary, if behavior in preference tests resembles 117 

that during foraging, one would anticipate that the greater the value of the alternatives, the 118 

less time spent at a particular source. A primary goal of this work is to identify the nature of the 119 

across-stimulus interaction. 120 

 121 

To summarize, we analyze the behavior of rats engaged in a naturalistic continuous-time taste 122 

preference task. We also compare the behavioral dynamics with the dynamics of a simulated 123 

circuit of model spiking neurons designed to possess two states, one representing the ongoing 124 

choice to sample a stimulus, the other to leave that stimulus. Competition between successive 125 

stimuli can arise in the model from adaptation-like processes, leading to predictions of a 126 

competitive interaction between one bout of sampling a stimulus and the subsequent bout 127 

with the alternative stimulus. We assess our behavioral findings for evidence of such a 128 

competitive interaction. 129 
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 130 

Results 131 

Measurement of palatability 132 

To study stay-switch decision dynamics, rats were put through two weeks of preference testing 133 

(Figure 1A/B). On each day, they were given one hour to freely sample a random two solutions 134 

drawn (with replacement) from a possible four (0M, 0.01M, 0.1M, or 1M) NaCl solutions, 135 

selected to provide three significantly different palatabilities (Sadacca et al., 2012). Licks at each 136 

solution spout were recorded using a custom circuit and identified using a semi-automated 137 

process (see methods).  138 

As a first look at the rats’ preference behavior, we confirmed the rank order of the relative 139 

palatabilities of these solutions (Figure 2A), by measuring the total number of licks to each 140 

solution on days where the solution was paired with itself and dividing by the mean number of 141 

licks to dH2O on dH2O only days. The previously determined palatability ranking (0.1M > 0.01M 142 

> 1M,(Sadacca et al., 2012)) was recapitulated, and no sex-specific differences were found 143 

(0.01M: z = .17, p = .86; 0.1M: z = -1.056 p = .29; 1M: z = .51, p = .61); data from both sexes 144 

were combined for all analyses in which different solutions were pitted against one another 145 

(see Methods and Figure 1). 146 

 147 
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 148 

Figure 1. Behavioral setup and example behavior. A) 1’ x 1’ custom acrylic chamber had a solution spout available through the 149 

left and right walls each containing 25mL of 1 of 3 different NaCl solutions (0.01M, 0.1M, 1M) or dH2O. Rats were allowed to 150 

freely move and sample from either spout over the course of 1 hour. B) Preference test timeline. Rats were given 2 habituation 151 

days with 1 bottle of dH2O on opposite sides across sessions. This was followed by 2 weeks of sessions where each week started 152 

with a session of dH2O only followed by all 6 combinations of NaCl solutions. C) Example licking data. Each rectangular 153 

deflection is one lick. D) Example sampling data from a session with 0.01M and 0.1M NaCl solutions. Yellow stripes represent 154 

active sampling at the corresponding solution. 155 

 156 

Given the observed differences in palatabilities, we expected different distributions of sampling 157 

durations, with more palatable solutions having on average longer durations of lick bouts. This 158 

expectation was borne out: the distributions of bout durations of all solutions were well 159 

approximated by exponential distributions (Figure 2C-E), with decay constants akin to the mean 160 

time of bouts at each solution; these bout duration distributions are mostly commensurate 161 
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with the calculated palatability of each solution (dH2O: mean 13.39  .79s, .01M: mean 24.33  162 

1.69s, .1M: mean 27.54  1.72s, 1M: mean 4.72  .29s). 163 

 164 

Figure 2. Effect of palatabilities on bout duration. A) Relative palatabilities of the 3 NaCl solutions relative to water. 165 

Palatabilities are based on the total number of licks at each solution during sessions where the solution was paired with itself. 166 

No sex specific differences were found (0.01M: two-tailed: z = .17, p = .86, .1M: z = -1.06, p = .29, 1M: z = .51, p = .61). Based on 167 

pairwise comparisons (the rank order of palatabilities from highest to lowest is (0.1M, 0.01M, H2O, 1M). B) Cumulative 168 

distribution of lick times. Rats continue to lick throughout the session but less over time. These CDFs were used to distinguish 169 

early and late bouts for each rat. C) Bout duration distributions were fit well by exponential distributions. Frequency of each 170 

bout duration for 0.01M NaCl with y-axis on a log-scale. Linear fits to the exponential data are shown in orange. D) Same as (C) 171 

but for bouts at the 0.1M solution. E) Same as (C,D) but for bouts at the 1M solution. 172 

Impact of relative palatability on bout duration 173 
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While a higher palatability of the currently sampled solution translates into longer sampling 174 

bouts, a critical unanswered question is how the palatability of the alternative solution in a 175 

preference test impacts these sampling bout durations. We considered three possibilities: 1) a 176 

high alternative palatability will have an appetitive effect, increasing the perceived palatability 177 

of the current solution and leading to longer sampling bouts; 2) conversely, a higher alternative 178 

palatability could reduce the perceived palatability of the current solution, leading to shorter 179 

sampling bouts; and 3) the palatabilities of alternative choices could have no impact on bouts at 180 

the current solution. Implied in hypotheses 1 or 2 is the maintenance of a memory of the 181 

alternative solution’s value (palatability). 182 

 183 

To evaluate the above possibilities we performed multilinear regression, predicting bout 184 

duration as a function of the palatability of available alternatives. As suggested by differences in 185 

mean bout durations across solutions, regression coefficients for the current solution’s 186 

palatability were significantly positive (z = 4.09, p = 2.15e-5, mean = 15.78  1.63) – that is, the 187 

more palatable a stimulus the longer the bouts of licking at it (Fig. 3A). Alternative palatability 188 

coefficients were found to be significantly negative (mean -5.69  1.32), consistent with 189 

possibility 2 above (Fig. 3B)—durations of bouts are shorter when the alternative stimulus is of 190 

higher palatability.  191 

 192 
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 193 

Figure 3. Effect of current/alternative palatability on duration of lick bouts. A) Example results from 1 rat of a multilinear 194 

regression model for predicting bout duration with the currently sampled solution’s and alternative solution’s palatabilities as 195 

factors. Ai) Using best fit regression coefficients for 1 rat, bout duration is plotted against the current solution’s palatability for 196 

all 3 possible alternative solutions. Aii) Same as (Ai)  but plotting bout duration vs. the alternative solution’s palatability for 2 197 

levels of the current solution’s palatability. B) Current and alternative palatability regression coefficients normalized by the 198 

mean bout duration for each rat. Normalized coefficients for current palatability are significantly positive (right-tailed: z = 4.09, 199 

p = 2.15e-5) and those for alternative palatability are significantly negative (left-tailed: z = -3.57, p = 1.7e-4). 200 

The above results were stable across the course of the session, even though bout durations in 201 

general decreased over time (likely due to satiation). When we split sessions into ‘early’ and 202 

‘late’ portions based on a per-animal criterion (we used the 2nd derivatives of each rat’s 203 

cumulative distribution of lick times to detect the “kink” in the curve of Fig. 2B, where licking 204 

slowed from a high rate to a lower rate) and performed the same multilinear regression on 205 

early/late bouts separately, we found no significant change in (normalized) regression 206 

coefficients between the early and late portions of the session (Fig. 4A/B). 207 

 208 
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 209 

Figure 4. Effect of palatability on bout duration is constant across early and late portions of the session. A) Normalized 210 

regression coefficients for current solution palatability for bouts in the early or late portion of the session. Current palatability 211 

coefficients were significantly positive for both the early (right-tailed: z = 4.06, p = 2.47e-5) and late (right-tailed: z = 4.09, p = 212 

2.15e-5) portions of the task. Coefficients were not significantly different across portions of the session (paired: z = -.11, p = .91). 213 

B) Same as (A) but for the alternative solution’s palatability. Normalized coefficients were significantly negative for both early 214 

(left-tailed: z = -2.99, p = 1.4e-3) and late portions of the session (left-tailed: z = -2.76, p = 2.9e-3). Coefficients were not 215 

significantly different across portions of the session (paired: z = -.76, p = .45). 216 

We next split bouts into those following stay or switch decisions to ascertain whether the same 217 

decision process was at play for each type of decision. We again repeated the multilinear 218 

regression analysis on these groups individually. We found that regression coefficients for 219 

current palatability are similarly positive following stays (z = 4.09, p = 2.15e-5, mean = 15.46  220 

1.93) and switches (z = 4.06, p = 2.4e-5, mean = 16.04  2.38), with no significant difference 221 

between the two groups (z = .011, p = .91, Fig. 5A). In contrast, there is a significant difference 222 

in alternative palatability coefficients in the post-stay vs. post-switch bouts: coefficients for the 223 

post-switch bouts were significantly more negative (z = 4.06, p = 2.4e-5) than those following a 224 

stay decision, which were themselves not significantly different from zero (z = -1.7, p = .088, 225 
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mean = -1.09  1.61, Fig. 5B). This result suggests that information regarding the alternative 226 

solution may only factor into decisions about sampling times only following a switch between 227 

the two samples.  228 

 229 

 230 

Figure 5. Difference in impact of current/alternative palatability on bout duration following a stay or switch decision. A) 231 

Normalized multilinear regression coefficients for the currently sampled solution’s palatability are significantly positive following 232 

both a stay (right-tailed: z = 4.09, p = 2.1e-5) and switch decision (right-tailed: z = 4.06, p = 2.4e-5). Coefficients were not 233 

significantly different across stay/switch conditions (paired: z = .011, p = .91). B) Normalized multilinear regression coefficients 234 

for the alternative solution’s palatability are not significantly different from zero following a stay decision (two-tailed: z = -1.7, p 235 

= .088) but are significantly negative for bouts following a switch decision (left-tailed: z = -4.09, p = 2.1e-5). Coefficients for bouts 236 

following a switch decision are significantly more negative than those for bouts following a stay decision (paired right-tailed: z = 237 

4.06, p = 2.5e-5). 238 

Lack of dependence of results on bout definition criteria 239 

For the analyses described above, we define a ‘licking bout’ as sequences of licks which had no 240 

period of >2s of no contact with the lick spout. Here, ‘contact’ includes brief periods of nose-241 

poking at the spout. While this definition of a ‘licking bout’ slightly overestimates the total time 242 

spent licking, brief periods of nose poking in between licks represent active engagement with 243 
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the spout rather than a decision to stop sampling or switch to the alternative. An inter-lick-244 

interval of 2s was used as rats never switched between solutions in <2s. 245 

 246 

 247 

Figure 6. Using a 200ms ILI interval criterion to define bouts does not significantly alter the results. A) As in Fig 3B, normalized 248 

multilinear regression coefficients for predicting bout duration using the currently sampled and alternative solutions’ 249 

palatabilities as factors are shown. Current palatability coefficients were significantly positive (right-tailed: z = 4.09, p = 2.1e-5) 250 

and alternative palatability coefficients were significantly negative (left-tailed: z = -3.15, p = 8.2e-4). B) As in Fig 5A, normalized 251 

multilinear regression coefficients for the currently sampled solution’s palatability are significantly positive following both a stay 252 

(right-tailed: z = 4.09, p = 2.1e-5) and switch decision (right-tailed: z = 3.8, p = 7.3e-5). Coefficients were not significantly 253 

different across stay/switch conditions (paired two-tailed: z = -1.7, p = .089). C) Multilinear regression coefficients for the 254 

alternative solution’s palatability are shown for models predicting bout durations following a stay or switch decision. Using  this 255 

criterion, regression coefficients for bouts following a stay decision are significantly negative (left-tailed: z = -3.08, p = .001) and 256 

following a switch decision (left-tailed: z = -3.25, p = 5.8e-4). Coefficients for bouts following a switch decision are significantly 257 

more negative than those for bouts following a stay decision (paired right-tailed: z = 2.82, p = .0024). 258 

Of course, this is only one dividing line that could be used. Prior studies of licking 259 

microstructure in rats (Davis, 1996; Davis & Smith, 1992) have grouped licks into ‘bursts’ or 260 

‘clusters’ based on a <250ms or >500ms inter-lick-interval (ILI) criterion. To test that the results 261 

presented above are not artifacts of our choice of bout definition, we repeated all the above 262 

analyses using a 200ms ILI criterion. In this re-analysis, the magnitudes of the resulting 263 
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regression coefficients are much smaller, since bout lengths themselves are much shorter 264 

(Supp. Fig. 1). Nonetheless, all the qualitative results presented above hold (Figs. 6/7): 265 

coefficients for current palatability are significantly positive for early vs. late and stay vs. switch 266 

bouts, and coefficients for alternative palatability in early and late bouts do not differ; while 267 

coefficients for alternative palatability are significantly negative following a stay decision using 268 

this bout criterion (z = -3.02, p = .0012, mean = -.61  .19), they are again significantly more 269 

negative (mean = -2.6  .68) following a switch decision (z = 2.59, p = .0047). 270 

 271 

One interesting difference did arise with this more stringent bout length criterion, as revealed 272 

in Figure 6C compared with Figure 5B. The more stringent criterion split many prior single bouts 273 

into multiple bouts of shorter duration. The shorter duration of bouts meant that the time 274 

passed from a sampling of the alternative stimulus would often be less than previously for a 275 

repeated bout of sampling at a stimulus – that is a bout of sampling following a “Stay” decision. 276 

As a result, in Figure 6C we see a small significant impact of the alternative stimulus following a 277 

“Stay” decision that was absent in Figure 5B where bout durations were longer. Such a finding 278 

is consistent with a model in which the impact of the alternative stimulus on a current bout’s 279 

duration decays gradually over a period of many seconds after leaving that stimulus. 280 

 281 

Indifference of results to change in rank order of palatability 282 

As noted above, we calculated palatabilities using data from days in which identical solutions 283 

were available at both spouts (this was done to separate the data used to compute 284 

palatabilities from those used in the multilinear regressions). Using this method, 0.1M NaCl was 285 
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found to be significantly more palatable than 0.01M (Figure 2A). However, on days in which 286 

0.1M NaCl was paired with 0.01M, rats licked more—on average, 1.3x as much—for 0.01M than 287 

0.1M. That is, the 0.01M solution seemed more palatable than the 0.1M solution in direct 288 

comparisons. 289 

 290 

To the best of our knowledge, this is the first time a study has compared palatabilities obtained 291 

by comparison to water and through direct comparison. This difference might be explained by 292 

an appetitive effect whereby the palatability of the 0.1M is reduced when paired with the less 293 

palatable 0.01M with the converse being true for the 0.01M (made more palatable by pairing 294 

with 0.1M). Alternatively, these differences could simply represent the inherently context-295 

dependent nature of palatability. 296 

 297 

In either case, we tested whether our prior results were impacted when the palatability of the 298 

0.01M solution was defined as a factor of 1.3 times greater than that of the 0.1M solution. We 299 

find that the results for the alternative palatability regression coefficients do not change. That 300 

is, in aggregate, coefficients for alternative palatability are significantly negative (z = -3.3, p = 301 

4.5e-4, mean = -5.69  1.32, Fig. 7A), coefficients for bouts following a switch decision were 302 

significantly more negative than for those following a stay decision (z = 4.09, p = 2.15e-5, Fig. 303 

7C), and coefficients were not significantly different between early and late portions of the 304 

session (z = -.5, p = .61, Supp Fig. 2B). That is, our qualitative results are robust to whether the 305 

0.01M or 0.1M solution is the more palatable and all conclusions arise from those two solutions 306 

being more palatable than the 1M NaCl solution. 307 
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 308 

 309 

Figure 7. Impact of current/alternative palatability on bout duration when artificially setting Palatability(.01M) = 1.3 x 310 

Palatability(.1M). A) As in Fig 3B, multilinear regression coefficients for predicting bout duration using the currently sampled and 311 

alternative solutions’ palatabilities as factors are shown. Current palatability coefficients were significantly positive (right-tailed: 312 

z = 4.09, p = 2.1e-5) and alternative palatability coefficients were significantly negative (left-tailed: z = -3.57, p = 1.7e-4). B) As in 313 

Fig 5A, multilinear regression coefficients for the currently sampled solution’s palatability are significantly positive following 314 

both a stay (right-tailed: z = 2.17, p = .0148) and switch decision (right-tailed: z = 3.9, p = 4.9e-5). With these artificially altered 315 

palatabilities, the coefficients for bouts following a switch decision were significantly more positive than those for bouts 316 

following a stay decision (paired left-tailed: z = -2.2, p = .014). C) As in Fig 5B, multilinear regression coefficients for the 317 

alternative solution’s palatability are shown for models predicting bout durations following a stay or switch decision. With the 318 

artificially altered palatabilities, regression coefficients for bouts following a stay decision (left-tailed: z = -2.56, p = .0052) and 319 

following a switch decision (left-tailed: z = -4.09, p = 2.15e-5) are significantly negative. Coefficients for bouts following a switch 320 

decision are significantly more negative than those for bouts following a stay decision (paired right-tailed: z = 4.09, p = 2.15e-5). 321 

There are however some minor differences regarding the coefficients for current palatability. 322 

Coefficients for current palatability are significantly more positive following a switch decision (z 323 

= -3.05, p = .0011, Fig. 8B) and normalized regression coefficients in the late portion of the 324 

session were significantly smaller (less positive) than those in the early portion of the session (z 325 

= 3.18, p = 7.3e-4). 326 

 327 
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Impact of palatability on transition probability 328 

Thus far, our results describe sampling duration as a function of the palatabilities of the two 329 

solutions. To fully understand the impact of palatability on choice dynamics, we also asked 330 

whether the palatability of the current or alternative solution impacted the transition 331 

probabilities between the solutions. A transition could be from a solution back to the same 332 

solution, if following a bout of licking there is a pause then a return to the same solution. 333 

Therefore, we are assessing the degree to which, following a pause in licking, the rat returns to 334 

the same solution or switches to the alternative. As with measurements of bout durations, the 335 

choice to return or switch could depend on both the palatability of the most recently sampled 336 

(“current”) solution and that of the alternative. 337 

 338 

To dissociate the contributing factors, we compared the transition probabilities between pairs 339 

of solutions with either a common source (e.g. 0.01M -> 0.1M and 0.01M -> 1M) or a common 340 

target (e.g. 0.01M -> 0.1M and 1M -> 0.1M). If the palatability of the current solution was to 341 

influence transition probability, this influence would be reflected in a higher probability of 342 

switching to a common target taste from a taste with a low palatability than from a taste with a 343 

high palatability. Similarly, if alternative palatability was to impact transition probability, this 344 

would be reflected in a higher probability of switching from a common source to a solution with 345 

high palatability.  346 

 347 

We find evidence that palatability of both the current and the alternative solution impacts the 348 

transition probabilities (Fig. 8A-B). These results are further supported by a logistic regression 349 
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model trained to predict switches based on the current and alternative palatability. In the 350 

regression model, both current palatability (p = 4.89e-31, coefficient = -.948, 95% CI = [-1.1 -351 

.78]) and alternative palatability (p = 3.15e-21, coefficient = .63, 95% CI = [.5 .76]) are found to 352 

be significant factors. 353 

 354 
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 355 

Figure 8. Comparison of transition probabilities for transitions with a common source/target. A) Transition probabilities for 356 

transitions with a common source (0.01M -> 0.1M and 0.01M -> 1M, 0.1M -> 0.01M and 0.1M -> 1M, 1M -> 0.01M and 1M -> 357 

0.1M) reveal the influence of a memory of the alternative solution’s palatability. Ai) P(0.01M -> 0.1M) and P(0.01M -> 1M) are 358 

not significantly different (paired two-tailed: z = 1.51, p = .13). Aii) P(0.1M -> 0.01M) is significantly higher than P(0.1M -> 1M) 359 

(paired right-tailed: z = 3.73, p = 9.4e-5). Aiii) P(1M -> 0.01M) is significantly lower than P(1M -> 0.1M) (paired left-tailed: z = -360 

2.52, p = 5.8e-3). B) Transition probabilities for transitions with a common target (0.1M -> 0.01M and 1M -> 0.01M, 0.01M -> 361 

0.1M and 1M -> 0.1M, 0.01M -> 1M and 0.1M -> 1M) reveal the influence of the last sampled solution’s palatability on switch 362 
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probability. Bi) P(0.1M -> 0.01M) is significantly lower than P(1M -> 0.01M) (paired left-tailed: z = -3.63, p = 1.3e-4). Bii) 363 

P(0.01M -> 0.1M) is significantly lower than P(1M -> 0.1M) (paired left-tailed: z = -4.09, p = 2.15e-5). Biii) P(0.01M -> 1M) is 364 

significantly higher than P(0.1M -> 1M) (paired right-tailed: z = 2.43, p = 7.5e-3). 365 

No evidence for memory across days 366 

Lastly, we investigated whether rats held a bias for the first side they visited in a session based 367 

on their experience the prior day. To do this, we counted the number of times rats first visited 368 

the side they preferred (had the most licks at) on the prior day and compared this to the 369 

number expected. Given a null hypothesis of no memory across days, the expected number is 370 

given by the binomial distribution with p = q = 0.5. Our results are consistent with the null 371 

hypothesis that rats did not carry a preference for side across days (𝑝̂ = .485, 95% 𝐶𝐼 =372 

[.424 .547], Fig. 9). 373 

 374 

 375 

Figure 9. No evidence for preference across days. A) Histogram showing the fraction of times rats first sampled from the side 376 

they preferred on the prior day. B) (blue) Probability density function for the total number of times (across all rats) that rats first 377 

sampled from the side they preferred on the prior day which is given by the binomial distribution with N = 270, p = q = 0.5. (red 378 

line) Total number of times rats first sampled from the preferred side from the prior day. 379 

Comparison to spiking network models 380 
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In our modeling study (Ksander et al., 2021) we found competition in the durations of an 381 

activity state representing bout duration in response to alternating stimuli. The competition 382 

arose from a slow synaptic depression in the model so we hypothesized that the competition 383 

between successive stimuli would diminish over the timescale of recovery from that synaptic 384 

depression. We predicted that the impact of the alternative stimulus on bout duration would, 385 

therefore, be significantly lower, during a second or later successive bout at the same stimulus, 386 

as compared to the first bout at that stimulus following a switch, just as seen in the behavioral 387 

data (Figs. 5-7). Therefore, we adapted the stimulus protocol in our prior study such that 388 

following any state transition indicating the end of a bout of sampling, the subsequent stimulus 389 

presented was chosen randomly, with a 50% probability for each of the two stimuli being 390 

compared in that preference test. 391 

 Our results are shown in Figure 10, in which we produced regression coefficients in the 392 

same manner as Figs. 5-7 but based on the state durations arising from three preference tests 393 

(the distinct pairs of three stimuli of different strengths, representing different palatability) for 394 

each of two types of network. Figure 10A-C depicts the results of an “entice-to-stay” network in 395 

which stimuli of greater palatability were modeled by increased excitatory stimulus to neurons 396 

whose activity represented a “stay” state that enhanced bout duration. The results are 397 

qualitatively identical to the behavioral data (Figs. 3 and 5-7) with the alternative stimulus 398 

having a competitive impact on bout duration (a negative regression coefficient, Fig. 10A) but 399 

with the impact diminished following a repeat bout (a “stay” transition, Fig. 10C) at the same 400 

stimulus. On the other hand, the results of a “repel-to-leave” network shown (Fig. 10D-F) did 401 

not match the behavioral data well. The asymmetry between the model networks arises 402 
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because only in the “entice-to-stay” network does greater stimulus input correspond to longer 403 

state durations, as needed to maximize the impact of synaptic depression. 404 

 405 

Figure 10. ‘Fast’ (‘entice-to-stay’) (A-C) but not ‘slow’ (‘repel-to-leave’) (D-F) model networks replicate rat behavior. A) As in Fig. 406 

3B regression coefficients for predicting bout duration as a function of current and alternative palatability are shown for ‘fast’ 407 

networks. Similar to rats, coefficients for current palatability are significantly positive (right-tailed: z = 4.09, p  2.15e-5) and 408 

coefficients for alternative palatability are significantly negative (left-tailed: z = -3.83, p = 6.38e-5). B) As for rats, palatability 409 

coefficients for both stay (right-tailed: z = 4.09, p = 2.15e-5) and switch (right-tailed: z = 4.09, p = 2.15e-5) bouts were 410 

significantly positive and are not significantly different between groups (paired two-tailed: z = -1.8, p = 0.07). C) As for rats, 411 

alternative palatability coefficients for bouts following a stay decision were not significantly different from zero (two-tailed: z = -412 

1.28, p = 0.19) whereas coefficients for bouts following a switch decision are significantly negative (left-tailed: z = -4.06, p = 413 

2.47e-5)). D) In contrast, ‘slow’ networks did not replicate the pattern of coefficients of rats. Coefficients for current palatability 414 

were significantly positive (right-tailed: z = 4.09, p = 2.15e-5) but those for alternative palatability were not significantly 415 

different from (two-tailed: z = 0.14, p = 0.88). E) Palatability coefficients following both stay (right-tailed: z = 4.09, p = 2.15e-5) 416 

and switch (right-tailed: z = 4.09, p = 2.15e-5) bouts were significantly positive and coefficients for switch bouts were 417 

significantly more positive than those for stay bouts (paired left-tailed: z = -2.53, p = 0.0057). F) Alternative palatability 418 
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coefficients for both stay (two-tailed: z = 1.57, p = .115) and switch (two-tailed: z = -0.73, p = 0.465) bouts were not significantly 419 

different from 0. Alternative palatability coefficients for switch bouts were significantly lower than for stay bouts (paired right-420 

tailed: z = 2.89, p = 0.0019).  421 

Discussion 422 

Palatability is typically measured as the amount of a food or solution consumed. The amount 423 

solution consumed by a rat, for example, is equal to the number of licks taken multiplied by the 424 

mean amount consumed per lick. Given that the mean amount consumed per lick has been 425 

shown to vary little across stimuli or time, we assume that is constant in this study and measure 426 

palatability as the number of licks of a solution. Since rats sample a solution in clearly 427 

demarcated bouts of high frequency (approximately 6 Hz) regular sampling, we can identify two 428 

distinct factors that impact the total number of licks and hence the palatability: the duration of 429 

the bouts and the total number of bouts. In theory, bout durations could be independent of a 430 

stimulus such that its palatability is only evident in the total number of bouts. However, prior 431 

work (Davis, 1996) has shown that the more palatable a stimulus, the longer the bouts, a result 432 

which we recapture here. In a more novel direction, we have assessed how, in a preference 433 

test, the palatability of one stimulus impacts the behavior of an animal at the alternative 434 

stimulus. Our main finding is that the more palatable one stimulus the shorter the bouts of 435 

licking at the alternative as compared to when that alternative is paired with a less palatable 436 

stimulus.  437 

 438 

The second factor determining the number of licks at a spout is the total number of times the 439 

spout is visited. Therefore, we also analyzed the transition probability during preference tests, 440 
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which indicates that after a bout of sampling from one lick spout how likely is an animal to 441 

return to the same lick spout or to transition to the alternative. We find that the likelihood to 442 

return increases with the palatability of the stimulus just tasted. In of itself such behavior would 443 

produce competition in the total amount consumed, as it would produce more repeated bouts 444 

at sources of high palatability, leading to fewer at an alternative. However, we also found that 445 

following a pause in sampling at one lick spout memory of the alternative also impacted the 446 

likelihood to return to the same spout, such that the more palatable the alternative, the less 447 

likely to return. Thus, the choice of which spout to lick from is impacted by memory, which has 448 

persisted beyond a single bout’s duration, of the contents of both lick spouts. 449 

 450 

Our findings of the competitive interaction between stimuli on bout durations supports a 451 

recent model (Ksander et al., 2021) in which the duration of a bout is given by the duration of a 452 

particular state of activity in a neural circuit. In the model, noise fluctuations terminate states of 453 

activity, leading to an exponential-like distribution of state durations, just as we find in the 454 

behavioral data. Moreover, the impact of the well-established neural-circuit level process of 455 

synaptic depression in the model leads to a competitive impact between successive stimuli, 456 

such that following a highly palatable stimulus a subsequent bout duration is shorter than 457 

otherwise expected. Since the underlying biological processes have a limited timescale, we 458 

tested and found in the model that such a competitive impact on bout durations diminishes 459 

over time and is much weaker for bouts following a return to a stimulus when the time passed 460 

since the visit to the alternative has increased. Indeed, we find in our behavioral data a similar 461 
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fact, with no impact of the alternative stimulus on durations of bouts of sampling that do not 462 

directly follow a switch from that alternative stimulus.  463 

 464 

When a food substance or taste stimulus is considered palatable of unpalatable, the implicit 465 

suggestion is that palatability is a property of a substance to be ingested. However, in practice, 466 

palatability is a measure of behavior—typically the total amount of a substance consumed—so 467 

is inherently dependent on the state of an animal and the context in which the animal is 468 

sampling the stimulus. In our study we find that even the rank order of palatability can be 469 

altered depending on context. When a rat has two lick spouts available to it, both of which 470 

contain the same solution, in accordance with prior work (Sadacca et al., 2012) we find rats lick 471 

the spouts more often when the solution is 0.1M NaCl than when the solution is 0.01M NaCl 472 

(Fig 1). Such a finding suggests that 0.1M NaCl is more palatable to rats than is 0.01M NaCl. 473 

However, when one lick spout contains 0.1M NaCl and the other contains 0.01M NaCl, we find 474 

rats lick more often at the spout containing 0.01M NaCl, suggesting a switch in relative 475 

palatability and preference of the two salt solutions in the new context. Such a switch is 476 

intriguing and its cause warrants further investigation. Fortunately, our findings in this paper on 477 

the interactions between stimuli were robust to the switch. That is, whether we assumed 0.1M 478 

NaCl was more or less palatable than 0.01M NaCl did not alter the findings on how the 479 

palatability of the alternative stimulus impacted the behavior at a lick spout.  480 

 481 

Our findings of a competitive interaction of palatability of bout durations of alternatives and 482 

our model of the process contribute to the foraging literature, in which behavior is discussed 483 
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historically in terms of the Marginal Value Theorem (Charnov, 1976). The theorem prescribes 484 

optimal behavior in an environment with multiple sources, at each of which the rate of reward 485 

diminishes with the time an animal spends at the source. Specifically, an animal should only 486 

stay at a food source until its rate of reward has depleted to the mean rate of reward it would 487 

achieve by moving from alternative source to alternative source and remaining the optimal 488 

time at the alternative sources. Our behavioral findings and model are in qualitative accordance 489 

with such behavior in that the more palatable an alternative (i.e., the greater the mean rate of 490 

reward) the less time spent at a source while the reduction is ameliorated over time (the 491 

greater the time between sources in foraging, the lower the mean rate of reward, so time spent 492 

at a diminishing source increases). However, unlike in foraging studies, in preference tests the 493 

potential rate of reward at a lick spout is constant, so if one spout contains more rewarding 494 

solution than the other, the optimal behavior of an animal would be to stay at the more 495 

rewarding spout as soon as it has sampled both. That the animals do not behave in such a 496 

manner, but continue to sample even aversive stimuli many times, is either an indication of 497 

limited memory duration (i.e., they forget what is in each spout) or a strong drive to explore in 498 

case the environment changes. 499 

 500 
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 507 

Methods 508 

Behavioral apparatus 509 

The preference test was carried out in 1’ x 1’ x 1’ custom acrylic chambers. Each chamber has 3 510 

holes through which rats could lick a stainless steel solution spout. There is one hole on each of 511 

the left, right, and back walls of the chamber. For this study, only the left and right sides ever 512 

had a solution spout. In order to record licks, a custom circuit, based on a published design 513 

(Hayar et al., 2006) was used. A small voltage was applied to the stainless steel floor of the 514 

chamber such that when the rat licked one of the solution spouts, a voltage deflection 515 

(measuring the water-metal junction potential) was recorded. A RaspberryPi was used to both 516 

supply power to the floor and record licks using custom Python software. 517 

 518 

Preference test 519 

22 adult Long-Evans rats (14 female, 8 male) from Charles River were water deprived for 22 520 

hours prior to the first habituation session. The preference test timeline consisted of 16 1 hour 521 

sessions of which the first 2 were habituation sessions with only 1 bottle of dH2O available on 522 

one side of the experimental chamber (the side was switched for the second habituation 523 

session). Following each session, rats were given 1 hour of ad lib access to water in their home 524 

cage such that they were deprived of water for 22 hours prior to each session. After the two 525 
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habituation days, the first day of the preference test was always a session with 2 bottles of 526 

dH2O. This was followed by 6 consecutive days of pairings of 3 NaCl concentrations (0.01M, 527 

0.1M, 1M) including self pairings. This was then repeated for a second week such that each rat 528 

experienced 2 dH2O only sessions and 2 pairings of each combination of NaCl concentrations. 529 

These concentrations were used because they had been previously measured to have different 530 

palatabilities (Sadacca et al., 2012) covering both palatable and unpalatable (at least relative to 531 

water) tastants. 532 

 533 

Lick identification 534 

Licks were identified via a semi-automated process using custom MATLAB software. A simple 535 

threshold could not be used to identify licks because both licks and nose pokes were picked up 536 

as large voltage deflections. Additionally, occasionally a rat would maintain contact with the lick 537 

spout while licking resulting in a sustained voltage deflection on top of which licks could be 538 

seen. As a result, we produced a dataset of hand-identified licks from the data of the first few 539 

rats and used MATLAB’s neural network toolbox to train a bidirectional LSTM recurrent neural 540 

network to predict the presence or absence of a lick at any point in time. These automatic 541 

identifiers were then used as a first pass on all future data to capture presumptive licks, which 542 

were then accepted/discarded by eye based on the stereotypical shape and timing of licks. 543 

Lastly, a final pass over the data was made by eye to ensure that no licks were missed by the 544 

neural network. 545 

 546 

Lick bout identification 547 
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Following identification, licks were grouped together into ‘bouts’ based on 3 different inter-lick 548 

interval (ILI) criteria. That is, we repeated all analyses described below using bouts defined by 3 549 

different ILI criteria to determine how our results depended on this somewhat subjective 550 

threshold. Based on previous studies of licking dynamics in rats (Davis, 1996) and our own 551 

investigation of ILI distributions, we grouped together licks with 200ms or 500ms ILIs into lick 552 

‘bouts’ (also referred to as lick clusters). We also used a more nuanced criterion which we 553 

believe better represents active engagement with a lick spout (indicating an ongoing ‘stay’ 554 

decision). This criterion consisted of grouping together adjacent licks in which there was no 555 

period >2s between them in which there was no activity on the recording channel. This means 556 

that if the rat nose-poked the solution spout in between licks such that the ILI was >2s but there 557 

was intervening activity on the channel such that there was no period of >2s of silence, then 558 

these licks would be grouped together. We included this criterion since we are primarily 559 

concerned in this study with the rats’ decisions to leave a solution spout and not on the 560 

microstructure of their licking behavior. 561 

 562 

Measurement of palatability 563 

To measure the palatability of each concentration of NaCl, we analyzed data exclusively from 564 

sessions where a solution was paired with itself. The palatabilities were defined relative to 565 

water such that the relative palatability of solution X was: 566 

𝑃𝑎𝑙𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑋) =  
𝑁𝑙𝑖𝑐𝑘𝑠(𝑋)

𝑁𝑙𝑖𝑐𝑘𝑠(𝑑𝐻2𝑂)
 567 

where 𝑁𝑙𝑖𝑐𝑘𝑠(𝑋) is the total number of licks to tastant X across both sessions when X was paired 568 

with itself. 𝑁𝑙𝑖𝑐𝑘𝑠(𝐻2𝑂) is the same except for H2O only sessions. 569 
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 570 

Linear and logistic regression models 571 

To assess the impact of the palatability of the currently sampled or alternative solution on the 572 

current bout duration, we performed multilinear regressions using MATLAB’s regress function 573 

to predict bout duration with both palatabilities as factors. This was done for all bouts together 574 

as well as for subsets of bouts depending on if they were ‘early’ or ‘late’ in a session or 575 

following a stay or switch decision. 576 

 577 

As one method of measuring the impact of current/alternative palatability on switch 578 

probability, we performed logistic regression using MATLAB’s fitglm function to predict a switch 579 

(0 or 1) with the last sampled solution’s and alternative solution’s palatabilities as factors. 580 

 581 

Separating early and late bouts 582 

We separated bouts for each session on a per-animal basis into ‘early’ or ‘late’ bouts by 583 

analyzing the 2nd derivative of the cumulative distribution of lick times across all sessions. First, 584 

a smoothed probability density function of lick onset times was computed using MATLAB’s 585 

ksdensity function with a bandwidth of 200s (controlling the amount of smoothing). The 586 

cumulative density function of this pdf was then computed and its 2nd derivatives 587 

approximated. The time point with the minimum 2nd derivative was then used as the divider 588 

between early and late bouts. 589 

 590 

Statistical tests 591 
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Unless otherwise stated, all z and p-values reported in this paper are from the Wilcoxon signed 592 

rank test performed using MATLAB’s signrank function. Tests of whether the median of a 593 

distribution is significantly positive/negative utilized the right/left-tailed test respectively. Tests 594 

of differences between distributions were done using a paired test where data points were 595 

paired by animal or, in the case of the spiking model, points were paired by network. 596 

 597 

Simulation protocol 598 

Simulations were carried out using a recently published model (Ksander et al., 2021). In brief, 599 

leaky integrate-and-fire neurons were designated excitatory or inhibitory and assigned either to 600 

a group whose activity promoted a continuous decision of “Stay” at the current stimulus or a 601 

group whose activity promoted a decision to “Leave” the stimulus. In the original paper the 602 

“Leave” group of cells was denoted “Switch” as we had assumed that leaving one stimulus 603 

meant the animal had to switch to the alternative. We produced new simulations for this paper 604 

to investigate consequences of a “Return” to the same stimulus following a “Leave” decision 605 

that ended a bout. 606 

 607 

Connections between types of neurons were arranged in a manner of self-excitation and cross-608 

inhibition such that activity of one type of neurons (e.g., representing “Stay”) could maintain 609 

itself while at the same time suppressing activity of the other type of neurons (e.g., 610 

representing “Leave”). Activity of the “Stay” neurons while suppressing the “Leave” neurons 611 

would represent a “Stay” state in which the animal continues to sample a stimulus. Noise 612 

fluctuations would irregularly cause a transition from such a “Stay” state to a “Leave” state. We 613 
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would ensure the “Leave” state was transient by reactivating “Stay” neurons to represent the 614 

animal’s commencement of the next sampling bout. As in our behavioral data, such noise-615 

induced transitions to terminate a bout of sampling resulted in an exponential-like distribution 616 

of bout durations.  617 

 618 

We assessed two types of model, in one type, the “entice-to-stay” model, the mean bout 619 

durations were determined by stimulus-dependent input to excitatory neurons in the “Stay” 620 

pool, such that the more palatable the represented stimulus, the greater the input. In the other 621 

type, the “repel-to-leave” model, the mean bout durations were determined by stimulus-622 

dependent input to excitatory neurons in the “Leave” pool, such that the more palatable the 623 

represented stimulus, the lower the input. We also test both types of model in this work. 624 

 625 

All synapses in the model include synaptic depression, comprising a fast (300 ms) process 626 

representing docking of new vesicles after vesicle release and a slow (7 sec) process 627 

representing replenishment of a reserve pool of vesicles. Synaptic depression is key in 628 

producing the competitive interaction across time as after a period of strong activity the 629 

connections that sustain activity are weakened, impacting the response of the network to a 630 

subsequent stimulus, until recovery of the supply of vesicles is complete. 631 

 632 

Properties of model neurons 633 

Individual neurons were simulated with an exponential leaky integrate-and-fire model 634 

(Fourcaud-Trocmé et al., 2003) following the equation: 635 
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𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
=

𝐸𝑙 − 𝑉𝑚 + Δ𝑡ℎexp (
𝑉𝑚 − 𝑉𝑡ℎ

Δ𝑡ℎ
)

𝑅𝑚
+ 𝐺𝑠𝑦𝑛 𝑆𝐼 (𝐸𝑟𝑒𝑣𝐼

− 𝑉𝑚) + 𝐺𝑠𝑦𝑛 𝑆𝐸  (𝐸𝑟𝑒𝑣𝐸
− 𝑉𝑚) 636 

+ 𝐺𝑟𝑒𝑓(𝐸𝐾 − 𝑉𝑚) +  𝐺𝑒𝑥𝑡𝐼
(𝐸𝑟𝑒𝑣𝐼

− 𝑉𝑚) + 𝐺𝑒𝑥𝑡𝐸
(𝐸𝑟𝑒𝑣𝐸

− 𝑉𝑚) 637 

where 𝑉𝑚 is the membrane potential,  𝐶𝑚 is the total membrane capacitance, 𝐸𝑙  is the leak 638 

potential, 𝑅𝑚 is the total membrane resistance, Δ𝑡ℎ is the spiking range, 𝑉𝑡ℎ is the spiking 639 

threshold, 𝑆 is the synaptic input variable, 𝐺𝑠𝑦𝑛 and 𝐸𝑟𝑒𝑣  are the maximal conductance and 640 

reversal potential for synaptic connections, 𝐺𝑟𝑒𝑓  is the dynamic refractory conductance, 𝐸𝐾  is 641 

the potassium reversal potential, and 𝐺𝑒𝑥𝑡 is the input conductance. The “E” and “I” subscripts 642 

denote the variables specific to excitatory and inhibitory channels, respectively (e.g. 𝑆𝐸  and 643 

𝐸𝑟𝑒𝑣𝐸
 are the synaptic input and reversal variables for excitatory channels; 𝑆𝐼  and 𝐸𝑟𝑒𝑣𝐼

 are the 644 

corresponding inhibitory variables). This equation simulates the neuron’s membrane potential 645 

until 𝑉𝑚 > 𝑉𝑠𝑝𝑖𝑘𝑒 , at which point the neuron spikes. 646 

 647 

When a neuron spikes, 𝑉𝑚 is set to the 𝑉𝑟𝑒𝑠𝑒𝑡  value. Additionally, the neuron’s refractory 648 

conductance, synaptic output, 𝑠, and synaptic depression (noted as 𝐷) are updated according 649 

to the equations:  650 

𝐺𝑟𝑒𝑓 ↦ 𝐺𝑟𝑒𝑓 + Δ𝐺𝑟𝑒𝑓 651 

𝑠 ↦ 𝑠 + 𝑝𝑅𝐷𝑓𝑎𝑠𝑡(1 − 𝑠) 652 

𝐷𝑓𝑎𝑠𝑡 ↦ 𝐷𝑓𝑎𝑠𝑡(1 − 𝑝𝑅) 653 

where Δ𝐺𝑟𝑒𝑓 is the increase in refractory conductance, and 𝑝𝑅  is the vesicle release probability 654 

following a spike.  655 

 656 
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In the timestep immediately following a spike, the neuron’s membrane potential continues to 657 

follow the exponential leaky integrate-and-fire model equation. In this equation the separate 658 

excitatory (𝑆𝐸,𝑖) and inhibitory (𝑆𝐼,𝑖) synaptic inputs for cell 𝑖 are obtained from the sum of all 659 

presynaptic outputs multiplied by the corresponding connection strengths, 𝑊𝑖𝑗, from neurons 𝑗 660 

(see Network architecture and connections):  661 

𝑆𝑖 = ∑ 𝑊𝑖𝑗𝑠𝑗 ,

𝑗

 662 

each of which decay with the appropriate (excitatory or inhibitory) synaptic gating time 663 

constant 𝜏𝑆 according to:  664 

𝑑𝑠𝑖

𝑑𝑡
= −

𝑠𝑖

𝜏𝑆
. 665 

Likewise, refractory conductance decays with the time constant 𝜏𝑟𝑒𝑓  according to:  666 

𝑑𝐺𝑟𝑒𝑓

𝑑𝑡
= −

𝐺𝑟𝑒𝑓

𝜏𝑟𝑒𝑓
 667 

The 𝐺𝑒𝑥𝑡 input conductance serves as both noisy-background and stimulus inputs in the same 668 

manner. Inputs were modeled as Poisson spike trains with rates 𝑟𝑛𝑜𝑖𝑠𝑒 and 𝑟𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 , which 669 

produce input spikes (from all sources) at timepoints {𝑡𝑠𝑝}. Please note, the noisy-background 670 

includes both excitatory and inhibitory spiking input (included in 𝐺𝑒𝑥𝑡𝐼
 and 𝐺𝑒𝑥𝑡𝐸

 , respectively); 671 

the 𝑟𝑛𝑜𝑖𝑠𝑒 parameter specifies the rate for both excitatory and inhibitory background noise. The 672 

input conductance values for a given timepoint, 𝑡, are updated as:  673 

𝐺𝑒𝑥𝑡 ↦  𝐺𝑒𝑥𝑡 + Δ𝐺𝑒𝑥𝑡𝛿(𝑡 − 𝑡𝑠𝑝)  674 

where the conductance increases by Δ𝐺𝑒𝑥𝑡 at the time of each input spike. The input 675 

conductance otherwise decays with the time constant 𝜏𝑒𝑥𝑡 according to:  676 
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𝑑𝐺𝑒𝑥𝑡

𝑑𝑡
= −

𝐺𝑒𝑥𝑡

𝜏𝑒𝑥𝑡
. 677 

 678 

The cellular parameters with values specific to excitatory neurons (e.g. that differ from 679 

inhibitory values) are: 𝐸𝑟𝑒𝑣𝐸
= 0 𝑚𝑉, 𝜏𝑠 = 50 𝑚𝑠, and 𝜏𝑒𝑥𝑡 = 3.5 𝑚𝑠. The complementary 680 

values for inhibitory neurons are: 𝐸𝑟𝑒𝑣𝐼
= −70 𝑚𝑉, 𝜏𝑠 = 10 𝑚𝑠, and 𝜏𝑒𝑥𝑡 = 2 𝑚𝑠. The 681 

remaining parameters applicable to both excitatory and inhibitory neurons are: 𝐺𝑠𝑦𝑛 = 10 𝑛𝑆 , 682 

𝑝𝑅 = .1 , 𝜏𝑓𝑎𝑠𝑡 = 300 𝑚𝑠 , 𝜏𝑠𝑙𝑜𝑤 = 7 𝑠 , 𝑝𝑠𝑙𝑜𝑤 = .5 , 𝐸𝑙 = −70 𝑚𝑉 , 𝐸𝐾 = −80 𝑚𝑉 , 𝑉𝑟𝑒𝑠𝑒𝑡 =683 

−80 𝑚𝑉 , 𝑅𝑚 = 100 𝑀𝛺 , 𝐶𝑚 = 100 𝑝𝐹, 𝑉𝑠𝑝𝑖𝑘𝑒 = 20 𝑚𝑉 , Δ𝐺𝑒𝑥𝑡 = 1 𝑛𝑆 , 𝑉𝑡ℎ = −50 𝑚𝑉 , 684 

Δ𝑡ℎ = 2 𝑚𝑉 , 𝜏𝑟𝑒𝑓 = 25 𝑚𝑠 , and Δ𝐺𝑟𝑒𝑓 = 12.5 𝑛𝑆 . The Poisson spike-train parameters 𝑟𝑛𝑜𝑖𝑠𝑒 685 

and 𝑟𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 are described in the next section. Neurons were simulated with a simulation 686 

timestep 𝑑𝑡 = .1 𝑚𝑠.  687 

 688 

Synaptic depression 689 

We modeled synaptic depression using two separate timescales, noted in the previous spike-690 

update equations as 𝐷𝑠𝑙𝑜𝑤 and 𝐷𝑓𝑎𝑠𝑡 . These two variables reflect, respectively, the fraction of 691 

the maximum number of vesicles available in the reserve pool and the release-ready pool. 692 

Following a spike, the variables recover to a value of one with different timescales, because 693 

vesicles regenerate and are replenished slowly in the reserve pool, but may dock and become 694 

release-ready much more quickly once available in the reserve pool 695 

 696 
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Specifically, 𝐷𝑠𝑙𝑜𝑤  represents the ratio of currently available reserve-pool vesicles out of the 697 

maximum possible, that is  𝐷𝑠𝑙𝑜𝑤 =
𝑁𝑝𝑜𝑜𝑙

𝑁𝑚𝑎𝑥
. These dock quickly at empty docking sites on the 698 

timescale 𝜏𝑓𝑎𝑠𝑡 , but are replaced slowly on the timescale 𝜏𝑠𝑙𝑜𝑤. 𝐷𝑓𝑎𝑠𝑡  represents the ratio of 699 

docked vesicles out of total docking sites, that is  𝐷𝑓𝑎𝑠𝑡 =
𝑁𝑑𝑜𝑐𝑘𝑒𝑑

𝑁𝑠𝑖𝑡𝑒𝑠
 . We also incorporate the 700 

constant parameter, 𝑓𝐷 = 0.05, which is equal to the ratio of the number of docking sites to the 701 

maximum size of the reserve pool of vesicles,  𝑓𝐷 =
𝑁𝑠𝑖𝑡𝑒𝑠

𝑁𝑚𝑎𝑥
. Only docked vesicles can be released 702 

immediately following a spike, such that upon each spike we update 𝐷𝑓𝑎𝑠𝑡 ↦ 𝐷𝑓𝑎𝑠𝑡(1 − 𝑝𝑅)  703 

where 𝑝𝑅  is the vesicle release probability.  704 

 705 

During sustained spiking, the fast-docking can maintain a firing-rate dependent supply of 706 

docked vesicles until the reserve pool depletes. Vesicles dock at empty sites according to: 707 

𝑑𝐷𝑓𝑎𝑠𝑡

𝑑𝑡
=

(𝐷𝑠𝑙𝑜𝑤 − 𝐷𝑓𝑎𝑠𝑡) 

𝜏𝑓𝑎𝑠𝑡
 708 

Reserve-pool vesicles fill the empty docking sites on the fast timescale 𝜏𝑓𝑎𝑠𝑡 . On the other hand, 709 

the reserve-pool regenerates much more slowly according to: 710 

𝑑𝐷𝑠𝑙𝑜𝑤

𝑑𝑡
=

(1 − 𝐷𝑠𝑙𝑜𝑤)

𝜏𝑠𝑙𝑜𝑤
− 𝑓𝐷

(𝐷𝑠𝑙𝑜𝑤 − 𝐷𝑓𝑎𝑠𝑡)

𝜏𝑓𝑎𝑠𝑡
 711 

The first term represents the reserve-pool vesicle regeneration on timescale 𝜏𝑠𝑙𝑜𝑤. The second 712 

term −𝑓𝐷
(𝐷𝑠𝑙𝑜𝑤−𝐷𝑓𝑎𝑠𝑡)

𝜏𝑓𝑎𝑠𝑡
 accounts for the vesicles lost due to docking. 713 

 714 

Our model reflects the empirical evidence showing the effects of synaptic-depression at short 715 

timescales on the order of milliseconds, and longer timescales on the order of seconds (Abbott 716 
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et al., 1997; Varela et al., 1997); depression timescales on the order of minutes have even 717 

reported in non-mammalian animals (Tabak et al., 2000). Additional, recent evidence (Kusick et 718 

al., 2020) directly supports our fast-depression mechanism where available vesicles quickly refill 719 

empty docking sites. Our model provides a coherent mechanism for both fast-acting and long-720 

lasting synaptic depression effects.  721 

  722 

Network architecture and connections 723 

Each network consists of 250 individual neurons, split into two populations of 100 excitatory 724 

cells (i. e., “stay” and “switch” populations, Estay and Eswitch) and two populations of 25 inhibitory 725 

cells (Istay and Iswitch).  For each pair of connected populations (or for self-connected excitatory 726 

populations) pairs of cells were connected probabilistically with a probability, 727 

𝑃(𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) =  .5. The strength of connections was symmetric across “stay” and “switch” 728 

populations but depended on whether presynaptic or postsynaptic cells were excitatory or 729 

inhibitory, as indicated in Table 1.  730 

 731 

Code Availability 732 

The code used to simulate our model is freely available online at 733 

https://github.com/johnksander/naturalistic-decision-making 734 

 735 

Table 1. Model neuron parameters. 736 

Name Description value 
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𝑬𝒓𝒆𝒗 Reversal potential 

Excitatory cells: 0 𝑚𝑉 

Inhibitory cells: 

−70 𝑚𝑉 

𝑬𝒍 Leak potential −70 𝑚𝑉 

𝑬𝑲 Potassium potential −80 𝑚𝑉 

𝑹𝒎 Membrane resistance 100 𝑀𝛺 

𝑪𝒎 Membrane capacity 100 𝑝𝐹 

𝝉𝒔 Synaptic gating timescale 
Excitatory cells: 50 𝑚𝑠 

Inhibitory cells: 10 𝑚𝑠 

𝑽𝒓𝒆𝒔𝒆𝒕 Reset membrane potential −80 𝑚𝑉 

𝑽𝒔𝒑𝒊𝒌𝒆 Spike threshold 20 𝑚𝑉 

𝝉𝒆𝒙𝒕 noisy-background conductance timescale 
Excitatory cells: 3.5 𝑚𝑠 

Inhibitory cells: 2 𝑚𝑠 

𝑮𝒔𝒚𝒏 Synaptic max conductance 10 𝑛𝑆 

𝝉𝒇𝒂𝒔𝒕 Fast depression timescale 300 𝑚𝑠 

𝝉𝒔𝒍𝒐𝒘 Slow depression timescale 7 𝑠 

𝒑𝑹 Vesicle release probability  .1 

𝒇𝑫 Ratio of max docked vesicles to max reserve vesicles  .05 

𝑫𝒇𝒂𝒔𝒕 Ratio of docked vesicles out of max possible  
𝑁𝑑𝑜𝑐𝑘𝑒𝑑

𝑁𝑠𝑖𝑡𝑒𝑠
 

𝑫𝒔𝒍𝒐𝒘 Ratio of reserve- vesicles out of max possible  
𝑁𝑝𝑜𝑜𝑙

𝑁𝑚𝑎𝑥
 

𝚫𝑮𝒆𝒙𝒕 Conductance step-increase to external input spike 1 𝑛𝑆 

𝑽𝒕𝒉 exponential spiking-term threshold −50 𝑚𝑉 
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𝚫𝒕𝒉 spiking range 2 𝑚𝑉 

𝝉𝒓𝒆𝒇 Refractory conductance timescale 25 𝑚𝑠 

𝚫𝑮𝒓𝒆𝒇 Step change in refractory conductance 12.5 𝑛𝑆 

𝒅𝒕 Simulation timestep . 1 𝑚𝑠 

   737 

A Model summary  

Populations Stay: 1 excitatory, 1 inhibitory  

Leave: 1 excitatory, 1 inhibitory  

 

Connectivity Within-pool (stay or leave): I-to-E and recurrent E-to-E 

Cross-pool (stay-to-leave or leave-to-stay): E-to-I  

Neuron model Exponential Leaky Integrate and Fire (ELIF) with dynamic refractory 

conductance 

Synapse model Conductance based, step increase followed by exponential decay  

Plasticity Depression with two timescales  

Input Noisy background input: fixed-rate Poisson spike trains to all cells 

Stimuli: Poisson spike trains to E-stay and E-leave cells  

Measurements Spike trains, activity state-durations, connection strengths  

 738 

B Populations 

Name Elements Size 

E-stay ELIF neurons 100 

I-stay ELIF neurons 25 
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E-leave ELIF neurons 100 

I-leave ELIF neurons 25 

Noisy background input  Poisson trains 500 

Aversive stimulus Poisson trains 100 

Hedonic stimulus Poisson trains 100 

 739 

C Connectivity   

Name Source Target Pattern 

E-to-I 
E-stay  

E-leave 

I-leave  

I-stay 

Random, 𝑝 = .5, model-dependent fixed weight:  

‘Entice’ network 0.0909 

‘Repel’ network 0.4242 

 

I-to-E 
I-stay  

I-leave 

E-stay  

E-leave 

Random, 𝑝 = .5, model-dependent weight: 

‘Entice’ network 9.6192 

‘Repel’ network 9.4939 

 

E-to-E 
E-stay, 

E-leave 

E-stay, E-

leave  
Random, 𝑝 = .5, fixed weight, 𝑊𝐸𝐸 = 0.0405  

 740 

D Neuron and Synapse Model  

Name LIF neuron  

Type 
Dynamic leaky integrate-and-fire with dynamic refractory 

conductance 
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Subthreshold 

dynamics 

𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
=

𝐸𝐿 − 𝑉𝑚 +  Δ𝑡ℎexp (
𝑉𝑚 − 𝑉𝑡ℎ

Δ𝑡ℎ
)

𝑅𝑚
+ 𝐺𝑠𝑦𝑛 ∙ 𝑆𝐼  (𝐸𝑟𝑒𝑣𝐼

− 𝑉𝑚) 

 

+ 𝐺𝑠𝑦𝑛 ∙ 𝑆𝐸  (𝐸𝑟𝑒𝑣𝐸
− 𝑉𝑚) + 𝐺𝑟𝑒𝑓(𝐸𝐾 − 𝑉𝑚) + 𝐺𝑒𝑥𝑡𝐼

(𝐸𝑟𝑒𝑣𝐼
− 𝑉𝑚)

+ 𝐺𝑒𝑥𝑡𝐸
(𝐸𝑟𝑒𝑣𝐸

− 𝑉𝑚) 

 

 

𝑑𝐺𝑟𝑒𝑓

𝑑𝑡
= −

𝐺𝑟𝑒𝑓

𝜏𝑟𝑒𝑓
 

 

𝑑𝐺𝑒𝑥𝑡

𝑑𝑡
= −

𝐺𝑒𝑥𝑡

𝜏𝑒𝑥𝑡
 

 

Spiking 

 

If 𝑉𝑚 > 𝑉𝑠𝑝𝑖𝑘𝑒 : 

1. Emit spike with timestamp t  

2. 𝐺𝑟𝑒𝑓 ↦ 𝐺𝑟𝑒𝑓 + Δ𝐺𝑟𝑒𝑓 

3. 𝑉𝑚 ↦ 𝑉𝑟𝑒𝑠𝑒𝑡  

 

Synapse 

 

𝑆𝑖 = ∑ 𝑊𝑖𝑗𝑠𝑗𝑗   

 

following a spike by neuron 𝑖: 

 𝑠𝑖 ↦ 𝑠𝑖 + 𝑝𝑅𝐷𝑓𝑎𝑠𝑡(1 − 𝑠𝑖) 
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 𝐷𝑓𝑎𝑠𝑡,𝑖 ↦ 𝐷𝑓𝑎𝑠𝑡,𝑖(1 − 𝑝𝑅) 

 

Between spikes: 

𝑑𝑠𝑖

𝑑𝑡
= −

𝑠𝑖

𝜏𝑆
 

 

𝑑𝐷𝑓𝑎𝑠𝑡,𝑖

𝑑𝑡
=

(𝐷𝑠𝑙𝑜𝑤,𝑖 − 𝐷𝑓𝑎𝑠𝑡,𝑖) 

𝜏𝑓𝑎𝑠𝑡
 

 

𝑑𝐷𝑠𝑙𝑜𝑤,𝑖

𝑑𝑡
=

(1 − 𝐷𝑠𝑙𝑜𝑤,𝑖)

𝜏𝑠𝑙𝑜𝑤
− 𝑓𝐷

(𝐷𝑠𝑙𝑜𝑤,𝑖 − 𝐷𝑓𝑎𝑠𝑡,𝑖)

𝜏𝑓𝑎𝑠𝑡
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F Input   

Type Description 

All external 

spiking input    

Input spikes increase conductance: 𝐺𝑒𝑥𝑡 ↦  𝐺𝑒𝑥𝑡 +  𝐵 ∙ Δ𝐺𝑒𝑥𝑡  

Conductance 𝐺𝑒𝑥𝑡  decays: 

𝑑𝐺𝑒𝑥𝑡

𝑑𝑡
= −

𝐺𝑒𝑥𝑡

𝜏𝑒𝑥𝑡
 

 

Background 

noisy input  

One excitatory spike-train per neuron, and one inhibitory spike-

train per neuron (all 1540 Hz Poisson spike-trains).  

Stimulus One excitatory spike-train per neuron in the E-Stay pool (“Entice” 

network) or the E-Leave pool (“Repel” network). In any simulated 
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preference test two distinct stimulus strengths were used from the 

following sets of three: 

“Entice” network stimulus strengths of increasing palatability were 

94.35Hz, 377.4Hz, 660.45Hz.  

“Repel” network stimulus strengths of increasing palatability were 

198.62Hz, 113.5Hz, 28.35Hz. 

 742 

 743 

G Measurements    

Active state: when mean difference between E-stay and E-leave excitatory synaptic 

gating exceeds .02 for 50ms (consecutively).  

State duration/sampling duration: time between state transitions (i.e. transitioning 

from E-stay to E-leave active state).    

 744 

Network states and stimuli  745 

A network’s active state was evaluated by comparing the mean values of synaptic output, 𝑠𝐸, 746 

averaged across all excitatory cells in each of the two excitatory populations. Specifically, when 747 

the difference between the mean output of the previously less active excitatory population 748 

exceeded that of the previously more active excitatory population by a threshold of 0.02 749 

consistently for 50ms, we recorded a state change.  750 

 751 

We did not simulate the animal’s behavior in between bouts of sampling a stimulus. Once the 752 

excitatory neurons in the “switch” population (E-switch cells) were recorded as more active 753 
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than those in the “stay” population, using the threshold mentioned above, we removed the 754 

stimulus input to the network. 100 ms later, we induced a subsequent transition back to the 755 

“stay” state to represent the animal initiating a new bout of stimulus sampling. The transition 756 

back to sampling was accomplished by halving the noisy background input to E-switch cells until 757 

the network transitioned again to the “stay” state. At all other times in simulations, the noisy 758 

background input remained constant. Once a transition to the “stay” state was recorded (by 759 

excitatory cells in the “stay” population being more active than those in the “switch” 760 

population) input stimulus was applied to indicate the next bout of sampling. The choice of 761 

subsequent next stimulus was probabilistic, with 50% probability of each of the pair being 762 

compared in the simulated preference test. Individual taste preference task simulations lasted 763 

1500 seconds total. Each simulation compared sampling bout durations in response to two 764 

stimuli each with a fixed value across the session. For a given network the stimulus inputs 765 

targeted the same population for all sessions.  766 

 To produce linear regression coefficients in Figure 10, we regressed the log of the state 767 

duration as a function of the stimulus strengths used, because state durations depend 768 

exponentially on stimulus strengths in our model, which is based on noise-induced transitions 769 

between attractor states (Kramers, 1940; Miller & Wang, 2006). 770 

 771 
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