
One of the most common methods of seeing atoms is 
by scanning transmission electron microscopy (STEM). 
In STEM, images are generated by scanning a small 
probe, formed by focusing an electron beam, across a 
thin sample1. The probe is focused by the objective lens, 
usually combined with other lenses designed to reduce  
the aberrations of the probe- forming optics. Scan coils, 
which generate a rapidly changing field, are used to 
scan the beam over the sample. Any signal that varies 
with probe position can be detected and used to form 
an image. A simple schematic of a STEM microscope 
and various possible detector configurations is shown in 
FIG. 1. Some detector configurations can be used in par-
allel, which is advantageous because it allows multiple, 
complementary signals to be directly compared, pixel by 
pixel, both for imaging of simultaneous coherent imaging  
and incoherent imaging signals and for spectroscopic analy-
sis such as X- ray and light emission and electron energy 
loss spectroscopy (EELS). The detected intensity is plot-
ted on a monitor synchronized with the beam scanning 
to form images. Because the distribution of transmitted 
and/or scattered electrons in the detector plane depends 
on the specimen’s thickness, composition and structure, 
the variation of detected intensity across the image tells 

us how the projected thickness, composition, and/or 
structure of the sample changes from point to point. The 
spatial resolution is effectively determined by the size of 
the electron probe. Today, the development of aberration 
correction technology for electron optics allows us to 
narrow the electron probe routinely to a full width at  
half maximum (FWHM) of 50 pm or less, meaning that 
the spatial resolution of aberration- corrected STEM  
has become smaller than the size of a hydrogen atom, 
whose Bohr radius is approximately 53 pm. In a STEM 
image, the image contrast and the information it con-
tains about the specimen depends on which regions  
of the detector plane we record from and how we detect 
the electrons by the post- specimen detectors. For com-
pleteness, a brief history of STEM is provided in the 
Supplementary information.

The most common STEM measurement is to 
detect the electrons scattered to high angles (substan-
tially beyond the probe- forming aperture radius) by a 
doughnut- shaped detector. Called annular dark- field 
(ADF) imaging, this method produces images that are 
incoherent — essentially, all probed atoms contrib-
ute independently and additively to the total signal 
and interference effects between signals arising from 

Aberration
An imperfection in the electron 
optics of a microscope.

Coherent imaging
Measurements where the  
local contrast is dominated  
by the phase alignment  
of the electron wavefronts: 
constructive interference  
(in phase) leads to higher 
signals and destructive 
inference (out of phase) leads 
to lower signals.
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different atoms are suppressed. This feature enables us 
directly and robustly to observe atomic columns and 
single atoms in materials and devices. Moreover, since 
the integrated intensity of high- angle scattered electrons 
varies approximately with the square of the atomic num-
ber Z of the atoms under the probe, Z- contrast imaging 
can visualize the atoms of heavier elements in a crys-
talline lattice with high sensitivity. The signal from the 
lighter atoms in a crystalline lattice is generally much 
lower, often making detection difficult. To increase 
the atomic signal and image light monolayer materials 
such as graphene, the inner angle of the detector can 
be decreased. This frequently used detection method 
is called annular bright- field (ABF) imaging. The ABF 
mode uses a doughnut- shaped detector positioned 
to collect electrons scattered inside the angular range 
defined by the incident probe (often referred to as the 
bright- field disk) and can directly visualize light atoms 
even in the presence of heavy atoms. Since ADF, ABF 
and other types of image can be obtained simultaneously 
from exactly the same sample positions by using either 
many separate segmented detectors or a pixel- type 
detector (FIG. 1), both structural and chemical informa-
tion at atomic dimensions can be obtained by STEM. 
When combining imaging with spectroscopic tech-
niques, STEM allows us to extract multiple and comple-
mentary forms of information about a specimen from 
a very localized volume, including its atomic dimen-
sions. For example, imaging can be combined with 
EELS, where each probe position records the energy 
spectrum of scattered electrons to measure inelastic 
scattering inside the specimen, and energy- dispersive 
X- ray spectroscopy (EDS or EDX), which measures 
X- rays emitted as a result of the electron probe inter-
acting with the specimen, to simultaneously obtain a 
wealth of information about the material from the same 
sample positions.

In recent years, additional imaging modes, such 
as differential phase contrast and four- dimensional 
(4D)- STEM, as discussed below, have become available 
with advances in electron detectors, especially pixelated 
and multi- segmented detectors, which allow spatially 
resolved probing of electric fields at atomic resolution 
and magnetic fields at nanoscale resolution2–4. Pixellated 
detectors allow a snapshot of electrons scattered through 
a range of angles for each probe position. This enables 
the detector configuration, for example ABF, ADF or 
even various multi- segmented configurations, to be 
selected after the data have been collected, with obvious 
advantage of selecting the imaging mode that is optimal 
for the sample without the need to do additional experi-
mentation. They also permit special configurations to 
be selected, such as for ptychography5. Increasing detec-
tor speeds offer significant advantages for low- dose 
imaging compared with conventional phase contrast 
imaging. Electric- and magnetic- field imaging also 
benefits from fast pixelated detectors. Improvements 
in aberration- correction and spatial coherence have 
led to increasingly large probe- forming apertures that 
enhance depth resolution to the nanometre scale, allow-
ing optical sectioning and yielding two- dimensional 
(2D) views of the sample at atomic resolution and at 
different depths6–10. In the future, optical sectioning by 
using even larger probe- forming apertures could yield 
atomic resolution as a function of depth, albeit with 
some interpretative complexity11,12. The more frequently 
used tilt series tomography has already achieved atomic 
resolution in all three dimensions13, and combined 
approaches have also been proposed14–16. Spectroscopy 
has also undergone a revolution in recent years with 
improved monochromator and electron emitter designs 
that increase energy resolution to the millielectronvolt 
level17, allowing both phonon spectroscopy and direct 
measurement of sample temperature18.

The rapid advancement in STEM imaging and spec-
troscopy raises issues such as how to explore multi-
dimensional datasets using a human operator and 
what types of quantitative information can be obtained 
from the data measured. Some questions include what 
material- specific information can be obtained from 
microscopy data and at what level of confidence, for 
example when determining atomic coordinates from 
STEM or scattering potentials from 4D- STEM; how 
the imaging system affects material- specific measure-
ments; and whether material- specific measurements 
can be improved with better knowledge of the system 
(such as knowing the beam parameters, the resolution 
function, or fully modelling the imaging system) and 
knowledge of a material’s phase, structure and com-
position. Questions remain about whether we can use 
material- specific information with uncertainties deter-
mined by incomplete knowledge of the imaging system 
or intrinsic limitations to infer physics and chemistry. 
A common approach is the use of correlative models, 
where the variation of observables is compared. Without 
an understanding of the physical mechanisms involved, 
observed correlations do not necessarily indicate a caus-
ative relationship between the observed parameters. 
An alternative approach is to use generative statistical 
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Incoherent imaging
When the coherence length  
of the electron waves is smaller 
than the resolution element  
of the measurement, the total 
signal is given incoherently by 
the sum of individual electron 
wavefunction intensities, and 
the relative phase of these 
wavefronts does not affect the 
measured intensity.

Contrast
The spatial variation of 
intensity.

Z- contrast imaging
A scanning transmission 
electron microscopy- high- angle 
annular dark- field imaging 
method, where the image 
contrast scales roughly 
monotonically with the atomic 
number Z of the atom(s) being 
imaged, approximately as Z1.7.

Ptychography
A method of generating images 
from many coherent diffraction 
patterns formed at different 
probe positions in the STEM. It 
is also widely used in X- ray 
scattering experiments.

Tilt series tomography
By tilting the specimen and 
recording projected images  
at different angles, computer 
algorithms can be used to 
reconstruct the 3D sample 
structure.
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models, which model the joint probability distribution 
between the observable variables and the target variables. 
The aim of generative statistical models is the recovery of 
generative physics such as force fields, exchange integrals 
and other parameters. An example of a deep generative 
model is the variational auto encoder (VAE), which we 
discuss in detail below. The question also remains as to 
whether correlative or causative material- specific infor-
mation can be used to reconstruct the behaviour of a 
material in a broad parameter space such as, for example, 
phase diagrams of different temperatures and concentra-
tions, and finally to determine how the reliability of such 
predictions depends on the position in the parameter 
space. Similarly, we can harness the data stream from the 
microscope to engender real- time feedback, for exam-
ple for automated experimentation and nanometre- and 
atomic- scale matter manipulation.

Machine learning (ML) is becoming integral to 
answering these questions. In FIG. 1, we illustrate a pos-
sible workflow for ML analysis of experimental data as 
they are acquired. The first component is a local com-
puter connected directly to the microscope acquisi-
tion computer, often referred to as an edge computer.  

This computer downloads the data from the micro-
scope computer and carries out initial processing of 
the data to allow feature extraction and quantification 
of the datasets, usually using pretrained models. This 
direct connection is required because of the size of the 
datasets usually acquired, especially 4D- STEM datasets. 
The edge computer is also connected to the local net-
work and via this to the internet. This allows access to 
web- based resources such as online storage and Google 
Colab. However, the slower bandwidth provided by 
even commercial internet connections will be a bottle-
neck preventing the rapid retraining of models based on 
new datasets. The edge computer can also be connected 
via the local network to high- performance computing 
facilities. Here the data transfer will be rapid, but the 
calculations may be time- consuming. These simula-
tions may include structure inversion to determine the 
scattering potential, structural relaxations using density 
functional theory (DFT) or molecular dynamics or the 
determination of structural changes associated with 
quantum phenomena. Finally, the edge computer can 
use the analysis it made of the initial results to adjust the 
microscope parameters. This must be done rapidly to 
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Fig. 1 | STEM as a quantitative tool. Schematic of a scanning transmission 
electron microscopy (STEM) microscope with different detector configur-
ations. In STEM, the probe is an image of the source focused onto the  
sample, which is scanned across the specimen. Here we show the source at 
the bottom of the column, which is typical of VG and Nion micro scopes, but 
most manufacturers place the source at the top of the column. The detec-
tor plane is in diffraction space, and multiple detectors or a pixelated  
detector can be used as in four- dimensional (4D)- STEM. Adoption of 

machine learning (ML) methods will allow a transition from qualitative  
imaging of materials, where only features of interest are extracted, towards 
a more quantitative tool that can yield information on the structural and 
electronic phenomena, collective excitations and their dispersions,  
and magnetic and spin effects. In- line ML methods further open up path-
ways towards automated tuning and image optimization, automated explo-
ration and discovery, and electron beam modification and atom-by-atom 
assembly. EELS, electron energy loss spectroscopy.

  3NATURE REVIEWS | METHODS PRIMERS | Article citation ID:            (2022) 2:11 

PR IMER

0123456789();: 



avoid specimen drift and other microscope instabilities. 
This will require the development of rapid algorithms 
and the ability to interact directly with the microscope’s 
operating software. Multivariate statistical methods 
have become a technique of choice for visualizing multi-
dimensional hyperspectral datasets19–21. Deep neural 
networks allow for robust image analysis with signifi-
cant benefits for automatic location and classification of 
defects22,23. We may soon see a self- driving microscope24, 
potentially integrated with synthesis and computation 
to develop new materials. The microscope may even be 
able to place dopants into predetermined locations for 
an ultimate atom- by- atom assembly of materials25–27.  
For some common ML approaches, see BOX 1.

In this Primer, we first discuss the fundamental 
principles of imaging and spectroscopy in STEM for 
structural imaging, EELS and its momentum- resolved 
modalities and 4D- STEM, and we highlight the need for 
ML methods as a way to analyse emerging multidimen-
sional datasets. A more detailed description of modern 
STEM theory and experimentation can be found else-
where28. We then discuss the quantification of structural 
STEM data in terms of atomic positions and the insights 
it yields into the physics and chemistry of materials. 
We emphasize the novel opportunities enabled by the 
synergy of correlative ML methods and physics- based 
ML and STEM as a way to link observations in STEM 
experiments to generative physical models of materials 
behaviour. Finally, we discuss the associated challenges 
and scientific infrastructural needs of implementing ML 
with STEM before looking ahead to the requirements 
for open- source software and data sharing within the 
community to facilitate the application of ML methods 
to STEM data.

Experimentation
In this section, we briefly outline the major components 
of a STEM microscope, with an emphasis on the parts we 
believe are likely to be most relevant for ML.

STEM fundamentals
A STEM microscope is closely related to both a conven-
tional transmission microscope and to a scanning elec-
tron microscope. A beam of electrons is extracted from 
a source, also called a gun or a tip, and is accelerated  
by a high voltage, typically between 30 kV and 300 kV.  

To avoid the beam colliding with gas molecules, the inte-
rior of the microscope has to be under high vacuum. 
Much of the support equipment surrounding a modern 
STEM microscope will be associated with maintaining 
the vacuum, the high voltage and other power supplies. 
In a modern STEM microscope, the ability to image 
single atoms places extreme requirements on the clean-
liness of the vacuum system and sample in a similar way 
to conventional surface science methods29–31. A dedi-
cated sample holder is needed to position and tilt the 
sample, which is inserted into the microscope through  
an airlock.

Electron lenses, which are typically round electro-
magnets that generate an intense field on the beam axis, 
are used to shape the electron beam because electrons are  
charged particles affected by electric and magnetic 
fields. As seen in FIG. 1, a series of condenser lenses first 
shape and demagnify the beam of electrons. The beam 
is then converged onto the sample by an objective lens  
to form a probe. The final size of the probe is limited 
by diffraction and by the aberrations of the electron 
lenses. The diffraction limit32 depends on the conver-
gence angle of the probe and the De Broglie wavelength 
of the electrons, which is determined by the acceler-
ating voltage. As in optics, a larger convergence angle 
(which is equivalent to a larger probe- forming aperture) 
corresponds to a finer resolution. However, unlike in 
conventional light optics, where, in principle, arbitrary 
lens shapes may be aberration- free, conventional round 
electron lenses always have some aberrations33. These 
aberrations become worse at higher convergence angles, 
which limits the largest aperture size that can be used. 
Reducing or eliminating these aberrations via aberra-
tion correction has been an enduring challenge in elec-
tron microscopy (see REF.34 for a comprehensive history 
of aberration correction). The first successful modern 
aberration- correctors in STEM35,36 and in transmission 
electron microscopy (TEM)37–40 saw broad uptake during 
the early 2000s41–43. The most relevant aspect of these 
correctors for the present Primer is that they depart from 
rotational symmetry by using non- round lenses and 
consist of multiple elements, which makes them com-
plicated to use. The development of advanced computer 
controls to measure the aberrations and optimize their 
conditions is therefore an essential part of the operation 
of these systems35. With careful optimization of the lens 
settings, the probe size at the sample can now be about 
the size of an atom.

A series of projector lenses transfers the electrons that 
are transmitted through the sample to various detectors 
or to an EELS spectrometer. The intensity measured by 
the detectors, which is equivalent to the number of elec-
trons hitting the detectors, forms images as a function 
of the probe position. This means that the image points 
are acquired in series over time and a variety of detectors 
can be used to record different signals for each probe 
position. We note that the STEM mode of operation is 
different from a conventional TEM, in which a larger 
sample area is continuously illuminated by the beam and 
the projector lenses magnify the image of the sample.

The electrons scattered out to high angles strongly 
depend on the atomic number Z of the elements and 

Box 1 | Common machine learning approaches

Convolutional neural networks: a deep neural network with an input layer, hidden 
layers and an output layer. Usually used for 2D images, they allow a computer to classify 
and discover patterns in an input image.

Bayesian optimization: a method for finding the global minimum of a function that is 
expensive to evaluate and for which the gradient is unknown.

Reinforcement learning: a machine learning method where an agent uses trial and 
error to learn from its previous actions. The reward function is supplied by the 
programmer.

Manifold learning: a method that transforms high- dimensional data to a 
lower- dimensional space.

Curiosity- based learning: a reinforcement learning method where the agent builds its 
own reward function.

Deep kernel learning: a method combining neural networks with uncertainty 
estimates using Gaussian processes.
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the signal recorded on a high- angle annular dark- field 
(HAADF) detector is known as a Z- contrast image. The 
benefit of the HAADF mode is that it allows relatively 
simple image interpretation to a good approximation. In 
many cases, the bright spots on a Z- contrast image relate 
to the positions of the atoms and spot intensity relates to 
atomic number in an intuitive way. Finding atomic posi-
tions therefore depends on locating local maxima and 
image intensity provides clues as to the number of atoms 
or their atomic numbers. This simplicity is particularly 
convenient for ML because initial testing can often be 
done with very simplified models and training data can 
typically be classified by human operators.

A critical aspect of STEM experiments is sample 
preparation. The electron beam has a mean free path 
for scattering measured in tens of nanometres for most 
materials, which requires very thin specimens to pro-
duce high- quality measurements in transmission modes. 
Samples can be thinned using a variety of methods 
ranging from mechanical polishing to focused ion 
beam milling. The thinness of the sample causes most 
of the beam electrons to remain near the optical axis  
and the electron interaction with the sample primarily 
changes the phase of the beam. A small detector close to 
the axis gives a bright- field image. One of the key diffi-
culties in bright- field imaging is that detectors record 
the intensity, whereas most of the details of the beam–
sample interaction are contained in the phase. To obtain 
a phase- contrast bright- field image, a small amount of 
defocus is typically used to give an extra phase shift and 
cause the total intensity at the detector to depend on 
the phase28. An annular detector, typically with a big-
ger diameter, yields an ABF image. The type and size 
of detector used will affect the information contained 
in the image.

It is also possible to use segmented detectors to 
record finer angular ranges. A very common example is 
the use of four or more segments arranged as pie slices 
on the unscattered electron probe in order to measure 
beam shifts in differential phase contrast44,45. A more 
recent addition is the use of high- speed direct electron 
detectors to record a full image of the diffracted elec-
tron beam and generate a 4D dataset via 2D images  
of the probe scanned over a 2D grid of probe positions, 
a technique often referred to as 4D- STEM46.

An additional reason for requiring thin specimens 
is to aid interpretation of even the most basic imaging 
modes. This is because the probe electron undergoes 
multiple scattering, often referred to as dynamical scat-
tering in electron microscopy, because it propagates 
through the specimen. This causes the probe to change 
shape depending on the local sample structure. For 
example, a probe placed above an atomic column tends 
to travel down along the column, a phenomenon often 
referred to as channelling. For modern high- resolution 
STEM, the distance the probe channels down the col-
umn is crucially dependent on the atomic mass of the 
atoms in the column, meaning that different columns 
are illuminated to different extents. This can make direct 
quantitative interpretation of images complicated for 
specimens of thickness more than 10 nm or so, depending  
on the accelerating voltage used.

Electron energy loss spectroscopy
One of the key aspects of using an annular detector to 
form a STEM image is that only a small fraction of the 
electrons is scattered to high angles. The disadvantage 
is that ADF- STEM can be an inefficient way to form an 
image; however, the benefit is that on- axis signals can be 
collected simultaneously from the same position to pro-
vide complementary specimen information. As the fast 
electrons in the beam go through the sample, they inter-
act with the sample, exchanging energy and momentum 
with it. These effects are separated into elastic scattering, 
where the total kinetic energy is conserved, and inelastic 
scattering, where energy is transferred to the sample in 
some other form. For example, if the fast beam electron 
excites a sample electron to a higher- energy state, it loses 
a corresponding amount of energy, which can be meas-
ured with EELS. An excellent introduction to EELS can 
be found in REF.47.

The first EELS spectrometers48 consisted of a mag-
netic prism followed by several quadrupoles and were 
subsequently optimized49. In an electron spectrometer, 
a magnetic field is used to disperse the beam, depend-
ent on its kinetic energy. A position- sensitive detector is 
used to provide an EELS spectrum. This spectrum will 
have several peaks at energies that depend on the ele-
ments in the sample, with shapes that depend on sample 
thickness and electronic structure. Various complica-
tions in the interpretation arise because the beam elec-
trons can interact with the sample in a variety of ways, 
and perhaps multiple times, especially for thick samples. 
Untangling these competing effects could be a promising 
application of ML techniques.

EELS in STEM has emerged as a powerful analyt-
ical technique; the small electron probe dimensions  
means that excitations associated with core-loss50, 
plasmon51 and optical transitions in materials can now 
be routinely interrogated, in some cases at single-atom 
resolution52,53. We typically divide the EELS spectrum 
into different regions depending on how the fast beam 
electrons interact with the sample. The zero- loss peak 
contains electrons that have not lost a measurable 
amount of energy. Interactions with the atomic vibra-
tions of the material lattice can excite phonons and 
such measurements are usually referred to as vibra-
tional spectroscopy. Collective excitation of the sample 
electrons are referred to as plasmons, which are closely 
related to the electrical and photonic properties of a 
material and depend on material shape and size54–56. 
Energy losses that correspond to excitations of core 
electrons in the sample are referred to as core losses 
and these characterize the elements present at the probe  
location. The detailed shape of the core- loss edges will 
depend on the characteristics of the initial and final 
state of the sample electrons as well as many of the same 
thickness and orientation effects that affect the imaging 
modes.

Recording a spectrum at each probe position gives a 
spectrum image, also referred to as a hyperspectral data-
set57,58. The strength of EELS in a STEM microscope is 
that it provides information on the local chemistry and 
electronic structure while the Z- contrast image simul-
taneously provides a map of the atomic configuration.  

Transmission modes
Imaging modes in electron 
microscopy where the electron 
beam passes through the 
specimen.

Differential phase contrast
A method that measures the 
change in the convergent beam 
diffraction pattern as a function 
of probe position using either  
a segmented or a pixelated 
detector. These changes can 
be related to the local change 
in the sample’s potential and 
corresponding fields.

Phonons
A quantized collective vibration 
of atoms in a crystalline 
sample, which can be excited 
by the electron beam and 
characterized by scanning 
transmission electron 
microscopy- electron energy 
loss spectroscopy or diffraction 
measurements.

Plasmons
A quantized collective 
oscillation of electrons relative 
to the fixed ions in a sample, 
which can be excited by the 
electron beam and 
characterized by scanning 
transmission electron 
microscopy- electron energy 
loss spectroscopy.

Core- loss edges
Excitation of inner- shell 
electrons (ionization) by the 
electron beam, where the 
energy loss can be probed by 
scanning transmission electron 
microscopy- electron energy 
loss spectroscopy for features 
referred to as ‘edges’.
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This concept can be extended to other imaging modal-
ities and combined with multiple signals. For example, 
when an excited sample electron relaxes back to its 
ground state it will emit the excess energy as a photon, 
which can simultaneously be analysed with a cathodo-
luminescence or X-ray detector. A recent review article 
contains a more comprehensive discussion of these and 
associated methods59.

One of the factors that limits the energy resolution 
in EELS experiments is that the beam of electrons has a 
small but finite energy spread. Depending on the type 
of electron source, the beam width will typically be 
between 0.3 eV and 1 eV. Peaks that are separated from 
each other by less than this intrinsic energy spread can-
not be easily resolved, which will mask many physically 
interesting phenomena. In addition, there are extreme 

a q-EELS b 4D-STEM

c Vortex beams d  MIDI-STEM

e  Gaussian probe f Bessel beam electron diffraction

Specimen

Incident beam

Aperture

Probe 
positions

Lenses

Sample

α

q′q = k1 − k0

k0k1 β

Bright-field disk EELS aperture

Central
beam

Scattered
beams

DetectorScattering 
directions

Annular
dark-field
detector

Pixelated 
detector

Sample

Electron source

Phase plate
Probe-
forming
aperture

α

Nanometres1 Å

Nanometres1 Å
0 5 10 15 20 25 30

0 5 10 15 20 25 30

6 | Article citation ID:            (2022) 2:11  www.nature.com/nrmp

PR IMER

0123456789();: 



demands on the performance of the microscope power 
supplies: we might want to measure energy losses of a 
few millielectronvolts for a beam energy of several tens 
(or hundreds) of kiloelectronvolts, which corresponds 
to a stability above one part per million. Perhaps even 
more importantly, the tails of the distribution extend out 
over a far larger energy range, meaning that very weak 
signals are easily swamped by the background60. Solving 
the energy spread problem requires an electron mono-
chromator. In a monochromator, energy- dispersive ele-
ments disperse the beam before the sample and a range 
of energies is selected using a slit or an aperture61. This 
selection necessarily reduces the amount of current 
available to form the probe. Since the slit used to select 
the energy has a finite size and the monochromator 
may introduce aberrations, using an electron mono-
chromator typi cally degrades the spatial resolution. 
However, a new generation of monochromated instru-
ments has been carefully designed to allow high energy 
and high spatial resolution while minimizing the loss 
of current. Just as for aberration- correctors, computer 
control is usually essential to the operation of electron 
monochromators.

One of the most exciting aspects of these new mono-
chromated STEM microscopes so far is the exploitation 
of modes such as aloof spectroscopy, where the beam 
passes near the sample instead of through it62–64. Such 
modes might enable non- damaging analysis modes or be 
used to provide data on sensitive biological or complex 
quantum states. Another surprising example is electron 
energy gain spectroscopy18, where the fast beam electron 
can gain energy from the sample, in a reversal of the nor-
mal energy- loss process. Such novel modes are likely to 
allow access to new information streams about the local 
nanoscale properties of materials. For example, compar-
ing energy loss and energy gain probabilities can now  

be used to measure the local temperature of materials in 
a parameter- free model18,65.

Momentum- resolved EELS
STEM- EELS experiments are typically performed at 
small scattering angles with the spectrometer entrance 
aperture positioned along the optical axis to exclude 
the collection of electrons with a scattering angle ϑ  
larger than the collection semi- angle β (REF.66). In the 
STEM optical geometry where a converged probe is 
used, the probed signal is dominated by inelastic scat-
tering wavevectors parallel to the forward scattering 
direction q  and averaged with contributions from  
other non- parallel wavevectors determined by the probe 
convergence semi- angle α (REF.66).

In momentum- or angular- resolved EELS measure-
ments (q- EELS), the spectra are acquired as a function 
of the scattering angle or momentum vector q. The 
measurements are performed by displacing the collec-
tion aperture relative to the optical axis. This proce-
dure is shown schematically in FIG. 2a. In practice, this 
is achieved by tilting the incident electron beam by an 
angle whose magnitude determines the effective dis-
placement wavevector q′ of the spectrometer entrance 
aperture with respect to the forward scattered direction. 
The orientation dependence of core- loss edges from ani-
sotropic materials can be determined by angle- resolved 
inelastic scattering of fast electrons67,68. Alternatively, the 
effective displacement along q′ can be achieved by shift-
ing the relative position of the spectrometer entrance 
aperture using post- specimen electronics69.

Momentum- dependent experiments have been 
successfully implemented over the entire range of the 
energy loss spectrum. High- loss q- EELS has been 
employed to probe the anisotropy of chemical bonds67,68 
and the detection of a magnetic dichroic signal70. In the 
low- loss energy range, the different q- space dispersion 
relations of the spectral peaks can be used to probe the 
dielectric characteristics71, the plasmonic72 and excitonic 
dispersions73, and to identify optically forbidden tran-
sitions74. More recently, the introduction of improved 
monochromator designs with energy resolutions of a few 
millielectronvolts has allowed for momentum- resolved 
vibrational EELS62,75.

Although it is extremely powerful, STEM q- EELS is 
not without challenges, the first being the fundamental 
physical limit of momentum versus spatial resolution, 
with the momentum resolution, Δq, being inversely 
proportional to the electron probe size as determined 
by the beam convergence semi- angle α (REF.76). The large 
beam convergence angles used in STEM result in broad, 
overlapping diffraction disks, limiting the q- space res-
olution of the spectral data. Nevertheless, by carefully 
choosing the experimental conditions, the momentum 
resolution62,75 can be balanced with the achievable spa-
tial resolution, as recently demonstrated by atomically 
resolved STEM- EELS phonon spectroscopy experi-
ments63,64,73. The second challenge lies in the weak sig-
nals associated with vibrational EELS specifically and 
the rapidly decaying EELS signal off the optical axis77, 
which require lengthy experiments and the sacrifice of 
different types of resolution (such as spatial, momentum 

Fig. 2 | Angle-dependent STEM-EELS, 4D-STEM and beam engineering. a | Schematic 
representation of one of the possible scattering geometries used in angle- dependent 
scanning transmission electron microscopy- electron energy loss spectroscopy 
(STEM- EELS) experiments. In this setup, the angular resolution is achieved by displacing 
the EELS spectrometer entrance (collection) aperture (schematically represented by  
the small overlapping red disks in the figure) along a vector q′ relative to the optical axis. 
This relative shift is experimentally achieved by projecting the centre of the spectrometer 
entrance aperture of the bright- field disk using the microscope’s post- specimen 
electronics. The aperture is shifted at increasingly higher values of momentum q, 
represented by the resultant scattered wavevector q = k1 − k0 where k0 and k1 are the 
incident and scattered vectors, respectively. In this representation, the optical axis lies 
along the incident vector k0 in the figure. The momentum resolution Δq is dependent on 
the beam convergence semi- angle α and spectrometer collection angle β; larger beam 
convergence angles result in broad, overlapping diffraction disks, limiting the q- space 
resolution of the spectral data. b | In 4D- STEM, simultaneous recordings of a STEM image 
and a 2D diffraction pattern for each probe position yields a highly redundant 4D dataset 
containing rich sample information. c–f | Examples of uses of structured illumination  
and detection in STEM. c | Vortex beams can be used to probe magnetism; here, a large 
quantum of orbital angular momentum can probe vertical magnetic field. d | Matched 
illumination and detector interferometry (MIDI)- STEM can be used to probe light 
material through linear contrast. e | Gaussian probe can be used to simplify the electron 
probe propagation in crystals. f | Scanning a Bessel probe can be used for nano- 
diffraction and strain analysis. Part a adapted with permission from REF.69, APS Physics. 
Part c reprinted from REF.136, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 
Part d reprinted from REF.130, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 
Part e reprinted with permission from REF.120, American Physical Society. Part f reprinted 
with permission from REF.133, AIP publishing.
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or energy resolution) in favour of signal detection. The 
introduction of new rapid, high- efficiency direct elec-
tron detectors78 promises to expand the range of q- EELs 
experiments in the future.

4D- STEM
Faster and more sensitive detectors are becoming avail-
able for electron microscopy. This is partly due to gen-
eral advances in microelectronics devices and partly 
due to developments such as direct electron detectors78. 
Pixelated detectors can be used to acquire the electron 
intensity depending on the scattering angle. Different 
areas can then be selected during post- processing to 
allow a variety of images to be effectively constructed. 
In addition, pixelated detectors can acquire multidimen-
sional sets of data (FIG. 2b), which can potentially be used 
to reveal additional information about the structure and 
properties of materials at higher resolutions.

In electron microscopy, the reciprocity theorem of 
Helmholtz suggests that swapping the source and the 
detector should give the same image in the case of elas-
tic scattering79. Applying this principle to STEM thus 
indicates that a small on- axis detector in STEM should 
give a bright- field image equivalent to a conventional 
TEM image. However, in order to obtain a highly cohe-
rent image, the collection angle must be very small and 
most of the electrons that have interacted with (and pos-
sibly damaged) the sample will not be used, which is  
why bright- field STEM imaging has traditionally been 
regarded as inefficient owing to the low SNR ratio. 
Another way to look at coherence issues is to think of each 
part of the detector as forming an image at a different tilt 
angle79. Adding these slightly different images together, 
for instance by using a larger detector, will tend to blur 
some of the fine details and limit spatial coherence80. 
However, all the transmitted electrons can be collected as 
a function of the angle at a particular probe position using 
a pixelated detector to obtain a nanodiffraction81–84 pat-
tern, also known as an electron Ronchigram85. In STEM, 
the electron Ronchigram provides several ways to meas-
ure aberrations, which is important for aberration correc-
tion35,86–92 and for measuring spatial coherence, which is a 
resolution- limiting factor in aberration- corrected instru-
ments and important for quantitative interpretation of 
images93,94. Nanodiffraction patterns can be collected at 
every probe position to generate a 4D- STEM dataset, also 
called a scanning nanodiffraction dataset. Such operat-
ing modes potentially use all the transmitted electrons 
to reconstruct an image and can be more efficient95–98. 
4D- STEM has become a frequently used method with 
the commercial availability of high- quality detectors  
(see a recent, comprehensive review46).

The strength of 4D imaging is the extra information 
available within the collected data. First, as the elec-
tron beam transmits through the sample, it might be 
deflected by fields inside the sample. This deflection can 
be differentially detected2,44,99 for differential phase con-
trast with multiple detectors, potentially at atomic res-
olution44, and can be used to reconstruct the measured 
fields100. Differential phase contrast contains details of 
the sample’s electrical and magnetic fields, although how 
to untangle all of these subtle effects is not always clear, 

particularly in the presence of dynamical scattering. Other 
information that can be obtained includes polarization 
domains101, strain fields102–106, octahedral tilts107, and local 
symmetry98. An ongoing question is how to maximize 
the amount of information that can be extracted.

One way to maximize information extraction uses 
ptychography, where the redundancy in combining 
real- space and diffraction- space data can be used to solve 
for both the phase and amplitude of the electron beam108 
and permit more details of the sample to be recon-
structed. Modern ptychography solutions are typically 
iterative methods derived from the Gerchberg–Saxton 
algorithm109, with seminal implementation found in 
REFS5,110–112. The main issue with these iterative methods 
is that they are still computationally intensive and have 
yet to incorporate the full effect of dynamical scattering, 
which limits their applicability to strongly scattering 
specimens with high- Z elements and/or specimens that 
are more than a few nanometres thick. One solution is 
simply to apply more computer power to the problem, 
but using artificial intelligence/ML techniques could 
present a better route113. Similarly, a significant amount 
of three- dimensional (3D) information encoded in the 
electron Ronchigram and 4D datasets114,115 could also 
be extracted using artificial intelligence/ML techniques. 
There are several other applications for ML in the context 
of 4D imaging. Because only a small fraction of the beam 
electrons interacts strongly with the sample, almost all 
signals tend to be noisy or blurred by instrumental effects, 
meaning that, for example, even simple deconvolution or 
denoising procedures can be extremely useful.

Finally, there is plenty of scope for future develop-
ment of 4D- STEM techniques. In principle it might 
be possible to record an energy loss at every scattering 
angle at every probe position, combining q- EELS and 
4D- STEM information, or to extend dimensionality 
further by combining 4D- STEM with tomography. One 
problem is that current detectors are 2D, which means 
that acquiring a higher- dimensional dataset requires 
multiple scans of the same area. If the sample is dam-
aged by the beam, changes over time, drifts away, or 
contamination builds up, repeating the same scan mul-
tiple times over the same area of the sample may not be 
possible. Thus, using ML methods to infer a model that 
informs an automated experiment to obtain a subset of 
this multidimensional data is one way to approach the 
multidimensional information challenge.

Beam engineering
Although most efforts have concentrated on reducing 
probe size and increasing lateral and depth resolution, a 
new frontier of STEM is in beam engineering or shaping 
as a way to address emergent physical phenomena that 
are not usually observable using conventional imaging 
techniques116–119. Owing to new electron optical elements, 
the amplitude and phase profile of the probe can be 
determined beyond the typical diffraction-, aberration- 
and coherence- limited shape. The functional beams cre-
ated by beam shaping can widen the range of quantities 
that can be measured, determine the dynamical diffrac-
tion in the material120,121, and enhance the part of the 
electron scattering to be characterized.

Dynamical scattering
A term commonly used  
in electron microscopy  
to describe the multiple 
scattering of the incident 
electron probe as it propagates 
through the specimen.

Electron optical elements
Electromagnetic lenses used  
to focus or otherwise shape the 
electron beam.
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Engineering of the shape of the electron beam has 
evolved from the initial use of electron holography116–118 
based on a nanofabricated thin slab of material, to mag-
netic phase plates122, to applications based on electro-
static controllable phase modulators123–125 that can be 
directly positioned in the condenser diaphragm. Below 
and in FIG. 2 we give some examples of functional beams. 
A vortex beam, which is a doughnut- shaped beam with 
an azimuthal phase gradient, is shown in FIG. 2c with a 
rotation of 2π, although multiple integer rotations in the 
phase are also possible. The presence of the vortex in 
the phase results in zero intensity at the centre of the 
probe. Vortex beams initially aimed to probe the spin 
state of atoms in magnetic materials by elastic126,127 and 
inelastic scattering128,129, and have also been used to form 
holograms to measure the vertical magnetic field126. 
More recently, nearly linear contrast images have been 
generated by matched illumination and detector inter-
ferometry (MIDI)- STEM, which combines structured 
illumination based on modified zone plates phase with 
a high- speed direct electron detector130 (FIG. 2d). The 
image of the beam recorded on the direct electron detec-
tor is post- processed with a mask matching the phase 
plate. Phase- shaped electron beams have also been used 
to probe the symmetry of localized surface plasmon 
resonances131. Appropriately tuned Gaussian- shaped 
beams120 couple strongly with the column and propagate 
almost unperturbed in the crystal. As shown in FIG. 2e, 
this is predicted to produce contrast that does not oscil-
late as a function of specimen thickness and to produce 
images that are simpler to interpret quantitatively. Bessel 
beams or equivalently hollow cone illumination can be 
used to increase the depth of focus of the beam7,118, to 
facilitate strain analysis through nanodiffraction132,133 
or to improve the interpretability of low- loss EELS134 by 
mimicking the idea of precession electron diffraction 
and combining beams of different directions to mini-
mize the effects of channelling (FIG. 2f). This produces a 
more complex diffraction pattern that requires special-
ized post- processing and removes the need for expensive 
microscope modifications.

Finally, one key challenge in STEM is to control both 
the initial and the final state of the beam after scattering. 
For example, the HAADF- STEM detector has been used 
as a form of filter135 but more sophisticated filters allow 
for the direct measurements of new final states without 
acquiring the full 4D- STEM, such as the measurement 
of orbital angular momentum through an orbital angular 
momentum sorter136. It is clear that the increasing com-
plexity of such optical systems will require more sophis-
ticated control. For this reason, techniques such as the 
use of convolutional neural networks137 as well as more 
advanced approaches such as Bayesian optimization138 
and reinforcement learning139 will have an increasing 
role in the control of the complex optical system and in 
the alignment of the microscope in general.

Results
Because modern electron cameras record data digitally, 
analysis of STEM experiments is typically carried out 
using software programs or computational methods. 
The initial analysis steps are to evaluate the quality of the  

experimental data and select one or more datasets for 
inclusion in a study. For STEM images, the minimum data  
processing required is to scale the image contrast and  
brightness and to crop around the features of interest. 
Quantitative measurements may also be performed, such 
as measuring the position of atomic columns, the length 
of atomic bonds, or comparing calibrated measure ments 
signals with image simulations in order to estimate local 
structure or composition.

Higher- dimensional STEM datasets often require 
substantially more analysis and data processing. 3D data-
sets may include time- series movies that may require 
drift correction to remove sample motion; tomographic 
tilt series requiring software to reconstruct 3D sample 
volumes; or spectroscopic datasets such as EDS or EELS 
that are usually interpreted from dictionaries of known 
signals or first- principles calculations. 4D datasets such 
as qEELS or 4D- STEM also require specialized software 
code for very large datasets.

STEM data format and analysis programs
Modern STEM instruments are capable of producing 
large data streams from a variety of measurement chan-
nels to deliver important specimen information. This 
data is most valuable when analysed in a quantitative, 
transparent and reproducible manner. Most STEM 
datasets are currently recorded in proprietary formats 
defined by the hardware vendors. Some progress has 
been made toward saving data in open formats and 
defining standards for interoperability, but there is a 
long way to go before all STEM experiments follow the 
findable, accessible, interoperable and reusable (FAIR) 
data principles140.

Since STEM data is usually recorded on vendor 
software platforms, data analysis typically starts there. 
These platforms include the Gatan Microscopy Suite 
(GMS) with Digital Micrograph from Gatan, Velox from 
Thermo Fisher Scientific, Swift from Nion, ESPRIT from 
Bruker, and so on. These acquisition and analysis pro-
grams all offer the ability to visualize data as it is being 
recorded and are invaluable for providing feedback dur-
ing experiments. They often include complex analysis 
methods such as quantification of EDS experiments 
from reference spectra. However, these vendor analysis 
platforms and methods are often closed- source ‘black 
box’ methods where the underlying code cannot be read 
or modified (to date, the Nion Swift is the exception). 
Some of these platforms allow execution of external 
analysis scripts, which in the case of Digital Micrograph 
has led to a vast number of user- developed analysis 
methods. There is, however, no central listing of these 
methods and few have been vetted by the community. 
Nevertheless, many papers are published each year con-
taining STEM results that have been entirely analysed on 
vendor software platforms.

To perform more complex analyses of STEM data, many 
users either write their own software or use community- 
developed code. One of the most popular programs for 
analysing imaging data is ImageJ, an open-source image 
processing program written in Java. Many scientists 
have written ImageJ plugins to read proprietary STEM 
data formats and to perform various medium- and 

Electron holography
A technique for viewing the 
phase of the exit surface 
wavefunction using the 
interference of a scattered and 
unscattered electron beam.

Azimuthal phase gradient
(APG). A wavefunction where 
the phase is linearly 
proportional to the angle in 
polar coordinates, and the 
total phase shift is an integer 
multiple of 2π for each 
revolution (see orbital angular 
momentum).

Orbital angular momentum
(OAM). Orbital angular 
momenta are quanta given  
by the number of multiples  
of 2π in the phase of an 
electron beam, per angular 
revolution in polar coordinates 
(see azimuthal phase gradient).
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atomic-resolution corrections or measurements141,142. 
Another widely used programming language for analy-
sis of STEM data is MATLAB, which (despite not being 
open source) does have a large library of user- created 
analysis tools either available on the central file exchange 
or on researcher websites. There are also free languages 
that are mostly compatible with MATLAB such as 
Octave.

Recently, the Python programming language has 
started to overtake other choices for the analysis of 
STEM data, in no small part because Python has become 
the de facto standard for ML data analysis. For conven-
tional analysis methods, there are various community- 
developed Python codes devoted to various aspects of 
STEM analysis. The Python package most widely used in 
the electron microscopy community is HyperSpy, which 
was originally developed to analyse spectroscopic data 
such as STEM- EELS experiments. HyperSpy has grown 
into a general- purpose analysis toolkit for STEM data, 
with many plugins targeting specific data types. These 
include atomic- resolution image analysis with Atomap, 
luminescence spectroscopy data analysis with LumiSpy, 
4D- STEM data analysis with pyxem143, and others.  
Another family of STEM analysis methods can be  
found in the Python- based Pycroscopy ecosystem143, 
which includes the STEMTools toolkit, the AtomAI 
library for applications of deep learning to micro-
scopy data (including deep kernel learning and invari-
ant representation learning), the PyTEMLib library 
for model-based quantification analysis, and others.  
In addition, there are 4D- STEM- specific analysis codes 
currently under development, including LiberTEM144 
and py4DSTEM145. All these packages are fully open- 
source and can be freely modified to match the specific 
needs of a given research project.

Finally, simulation also plays a large part in STEM 
research. The most common simulations are imaging  
simulations incorporating the electron- scattering 
process within the specimen together with the image- 
formation system for the various imaging modalities, 
which can be performed using open- source simulation 
codes including QSTEM146, μSTEM147, Dr. Probe148, 
MULTEM149, STEMsalabim150, abTEM151, Prismatic152 
and others. These codes are often specialized; for  
example, abTEM includes the ability to use the electro-
static potential of a structure directly from DFT calcu-
lations performed with the open- source code GPAW153, 
while Prismatic focuses on fast calculations. Recently,  
it has become possible to simulate STEM spectro-
scopic signals such as plasmon scattering154,155, double- 
channelling core- loss STEM- EELS scattering156, very large 
crystals containing crystallographic defects157, and other 
modalities. Many new computational methods are under 
active development and large STEM simulations can  
be tackled with the widespread availability of graphics 
processing unit (GPU) resources.

Analysis of hyperspectral data
The discussion of ML in STEM necessitates a brief over-
view of exploratory data analysis that originally emerged 
in the context of EELS hyperspectral image analy-
sis. Core- loss EELS provides a wealth of information 

such as chemical composition and local bonding but 
correct interpretation requires careful analysis and 
processing. For example, truly quantitative analysis of 
electron energy loss near edge structure (ELNES) requires 
the removal of plural scattering using methods such as 
Fourier- ratio deconvolution, where the simultaneously 
acquired zero- loss- peak region is used to deconvolve 
the plural scattering from the core- loss signal158. This 
process makes the edge structure more interpretable 
and provides increased SNR ratios. Quantitative inter-
pretation of features such as the L23 ratio also requires 
background subtraction and removal of the continuum 
components159,160. Background subtraction is often done 
using a simple power- law fit to the spectrum prior to the 
edge of interest, but alternative methods are also avail-
able161. Following this preprocessing, quantification can 
be carried out by estimating peak heights and separa-
tion by either Gaussian fitting162 or more sophisticated 
model- fitting approaches163.

Principal component analysis. Because the cross- 
sections for ionization are quite small, especially for 
higher- energy edges, the SNR ratio of ELNES is generally 
quite low. This is also the case for other spectroscopies 
such as energy dispersive X- ray spectroscopy (EDX). To 
improve the SNR ratio, multivariate statistical analysis 
of EELS was first demonstrated in the late 1980s20,21. 
Although many multivariate methods exist19, the most 
common method for denoising EELS data is princi-
pal component analysis (PCA). PCA has been widely 
applied to both chemical mapping and near- edge struc-
ture analysis164–166 and has been used as a first step in 
more advanced analysis methods such as vertex compo-
nent analysis167 or the study of precipitates in manganese 
steels168,169. An alternative linear method is non- negative 
matrix factorization (NMF), which has been applied to 
core- loss EELS and EDX170 and plasmonic data171. PCA 
and NMF are available in freely available software pack-
ages and straightforward implementations are available 
in popular languages such as Python, making them 
accessible methods of denoising EELS data.

PCA represents a dataset as a linear sum of weighted  
orthogonal components with the weighting determined 
by the commonality of each component. Features that 
are common throughout a dataset will receive a higher 
weighting, whereas features such as noise, which is essen-
tially random, get a much smaller weighting. Removing 
the lower- weighted components before reconstruction 
results in the removal of most of the random noise. 
However, because features such as interfaces and defects 
cover only a small volume of the dataset, they receive 
low weightings as well. This means that components 
containing valuable information about local structures 
may be removed along with the noise. While PCA has 
therefore been successfully applied to perfect crystals, the 
method can introduce unexpected artefacts in the pro-
cessed data when the raw data contains interfaces and 
defects57,161,172. This can result in changes to the features 
to be measured, such as shifting apparent peak positions 
in near- edge structures and changes in intensity. Since 
much of the most interesting physics happens at inter-
faces, defects and other localized structural features, 

Electron energy loss near 
edge structure
The intensity variation  
of the electron energy loss 
spectroscopy signal as a 
function of energy loss near the 
onset of the core- loss signal.

L23 ratio
The ratio of the L3 to L2 peaks 
formed by the transition of the 
2p3/2 and 2p1/2 electrons to 
empty states.
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this is highly problematic and ways to successfully exa-
mine small changes in near-edge structure due to local  
structural changes are required.

Quantitative STEM
Whereas conventional STEM analysis methods study 
contrast or image features, quantitative STEM makes 
use of the absolute scattered intensity in each pixel of 
a STEM image to enable more information about the 
specimen to be extracted. Quantitative STEM is essen-
tial to quantifying noise and information content and 
for quantitative comparison between STEM images and 
quantum mechanical image simulations173. The addi-
tional information that quantitative STEM can deliver 
about a specimen has been used in applications such 
as atom counting174, local composition measurements62 
and nano particle shape175 and surface stability measure-
ments176. Unless the sample allows for internal calibra-
tion of the image intensity177, calibration of the STEM 
detector and the microscope optics are essential178,179.

Intensity measurement. Modern STEM detectors 
respond linearly to the incident electron current, 
with the dark count rate D and the gain G both adjust-
able by the user. The intensity in electrons in a pixel, 
I, is connected to the measured digital counts, C, by 
I = (C – D)/G. G is measured by placing a signal of known 
intensity on the detector and there are several ways to 
measure it. For example, one convenient signal is the 
intensity of a single electron180,181, C1. C1 can be measured 
by acquiring an image while allowing almost all of the 
beam to pass through the hole in the detector to yield 
G = (C1 – D). Another convenient signal is the full current 
of the beam, B, which can be measured separately by 
using a Faraday cup for example, to yield G = (C – D)/B. 
Comparing STEM images to simulations requires nor-
malizing the image intensity to the incident beam173, and 
is straightforward if D and G are known and B is known 
in amperes. if B is known only in digital counts as BC, a 
quantitative image In, expressed as a fraction of the inci-
dent beam current, can also be obtained. In this case, 
In = (C – D)/(BC – D) (REF.173).

Calibration. Comparison to simulations requires careful 
calibration of a variety of other microscope factors that 
must then be included in the simulations. These factors 
include detector inner angles182 and outer angles, cutoffs 
or shadowing from complex pre- specimen optics such as 
aberration correctors178, and the non- uniform response 
of common scintillator detectors178,182. Finally, the simu-
lated image intensity must be convolved using a calibrated 
incoherence function173. For aberration- limited systems, 
the incoherence function is typically a Gaussian with  
FWHM slightly smaller than the STEM image reso-
lution and can be calibrated by comparing experi ments 
to simulations for a known crystal sample, with thick-
ness independently measured by position- averaged  
convergent beam diffraction183.

The incoherence function also accounts for fast 
instrument instabilities on the pixel- acquisition times-
cale, such as high- frequency mechanical vibrations or 
probe jitter. These effects can be measured separately 

and may not be Gaussian93,184. When made in an appro-
priate optical plane, these measurements incorporate the 
effects of all mechanical and electronic instabilities in  
the STEM system, as well as the partial spatial coherence 
of the electron emitter185.

For aberration- corrected systems, the mathematical 
form of the incoherence function at high spatial frequen-
cies can become important for quantitative analysis and 
needs to be measured in the absence of any other adjust-
able parameters94,179. In systems corrected to higher 
angles, that is, with larger probe- forming apertures, 
temporal incoherence becomes significant and may also 
need to be measured and incorporated into quantitative 
analysis186–188.

From images to atomic positions
The information about a material contained in the data 
of an atomic- resolution STEM image can often be cap-
tured in a list of the positions, intensities and shapes 
of the atomic columns189,190 and uncertainties in those 
quantities. The combination of positions and intensi-
ties encodes crystallographic phase and orientation, 
the positions and crystallography of interfaces and 
defects, and strain fields. Intensities can be used to count 
atoms in each column along the beam direction174,191 
and the intensities and column shapes can be used 
to determine the presence and depth of impurities in  
a column6,192,193.

Classical approach. The classical method of determin-
ing atomic column parameters from atomically resolved 
STEM images is to use a particle- finding approach, 
potentially informed by the translation symmetry of 
the underlying lattice194, to find approximate positions 
for all the columns in the image, and then to refine the 
parameters for each column by the least- squares fitting 
of its intensity I(x, y) to an assumed functional form for 
the microscope’s point spread function191,195,196. These 
approaches assume that the atomic column position 
corresponds to a specific form of intensity distribution, 
typi cally a local intensity maximum. This assumption 
has greatest validity in the case of Z- contrast images 
but care must be taken to understand the influence of 
dynamical scattering, which can shift intensity maxima 
in an image relative to the actual position of the atomic 
column197. An example of a Z- contrast image of GaN 
[1120] [110] is shown in FIG. 3. FIGURE 3a shows the image 
with red dots marking the initial, approximate posi-
tions of the Ga columns (the light N columns are not 
detected), determined by fitting to a two-dimensional 
Gaussian:
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(D). This is the mean value of a 
scanning transmission electron 
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optimal range of the amplifier.

Faraday cup
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capture charged free particles, 
with which the electron beam 
current can be estimated by 
integrating the recorded signal.
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where I0 is the local background intensity, A is the peak 
intensity of the column, (x0, y0) is the column position, 
xw and yw are the widths, and c controls the rotation 
of the major and minor axes of the fitted Gaussians, 
accounting for the slight variations in the atomic shape. 
FIGURE 3b shows the residual between the data and the  
fit, which is both small and random, indicating a good fit  
in this case. Obtaining meaningful uncertainties in the 
fitting parameters requires weighting the data by its 
uncertainty. The uncertainty in N detected electrons in 

a pixel is never less than N  and may be greater, owing 
to detector noise for example.

Equation (1) describes local fitting around each 
atomic column, so the procedure must be repeated for 
every column in the image. If several atomic columns are 
close enough together that their images overlap, simul-
taneous fitting to the sum of several 2D Gaussians may 
be required for an ‘all at once’ fitting of every column 
in the image196, which necessitates a more complicated 
function for I0 with additional fitting parameters. For a 
high SNR ratio and low- distortion data, which can be 
achieved by distortion correction and averaging, this fit-
ting procedure can result in sub- picometre precision in 
locating atomic columns even if the columns are around 
100 pm wide191. High- quality images also lead to high 
success rates for the initial approximate column find-
ing and reliable convergence for fitting. For SNR ratios 
and distortions more typical of single STEM images, 
the achievable precision is closer to 15 pm (REF.198) and 
initial column finding and fitting convergence may 
require more manual operator tuning. Smoothing or 
image denoising using methods such as Fourier filter-
ing, total variational denoising, or non- local algorithms 
such as block matching and 3D filtering199 can improve 
atom finding, but as these methods do not typically pre-
serve image intensities, the fitting step should still be 
performed on the original intensities. Classical fitting 
methods are therefore less suitable for single- shot images 
and prohibitively time- consuming to apply to very large 
images or to a time series of images.

Computer vision approach. Computer vision methods 
such as convolutional neural networks (CNNs) have 
recently been used to identify atom column positions 
in STEM images200–202. CNNs mimic human vision by 
identifying image features, which are patterns in inten-
sity, rather than by numerically comparing intensities to 
a model, for example by using a least- squares method. 
CNNs must be trained on pre- analysed example images 
or on simulated data similar to the images that will be 
analysed. Training an entirely new deep CNN from 
scratch is a major undertaking and requires an enor-
mous volume of labelled examples. Fortunately, STEM 
simulations can be used to generate computer- labelled 
example images without the human effort of locating 
the atom positions and data augmentation can further 
increase the scope of the training dataset200,201,203.

FIGURES 3c and 3d show an example STEM image 
of graphene and the deep convoluted neural network 
(DCNN)- derived atomic positions, respectively. Despite 
the low quality of the single- shot image, the DCNN 
correctly identifies all the atom positions. In general, 
DCNN atom identification is robust against both noise 
and distortion provided both were part of the train-
ing set, making it a powerful approach for single- shot 
images. The precision in atomic column positions can 
exceed traditional methods202,204. In addition, most of 
the computational cost in using a DCNN lies in the 
training. Once trained, execution of the DCNN is very 
fast, making analysis of large images205 and time series 
straightforward. At present, atom- finding DCNNs can-
not generate the entire set of atom column parameters 

a b

c d

e f

f

300 pm

x

y

Fig. 3 | Identifying positions of atoms and atomic columns from STEM images.  
a | High- quality high- angle annular dark- field- scanning transmission electron microscopy 
(HAADF- STEM) image after distortion correction and averaging with refined atom 
positions marked by red dots. b | Residual between image intensity in red box in panel a 
and best- fit Gaussian. c | Lower- quality, single- shot annular dark- field- STEM (ADF- STEM) 
image of graphene. d | Atomic positions determined using a convolutional neural 
network (CNN). e,f | Localization of point defects from noisy STEM data in graphene by 
applying a simple graph analysis to the output of a deep CNN (Si atoms in green, C atoms 
in red). Panels a and b adapted from REF.191, Springer Nature Limited. Panels c and d 
adapted with permission from REF.203, Wiley. Panels e and f adapted with permission from 
REF.204, CC BY-NC (https://creativecommons.org/licenses/by- nc/4.0/).

Residual
The difference between  
the fitted image and the 
experimental image after  
atom location.
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in equation (1) but the DCNN- derived positions can 
serve as initial positions for fitting. It is not yet clear how 
to quantify the domain of applicability for a particular 
DCNN given its training data, and therefore success-
ful application to images of unusual crystal structures 
or heavily distorted atomic columns, for example, may 
require some retraining. Applications of DCNNs can go 
beyond simply identifying atom positions to identify-
ing clusters of atom positions characteristic of defects as 
shown in FIG. 3e,f (REF.205).

Autoencoders. One way of denoising data while retaining 
small changes in the dataset is to use exploratory data 
analyses based on autoencoders. An autoencoder consists 
of two neural networks and learns a low- dimensional 
embedding of the data, called latent representation, in 
an unsupervised manner206. In an autoencoder, the first 
encoder neural network compresses the data into a small 
number of latent variables and the second decoder neu-
ral network tries to reconstruct the original data from  
the latent code. In the process, the autoencoder learns the 
optimal representation of high- dimensional data, such as 
images, while rejecting noise, which makes it a great tool 
for both nonlinear dimensionality reduction and image 
or spectrum denoising. Latent spaces can often highlight 
regions where differences in spectra occur and lead to 
additional scientific insights. The autoencoder concept 
can be extended towards learning correlative relation-
ships between structure in an image and property in 

spectral data as has been demonstrated with the im2spec 
encoder–decoder models207. Finally, transformation- 
invariant VAEs build upon classical autoencoders by 
making the reconstruction process probabilistic and 
incorporating prior knowledge into the latent space 
structure208. FIGURE 4 shows the application of rotationally 
invariant VAEs to the analysis of graphene data.

Typically, a VAE is a directed latent- variable proba-
bilistic graphical model that learns a stochastic mapping 
between observations x with a complicated empirical 
distribution and latent variables z, whose distribution 
can be relatively simple209. A VAE consists of a gener-
ative model as a decoder that reconstructs xi from a 
latent code zi, and an inference model as an encoder, 
whose role is to approximate a posterior of the gen-
erative model via amortized variational inference210. 
Implementation- wise, both encoder and decoder mod-
els are approximated by deep neural networks whose 
parameters are jointly learned by maximizing the 
evidence lower boundary via a stochastic gradient descent 
with randomly drawn mini- batches of data. VAEs can 
therefore build relationships between high- dimensional 
datasets and a small number of latent variables, in a way 
reminiscent of manifold learning.

One important aspect of the VAEs, similar to many 
manifold learning methods, is that the variability of 
the behaviours in the latent space allows one to reveal 
relevant features of the system behaviour, equivalent to 
primary nonlinear degrees of freedom. Another is their 

Latent variables
A variable that is not directly 
observable, often obtained 
using variational auto 
encoders.

Latent spaces
A vector space spanned by the 
latent variables.

Evidence lower boundary
The lower bound of the 
probability of observing a 
particular result for a given 
model.
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Fig. 4 | Application of a variational auto encoder to graphene. a | Simplified schematic of the rotationally invariant 
variational auto encoder (rVAE). The encoder (inference) network compresses input image data into a small number  
of latent variables. By default, the first three latent variables (γ, x, y) are designed to absorb rotations and translations of 
structures in the input images. The remaining latent variables (z) aim at disentangling variations in the structure itself. The 
prefix s refers to a spatial- encode/decoder. The remaining latent variables aim at disentangling variations in the structure 
itself. b,c | Encoded angle (panel b) and one of the latent variables (panel c) for each atom in a snapshot (single scanning 
transmission electron microscopy frame) of graphene undergoing structural transformations under electron-beam 
irradiation. d | Latent space manifold learned by the VAE from data in unsupervised fashion. Panels b and c reprinted  
with permission from REF.379, AAAS. Panel d reprinted with permission from REF.320, Cornell University.
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parsimony — the training process generates the best 
short descriptors representing the data. The primary 
limitation of the classical VAE approach is the sensitivity  
of the VAE to the details of experimental parameters; 
for example, the presence of autoencoder networks to 
parameterize atomic STEM data imposing a known  
structural relationship between latent variables as  
an input for statistical analysis, including Bayesian  
inference and Gaussian process regression.

Distortion corrections
High- resolution STEM experiments are distinguished 
from conventional plane- wave TEM experiments by the 
small dimensions of the converged electron probe, which 
is able to reach sizes below atomic bond lengths with 
modern aberration- correction technology. The small 
probe dimensions means that the electron beam must be 
scanned over the sample surface in order to collect spa-
tially resolved information in the detector plane, which 
leads to relatively long experimental acquisition times 
on the scale of seconds per image for most experi ments. 
Any relative motion of the probe with respect to the sam-
ple during the acquisition time will introduce artefacts 
that can be due to thermal sample motion, mechanical 
vibration, local fields induced by charging or electronic 
instabilities of the electron beam211. To perform precise 
measurements of atomic positions at the maximum 
instrument resolution, these residual drift artefacts must 
be measured and removed from STEM experiments212.

The most straightforward method for reducing errors 
due to sample motion is to simply record an image series, 
align all the images, and take the mean value of each 
pixel213,214. However, this method does not efficiently 
make use of all the available information since it does 
not attempt to recover any information lost by distor-
tions in the imaging system. A more advanced cor-
rection method uses the STEM microscope’s ability to 
scan in any direction and rotate the orientation of the 
scanning direction relative to the sample215 to measure 
linear sample drift due to thermal motion and correct 
acquired images by applying an affine transformation216. 
This approach can be extended to measure and correct 
local nonlinear or nonrigid distortions in acquired 
images by using gradient descent217–219. These correction 
approaches have also been applied to STEM- EELS and 
4D- STEM data220,221.

Another family of methods for distortion correction 
makes use of information measured from the sample 
itself. For example, if the crystalline lattice parameters 
of a material are known, the linear drift can be removed 
from a single image222. In atomic- resolution images, it 
is also possible to track the measured position of atoms 
in a time series directly to estimate the undistorted 
configuration223–226.

Finally, STEM is not restricted to recording square 
or rectangular scan patterns. A variety of complex scan 
patterns have been proposed to produce a more uni-
form acceleration of the electron beam. Some examples 
include spiral scans227,228, randomized beam shifts229,230, 
blanking231 and fractal Hilbert- space- filling curves232. 
More complex patterns can help to decouple the direc-
tion of motion of the sample from the movement of the 

beam, allowing for more isotropic information trans-
fer in all directions. We note, however, that all of the 
above- mentioned methods correct only relative errors 
between images. Length measurements on an absolute 
scale still require precise calibration233.

Applications
Advances in STEM over the last decade have allowed 
routine visualization of atomic structure of solids and 
localization of atomic columns with sub- picometre 
precision. Descriptors that are strongly correlated with 
the functional properties of materials, such as atomic- 
bond lengths and angles, can now be measured at the 
single- atom level. For example, the bond length in car-
bon compounds is directly linked to reactivity and bond 
strength. Similarly, bond length and bond angle in per-
ovskites are strongly correlated with metal–insulator 
and ferromagnetic–antiferromagnetic transitions234–236. 
Traditionally, these descriptors have only been accessible 
on a macroscopic level via X- ray and neutron scattering; 
advances in STEM naturally lead to questions as to how 
it can be used to explore the local physics and chemistry 
of crystalline and disordered solids. For example, one 
advantage of local imaging is the measurement of bond 
lengths and bond angle variations within a material, such 
as at surfaces, interfaces and defects, to map strain fields 
via direct measurement of atomic column positions. 
Correspondingly, multiple examples of strain mapping 
in the vicinity of second- phase inclusions, dislocations 
and surfaces have been reported237–239, with the experi-
mental structure compared with the classical solid- state 
mechanics models240 in many cases. In this section, we 
show examples of the application of HAADF- STEM 
imaging to several topical materials science problems. 
Although this work focuses on HAADF imaging, the 
STEM microscope has many other imaging modes that 
can be applied to materials science241, but applications to 
biology are also common242.

Mapping ferroelectric phenomena
The high spatial resolution of STEM makes it a perfect 
tool for exploring the physics of materials with strong 
coupling between the order parameter and structural 
distortions243,244. Seminal works using TEM245–247 and 
STEM248 demonstrated that quantitative measure-
ments of atomic column positions can be used to map 
the polarization order parameter field. This approach 
was rapidly extended to other physical functionalities 
strongly coupled to structure, including octahedra tilting 
in perovskites in both the image plane249–251 and the beam 
direction252 and chemical and physical strain fields253,254. 
Common to this approach is an a priori postulated rela-
tionship between the observed contrast (for example, 
atomic column positions) and the physical descriptor 
(for example, polarization).

The observation of the order parameter field and 
its evolution near surfaces and interfaces opens up a 
pathway to learn the mesoscopic physics of the systems, 
such that mesoscopic models with a small number of 
free parameters can be matched to STEM observations. 
For example, the correlation and interfacial terms in 
the Ginzburg–Landau free energies can be extracted 
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from order parameter profiles across domain walls and 
interfaces251,254,255, whereas analyses of ferroelectric vor-
tex shapes can be used to derive the numerical values 
of the flexoelectric tensor256. Recently, these approaches 
were extended into the Bayesian domain to take into 
consideration any prior knowledge about the system 
and evaluate changes in our understanding of material 
behaviour given new experimental data257. Comparing 
experimental data to models can systematically address 
issues such as the resolution and information limits  
required to observe specific physical phenomena  
and whether prior knowledge of the system enables 
additional insights from the experimental data.

Although determining the atomic positions in an 
image to assess polarization in a ferroelectric domain is 
a valid approach258, it is an indirect way of revealing a 
material’s ferroelectric property. A more direct approach 
that maps polarization in ferroelectric materials is based 
on differential phase contrast STEM, where an annular 
detector split into at least four independent azimuthal 
segments is used to derive changes to the centre of 
mass in the diffraction pattern caused by the in- plane 
component of the electrostatic field in the sample44. 
A centre- of- mass change is determined by calculating 
the difference in intensity between two opposite detec-
tor segments and is proportional to the electrostatic field  
in the specimen, which affects the angular propaga-
tion of the beam while interacting with the ferroelec-
tric specimen. This approach has recently successfully 
mapped large polarization gradients across naturally 
formed domains in a doped ferroelectric material259. 
Although clear features due to ferroelectric polarization 
can be observed at the atomic scale, the differential phase 
contrast image intensity requires careful interpretation 
because the nanoscale field component due to the ferro-
electric field is super imposed on the electrostatic field 
of the atomic potentials260. As mentioned above, any 
in- plane electrostatic field in the sample leads to a change 
of the centre of mass in the diffraction pattern formed 
behind the sample. The same is also true for magnetic 
fields, which similarly affect the propagation of the elec-
tron beam. By carefully disentangling the electrostatic 
contribution from its magnetic counterpart, differen-
tial phase contrast STEM can also be used to measure 
magnetic properties of materials at the nanoscale3, 
similar to off- axis electron holography261 carried out in 
broad- beam TEM mode.

Grain boundaries and interfaces
STEM imaging is a valuable probe of the atomic struc-
ture at grain boundaries and interfaces in crystalline 
materials. However, despite improvements in spatial 
resolution and depth estimation3, it remains difficult 
to determine the 3D atomic structure of interfaces. 
Computational methods such as DFT can be used to 
supplement STEM results to improve structure determi-
nation262–264, but extending such methods to simulating 
long- range behaviour across interfaces of practical size is 
not straightforward. Although ML and materials infor-
matics have played a significant role in the development 
of crystal structure and material property descriptors265 
to extend length scales and serve as a proxy for expensive 

calculations266,267, reliable descriptors and data- driven 
modelling paradigms are lacking for interfacial systems.

To transform existing trial- and- error approaches268, 
high- throughput computation is used together with 
energetic evaluation from atomistic modelling, STEM 
image simulations, and computer vision- based image 
comparison in order to determine 3D atomic structures 
at grain boundaries and interfaces269. For energetic 
modelling of practical interfaces, interatomic poten-
tials provide a computationally efficient alternative to 
electronic structure methods such as DFT, while often 
capturing the same essential physics. Interatomic poten-
tial structure search schemes such as basin hopping and 
genetic algorithms sample a space of the lowest- energy 
solutions and are often sufficient if the task is to find the 
most stable structures. It is problematic if the system of 
interest contains possible metastable configurations, as 
is the case with grain boundaries and interfaces, because 
these interatomic potentials will often work to minimize 
energy regardless of whether the resultant structure is 
consistent with observations. With suitable constraints 
at the boundaries, simulated annealing using empirical 
potentials has been used to determine structural motifs 
during grain boundary migration in aluminium oxide270 
(FIG. 5a–c). However, there is no guarantee that the com-
putational structures obtained in the simulated anneal-
ing simulations will match the experimental structures 
and the process of matching can be labour- intensive. 
Therefore, it is desirable to have an additional constraint 
that involves a measure of similarity between simulated 
and experimental STEM images to ensure that the space 
of structures explored is somewhat consistent with 
observations.

For image comparisons, similarity measurements 
are functions or processes that quantify how alike two 
images are. Some similarity measurements are direct 
pixel measurements, where pixel values are explicitly 
considered when making a comparison. In the simplest 
case, a direct- pixel measurement is a sum of the errors 
between pixel values or the mean squared error. A more 
sophisticated method, such as the structural similarity 
index measure (SSIM)271, processes collections of pixels 
as patches and provides similarity measurements based 
on a multiplicative combination of intensity, contrast 
and structure terms. By normalizing image patches 
for intensity and contrast differences, SSIM reveals 
the structure of the image signal. Finally, state- of- the 
art image comparison for image and video processing 
applications are often based on a visual information 
fidelity in the pixel domain (VIFP)272,273. The principle 
behind VIFP is that image quality (in our case similarity 
with respect to a reference) corresponds to a measure 
of Shannon information fidelity loss between the ref-
erence and distorted image relative to the information 
of the reference, using a combination of sub- band- 
coding, distortion models, and models of the human  
visual system.

FIGURE 5d–g shows a HAADF- STEM image of a 
cadmium telluride grain boundary274, from which the 
corresponding 3D structures are obtained using high- 
throughput computation with an iterative basin hop-
ping scheme. The optimization objective combines the 
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interfacial energy obtained from the Stillinger–Weber 
interatomic potential with image similarity between the 
simulated and experimental STEM image using SSIM 
image matching. Rather than a single 3D structure, a 
family of structures is obtained that can be further inves-
tigated using first- principles computation and statistical 
analysis. It can be seen that the 3D structures obtained 
using this method are not composed of simple dislocation 
core models and cannot otherwise be conjectured.

Chemistry
STEM is widely used to investigate interactions between 
atoms and atomically thin supports owing to its 
sub- ångström resolution. In particular, HAADF- STEM 
can provide a higher image intensity for heavy elements 
than lighter elements based on Z- contrast imaging, 
where the signal intensity is proportional to the νth 
power of the atomic number of an element for I ∝ Zν. 
The exponent, ν, ranges typically from 1.6 to 1.9 depend-
ing on the radius of the atoms, their scattering factor, 
the surrounding atomic structure and the specimen 
thickness28,275–277.

Heavy atoms on 2D substrates. HAADF- STEM ena-
bles the tracking of heavy metal atoms on monolayer 
2D substrates, shedding light on their diffusion, aggre-
gation and the physics of various atomic interactions. 
For example, the atomic interactions between single 
platinum atoms and monolayer molybdenum disulfide, 
a 2D substrate, have been extensively investigated, with 
the migration of single platinum atoms on the surface 
of molybdenum disulfide well tracked by sequential 
imaging278. The atomic model of the hopping of plat-
inum atoms between sulfur vacancy sites is shown in 
FIG. 6a. All platinum atoms are on sulfur instead of 
molybdenum sites, confirming the affinity of platinum 
atoms to sulfur vacancies on the clean molybdenum 
disulfide surface. The trapping of platinum nanoclus-
ters at dislocations in molybdenum disulfide has also 
been studied279. FIGURE 6b shows that upon annealing 
of a chloroplatinic acid precursor at 350 °C on an in situ 
heating holder, seeds and clusters of platinum appear 
at the grain boundaries of polycrystalline molybdenum 
sulfide. The platinum nanocrystals at the grain bound-
aries reveal a tilt angle of 60° between the two grains, 
which is confirmed by fast Fourier transform, and 
highlight the interactions between platinum dopants 
and grain boundaries of 2D materials. The presence 
of hydrocarbon contamination on 2D substrates, com-
monly introduced during the growth of 2D materials, 
has also been shown to play a significant part in the trap-
ping and stabilization of metal atoms and nanoclusters. 
For example, gold, iron and chromium atoms primar-
ily reside on the amorphous carbon contamination of 
graphene substrates280.

In situ heating. In situ heating in aberration- corrected 
STEM is a powerful tool for investigating the epitaxial 
growth of nanocrystals on a 2D substrate. Upon heat-
ing of a precursor to 800 °C, platinum atoms diffuse 
on the surface of molybdenum disulfide and grow into 
nanocrystals281 (FIG. 6c). The (111) plane of the platinum 
nanocrystal aligns along the zigzag direction of molyb-
denum disulfide (FIG. 5d), while the (002) plane aligns 
with the armchair direction of the substrate. The d spac-
ing of the platinum nanocrystals (d = 2.28 Å), obtained 
from a Fourier transform analysis of the image of the 
platinum nanocrystal and a reference material, is com-
parable to that of a bulk platinum crystal (d = 2.265 Å), 
indicating that little strain formed in the crystals (FIG. 6e). 
In addition, strategies have been developed to control 
the morphologies of metal nanoclusters forming on 2D 
materials. One example is a metal precursor incorporat-
ing a bulky organic ligand around a metal to suppress 
the formation of 3D atom clusters on the 2D support 
at raised temperature and instead to yield 2D clusters 
with flat surfaces and single metal atoms after anneal-
ing282. Some reports in which the epitaxial interactions 
between the metal nanoclusters and the substrates are 
analysed by STEM imaging include the growth of 2D 
palladium diselenide nanocrystals on monolayer molyb-
denum disulfide283, monolayer lead iodide nanodisks on 
graphene284, a 2D molybdenum diselenide film on hexa-
gonal boron nitride285 and pyrochlore Nd2Ir2O7 grown 
on yttria- stabilized zirconia286.
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Fig. 5 | HAADF imaging of grain boundaries. a–c | High- angle annular dark- field- scanning 
transmission electron microscopy (HAADF- STEM) images of grain boundary migration in 
Al2O3, overlaid with structural models from simulated annealing. d–g | Reconstruction of 
3D atomistic structure of a CdSe0.25Te0.75 grain boundary274. d | The experimental image.  
e | The density functional theory- optimized structure based on the experimental image.  
f | A convolution image based on panel e. g | The overlay of panels d and f. Panels a–c 
adapted from REF.270, Springer Nature Limited. Panels d–g adapted with permission from 
REF.274, AIP publishing.
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The van der Waals interactions between a flat aro-
matic molecule and the basal plane of an underlying 
substrate has also been elucidated by STEM. In REF.287, 
a planar aromatic molecule containing platinum metal 
as a marker for tracking was designed. During depo-
sition, the molecules were found on the basal plane 

of the molybdenum disulfide near the edges of nano-
pores, owing to the strong van der Waals interactions 
between the aromatic core of the molecule and the 
underlying molybdenum disulfide substrate. Molecule 
configurations were hypothesized by measuring the dis-
tance between the platinum markers and the edges of 
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Fig. 6 | STEM examples in chemistry. a | Schematic of single- atom platinum migration on a molybdenum disulfide 
�&|UWTHCEG��b | High- magnification annular dark- field- scanning transmission electron microscopy (ADF- STEM) image 
showing deposition of platinum nanocrystals on a grain boundary (GB). The inset is a fast Fourier transform of panel b,  
in which one set of reflections is observed. c | Image of a region containing many platinum nanocrystals epitaxially grown 
on a 2D surface. d | Magnified ADF- STEM image of yellow box in panel c showing a platinum nanocrystal attached to  
the edge of molybdenum disulfide. e | Fast Fourier transform analysis of panel d where reflections from platinum and 
molybdenum disulfide are labelled in white and yellow/green, respectively. f | Structural change of photo- switches. 
Schematic of isomerization of azobenzene derivative (left) and ADF- STEM image showing change of platinum marker 
distances (right). UV, ultraviolet. Panel a adapted with permission from REF.278, American Chemical Society. Panel b adapted 
with permission from REF.279, American Chemical Society. Panels c–e reprinted with permission from REF.281, American 
Chemical Society. Panel f reprinted with permission from REF.294, American Chemical Society.
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molybdenum disulfide pores in the STEM images. This 
heavy- metal tagging method presents an opportunity for 
studying the interactions between tagged molecules and 
the underlying 2D substrates.

In situ reactions. Recently, STEM has contributed to 
elucidating chemical reaction mechanisms during 
catalysis by directly imaging and tracking metal cata-
lysts. For example, in the gold core of a core- shell nano-
particle with a nickel phosphide shell, gold atoms have 
been shown to diffuse into the nickel phosphide shell 
during annealing and cause an inward expansion of the 
structure288. The direct visualization of transition metal 
catalysts has provided chemical insight into the perfor-
mance and mechanism of the hydrogen evolution reac-
tion289, hydrogenation290, dehydrogenation291 and carbon 
monoxide oxidation292,293. STEM has also been used to 
monitor the structural changes of stimuli- responsive 
organic molecules294. When platinum atom markers 
were incorporated in azobenzene photoswitches, the 
photo- irradiation of a flat trans isomer of azobenzene 
caused it to switch to a bent cis structure and reduced 
the platinum–platinum distance markers from about 
2.1 nm to about 1.4 nm (FIG. 6f). Finally, the self- assembly 
of mesoscale systems has been investigated by STEM 
using heavy- metal- marked macromolecules. Platinum- 
marked porphyrin hexamers were imaged on graphene 
at a low electron dose to minimize beam- induced dam-
age295 and shown to align along the graphene zigzag 
direction owing to strong epitaxial interaction with the 
substrate even in the presence of hydrocarbon contam-
ination. In addition, the self- assembly and packing of 
non-planar, bowlike macromolecules has been studied 
on graphene296. The W- marked calix[4]azoarene mole-
cules stacked in a head- to- tail fashion, forming molecu-
lar chains and lamellar structures at high concentrations. 
In low-concentration areas, various types of intermole-
cular interactions were detected, such as side-by-side 
and head-to-head interactions.

When studying processes such as chemical reac-
tions or the transformation of small catalytic clusters 
whose properties depend strongly on the instantane-
ous atomic configuration, temporal resolution of the 
imaging process becomes critical. As mentioned above, 
STEM acquisition speeds are usually in the range of 
seconds per frame. With a temporal resolution in the 
range of seconds, important dynamics might be missed. 
However, advanced scan engines allow for faster acqui-
sition speeds. Recently, recording speeds in STEM mode 
exceeding 100 frames per second have been used to 
unravel structural transitions and the stability of small 
catalytic clusters297. One major drawback of such high 
frame rates in STEM mode is increased noise in the 
data because the electron dose is limited and needs to 
be balanced against the stability of the sample under 
investigation. With dwell times in the range of 100 ns 
or less, only a few tens of electrons transmit through 
the sample per scan position and fewer are eventually 
scattered to the detector to form the noisy signal, which 
suffers from shot noise. Noisy image series stemming 
from time- resolved data or from beam- sensitive sam-
ples, which do not tolerate a high enough electron dose 

for achieving a suitable signal- to- noise (SNR) ratio, can 
be processed with classical, powerful denoising algo-
rithms298 that are typically slow and require long process-
ing times. However, denoising of data is an area where 
ML can provide large benefits. Recently implemented 
denoising algorithms based on DCNNs299 can process 
(both denoise and restore) time- resolved image series in 
near real time. A well- trained algorithm therefore ena-
bles reliable restoration of atomic- resolution data and 
paves the way for further increases in the temporal reso-
lution in STEM and further minimization of the electron 
dose for radiation- sensitive materials.

Structure of solids from atoms up
In modern condensed matter physics and materials sci-
ence, our current understanding of condensed matter 
and quantum systems hinges on macroscopic symmetry. 
Formalized via point and space group theory300, symme-
try underpins areas such as structural analysis and serves 
as the basis for the descriptive formalism of quasiparti-
cles and elementary excitations, phase transitions, and 
mesoscopic order- parameter- based descriptions. The 
natural counterpart of symmetry- based descriptors 
is the concept of physical building blocks. Crystalline 
solids or magnetic or ferroelectric behaviour can gen-
erally be described via a combination of unit cells with 
discrete translational symmetry of the lattice. Other 
systems such as Penrose structures possess well defined 
building blocks but do not possess long- range trans-
lational symmetry. Finally, a broad range of materials 
fully lack translational symmetry, with examples rang-
ing from structural glasses to ferroelectric and magnetic 
morphotropic systems301–309. Typically, symmetry- based 
descriptors have led to much deeper insights into the 
structure and functionalities of materials, with trans-
lational symmetries compared with partially and fully 
disordered systems310–312.

To date, the analysis of atomically resolved imaging 
data has almost invariably been based on mathematics 
developed for macroscopic scattering data243,311 despite 
the fundamentally different nature of microscopic 
measurements. As a simple example, consider an ideal 
crystal containing a macroscopic number of structural 
units. The symmetry of the diffraction pattern repre-
sents the symmetry of the lattice and the width of the 
peaks in the Fourier space is determined by intrinsic 
factors such as angular resolution of the measurement 
system rather than disorder in the material. The presence  
of symmetry- breaking distortions, such as a cubic-to- 
tetragonal state transition, is instantly detectable via dif-
fraction peak splitting. In comparison, only a small part 
of the object is visible in microscopic observations. The 
positions of the atoms are known only within an uncer-
tainty interval and this uncertainty can be comparable 
to the magnitude of the symmetry- breaking feature of 
interest, such as tetragonality or polarization. Hence, 
two questions arise: at which image size is it justified 
to define symmetry from atomically resolved data and 
at which level of confidence can symmetry be defined? 
Ideally, such an approach should be applicable to struc-
tural data and more complex multidimensional datasets 
such as EELS313,314 and ptychographic imaging5,102,315.

Penrose structures
Local structural units that, 
when displaced and rotated, 
can fully tile space, but do not 
have periodic translational 
symmetry. Such atomic 
structures can be found in 
quasicrystals.
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The alternative to conventional top- down descriptors 
is a bottom- up structural analysis, where unsupervised 
or semi- supervised ML methods are used to determine 
common structural blocks and the patterns they form in 
a solid. For materials with an ideal crystalline lattice, the 
conventional way to describe structures is in reference to 
the lattice. FIGURE 7 shows a bottom- up structural analy-
sis for a ferroelectric material. The experimental image 
(FIG. 7a) can be converted into a stack of sub- images 
describing either raw STEM contrast or a DCNN- based 
segmented image and subsequent application of linear 
or nonlinear dimensionality methods yields the com-
ponents and loading maps (FIG. 7d). The component 
describes the salient elements of the material’s struc-
ture, whereas the loading map describes the structure 
of the solid.

The analysis is considerably more complicated in 
cases where the system does not possess discrete trans-
lational symmetry. When materials have atomic bond 
disorder, linear dimensionality reduction methods do 
not perform well owing to the large number of orien-
tational variants necessitating alternative descriptors. 
If the atomic positions are established, analyses can be 
based on the analysis of the nearest neighbours316–318. 
Alternatively, the analysis can be performed using other 
rotationally invariant representations such as graph 
networks319.

Finally, bottom- up analysis can be performed via 
transformation- invariant VAEs208. Shown in FIG. 3 
is the application of a rotationally invariant (r)VAE 
to the analysis of graphene data. Here, the graphene 
lattice undergoes structural transformations due to 
electron beam irradiation, which results in the forma-
tion of topological defects. The rVAE is able to segment  
chemical space by separating the graphene lattice  
from topological defects and grouping some of the top-
ological defects together in the latent space. This was 
achieved by explicitly separating the variation in orienta-
tions of individual building blocks from the variation in 
structural content. The rVAE approach was also shown 
to enable effective exploration of the chemical evolu-
tion of the system based on local structural changes320 
and may be extended to more complex systems321. 
Importantly, the rVAE allows discovery of the molecular 
building blocks and chemical reactions pathways in an  
unsupervised manner.

Physics of atomic interactions
Solids can be described based on generative models that 
give rise to the equivalent stochastic atomic, dipole or 
spin microstructure322. Generative models for systems 
with defined atomic lattices and chemical site dis-
order are represented by lattice models such as Ising323, 
Kitaev324, Heisenberg323 and so on. For example, binary 
solid solutions can be fully described via the correspond-
ing Ising- like Hamiltonian that gives rise to statistically 
similar (in the sense of Kullback–Leibler divergence of 
distributions) microstructures, and this description is 
compact and generalizable to non- observed concentra-
tions and temperatures. STEM data yields the microstates 
of physical systems and enables comparison between 
generative models and experimental observations. 

Direct observation of the mesoscopic degrees of free-
dom can be directly compared with the lattice model via 
statistical distance minimization322,325,326. Beyond statis-
tical analyses, observations of the multiple metastable 
configurations have been used to reconstruct the force 
fields acting between atoms327,328. Learning the genera-
tive model from atomically resolved data, incorporating 
prior knowledge, and yielding corresponding uncer-
tainties as posterior parameter distributions is there-
fore a clear opportunity for characterizing the intrinsic  
properties of material systems.

Reproducibility and data deposition
In this section, we summarize the requirements for data 
storage in STEM. In any experiment, it is vitally impor-
tant to include the metadata that allows the experiment 
to be reproduced. In a STEM study, the most important 
experimental parameters are the accelerating voltage 
of the microscope, the convergence angle of the STEM 
probe (also called the numerical aperture), the step size 
between adjacent probe positions, the dwell time, and at 
least a rough estimate of the beam current in the initial 
STEM probe. Specific imaging modalities require addi-
tional metadata. 2D images recorded using monolithic 
detectors require a precise description of the detector 
response and detector coordinates, such as the angular 
range for annular detectors or the position and rota-
tion of detector quadrants in differential phase contrast 
measurements, as well as the position and orientation of 
the diffraction pattern relative to these coordinates. 3D 
datasets such as time series require the time stamp of 
each frame, while tomography tilt series must specify the 
stage tilt angles for each time, and spectroscopic meas-
urements such as EDS or EELS must specify the energy 
range or bin width. Spectroscopic measurements should 
specify any other parameters needed to reproduce the 
experiment, such as the monochromation conditions 
of the beam if applied and the collection angles of the 
spectrometer used.

In pixelated measurements of the probe such as in 
4D- STEM, one must specify the calibrated output pixel 
size or provide absolute reference data and the rotation 
or direction of the probe scan steps relative to the detec-
tor coordinates. In 4D- STEM, it is also useful to record 
an image of the STEM probe passing only through  
vacuum, which can be used a probe reference image for 
ptychography, orientation or strain mapping.

Other microscope parameters such as the voltage 
settings of the source, focusing optics, corrector optics, 
projector system, the vacuum levels of the microscope, 
hardware models and software version numbers can also 
be recorded as a matter of course. Detailed notes regard-
ing the sample including the preparation, geometry and 
beam exposure conditions should also be recorded. In 
STEM studies it is particularly easy to record data at 
vastly different magnifications, making the task of 
generating survey images of the sample layout straight-
forward. Of particular importance in most STEM 
experi ments is the sample tilt used for each measure-
ment; one of the strengths of STEM imaging is that it 
can combine observations at different orientations to 
construct a more complete picture of the specimen.

Electron beam irradiation
This occurs when an electron 
beam induces changes in  
a specimen due to energy 
transfer, often called beam 
damage.

Dwell time
The time period of the data 
collection in each pixel.
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While new technologies have led to dramatic 
improvements in data quality, they have introduced a 
parallel development that we consider to be even more 

important in the long run: the digitization of TEM and 
STEM studies. Because STEM imaging experiments typi-
cally use large monolithic detectors that directly output 
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Fig. 7 | Bottom-up structural analysis for a ferroelectric material. a | Experimental scanning transmission electron 
microscopy image of La- doped BiFeO3. b | Local descriptors (sub- images) of different sizes centred on atoms from one of 
the sub- lattices extracted from CNN output. c | Scree plot for principal component analysis (PCA) performed on the full 
stack of extracted descriptors (subimages) showing explained variance as a function of number of PCA components for 
different- sized sub- images. d | PCA decomposition of local descriptors into four components. PCA eigenmodes (associated 
with distortions) and corresponding loading maps (showing where the distortion occurred in the image) are shown in the 
top and bottom rows of panel d, respectively. Adapted with permission from REF.201, AIP publishing.
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electronic signals, they provided many early examples 
of the benefits of running experiments online, where a 
local computer is used to drive the experiment, record 
and analyse the data, or both329–332 (FIG. 1). The benefits 
of recording scientific data digitally are numerous. First, 
performing quantitative analysis is much easier on far 
larger scales using computational tools and methods. 
Some recent experiments only made possible by com-
bining computational methods with STEM experiments 
include picometre- precision measurements of atomic 
column positions191, atomic- resolution 3D tomogra-
phy333 and imaging past the conventional information 
limit with ptychography315. The next step along these 
lines is to further close the loop between experiment and 
online analysis and perform data- driven STEM experi-
ments334,335. Secondly, digital data can be shared easily 
with the wider scientific community, both in raw for-
mats and after processing for further analysis, provided 
data transfer pipelines for big data are available. It has 
also become standard practice for many scientific jour-
nals to require authors to provide open access to data336. 
In parallel, the ‘open science’ movement aims to increase 
transparency, efficiency and reproducibility in scientific 
research337,338. Reproducibility is a major concern for all 
scientific disciplines including STEM339; researchers 
should make their data available in open- source file for-
mats such as ASCII, CSV or hdf5 with all of the informa-
tion required to understand and reproduce the results at 
the time of publication.

Data deposition can be performed using various 
online services such as the Materials Data Facility340. 
However, these services do not prescribe what metadata 
is required or any specific data formats and are therefore 
typically less useful than online databanks that target 
specific classes of data. The largest example in materi-
als science is the Materials Project, which stores various 
calculated parameters for a large number of materials341. 
In biological electron microscopy, there are several 
examples of large databases that aid in transparency 
and reproducibility, including the Electron Microscopy 
Public Image Archive342 and the Protein Data Bank343. 
Recently, a similar repository for atomic- resolution 3D 
structures for materials science applications called the 
Materials Data Bank344 has also been established. There 
are a few examples of repositories of experimental or 
simulated STEM datasets, such as in REFS13,345. There 
is currently, however, no repository that is both open- 
ended to support all kinds of STEM experiment while 
being specific enough to require submission of all meta-
data and data required to reproduce published results. 
There is a strong need to develop this infrastructure for 
STEM research335,346.

Limitations and optimizations
The remarkable progress in high- resolution STEM imag-
ing and spectroscopies over the past decades is based 
upon essentially unchanged instrument operation. The 
typical operation of the microscope starts with stabili-
zation tuning and focusing of the microscope, a process 
that can take minutes to hours and hinges upon prede-
fined tuning routines and operator intuition. The oper-
ator then chooses the regions of interest on the sample 

and performs imaging and spectroscopy. The scanning 
process almost invariably uses a rectangular scann-
ing pattern with beam rastering in a zig- zag shape. The  
process is well recognized and accepted in the micro-
scopy community but is often opaque to the general  
scientific community.

The development of ML and artificial intelligence 
methods over the past ten years has naturally led to the 
concept of automated and autonomous experiments in 
STEM and other microscopies, which typically includes 
the concept of a microscope that automatically chooses 
optimal imaging parameters, identifies the regions of 
interest on the sample, and performs the required meas-
urements. In addition, the ability of STEM to potentially 
control beam- induced changes means that it can be 
used as an atomic fabrication platform, which has been 
demonstrated by the creation of individual vacancies347,348, 
the insertion of dopant atoms26, the directed motion of 
atomic units26,349, and the assembly of homo- and hetero-
atomic molecules350,351. Below, we mention what is needed 
to achieve synergy between the STEM and ML methods.

Beam control and image reconstruction
The central premise for automated experiments is 
the ability to alter the probe path via external control, 
together with scanning along non- rectangular beam 
paths. Although it is fairly straightforward to do, alter-
ing the probe raster path requires access to the micro-
scope scan functions, which is infrequently available 
for high- resolution STEMs, which often possess black- 
box manufacturer- developed controls. Scanning the 
beam using predefined non- rectangular paths such as 
spirals227,228 has, however, been demonstrated.

The reconstruction of images from the data acquired 
along non- rectangular beam paths is another issue, 
which has been addressed using several approaches 
based on compressed sensing and a Gaussian pro-
cess228,352–354 or reconstructive autoencoders and VAEs. 
The compressed sensing and Gaussian process meth-
ods are generally interpolated between the acquired 
data points during the experiment and do not have 
inferential biases or prior information. Gaussian process 
methods also allow quantification of uncertainty maps 
and enable automated experiment workflows based on 
exploration or exploitation. By contrast, the VAE approach 
utilizes prior knowledge in the form of a trained network,  
which strongly increases the efficiency of this approach 
but makes it sensitive to out of distribution data.

Automation and image- based feedback
Arbitrary scan paths provide a necessary engineering 
element for the development of automated experiment 
workflows. Another key element is the identification of 
objects of interest in the image plane, which depends 
on sensitivity to small variations in imaging condi-
tions. For example, some of the early demonstrations of 
image- based feedback in STEM include the detection  
of material crystallinity from the magnitude of the peak 
in the line- by- line fast Fourier transform of the image355. 
The broad introduction of deep learning image recog-
nition networks offers another approach to automating 
experiments. However, despite significant and justified 

Inferential biases
The assumptions and 
constraints implemented in the 
structure of the network, loss 
function or training set that 
impose specific limitations  
on the outputs.

Exploration
Uncertainty minimization.

Exploitation
Balancing exploration and 
pursuing target functionalities.

Out- of- distribution data
When observational conditions 
change between experiments, 
precluding a direct comparison 
of data between experiments.
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enthusiasm about potential of DCNNs in image analysis, 
these technologies are associated with strong inference 
biases. This implies that DCNNs will be sensitive to past 
data and generally sensitive to small changes in micro-
scope parameters. A common challenge for pre- trained 
DCNNs comes from the distribution shift356,357 when a 
neural network trained on one set of parameters (such 
as acquisition parameters, sample condition, and so on) 
fails to generalize to parameters outside of the training 
range. For spectroscopic experiments that aim to iden-
tify regions of a sample where a particular behaviour/
functionality is maximized (or minimized), one solu-
tion is the deep kernel learning approach358 that actively 
learns a correlative relationship between structural data 
and functionality of interest and uses it to navigate the 
spectroscopic measurements24. Finally, target auto-
encoders are set by human operators and rapidly emerg-
ing techniques such as curiosity- based learning offer an 
automation solution. In general, the likely pathways for 
the adoption of autoencoders in STEM are high- level 
decisions at the human timescale with ML making fast 
low- level decisions.

Atomic fabrication
Electron beams can induce changes in the structure of 
materials from amorphization to complete evaporation. 
Correspondingly, minimization of beam damage has 
been a primary driver in electron microscopy develop-
ment, with its breakthrough achieved with the inven-
tion and rapid adoption of aberration correction, which 
enables high- resolution low- voltage imaging below the 
knock- on damage thresholds. of many materials. In this 
regime, beam damage can often be sufficiently slow and 
associated with reconstruction of the chemical bond net-
work rather than its complete destruction. Phenomena 
such as beam- induced phase transformations359, 
vacancy ordering360,361, and crystallization and amor-
phization362–366, have been reported. In monolayers367 of 
graphene and layered dichalcogenides, STEM studies 
have demonstrated the presence of a broad spectrum 
of chemical transformations including vacancy forma-
tion347, grain boundary motion368, fast beam- induced 
motion of dopant atoms, and the dynamic motion of 
molecular groups369. Observing such precise dynamic 
changes under the action of a 50–100 kV electron beam 
is highly surprising and the mechanisms responsible for 
the observed phenomena are still actively discussed370–374. 
However, irrespective of the exact mechanisms, these 
observations clearly suggest the potential of using the 
electron beam for direct atomic fabrication. In bulk 
materials, beam- induced crystallization of silicon and 
strontium titanate was harnessed using image- based 
feedback375. Recently, the direct formation of vacancies 
and site- specific dopants, directed motion of silicon ada-
toms on graphene, and assembly of homo- and hetero-
atomic molecules have been demonstrated26. However, 
the atomic fabrication process to date has been driven by 
a human operator, typically at the timescale of minutes 
and tens of minutes for a single operation.

The simple examination of intrinsic latencies of 
STEM suggests that electron beam assembly can be 
accelerated by many orders of magnitude but necessitates 

the seamless combination of image recognition on 
potentially noisy and out of distribution data to identify 
the objects of interest together with reinforcement learn-
ing or similar methods376. Unlike popularized examples 
using reinforcement learning such as Atari or Go games, 
the rules that control electron beam transformations 
are unknown. Hence, we need either a determination 
of these rules or algorithms that can base reinforcement 
learning on observations only, such as muZero377.

Outlook
In this Primer, we hope we have illustrated the tremen-
dous potential of deep learning for post- acquisition 
analysis, physics extraction from data, and especially 
automated and autonomous experiments. Fully realizing 
this potential necessitates significant developments on 
multiple levels, from instrumental platforms to common 
workflows, shared data and codes. These develop ments 
also require progress in ML methods, which will be  
common to many other areas of physics.

At the instrument level, realizing the full potential of 
ML methods requires enabling open software architec-
ture to control microscope operation and allow for cus-
tom experiments. General software platforms for such 
development are well established and exemplified by  
industry standards such as LabView. In recent years, 
some of the microscope manufacturers have provided 
open software for microscope operation, such as Nion 
Swift and JEOL PyJem. Complementary to open soft-
ware architectures will be the development of local com-
puting capabilities to provide the computational power 
necessary to run complex calculations at the latencies of 
microscope operation. It should be noted that rapid pro-
gress in computational infrastructure now offers multi-
ple opportunities for such development, from extremely 
light computational platforms such as Raspberry Pi  
and the NVIDIA Jetson series to the NVIDIA DGX and 
cluster solutions.

At the facility level, progress requires the develop-
ment of universal yet flexible analysis workflows on sam-
ple preparation, imaging and data analytics. This allows 
reproducible and traceable measurements and also 
serves as a necessary condition for transition to auto-
mated and autonomous experiments. Complementary 
to this are data repositories for the storage of data, meta-
data providing context for the measurements and data 
meaning, and the codes used in the original analysis. 
Examples of such workflow developments are given by 
cryo- electron microscopy (cryo- EM) imaging of bio-
logical systems378. It should be noted that historically, 
developments of workflows do not exclude the human 
operator from the research process. Rather, these work-
flows allow delegation of the low- level, low- latency 
operations to automated systems so that a human  
operator can focus on high- level decision- making.

At the level of the STEM community, there is a clear 
imperative for community- wide development and shar-
ing of data analysis and, when possible, instrument control 
codes. Platforms such as GitHub that enable effective dis-
tributed code development are now mainstream and we  
hope to see the development of a code- sharing and 
credit- sharing culture within the community, from home 

Distribution shift
In machine learning, this shift 
occurs when training and test 
sets do not come from the 
same distribution.

Knock- on damage 
thresholds
The energy of the incident 
electron required to remove an 
atom from the crystal lattice.

22 | Article citation ID:            (2022) 2:11  www.nature.com/nrmp

PR IMER

0123456789();: 



institutions and from sponsor agencies. Equally impor-
tant is data sharing, both within the STEM community 
and as a bridge to the broader physics community.

Finally, the most serendipitous developments are 
possible at the interface between STEM and the gen-
eral scientific community. STEM offers a treasure trove  
of precise data on atomic position and functionalities 
linked to deep electronic levels, the Fermi level and col-
lective excitations. Extracting accurate physical informa-
tion from this data and linking it to materials physics 
will revolutionize our understanding of condensed 
matter physics and chemistry at the atomic level. This 
will necessitate matching developments in ML, includ-
ing physics- based ML, deep kernel learning and active 
learning methods. Special sets of opportunities and 

requirements emerge in the context of autonomous 
experimentation, necessitating engineering controls, 
development and deployment of Bayesian optimiza-
tion and reinforcement learning algorithms and their 
seamless integration into STEM workflows. These can 
enable automated tuning of the microscope, search 
and exploration of regions of specific interest, and ulti-
mately atomic fabrication. To close this Primer, we quote 
Feynman — “What I cannot make, I cannot understand”. 
With imaging, quantification and fabrication capabili-
ties enabled by the synergy of the experimental method 
with ML, STEM promises us a true understanding of 
the atomic world.
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