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Abstract

The decision of whether to continue with a current action or to stop and consider alternatives is
ever present in the life of an animal. Such continuous-time decision making lies at the heart of
food preference tests whose outcomes are typically quantified by a single variable, the total
amount consumed. However, the dynamics that give rise to such a quantity in terms of
durations of bouts of sampling at a stimulus before pauses, and the impact of alternative
stimuli on those bout durations and subsequent actions following a pause, can contain a
richness of behavior that is not captured in a single palatability measure. Here we carry out
multiple analyses of these dynamics, with a particular focus on assessing how the hedonic value
of one taste stimulus impacts the behavior of a rat sampling a second taste stimulus during a
preference test. We find evidence for an explicit competitive interaction between bout
durations, such that the more palatable a stimulus the longer the bout durations when the rat
samples the stimulus and the shorter the bout durations at the alternative. Such competition is
reproduced in a model of a neural circuit that could underlie the continuous decision of when
to end a sampling bout. We find that the competitive impact on bout durations is relatively
short-lived whereas a competitive impact on the choice of which stimulus to approach
following a pause persists. Such a discrepancy in the timescales for the decay of the impact of
the alternative stimulus suggests different neural processes are involved in the choice of which
stimulus to approach versus the choice of how long to sample from it. Since these two choices
together combine to determine net consumption and therefore the inferred palatability or
preference of a gustatory stimulus, our results suggest that palatability is not a unitary quantity

but the result of at least two distinct, context-dependent neural processes.
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Introduction

The ability to efficiently forage for food and other resources is critical to most animals’ survival,
and evolution has doubtless shaped the neural circuitry responsible for decision-making to
optimize this task (Hayden et al., 2011; Pearson et al., 2014). There are many types of questions
that an animal must answer during a foraging bout. A first class of questions lies within the
domain of perceptual decision-making, where an animal uses its senses to gather information
about the state of the environment to answer questions such as “is there a predator present?”.
A second class of problems constitutes value-based decision-making which uses available
information to choose between different action plans such as “Is it worth continuing to gather

food here, or should | search for a more abundant area?”.

Studies of value-based decision-making have typically fallen into two categories: 1) “self-
control” or “delay-discounting” tasks where animals tradeoff waiting times and payoff sizes
(Bateson & Kacelnik, 1996; Blanchard et al., 2013; Pearson et al., 2010; Stephens, 2002;
Stephens & Anderson, 2001) and 2) “stay-switch” or “patch-leaving” task where animals are
presented with a source of reward and must decide when to leave it in search of a better
alternative (Barack et al., 2017; Blanchard & Hayden, 2014; Constantino & Daw, 2015; Hayden
et al., 2011). Patch-leaving tasks better represent the natural situation where animals have
sequential interactions with individual reward sources as opposed to the simultaneous
presentation of (cued) alternatives. While these prior patch-leaving studies have helped
elucidate the neural circuits responsible for foraging behavior, they ubiquitously utilize a trial-

based structure and patch options are presented randomly, as assumed by the Marginal Value
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Theorem (Charnov, 1976), as opposed to in the wild, where animals use their experience with
the environment to direct their encounters with patches. We suggest that two- or multi-bottle
preference tests represent a simplified naturalistic foraging scenario where an animal can

rapidly learn about the state of its environment and direct its encounters with reward options.

Preference tests are used widely to measure the relative hedonic values (or palatabilities) of a
set of stimuli, with the degree of preference based on the amount of interaction the subject has
with each stimulus. For example, in taste preference tests, the relative palatabilities of pairs of
substances are measured by the total amounts consumed or the number of licks at each food
source. It is assumed that the decision of the animal to lick (or eat) more of one tastant than
another, given equal opportunity for time with both, reflects an underlying preference. While
these tests have been used to determine the relative preferences of different options, little
attention has been paid to the decision dynamics of animals during such preference tests. The
lack of data quantifying the underlying behaviors that lead to the overall preference precludes
the assessment of models of this type of decision-making. Indeed, one of the goals of our

analyses is to test predictions of our recent modeling paper (Ksander et al., 2021).

Several questions can be asked about the sequences of decisions that animals make during
these preference tests. Perhaps the most obvious and important is: Do animals rapidly settle on
a favorite option or continue to switch between and sample both options? If the animal has a
clear preference between two options (as revealed by the total amount consumed), then an

intuitive and theoretically optimal strategy is to first sample both options to determine a
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87  favorite and then spend all of the remaining time sampling the favored option (or until the

88 source is exhausted or the animal is sated). In this case, it would be very difficult to quantify the

89 palatability of a tastant: only a ranking would be possible. If the answer to the above question is

90 “no” (as we find in our data), then several additional questions can be asked.

91

92  The firstis, given that the animals switch back and forth between the two options, how do

93 sampling times at one option depend on that option’s palatability—as measured by total

94  amount consumed in sessions without alternatives—and on the palatability of the alternative?

95 To answer this question, we analyze durations of bouts of licking, which are comprised of series

96  of rapid licks without significant pauses, to assess whether and how the behavior at one lick-

97 spout depends on the contents of the alternative lick-spout.

98

99 Separate bouts are demarcated by pauses, following which the animal can either return to a
100 new bout of licking at the same spout or switch to the alternative spout. Our analyses of bout
101  durations separately following returns versus switches provides an indication of how the
102  influence of the alternative sample on current behavior decays over time. Lastly, an analysis of
103  the choice of which spout to choose after each pause, provides an insight into how the animal
104  weighs the relative value of the two spouts. Distinct dynamics of that choice probability would
105 provide evidence that the choice of which sample to taste and the choice of for how long to
106  taste it are separate and distinct processes.

107
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108 It is worth noting that competition arises in preference tests without the need for any direct
109 interaction between the hedonic value of one alternative and the behavior displayed at the

110  other. The source of implicit competition is the limited time available in most tasks, or even if
111  time were not limited in a food preference test, the total amount of food desired until satiety
112 provides a limit. Such limits mean that the more time spent and the greater the consumption at
113  one sampled stimulus, the less time available at the alternative, even if the behavioral dynamics
114  were not altered. Indeed, one can hypothesize that an association with a more appetizing

115  stimulus might boost the perceived hedonic value of a paired neutral stimulus leading to longer
116  bouts at the neutral alternative, even as total amount consumed at the neutral alternative goes
117  down due to the fewer visits there. On the contrary, if behavior in preference tests resembles
118 that during foraging, one would anticipate that the greater the value of the alternatives, the
119 less time spent at a particular source. A primary goal of this work is to identify the nature of the
120  across-stimulus interaction.

121

122  To summarize, we analyze the behavior of rats engaged in a naturalistic continuous-time taste
123 preference task. We also compare the behavioral dynamics with the dynamics of a simulated
124  circuit of model spiking neurons designed to possess two states, one representing the ongoing
125  choice to sample a stimulus, the other to leave that stimulus. Competition between successive
126  stimuli can arise in the model from adaptation-like processes, leading to predictions of a

127  competitive interaction between one bout of sampling a stimulus and the subsequent bout

128  with the alternative stimulus. We assess our behavioral findings for evidence of such a

129 competitive interaction.
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130

131 Results

132  Measurement of palatability

133  To study stay-switch decision dynamics, rats were put through two weeks of preference testing
134  (Figure 1A/B). On each day, they were given one hour to freely sample a random two solutions
135  drawn (with replacement) from a possible four (0M, 0.01M, 0.1M, or 1M) NaCl solutions,

136  selected to provide three significantly different palatabilities (Sadacca et al., 2012). Licks at each
137  solution spout were recorded using a custom circuit and identified using a semi-automated

138  process (see methods).

139  Asafirst look at the rats’ preference behavior, we confirmed the rank order of the relative

140 palatabilities of these solutions (Figure 2A), by measuring the total number of licks to each

141  solution on days where the solution was paired with itself and dividing by the mean number of
142  licks to dH20 on dH20 only days. The previously determined palatability ranking (0.1M > 0.01M
143 > 1M,(Sadacca et al., 2012)) was recapitulated, and no sex-specific differences were found

144  (0.01M:z=.17,p=.86; 0.1M: z=-1.056 p =.29; 1M: z = .51, p = .61); data from both sexes

145  were combined for all analyses in which different solutions were pitted against one another
146  (see Methods and Figure 1).

147
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Figure 1. Behavioral setup and example behavior. A) 1’ x 1’ custom acrylic chamber had a solution spout available through the
left and right walls each containing 25mL of 1 of 3 different NaCl solutions (0.01M, 0.1M, 1M) or dH20. Rats were allowed to
freely move and sample from either spout over the course of 1 hour. B) Preference test timeline. Rats were given 2 habituation
days with 1 bottle of dH20 on opposite sides across sessions. This was followed by 2 weeks of sessions where each week started
with a session of dH20 only followed by all 6 combinations of NaCl solutions. C) Example licking data. Each rectangular

deflection is one lick. D) Example sampling data from a session with 0.01M and 0.1M NaCl solutions. Yellow stripes represent

active sampling at the corresponding solution.

Given the observed differences in palatabilities, we expected different distributions of sampling
durations, with more palatable solutions having on average longer durations of lick bouts. This
expectation was borne out: the distributions of bout durations of all solutions were well
approximated by exponential distributions (Figure 2C-E), with decay constants akin to the mean

time of bouts at each solution; these bout duration distributions are mostly commensurate
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with the calculated palatability of each solution (dH20: mean 13.39 £.79s, .01M: mean 24.33 +
1.69s, .1M: mean 27.54 + 1.72s, 1M: mean 4.72 + .29s).
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Figure 2. Effect of palatabilities on bout duration. A) Relative palatabilities of the 3 NaCl solutions relative to water.
Palatabilities are based on the total number of licks at each solution during sessions where the solution was paired with itself.
No sex specific differences were found (0.01M: two-tailed: z=.17, p =.86, .1M: z=-1.06, p = .29, IM: z = .51, p =.61). Based on
pairwise comparisons (the rank order of palatabilities from highest to lowest is (0.1M, 0.01M, H20, 1M). B) Cumulative
distribution of lick times. Rats continue to lick throughout the session but less over time. These CDFs were used to distinguish
early and late bouts for each rat. C) Bout duration distributions were fit well by exponential distributions. Frequency of each
bout duration for 0.01M NaCl with y-axis on a log-scale. Linear fits to the exponential data are shown in orange. D) Same as (C)

but for bouts at the 0.1M solution. E) Same as (C,D) but for bouts at the 1M solution.

Impact of relative palatability on bout duration
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174  While a higher palatability of the currently sampled solution translates into longer sampling

175  bouts, a critical unanswered question is how the palatability of the alternative solution in a

176  preference test impacts these sampling bout durations. We considered three possibilities: 1) a
177  high alternative palatability will have an appetitive effect, increasing the perceived palatability
178  of the current solution and leading to longer sampling bouts; 2) conversely, a higher alternative
179  palatability could reduce the perceived palatability of the current solution, leading to shorter
180 sampling bouts; and 3) the palatabilities of alternative choices could have no impact on bouts at
181  the current solution. Implied in hypotheses 1 or 2 is the maintenance of a memory of the

182  alternative solution’s value (palatability).

183

184  To evaluate the above possibilities we performed multilinear regression, predicting bout

185  duration as a function of the palatability of available alternatives. As suggested by differences in
186  mean bout durations across solutions, regression coefficients for the current solution’s

187  palatability were significantly positive (z = 4.09, p = 2.15e-5, mean = 15.78 + 1.63) — that is, the
188  more palatable a stimulus the longer the bouts of licking at it (Fig. 3A). Alternative palatability
189  coefficients were found to be significantly negative (mean -5.69 + 1.32), consistent with

190 possibility 2 above (Fig. 3B)—durations of bouts are shorter when the alternative stimulus is of
191  higher palatability.

192
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194 Figure 3. Effect of current/alternative palatability on duration of lick bouts. A) Example results from 1 rat of a multilinear

195 regression model for predicting bout duration with the currently sampled solution’s and alternative solution’s palatabilities as
196 factors. Ai) Using best fit regression coefficients for 1 rat, bout duration is plotted against the current solution’s palatability for
197 all 3 possible alternative solutions. Aii) Same as (Ai) but plotting bout duration vs. the alternative solution’s palatability for 2
198 levels of the current solution’s palatability. B) Current and alternative palatability regression coefficients normalized by the
199 mean bout duration for each rat. Normalized coefficients for current palatability are significantly positive (right-tailed: z = 4.09,

200 p = 2.15e-5) and those for alternative palatability are significantly negative (left-tailed: z = -3.57, p = 1.7e-4).

201  The above results were stable across the course of the session, even though bout durations in
202  general decreased over time (likely due to satiation). When we split sessions into ‘early’ and
203  ‘late’ portions based on a per-animal criterion (we used the 2" derivatives of each rat’s

204  cumulative distribution of lick times to detect the “kink” in the curve of Fig. 2B, where licking
205 slowed from a high rate to a lower rate) and performed the same multilinear regression on
206  early/late bouts separately, we found no significant change in (normalized) regression

207  coefficients between the early and late portions of the session (Fig. 4A/B).

208
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210 Figure 4. Effect of palatability on bout duration is constant across early and late portions of the session. A) Normalized

211 regression coefficients for current solution palatability for bouts in the early or late portion of the session. Current palatability

212 coefficients were significantly positive for both the early (right-tailed: z = 4.06, p = 2.47e-5) and late (right-tailed: z = 4.09, p =
213 2.15e-5) portions of the task. Coefficients were not significantly different across portions of the session (paired: z=-.11, p = .91).
214 B) Same as (A) but for the alternative solution’s palatability. Normalized coefficients were significantly negative for both early
215 (left-tailed: z = -2.99, p = 1.4e-3) and late portions of the session (left-tailed: z = -2.76, p = 2.9e-3). Coefficients were not

216  significantly different across portions of the session (paired: z = -.76, p = .45).

217  We next split bouts into those following stay or switch decisions to ascertain whether the same
218  decision process was at play for each type of decision. We again repeated the multilinear

219  regression analysis on these groups individually. We found that regression coefficients for

220  current palatability are similarly positive following stays (z = 4.09, p = 2.15e-5, mean = 15.46 +
221  1.93) and switches (z = 4.06, p = 2.4e-5, mean = 16.04 *+ 2.38), with no significant difference
222  between the two groups (z =.011, p = .91, Fig. 5A). In contrast, there is a significant difference
223 in alternative palatability coefficients in the post-stay vs. post-switch bouts: coefficients for the
224 post-switch bouts were significantly more negative (z = 4.06, p = 2.4e-5) than those following a

225  stay decision, which were themselves not significantly different from zero (z =-1.7, p = .088,
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226 mean =-1.09 + 1.61, Fig. 5B). This result suggests that information regarding the alternative
227  solution may only factor into decisions about sampling times only following a switch between
228  the two samples.
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231 Figure 5. Difference in impact of current/alternative palatability on bout duration following a stay or switch decision. A)

232 Normalized multilinear regression coefficients for the currently sampled solution’s palatability are significantly positive following
233 both a stay (right-tailed: z = 4.09, p = 2.1e-5) and switch decision (right-tailed: z = 4.06, p = 2.4e-5). Coefficients were not

234 significantly different across stay/switch conditions (paired: z =.011, p =.91). B) Normalized multilinear regression coefficients
235 for the alternative solution’s palatability are not significantly different from zero following a stay decision (two-tailed: z =-1.7, p
236 =.088) but are significantly negative for bouts following a switch decision (left-tailed: z = -4.09, p = 2.1e-5). Coefficients for bouts

237 following a switch decision are significantly more negative than those for bouts following a stay decision (paired right-tailed: z =

238  4.06, p = 2.5e-5).

239  Lack of dependence of results on bout definition criteria

240  For the analyses described above, we define a ‘licking bout” as sequences of licks which had no
241  period of >2s of no contact with the lick spout. Here, ‘contact’ includes brief periods of nose-
242  poking at the spout. While this definition of a ‘licking bout’ slightly overestimates the total time

243 spent licking, brief periods of nose poking in between licks represent active engagement with
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the spout rather than a decision to stop sampling or switch to the alternative. An inter-lick-

interval of 2s was used as rats never switched between solutions in <2s.
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Figure 6. Using a 200ms ILI interval criterion to define bouts does not significantly alter the results. A) As in Fig 3B, normalized
multilinear regression coefficients for predicting bout duration using the currently sampled and alternative solutions’
palatabilities as factors are shown. Current palatability coefficients were significantly positive (right-tailed: z = 4.09, p = 2.1e-5)
and alternative palatability coefficients were significantly negative (left-tailed: z = -3.15, p = 8.2e-4). B) As in Fig 5A, normalized
multilinear regression coefficients for the currently sampled solution’s palatability are significantly positive following both a stay
(right-tailed: z = 4.09, p = 2.1e-5) and switch decision (right-tailed: z = 3.8, p = 7.3e-5). Coefficients were not significantly
different across stay/switch conditions (paired two-tailed: z =-1.7, p =.089). C) Multilinear regression coefficients for the
alternative solution’s palatability are shown for models predicting bout durations following a stay or switch decision. Using this
criterion, regression coefficients for bouts following a stay decision are significantly negative (left-tailed: z = -3.08, p =.001) and
following a switch decision (left-tailed: z = -3.25, p = 5.8e-4). Coefficients for bouts following a switch decision are significantly

more negative than those for bouts following a stay decision (paired right-tailed: z = 2.82, p =.0024).

Of course, this is only one dividing line that could be used. Prior studies of licking
microstructure in rats (Davis, 1996; Davis & Smith, 1992) have grouped licks into ‘bursts’ or
‘clusters’ based on a <250ms or >500ms inter-lick-interval (ILI) criterion. To test that the results
presented above are not artifacts of our choice of bout definition, we repeated all the above

analyses using a 200ms ILI criterion. In this re-analysis, the magnitudes of the resulting
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264  regression coefficients are much smaller, since bout lengths themselves are much shorter

265  (Supp. Fig. 1). Nonetheless, all the qualitative results presented above hold (Figs. 6/7):

266  coefficients for current palatability are significantly positive for early vs. late and stay vs. switch
267  bouts, and coefficients for alternative palatability in early and late bouts do not differ; while
268  coefficients for alternative palatability are significantly negative following a stay decision using
269  this bout criterion (z =-3.02, p =.0012, mean = -.61 £+ .19), they are again significantly more
270 negative (mean =-2.6 * .68) following a switch decision (z = 2.59, p = .0047).

271

272  One interesting difference did arise with this more stringent bout length criterion, as revealed
273  in Figure 6C compared with Figure 5B. The more stringent criterion split many prior single bouts
274  into multiple bouts of shorter duration. The shorter duration of bouts meant that the time

275 passed from a sampling of the alternative stimulus would often be less than previously for a
276  repeated bout of sampling at a stimulus — that is a bout of sampling following a “Stay” decision.
277  Asaresult, in Figure 6C we see a small significant impact of the alternative stimulus following a
278  “Stay” decision that was absent in Figure 5B where bout durations were longer. Such a finding
279  is consistent with a model in which the impact of the alternative stimulus on a current bout’s
280  duration decays gradually over a period of many seconds after leaving that stimulus.

281

282  Indifference of results to change in rank order of palatability

283  As noted above, we calculated palatabilities using data from days in which identical solutions
284  were available at both spouts (this was done to separate the data used to compute

285  palatabilities from those used in the multilinear regressions). Using this method, 0.1M NaCl was
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286  found to be significantly more palatable than 0.01M (Figure 2A). However, on days in which
287  0.1M NaCl was paired with 0.01M, rats licked more—on average, 1.3x as much—for 0.01M than
288  0.1M. That is, the 0.01M solution seemed more palatable than the 0.1M solution in direct

289  comparisons.

290

291  To the best of our knowledge, this is the first time a study has compared palatabilities obtained
292 by comparison to water and through direct comparison. This difference might be explained by
293  an appetitive effect whereby the palatability of the 0.1M is reduced when paired with the less
294  palatable 0.01M with the converse being true for the 0.01M (made more palatable by pairing
295  with 0.1M). Alternatively, these differences could simply represent the inherently context-

296 dependent nature of palatability.

297

298 In either case, we tested whether our prior results were impacted when the palatability of the
299  0.01M solution was defined as a factor of 1.3 times greater than that of the 0.1M solution. We
300 find that the results for the alternative palatability regression coefficients do not change. That
301 s, in aggregate, coefficients for alternative palatability are significantly negative (z=-3.3,p =
302 4.5e-4, mean =-5.69 + 1.32, Fig. 7A), coefficients for bouts following a switch decision were
303  significantly more negative than for those following a stay decision (z = 4.09, p = 2.15e-5, Fig.
304 7C), and coefficients were not significantly different between early and late portions of the

305 session (z=-.5, p=.61, Supp Fig. 2B). That is, our qualitative results are robust to whether the
306 0.01M or 0.1M solution is the more palatable and all conclusions arise from those two solutions

307 being more palatable than the 1M NaCl solution.
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Figure 7. Impact of current/alternative palatability on bout duration when artificially setting Palatability(.01M) = 1.3 x
Palatability(.1M). A) As in Fig 3B, multilinear regression coefficients for predicting bout duration using the currently sampled and
alternative solutions’ palatabilities as factors are shown. Current palatability coefficients were significantly positive (right-tailed:
z=4.09, p = 2.1e-5) and alternative palatability coefficients were significantly negative (left-tailed: z =-3.57, p = 1.7e-4). B) As in
Fig 5A, multilinear regression coefficients for the currently sampled solution’s palatability are significantly positive following
both a stay (right-tailed: z = 2.17, p =.0148) and switch decision (right-tailed: z = 3.9, p = 4.9e-5). With these artificially altered
palatabilities, the coefficients for bouts following a switch decision were significantly more positive than those for bouts
following a stay decision (paired left-tailed: z =-2.2, p =.014). C) As in Fig 5B, multilinear regression coefficients for the
alternative solution’s palatability are shown for models predicting bout durations following a stay or switch decision. With the
artificially altered palatabilities, regression coefficients for bouts following a stay decision (left-tailed: z = -2.56, p =.0052) and
following a switch decision (left-tailed: z = -4.09, p = 2.15e-5) are significantly negative. Coefficients for bouts following a switch

decision are significantly more negative than those for bouts following a stay decision (paired right-tailed: z = 4.09, p = 2.15e-5).

There are however some minor differences regarding the coefficients for current palatability.
Coefficients for current palatability are significantly more positive following a switch decision (z
=-3.05, p =.0011, Fig. 8B) and normalized regression coefficients in the late portion of the
session were significantly smaller (less positive) than those in the early portion of the session (z

=3.18, p=7.3e-4).
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328 Impact of palatability on transition probability

329 Thus far, our results describe sampling duration as a function of the palatabilities of the two
330 solutions. To fully understand the impact of palatability on choice dynamics, we also asked

331  whether the palatability of the current or alternative solution impacted the transition

332  probabilities between the solutions. A transition could be from a solution back to the same
333  solution, if following a bout of licking there is a pause then a return to the same solution.

334  Therefore, we are assessing the degree to which, following a pause in licking, the rat returns to
335 the same solution or switches to the alternative. As with measurements of bout durations, the
336  choice to return or switch could depend on both the palatability of the most recently sampled
337  (“current”) solution and that of the alternative.

338

339 To dissociate the contributing factors, we compared the transition probabilities between pairs
340 of solutions with either a common source (e.g. 0.01M -> 0.1M and 0.01M -> 1M) or a common
341 target (e.g. 0.01M -> 0.1M and 1M -> 0.1M). If the palatability of the current solution was to
342 influence transition probability, this influence would be reflected in a higher probability of

343  switching to a common target taste from a taste with a low palatability than from a taste with a
344  high palatability. Similarly, if alternative palatability was to impact transition probability, this
345  would be reflected in a higher probability of switching from a common source to a solution with
346  high palatability.

347

348 We find evidence that palatability of both the current and the alternative solution impacts the

349 transition probabilities (Fig. 8A-B). These results are further supported by a logistic regression
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model trained to predict switches based on the current and alternative palatability. In the
regression model, both current palatability (p = 4.89e-31, coefficient =-.948, 95% Cl = [-1.1 -
.78]) and alternative palatability (p = 3.15e-21, coefficient = .63, 95% Cl = [.5 .76]) are found to

be significant factors.
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Figure 8. Comparison of transition probabilities for transitions with a common source/target. A) Transition probabilities for
transitions with a common source (0.01M -> 0.1M and 0.01M -> 1M, 0.1M -> 0.01M and 0.1M -> 1M, 1M -> 0.01M and 1M ->
0.1M) reveal the influence of a memory of the alternative solution’s palatability. Ai) P(0.01M -> 0.1M) and P(0.01M -> 1M) are
not significantly different (paired two-tailed: z = 1.51, p =.13). Aii) P(0.1M -> 0.01M) is significantly higher than P(0.1M -> 1M)
(paired right-tailed: z = 3.73, p = 9.4e-5). Aiii) P(1M -> 0.01M) is significantly lower than P(1M -> 0.1M) (paired left-tailed: z = -
2.52, p = 5.8e-3). B) Transition probabilities for transitions with a common target (0.1M -> 0.01M and 1M -> 0.01M, 0.01M ->

0.1M and 1M -> 0.1M, 0.01M -> 1M and 0.1M -> 1M) reveal the influence of the last sampled solution’s palatability on switch
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363  probability. Bi) P(0.1M -> 0.01M) is significantly lower than P(1M -> 0.01M) (paired left-tailed: z = -3.63, p = 1.3e-4). Bii)

364  P(0.01M -> 0.1M) is significantly lower than P(IM -> 0.1M) (paired left-tailed: z = -4.09, p = 2.15e-5). Biii) P(0.01M -> 1M) is
365  significantly higher than P(0.1M -> 1M) (paired right-tailed: z = 2.43, p = 7.5e-3).

366 No evidence for memory across days

367 Lastly, we investigated whether rats held a bias for the first side they visited in a session based
368 on their experience the prior day. To do this, we counted the number of times rats first visited
369 the side they preferred (had the most licks at) on the prior day and compared this to the

370 number expected. Given a null hypothesis of no memory across days, the expected number is
371  given by the binomial distribution with p = g = 0.5. Our results are consistent with the null

372 hypothesis that rats did not carry a preference for side across days (p = .485,95% CI =

373 [424.547], Fig. 9).

374
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376 Figure 9. No evidence for preference across days. A) Histogram showing the fraction of times rats first sampled from the side

377 they preferred on the prior day. B) (blue) Probability density function for the total number of times (across all rats) that rats first
378 sampled from the side they preferred on the prior day which is given by the binomial distribution with N = 270, p = q = 0.5. (red

379 line) Total number of times rats first sampled from the preferred side from the prior day.

380 Comparison to spiking network models
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381 In our modeling study (Ksander et al., 2021) we found competition in the durations of an

382  activity state representing bout duration in response to alternating stimuli. The competition
383  arose from a slow synaptic depression in the model so we hypothesized that the competition
384  between successive stimuli would diminish over the timescale of recovery from that synaptic
385 depression. We predicted that the impact of the alternative stimulus on bout duration would,
386 therefore, be significantly lower, during a second or later successive bout at the same stimulus,
387 as compared to the first bout at that stimulus following a switch, just as seen in the behavioral
388 data (Figs. 5-7). Therefore, we adapted the stimulus protocol in our prior study such that

389 following any state transition indicating the end of a bout of sampling, the subsequent stimulus
390 presented was chosen randomly, with a 50% probability for each of the two stimuli being

391 compared in that preference test.

392 Our results are shown in Figure 10, in which we produced regression coefficients in the
393 same manner as Figs. 5-7 but based on the state durations arising from three preference tests
394  (the distinct pairs of three stimuli of different strengths, representing different palatability) for
395 each of two types of network. Figure 10A-C depicts the results of an “entice-to-stay” network in
396  which stimuli of greater palatability were modeled by increased excitatory stimulus to neurons
397 whose activity represented a “stay” state that enhanced bout duration. The results are

398 qualitatively identical to the behavioral data (Figs. 3 and 5-7) with the alternative stimulus

399 having a competitive impact on bout duration (a negative regression coefficient, Fig. 10A) but
400  with the impact diminished following a repeat bout (a “stay” transition, Fig. 10C) at the same
401  stimulus. On the other hand, the results of a “repel-to-leave” network shown (Fig. 10D-F) did

402  not match the behavioral data well. The asymmetry between the model networks arises
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403  because only in the “entice-to-stay” network does greater stimulus input correspond to longer
404  state durations, as needed to maximize the impact of synaptic depression.
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406 Figure 10. ‘Fast’ (‘entice-to-stay’) (A-C) but not ‘slow’ (‘repel-to-leave’) (D-F) model networks replicate rat behavior. A) As in Fig.
407 3B regression coefficients for predicting bout duration as a function of current and alternative palatability are shown for ‘fast’
408 networks. Similar to rats, coefficients for current palatability are significantly positive (right-tailed: z = 4.09, p 2.15e-5) and
409 coefficients for alternative palatability are significantly negative (left-tailed: z = -3.83, p = 6.38e-5). B) As for rats, palatability
410  coefficients for both stay (right-tailed: z = 4.09, p = 2.15e-5) and switch (right-tailed: z = 4.09, p = 2.15e-5) bouts were

411 significantly positive and are not significantly different between groups (paired two-tailed: z = -1.8, p = 0.07). C) As for rats,
412 alternative palatability coefficients for bouts following a stay decision were not significantly different from zero (two-tailed: z = -
413 1.28, p = 0.19) whereas coefficients for bouts following a switch decision are significantly negative (left-tailed: z = -4.06, p =
414 2.47e-5)). D) In contrast, ‘slow’ networks did not replicate the pattern of coefficients of rats. Coefficients for current palatability
415 were significantly positive (right-tailed: z = 4.09, p = 2.15e-5) but those for alternative palatability were not significantly

416  different from (two-tailed: z = 0.14, p = 0.88). E) Palatability coefficients following both stay (right-tailed: z = 4.09, p = 2.15e-5)
417 and switch (right-tailed: z = 4.09, p = 2.15e-5) bouts were significantly positive and coefficients for switch bouts were

418 significantly more positive than those for stay bouts (paired left-tailed: z = -2.53, p = 0.0057). F) Alternative palatability
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419 coefficients for both stay (two-tailed: z=1.57, p =.115) and switch (two-tailed: z = -0.73, p = 0.465) bouts were not significantly
420 different from 0. Alternative palatability coefficients for switch bouts were significantly lower than for stay bouts (paired right-

421 tailed: z = 2.89, p = 0.0019).

422 Discussion

423  Palatability is typically measured as the amount of a food or solution consumed. The amount
424  solution consumed by a rat, for example, is equal to the number of licks taken multiplied by the
425 mean amount consumed per lick. Given that the mean amount consumed per lick has been

426  shown to vary little across stimuli or time, we assume that is constant in this study and measure
427  palatability as the number of licks of a solution. Since rats sample a solution in clearly

428 demarcated bouts of high frequency (approximately 6 Hz) regular sampling, we can identify two
429  distinct factors that impact the total number of licks and hence the palatability: the duration of
430 the bouts and the total number of bouts. In theory, bout durations could be independent of a
431  stimulus such that its palatability is only evident in the total number of bouts. However, prior
432  work (Davis, 1996) has shown that the more palatable a stimulus, the longer the bouts, a result
433  which we recapture here. In a more novel direction, we have assessed how, in a preference
434  test, the palatability of one stimulus impacts the behavior of an animal at the alternative

435  stimulus. Our main finding is that the more palatable one stimulus the shorter the bouts of

436 licking at the alternative as compared to when that alternative is paired with a less palatable
437  stimulus.

438

439  The second factor determining the number of licks at a spout is the total number of times the

440 spout is visited. Therefore, we also analyzed the transition probability during preference tests,


https://doi.org/10.1101/2021.10.10.463786

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.10.463786; this version posted October 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

441  which indicates that after a bout of sampling from one lick spout how likely is an animal to

442  return to the same lick spout or to transition to the alternative. We find that the likelihood to
443  return increases with the palatability of the stimulus just tasted. In of itself such behavior would
444  produce competition in the total amount consumed, as it would produce more repeated bouts
445  at sources of high palatability, leading to fewer at an alternative. However, we also found that
446  following a pause in sampling at one lick spout memory of the alternative also impacted the
447  likelihood to return to the same spout, such that the more palatable the alternative, the less
448  likely to return. Thus, the choice of which spout to lick from is impacted by memory, which has
449  persisted beyond a single bout’s duration, of the contents of both lick spouts.

450

451  Our findings of the competitive interaction between stimuli on bout durations supports a

452  recent model (Ksander et al., 2021) in which the duration of a bout is given by the duration of a
453  particular state of activity in a neural circuit. In the model, noise fluctuations terminate states of
454  activity, leading to an exponential-like distribution of state durations, just as we find in the

455  behavioral data. Moreover, the impact of the well-established neural-circuit level process of
456  synaptic depression in the model leads to a competitive impact between successive stimuli,
457  such that following a highly palatable stimulus a subsequent bout duration is shorter than

458  otherwise expected. Since the underlying biological processes have a limited timescale, we

459  tested and found in the model that such a competitive impact on bout durations diminishes
460 over time and is much weaker for bouts following a return to a stimulus when the time passed

461  since the visit to the alternative has increased. Indeed, we find in our behavioral data a similar
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462  fact, with no impact of the alternative stimulus on durations of bouts of sampling that do not
463  directly follow a switch from that alternative stimulus.

464

465 When a food substance or taste stimulus is considered palatable of unpalatable, the implicit
466  suggestion is that palatability is a property of a substance to be ingested. However, in practice,
467  palatability is a measure of behavior—typically the total amount of a substance consumed—so
468 s inherently dependent on the state of an animal and the context in which the animal is

469  sampling the stimulus. In our study we find that even the rank order of palatability can be

470  altered depending on context. When a rat has two lick spouts available to it, both of which
471  contain the same solution, in accordance with prior work (Sadacca et al., 2012) we find rats lick
472  the spouts more often when the solution is 0.1M NaCl than when the solution is 0.01M NaCl
473  (Fig 1). Such a finding suggests that 0.1M NaCl is more palatable to rats than is 0.01M NaCl.
474  However, when one lick spout contains 0.1M NaCl and the other contains 0.01M NaCl, we find
475  rats lick more often at the spout containing 0.01M NaCl, suggesting a switch in relative

476  palatability and preference of the two salt solutions in the new context. Such a switch is

477  intriguing and its cause warrants further investigation. Fortunately, our findings in this paper on
478 the interactions between stimuli were robust to the switch. That is, whether we assumed 0.1M
479  NaCl was more or less palatable than 0.01M NaCl did not alter the findings on how the

480 palatability of the alternative stimulus impacted the behavior at a lick spout.

481

482  Our findings of a competitive interaction of palatability of bout durations of alternatives and

483  our model of the process contribute to the foraging literature, in which behavior is discussed
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484  historically in terms of the Marginal Value Theorem (Charnov, 1976). The theorem prescribes
485  optimal behavior in an environment with multiple sources, at each of which the rate of reward
486  diminishes with the time an animal spends at the source. Specifically, an animal should only
487  stay at a food source until its rate of reward has depleted to the mean rate of reward it would
488  achieve by moving from alternative source to alternative source and remaining the optimal

489 time at the alternative sources. Our behavioral findings and model are in qualitative accordance
490  with such behavior in that the more palatable an alternative (i.e., the greater the mean rate of
491 reward) the less time spent at a source while the reduction is ameliorated over time (the

492  greater the time between sources in foraging, the lower the mean rate of reward, so time spent
493  at a diminishing source increases). However, unlike in foraging studies, in preference tests the
494  potential rate of reward at a lick spout is constant, so if one spout contains more rewarding

495  solution than the other, the optimal behavior of an animal would be to stay at the more

496 rewarding spout as soon as it has sampled both. That the animals do not behave in such a

497  manner, but continue to sample even aversive stimuli many times, is either an indication of

498 limited memory duration (i.e., they forget what is in each spout) or a strong drive to explore in
499  case the environment changes.

500

501  Acknowledgements

502

503 We are grateful for support from NIH (NIDA) NRSA grant DA051155 to BB, NIH (NINDS) grant

504  NS104818 via the Brain Initiative to DBK and PM, and to the Swartz Foundation for support to


https://doi.org/10.1101/2021.10.10.463786

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.10.463786; this version posted October 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

505 JK. Computational resources were provided by the Brandeis HPCC which is partially supported
506 by the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC, DMR-2011846.

507

508 Methods

509 Behavioral apparatus

510 The preference test was carried outin 1’ x 1’ x 1’ custom acrylic chambers. Each chamber has 3
511  holes through which rats could lick a stainless steel solution spout. There is one hole on each of
512  the left, right, and back walls of the chamber. For this study, only the left and right sides ever
513  had a solution spout. In order to record licks, a custom circuit, based on a published design
514  (Hayar et al., 2006) was used. A small voltage was applied to the stainless steel floor of the

515 chamber such that when the rat licked one of the solution spouts, a voltage deflection

516 (measuring the water-metal junction potential) was recorded. A RaspberryPi was used to both
517  supply power to the floor and record licks using custom Python software.

518

519 Preference test

520 22 adult Long-Evans rats (14 female, 8 male) from Charles River were water deprived for 22
521  hours prior to the first habituation session. The preference test timeline consisted of 16 1 hour
522  sessions of which the first 2 were habituation sessions with only 1 bottle of dH20 available on
523  one side of the experimental chamber (the side was switched for the second habituation

524  session). Following each session, rats were given 1 hour of ad lib access to water in their home

525  cage such that they were deprived of water for 22 hours prior to each session. After the two


https://doi.org/10.1101/2021.10.10.463786

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.10.463786; this version posted October 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

526  habituation days, the first day of the preference test was always a session with 2 bottles of
527  dH20. This was followed by 6 consecutive days of pairings of 3 NaCl concentrations (0.01M,
528 0.1M, 1M) including self pairings. This was then repeated for a second week such that each rat
529  experienced 2 dH20 only sessions and 2 pairings of each combination of NaCl concentrations.
530 These concentrations were used because they had been previously measured to have different
531 palatabilities (Sadacca et al., 2012) covering both palatable and unpalatable (at least relative to
532  water) tastants.

533

534  Lick identification

535 Licks were identified via a semi-automated process using custom MATLAB software. A simple
536 threshold could not be used to identify licks because both licks and nose pokes were picked up
537 aslarge voltage deflections. Additionally, occasionally a rat would maintain contact with the lick
538 spout while licking resulting in a sustained voltage deflection on top of which licks could be
539 seen. As a result, we produced a dataset of hand-identified licks from the data of the first few
540 rats and used MATLAB’s neural network toolbox to train a bidirectional LSTM recurrent neural
541 network to predict the presence or absence of a lick at any point in time. These automatic

542  identifiers were then used as a first pass on all future data to capture presumptive licks, which
543  were then accepted/discarded by eye based on the stereotypical shape and timing of licks.

544  Lastly, a final pass over the data was made by eye to ensure that no licks were missed by the
545  neural network.

546

547  Lick bout identification


https://doi.org/10.1101/2021.10.10.463786

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.10.463786; this version posted October 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

548  Following identification, licks were grouped together into ‘bouts’ based on 3 different inter-lick
549 interval (ILI) criteria. That is, we repeated all analyses described below using bouts defined by 3
550 different ILI criteria to determine how our results depended on this somewhat subjective

551 threshold. Based on previous studies of licking dynamics in rats (Davis, 1996) and our own

552  investigation of ILI distributions, we grouped together licks with 200ms or 500ms ILIs into lick
553  ‘bouts’ (also referred to as lick clusters). We also used a more nuanced criterion which we

554  believe better represents active engagement with a lick spout (indicating an ongoing ‘stay’

555 decision). This criterion consisted of grouping together adjacent licks in which there was no
556  period >2s between them in which there was no activity on the recording channel. This means
557 thatif the rat nose-poked the solution spout in between licks such that the ILI was >2s but there
558  was intervening activity on the channel such that there was no period of >2s of silence, then
559 these licks would be grouped together. We included this criterion since we are primarily

560 concerned in this study with the rats’ decisions to leave a solution spout and not on the

561  microstructure of their licking behavior.

562

563  Measurement of palatability

564  To measure the palatability of each concentration of NaCl, we analyzed data exclusively from
565  sessions where a solution was paired with itself. The palatabilities were defined relative to

566  water such that the relative palatability of solution X was:

Nlicks (X)

567 Palatability(X) = ———————
Nlicks (dHZ 0)

568  where Nj;.xs(X) is the total number of licks to tastant X across both sessions when X was paired

569  with itself. Njjs(H20) is the same except for H20 only sessions.
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570

571 Linear and logistic regression models

572  To assess the impact of the palatability of the currently sampled or alternative solution on the
573  current bout duration, we performed multilinear regressions using MATLAB’s regress function
574  to predict bout duration with both palatabilities as factors. This was done for all bouts together
575 as well as for subsets of bouts depending on if they were ‘early’ or ‘late’ in a session or

576  following a stay or switch decision.

577

578  As one method of measuring the impact of current/alternative palatability on switch

579  probability, we performed logistic regression using MATLAB's fitglm function to predict a switch
580 (0 or 1) with the last sampled solution’s and alternative solution’s palatabilities as factors.

581

582  Separating early and late bouts

583  We separated bouts for each session on a per-animal basis into ‘early’ or ‘late’ bouts by

584  analyzing the 2" derivative of the cumulative distribution of lick times across all sessions. First,
585 asmoothed probability density function of lick onset times was computed using MATLAB’s

586  ksdensity function with a bandwidth of 200s (controlling the amount of smoothing). The

587  cumulative density function of this pdf was then computed and its 2"? derivatives

588  approximated. The time point with the minimum 2"¢ derivative was then used as the divider
589  between early and late bouts.

590

591  Statistical tests
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592  Unless otherwise stated, all z and p-values reported in this paper are from the Wilcoxon signed
593  rank test performed using MATLAB’s signrank function. Tests of whether the median of a

594  distribution is significantly positive/negative utilized the right/left-tailed test respectively. Tests
595  of differences between distributions were done using a paired test where data points were

596 paired by animal or, in the case of the spiking model, points were paired by network.

597

598  Simulation protocol

599  Simulations were carried out using a recently published model (Ksander et al., 2021). In brief,
600 leaky integrate-and-fire neurons were designated excitatory or inhibitory and assigned either to
601 agroup whose activity promoted a continuous decision of “Stay” at the current stimulus or a
602  group whose activity promoted a decision to “Leave” the stimulus. In the original paper the
603  “Leave” group of cells was denoted “Switch” as we had assumed that leaving one stimulus

604  meant the animal had to switch to the alternative. We produced new simulations for this paper
605 to investigate consequences of a “Return” to the same stimulus following a “Leave” decision
606 that ended a bout.

607

608 Connections between types of neurons were arranged in a manner of self-excitation and cross-
609 inhibition such that activity of one type of neurons (e.g., representing “Stay”) could maintain
610 itself while at the same time suppressing activity of the other type of neurons (e.g.,

611 representing “Leave”). Activity of the “Stay” neurons while suppressing the “Leave” neurons
612  would represent a “Stay” state in which the animal continues to sample a stimulus. Noise

613  fluctuations would irregularly cause a transition from such a “Stay” state to a “Leave” state. We
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614  would ensure the “Leave” state was transient by reactivating “Stay” neurons to represent the
615 animal’s commencement of the next sampling bout. As in our behavioral data, such noise-
616 induced transitions to terminate a bout of sampling resulted in an exponential-like distribution
617  of bout durations.

618

619  We assessed two types of model, in one type, the “entice-to-stay” model, the mean bout
620 durations were determined by stimulus-dependent input to excitatory neurons in the “Stay”
621  pool, such that the more palatable the represented stimulus, the greater the input. In the other
622  type, the “repel-to-leave” model, the mean bout durations were determined by stimulus-
623 dependent input to excitatory neurons in the “Leave” pool, such that the more palatable the
624  represented stimulus, the lower the input. We also test both types of model in this work.

625

626  All synapses in the model include synaptic depression, comprising a fast (300 ms) process
627 representing docking of new vesicles after vesicle release and a slow (7 sec) process

628 representing replenishment of a reserve pool of vesicles. Synaptic depression is key in

629  producing the competitive interaction across time as after a period of strong activity the

630  connections that sustain activity are weakened, impacting the response of the network to a
631  subsequent stimulus, until recovery of the supply of vesicles is complete.

632

633  Properties of model neurons

634  Individual neurons were simulated with an exponential leaky integrate-and-fire model

635 (Fourcaud-Trocmé et al., 2003) following the equation:
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V. —V
de El - Vm + Athexp (mThth)
636 Cm dt = R + Gsyn SI (Erevl - Vm) + Gsyn SE (ErevE - Vm)
m

637 + Grep (B = Vi) + Gext,(Erev, = Vin) + Gexty (Erevg = Vin)

638  where 1}, is the membrane potential, C,, is the total membrane capacitance, E; is the leak
639  potential, R,, is the total membrane resistance, Ay, is the spiking range, V;;, is the spiking

640  threshold, S is the synaptic input variable, Gy, and E,., are the maximal conductance and
641  reversal potential for synaptic connections, G is the dynamic refractory conductance, Ey is
642  the potassium reversal potential, and G,,; is the input conductance. The “E” and “I” subscripts
643  denote the variables specific to excitatory and inhibitory channels, respectively (e.g. Sg and
644  E,.,_ are the synaptic input and reversal variables for excitatory channels; S; and E,..,,, are the
645  corresponding inhibitory variables). This equation simulates the neuron’s membrane potential
646  until 1, > Vpike , at which point the neuron spikes.

647

648  When a neuron spikes, V,, is set to the V,..s.; value. Additionally, the neuron’s refractory

649  conductance, synaptic output, s, and synaptic depression (noted as D) are updated according

650 to the equations:

651 Gref i Gref + AGrt—zf
652 S+ 5+ prDrase (1 —5)
653 Dfast = Dfast(1 - pR)

654  where AG,.y is the increase in refractory conductance, and py is the vesicle release probability
655  following a spike.

656
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657 Inthe timestep immediately following a spike, the neuron’s membrane potential continues to
658 follow the exponential leaky integrate-and-fire model equation. In this equation the separate
659  excitatory (Sg ;) and inhibitory (S; ;) synaptic inputs for cell i are obtained from the sum of all

660  presynaptic outputs multiplied by the corresponding connection strengths, W;;, from neurons j

jr
661 (see Network architecture and connections):
662 Si = Z Wiij,
J
663  each of which decay with the appropriate (excitatory or inhibitory) synaptic gating time

664  constant t5 according to:

dSi Si
665 —_—=——
dt Tg

666  Likewise, refractory conductance decays with the time constant 7,..r according to:

dGref - _ Gref
dt Tref

667

668  The G,,; input conductance serves as both noisy-background and stimulus inputs in the same
669  manner. Inputs were modeled as Poisson spike trains with rates 7,,;se aNd Tstimuius » Which
670 produce input spikes (from all sources) at timepoints {tsp}. Please note, the noisy-background
671  includes both excitatory and inhibitory spiking input (included in Gy, and Gey.,. , respectively);
672  the r,,ise Parameter specifies the rate for both excitatory and inhibitory background noise. The
673  input conductance values for a given timepoint, t, are updated as:

674 Goxt P Goxr + AG oy 8(t — tsp)

675  where the conductance increases by AG,,; at the time of each input spike. The input

676  conductance otherwise decays with the time constant t,,; according to:
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dGext - _ Gext

677
dt Toxt

678

679  The cellular parameters with values specific to excitatory neurons (e.g. that differ from

680 inhibitory values) are: E,..,,, = 0 mV, 7, = 50 ms, and 7., = 3.5 ms. The complementary
681  values for inhibitory neurons are: E..,, = =70 mV, 7y, = 10 ms, and 7.y, = 2 ms. The

682  remaining parameters applicable to both excitatory and inhibitory neurons are: Gy, = 10 1S,
683 pr =1, Treee =300ms, Tgow = 7S, Psiow = -5, Ep = =70mV , Ex = =80mV, Vyeser =
684 —80mV, R, =100 M2, Cp, = 100 pF, Vepipe = 20 MV, AGpyr = 1 1S, Vi, = =50 mV,
685 Ay =2mV, T = 25ms, and AGy.; = 12.5 nS . The Poisson spike-train parameters 15,,;s¢
686  and rgimuius are described in the next section. Neurons were simulated with a simulation

687 timestep dt = .1 ms.

688

689  Synaptic depression

690 We modeled synaptic depression using two separate timescales, noted in the previous spike-
691  update equations as Dy, and Dyg.. These two variables reflect, respectively, the fraction of
692  the maximum number of vesicles available in the reserve pool and the release-ready pool.
693  Following a spike, the variables recover to a value of one with different timescales, because
694  vesicles regenerate and are replenished slowly in the reserve pool, but may dock and become
695 release-ready much more quickly once available in the reserve pool

696
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697  Specifically, Dy, represents the ratio of currently available reserve-pool vesicles out of the

698  maximum possible, thatis Dg,,, = 11:’]”°°l. These dock quickly at empty docking sites on the

max

699  timescale Ts4q, but are replaced slowly on the timescale 7g,,,. Drqs: represents the ratio of

700  docked vesicles out of total docking sites, that is Dyqe = % . We also incorporate the

sites

701  constant parameter, f, = 0.05, which is equal to the ratio of the number of docking sites to the

. . ) Ns; .
702  maximum size of the reserve pool of vesicles, f, = NL”S Only docked vesicles can be released

max

703  immediately following a spike, such that upon each spike we update Drq5¢ = Drgse(1 — pR)
704  where pjy is the vesicle release probability.

705

706  During sustained spiking, the fast-docking can maintain a firing-rate dependent supply of

707  docked vesicles until the reserve pool depletes. Vesicles dock at empty sites according to:

deast _ (Dslow - Dfast)

708
dt Tfast

709  Reserve-pool vesicles fill the empty docking sites on the fast timescale 7544.. On the other hand,

710  the reserve-pool regenerates much more slowly according to:

711 stlow — (1 - Dslow) _ fD (Dslow - Dfast)

dt Tsiow Tf ast

712 The first term represents the reserve-pool vesicle regeneration on timescale 7,,,. The second

D -D
713 term —fj M accounts for the vesicles lost due to docking.
fast

714
715  Our model reflects the empirical evidence showing the effects of synaptic-depression at short

716  timescales on the order of milliseconds, and longer timescales on the order of seconds (Abbott
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717  etal., 1997; Varela et al., 1997); depression timescales on the order of minutes have even

718  reported in non-mammalian animals (Tabak et al., 2000). Additional, recent evidence (Kusick et
719  al., 2020) directly supports our fast-depression mechanism where available vesicles quickly refill
720  empty docking sites. Our model provides a coherent mechanism for both fast-acting and long-
721  lasting synaptic depression effects.

722

723  Network architecture and connections

724  Each network consists of 250 individual neurons, split into two populations of 100 excitatory
725  cells (i. e., “stay” and “switch” populations, Estay and Eswitch) and two populations of 25 inhibitory
726  cells (lstay and lswitch). For each pair of connected populations (or for self-connected excitatory
727  populations) pairs of cells were connected probabilistically with a probability,

728  P(connection) = .5. The strength of connections was symmetric across “stay” and “switch”
729  populations but depended on whether presynaptic or postsynaptic cells were excitatory or

730 inhibitory, as indicated in Table 1.

731

732  Code Availability

733  The code used to simulate our model is freely available online at

734  https://github.com/johnksander/naturalistic-decision-making

735

736 Table 1. Model neuron parameters.

Name Description value
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Erev

Vreset

Vspike

Text

Gsyn
Tfast

Tslow
Pr

fo

Dfast

Dslow

AGex:

Reversal potential

Leak potential
Potassium potential
Membrane resistance

Membrane capacity

Synaptic gating timescale

Reset membrane potential

Spike threshold

noisy-background conductance timescale

Synaptic max conductance
Fast depression timescale

Slow depression timescale
Vesicle release probability

Ratio of max docked vesicles to max reserve vesicles

Ratio of docked vesicles out of max possible

Ratio of reserve- vesicles out of max possible

Conductance step-increase to external input spike

exponential spiking-term threshold

Excitatory cells: 0 mV
Inhibitory cells:
=70 mV
—-70 mV
—-80mV
100 M0
100 pF
Excitatory cells: 50 ms
Inhibitory cells: 10 ms
—-80mV
20 mV
Excitatory cells: 3.5 ms
Inhibitory cells: 2 ms
10 nS
300 ms

7s

.05

N docked
Nsites

Npool

Nmax

1nS

—-50mV
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A, | spiking range 2mV
Tref | Refractory conductance timescale 25ms
AG,.s  Step change in refractory conductance 12.5nS
dt Simulation timestep .1ms

A Model summary
Populations Stay: 1 excitatory, 1 inhibitory

Leave: 1 excitatory, 1 inhibitory

Connectivity Within-pool (stay or leave): I-to-E and recurrent E-to-E

Cross-pool (stay-to-leave or leave-to-stay): E-to-I

Neuron model Exponential Leaky Integrate and Fire (ELIF) with dynamic refractory
conductance

Synapse model Conductance based, step increase followed by exponential decay

Plasticity Depression with two timescales

Input Noisy background input: fixed-rate Poisson spike trains to all cells

Stimuli: Poisson spike trains to E-stay and E-leave cells

Measurements Spike trains, activity state-durations, connection strengths

B Populations
Name Elements Size
E-stay ELIF neurons 100

I-stay ELIF neurons 25
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E-leave ELIF neurons 100

I-leave ELIF neurons 25

Noisy background input  Poisson trains 500

Aversive stimulus Poisson trains 100

Hedonic stimulus Poisson trains 100

739
C Connectivity
Name Source Target Pattern
Random, p = .5, model-dependent fixed weight:

E-stay I-leave

E-to-I ‘Entice’ network 0.0909
E-leave  I-stay

‘Repel’ network 0.4242
Random, p = .5, model-dependent weight:

|-stay E-stay

I-to-E ‘Entice’ network 9.6192
I-leave E-leave

‘Repel’ network 9.4939

E-stay, E-stay, E-

E-to-E Random, p = .5, fixed weight, WEE = 0.0405
E-leave leave

740

D Neuron and Synapse Model
Name LIF neuron
Dynamic leaky integrate-and-fire with dynamic refractory

Type
conductance
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V - Vth_
v, E;, — Vi, + Agpexp (—mAth )

Cm dt = R, + Gsyn ) (Erevl - Vm)

+ Gsyn ' SE (ErevE - Vm) + Gref (EK - Vm) + Gextl (Erevl - Vm)

+ GextE(ErevE - Vm)

Subthreshold
dynamics
dGref _ Gref
dt Tref
dGext - _ Gext
dt Toxt
If Vm > Vspike:
1. Emit spike with timestamp t
Spiking
2. Gref L Gref + AGTef
3' Vm i Vreset
Si = Z} WUS]
Synapse

following a spike by neuron i:

S; = S; + PrDfase (1 —s;)
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Dfast,i = Dfast,i(1 - pR)

Between spikes:

dSi Si

at 15

deast,i _ (Dslow,i - Dfast,i)
dt Tfast

stlow,i _ (1 - Dslow,i) _ f (Dslow,i - Dfast,i)

dt Tslow b Trast
741
F Input
Type Description

All external Input spikes increase conductance: Goyt = Goyr + B - AG gyt
spiking input Conductance G,,; decays:

Gyt _ Gext

dt Text

Background One excitatory spike-train per neuron, and one inhibitory spike-
noisy input train per neuron (all 1540 Hz Poisson spike-trains).
Stimulus One excitatory spike-train per neuron in the E-Stay pool (“Entice”

network) or the E-Leave pool (“Repel” network). In any simulated
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preference test two distinct stimulus strengths were used from the
following sets of three:

“Entice” network stimulus strengths of increasing palatability were
94.35Hz, 377.4Hz, 660.45Hz.

“Repel” network stimulus strengths of increasing palatability were

198.62Hz, 113.5Hz, 28.35Hz.

742

743
G Measurements
Active state: when mean difference between E-stay and E-leave excitatory synaptic
gating exceeds .02 for 50ms (consecutively).
State duration/sampling duration: time between state transitions (i.e. transitioning
from E-stay to E-leave active state).

744

745  Network states and stimuli

746 A network’s active state was evaluated by comparing the mean values of synaptic output, sg,
747  averaged across all excitatory cells in each of the two excitatory populations. Specifically, when
748  the difference between the mean output of the previously less active excitatory population
749  exceeded that of the previously more active excitatory population by a threshold of 0.02

750  consistently for 50ms, we recorded a state change.

751

752  We did not simulate the animal’s behavior in between bouts of sampling a stimulus. Once the

753  excitatory neurons in the “switch” population (E-switch cells) were recorded as more active
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754  than those in the “stay” population, using the threshold mentioned above, we removed the
755  stimulus input to the network. 100 ms later, we induced a subsequent transition back to the
756  “stay” state to represent the animal initiating a new bout of stimulus sampling. The transition
757  back to sampling was accomplished by halving the noisy background input to E-switch cells until
758 the network transitioned again to the “stay” state. At all other times in simulations, the noisy
759  background input remained constant. Once a transition to the “stay” state was recorded (by
760  excitatory cells in the “stay” population being more active than those in the “switch”

761  population) input stimulus was applied to indicate the next bout of sampling. The choice of
762  subsequent next stimulus was probabilistic, with 50% probability of each of the pair being

763  compared in the simulated preference test. Individual taste preference task simulations lasted
764 1500 seconds total. Each simulation compared sampling bout durations in response to two
765  stimuli each with a fixed value across the session. For a given network the stimulus inputs

766  targeted the same population for all sessions.

767 To produce linear regression coefficients in Figure 10, we regressed the log of the state
768  duration as a function of the stimulus strengths used, because state durations depend

769  exponentially on stimulus strengths in our model, which is based on noise-induced transitions
770  between attractor states (Kramers, 1940; Miller & Wang, 2006).

771
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