Aberration
An imperfection in the electron
optics of a microscope.

Coherent imaging
Measurements where the
local contrast is dominated
by the phase alignment

of the electron wavefronts:
constructive interference

(in phase) leads to higher
signals and destructive
inference (out of phase) leads
to lower signals.
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scanning modes.

One of the most common methods of seeing atoms is
by scanning transmission electron microscopy (STEM).
In STEM, images are generated by scanning a small
probe, formed by focusing an electron beam, across a
thin sample'. The probe is focused by the objective lens,
usually combined with other lenses designed to reduce
the aberrations of the probe-forming optics. Scan coils,
which generate a rapidly changing field, are used to
scan the beam over the sample. Any signal that varies
with probe position can be detected and used to form
an image. A simple schematic of a STEM microscope
and various possible detector configurations is shown in
FIC. 1. Some detector configurations can be used in par-
allel, which is advantageous because it allows multiple,
complementary signals to be directly compared, pixel by
pixel, both for imaging of simultaneous coherent imaging
and incoherent imaging signals and for spectroscopic analy-
sis such as X-ray and light emission and electron energy
loss spectroscopy (EELS). The detected intensity is plot-
ted on a monitor synchronized with the beam scanning
to form images. Because the distribution of transmitted
and/or scattered electrons in the detector plane depends
on the specimens thickness, composition and structure,
the variation of detected intensity across the image tells
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Abstract | Scanning transmission electron microscopy (STEM) has emerged as a uniquely powerful
tool for structural and functional imaging of materials on the atomic level. Driven by advances

in aberration correction, STEM now allows the routine imaging of structures with single-digit
picometre-level precision for localization of atomic units. This Primer focuses on the opportunities
emerging at the interface between STEM and machine learning (ML) methods. We review the
primary STEM imaging methods, including structural imaging, electron energy loss spectroscopy
and its momentum-resolved modalities and 4D-STEM. We discuss the quantification of STEM
structural data as a necessary step towards meaningful ML applications and its analysis in terms of
the relevant physics and chemistry. We show examples of the opportunities offered by structural
STEM imaging in elucidating the chemistry and physics of complex materials and how the latter
connect to first-principles and phase-field models to yield consistent interpretation of generative
physics. We present the critical infrastructural needs for the broad adoption of ML methods in

the STEM community, including the storage of data and metadata to allow the reproduction of
experiments. Finally, we discuss the application of ML to automating experiments and novel

us how the projected thickness, composition, and/or
structure of the sample changes from point to point. The
spatial resolution is effectively determined by the size of
the electron probe. Today, the development of aberration
correction technology for electron optics allows us to
narrow the electron probe routinely to a full width at
half maximum (FWHM) of 50 pm or less, meaning that
the spatial resolution of aberration-corrected STEM
has become smaller than the size of a hydrogen atom,
whose Bohr radius is approximately 53 pm. In a STEM
image, the image contrast and the information it con-
tains about the specimen depends on which regions
of the detector plane we record from and how we detect
the electrons by the post-specimen detectors. For com-
pleteness, a brief history of STEM is provided in the
Supplementary information.

The most common STEM measurement is to
detect the electrons scattered to high angles (substan-
tially beyond the probe-forming aperture radius) by a
doughnut-shaped detector. Called annular dark-field
(ADF) imaging, this method produces images that are
incoherent — essentially, all probed atoms contrib-
ute independently and additively to the total signal
and interference effects between signals arising from
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Incoherent imaging

When the coherence length
of the electron waves is smaller
than the resolution element
of the measurement, the total
signal is given incoherently by
the sum of individual electron
wavefunction intensities, and
the relative phase of these
wavefronts does not affect the
measured intensity.

Contrast
The spatial variation of
intensity.

Z-contrast imaging

A scanning transmission
electron microscopy-high-angle
annular dark-field imaging
method, where the image
contrast scales roughly
monotonically with the atomic
number Z of the atom(s) being
imaged, approximately as 7'’

Ptychography

A method of generating images
from many coherent diffraction
patterns formed at different
probe positions in the STEM. It
is also widely used in X-ray
scattering experiments.

Tilt series tomography

By tilting the specimen and
recording projected images
at different angles, computer
algorithms can be used to
reconstruct the 3D sample
structure.
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different atoms are suppressed. This feature enables us
directly and robustly to observe atomic columns and
single atoms in materials and devices. Moreover, since
the integrated intensity of high-angle scattered electrons
varies approximately with the square of the atomic num-
ber Z of the atoms under the probe, Z-contrast imaging
can visualize the atoms of heavier elements in a crys-
talline lattice with high sensitivity. The signal from the
lighter atoms in a crystalline lattice is generally much
lower, often making detection difficult. To increase
the atomic signal and image light monolayer materials
such as graphene, the inner angle of the detector can
be decreased. This frequently used detection method
is called annular bright-field (ABF) imaging. The ABF
mode uses a doughnut-shaped detector positioned
to collect electrons scattered inside the angular range
defined by the incident probe (often referred to as the
bright-field disk) and can directly visualize light atoms
even in the presence of heavy atoms. Since ADF, ABF
and other types of image can be obtained simultaneously
from exactly the same sample positions by using either
many separate segmented detectors or a pixel-type
detector (FIG. 1), both structural and chemical informa-
tion at atomic dimensions can be obtained by STEM.
When combining imaging with spectroscopic tech-
niques, STEM allows us to extract multiple and comple-
mentary forms of information about a specimen from
a very localized volume, including its atomic dimen-
sions. For example, imaging can be combined with
EELS, where each probe position records the energy
spectrum of scattered electrons to measure inelastic
scattering inside the specimen, and energy-dispersive
X-ray spectroscopy (EDS or EDX), which measures
X-rays emitted as a result of the electron probe inter-
acting with the specimen, to simultaneously obtain a
wealth of information about the material from the same
sample positions.

In recent years, additional imaging modes, such
as differential phase contrast and four-dimensional
(4D)-STEM, as discussed below, have become available
with advances in electron detectors, especially pixelated
and multi-segmented detectors, which allow spatially
resolved probing of electric fields at atomic resolution
and magnetic fields at nanoscale resolution®. Pixellated
detectors allow a snapshot of electrons scattered through
a range of angles for each probe position. This enables
the detector configuration, for example ABF, ADF or
even various multi-segmented configurations, to be
selected after the data have been collected, with obvious
advantage of selecting the imaging mode that is optimal
for the sample without the need to do additional experi-
mentation. They also permit special configurations to
be selected, such as for ptychography®. Increasing detec-
tor speeds offer significant advantages for low-dose
imaging compared with conventional phase contrast
imaging. Electric- and magnetic-field imaging also
benefits from fast pixelated detectors. Improvements
in aberration-correction and spatial coherence have
led to increasingly large probe-forming apertures that
enhance depth resolution to the nanometre scale, allow-
ing optical sectioning and yielding two-dimensional
(2D) views of the sample at atomic resolution and at
different depths®°. In the future, optical sectioning by
using even larger probe-forming apertures could yield
atomic resolution as a function of depth, albeit with
some interpretative complexity'-'*. The more frequently
used tilt series tomography has already achieved atomic
resolution in all three dimensions'’, and combined
approaches have also been proposed'~'. Spectroscopy
has also undergone a revolution in recent years with
improved monochromator and electron emitter designs
that increase energy resolution to the millielectronvolt
level", allowing both phonon spectroscopy and direct
measurement of sample temperature'®.

The rapid advancement in STEM imaging and spec-
troscopy raises issues such as how to explore multi-
dimensional datasets using a human operator and
what types of quantitative information can be obtained
from the data measured. Some questions include what
material-specific information can be obtained from
microscopy data and at what level of confidence, for
example when determining atomic coordinates from
STEM or scattering potentials from 4D-STEM; how
the imaging system affects material-specific measure-
ments; and whether material-specific measurements
can be improved with better knowledge of the system
(such as knowing the beam parameters, the resolution
function, or fully modelling the imaging system) and
knowledge of a material’s phase, structure and com-
position. Questions remain about whether we can use
material-specific information with uncertainties deter-
mined by incomplete knowledge of the imaging system
or intrinsic limitations to infer physics and chemistry.
A common approach is the use of correlative models,
where the variation of observables is compared. Without
an understanding of the physical mechanisms involved,
observed correlations do not necessarily indicate a caus-
ative relationship between the observed parameters.
An alternative approach is to use generative statistical
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models, which model the joint probability distribution
between the observable variables and the target variables.
The aim of generative statistical models is the recovery of
generative physics such as force fields, exchange integrals
and other parameters. An example of a deep generative
model is the variational auto encoder (VAE), which we
discuss in detail below. The question also remains as to
whether correlative or causative material-specific infor-
mation can be used to reconstruct the behaviour of a
material in a broad parameter space such as, for example,
phase diagrams of different temperatures and concentra-
tions, and finally to determine how the reliability of such
predictions depends on the position in the parameter
space. Similarly, we can harness the data stream from the
microscope to engender real-time feedback, for exam-
ple for automated experimentation and nanometre- and
atomic-scale matter manipulation.

Machine learning (ML) is becoming integral to
answering these questions. In FIC. 1, we illustrate a pos-
sible workflow for ML analysis of experimental data as
they are acquired. The first component is a local com-
puter connected directly to the microscope acquisi-
tion computer, often referred to as an edge computer.
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This computer downloads the data from the micro-
scope computer and carries out initial processing of
the data to allow feature extraction and quantification
of the datasets, usually using pretrained models. This
direct connection is required because of the size of the
datasets usually acquired, especially 4D-STEM datasets.
The edge computer is also connected to the local net-
work and via this to the internet. This allows access to
web-based resources such as online storage and Google
Colab. However, the slower bandwidth provided by
even commercial internet connections will be a bottle-
neck preventing the rapid retraining of models based on
new datasets. The edge computer can also be connected
via the local network to high-performance computing
facilities. Here the data transfer will be rapid, but the
calculations may be time-consuming. These simula-
tions may include structure inversion to determine the
scattering potential, structural relaxations using density
functional theory (DFT) or molecular dynamics or the
determination of structural changes associated with
quantum phenomena. Finally, the edge computer can
use the analysis it made of the initial results to adjust the
microscope parameters. This must be done rapidly to
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Fig. 1| STEM as a quantitative tool. Schematic of a scanning transmission
electron microscopy (STEM) microscope with different detector configur-
ations. In STEM, the probe is an image of the source focused onto the
sample, which is scanned across the specimen. Here we show the source at
the bottom of the column, which is typical of VG and Nion microscopes, but
most manufacturers place the source at the top of the column. The detec-
tor plane is in diffraction space, and multiple detectors or a pixelated
detector can be used as in four-dimensional (4D)-STEM. Adoption of

machine learning (ML) methods will allow a transition from qualitative
imaging of materials, where only features of interest are extracted, towards
a more quantitative tool that can yield information on the structural and
electronic phenomena, collective excitations and their dispersions,
and magnetic and spin effects. In-line ML methods further open up path-
ways towards automated tuning and image optimization, automated explo-
ration and discovery, and electron beam modification and atom-by-atom
assembly. EELS, electron energy loss spectroscopy.

NATURE REVIEWS | | Article citation ID: (2022) 2:11



avoid specimen drift and other microscope instabilities.
This will require the development of rapid algorithms
and the ability to interact directly with the microscope’s
operating software. Multivariate statistical methods
have become a technique of choice for visualizing multi-
dimensional hyperspectral datasets'*-*". Deep neural
networks allow for robust image analysis with signifi-
cant benefits for automatic location and classification of
defects?**. We may soon see a self-driving microscope”,
potentially integrated with synthesis and computation
to develop new materials. The microscope may even be
able to place dopants into predetermined locations for
an ultimate atom-by-atom assembly of materials®-*’.
For some common ML approaches, see BOX 1.

In this Primer, we first discuss the fundamental
principles of imaging and spectroscopy in STEM for
structural imaging, EELS and its momentum-resolved
modalities and 4D-STEM, and we highlight the need for
ML methods as a way to analyse emerging multidimen-
sional datasets. A more detailed description of modern
STEM theory and experimentation can be found else-
where?. We then discuss the quantification of structural
STEM data in terms of atomic positions and the insights
it yields into the physics and chemistry of materials.
We emphasize the novel opportunities enabled by the
synergy of correlative ML methods and physics-based
ML and STEM as a way to link observations in STEM
experiments to generative physical models of materials
behaviour. Finally, we discuss the associated challenges
and scientific infrastructural needs of implementing ML
with STEM before looking ahead to the requirements
for open-source software and data sharing within the
community to facilitate the application of ML methods
to STEM data.

Experimentation

In this section, we briefly outline the major components
of a STEM microscope, with an emphasis on the parts we
believe are likely to be most relevant for ML.

STEM fundamentals

A STEM microscope is closely related to both a conven-
tional transmission microscope and to a scanning elec-
tron microscope. A beam of electrons is extracted from
a source, also called a gun or a tip, and is accelerated
by a high voltage, typically between 30kV and 300kV.

Box 1 | Common machine learning approaches

Convolutional neural networks: a deep neural network with an input layer, hidden
layers and an output layer. Usually used for 2D images, they allow a computer to classify
and discover patterns in an input image.

Bayesian optimization: a method for finding the global minimum of a function that is
expensive to evaluate and for which the gradient is unknown.

Reinforcement learning: a machine learning method where an agent uses trial and
error to learn from its previous actions. The reward function is supplied by the
programmer.

Manifold learning: a method that transforms high-dimensional data to a
lower-dimensional space.

Curiosity-based learning: a reinforcement learning method where the agent builds its
own reward function.

Deep kernel learning: a method combining neural networks with uncertainty
estimates using Gaussian processes.

To avoid the beam colliding with gas molecules, the inte-
rior of the microscope has to be under high vacuum.
Much of the support equipment surrounding a modern
STEM microscope will be associated with maintaining
the vacuum, the high voltage and other power supplies.
In a modern STEM microscope, the ability to image
single atoms places extreme requirements on the clean-
liness of the vacuum system and sample in a similar way
to conventional surface science methods”~*!. A dedi-
cated sample holder is needed to position and tilt the
sample, which is inserted into the microscope through
an airlock.

Electron lenses, which are typically round electro-
magnets that generate an intense field on the beam axis,
are used to shape the electron beam because electrons are
charged particles affected by electric and magnetic
fields. As seen in FIC. 1, a series of condenser lenses first
shape and demagnify the beam of electrons. The beam
is then converged onto the sample by an objective lens
to form a probe. The final size of the probe is limited
by diffraction and by the aberrations of the electron
lenses. The diffraction limit* depends on the conver-
gence angle of the probe and the De Broglie wavelength
of the electrons, which is determined by the acceler-
ating voltage. As in optics, a larger convergence angle
(which is equivalent to a larger probe-forming aperture)
corresponds to a finer resolution. However, unlike in
conventional light optics, where, in principle, arbitrary
lens shapes may be aberration-free, conventional round
electron lenses always have some aberrations™. These
aberrations become worse at higher convergence angles,
which limits the largest aperture size that can be used.
Reducing or eliminating these aberrations via aberra-
tion correction has been an enduring challenge in elec-
tron microscopy (see REF.** for a comprehensive history
of aberration correction). The first successful modern
aberration-correctors in STEM*>* and in transmission
electron microscopy (TEM)*"~* saw broad uptake during
the early 2000s*'-*. The most relevant aspect of these
correctors for the present Primer is that they depart from
rotational symmetry by using non-round lenses and
consist of multiple elements, which makes them com-
plicated to use. The development of advanced computer
controls to measure the aberrations and optimize their
conditions is therefore an essential part of the operation
of these systems™*. With careful optimization of the lens
settings, the probe size at the sample can now be about
the size of an atom.

A series of projector lenses transfers the electrons that
are transmitted through the sample to various detectors
or to an EELS spectrometer. The intensity measured by
the detectors, which is equivalent to the number of elec-
trons hitting the detectors, forms images as a function
of the probe position. This means that the image points
are acquired in series over time and a variety of detectors
can be used to record different signals for each probe
position. We note that the STEM mode of operation is
different from a conventional TEM, in which a larger
sample area is continuously illuminated by the beam and
the projector lenses magnify the image of the sample.

The electrons scattered out to high angles strongly
depend on the atomic number Z of the elements and
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Transmission modes
Imaging modes in electron
microscopy where the electron
beam passes through the
specimen.

Differential phase contrast
A method that measures the
change in the convergent beam
diffraction pattern as a function
of probe position using either

a segmented or a pixelated
detector. These changes can
be related to the local change
in the sample’s potential and
corresponding fields.

Phonons

A quantized collective vibration
of atoms in a crystalline
sample, which can be excited
by the electron beam and
characterized by scanning
transmission electron
microscopy-electron energy
loss spectroscopy or diffraction
measurements.

Plasmons

A quantized collective
oscillation of electrons relative
to the fixed ions in a sample,
which can be excited by the
electron beam and
characterized by scanning
transmission electron
microscopy-electron energy
loss spectroscopy.

Core-loss edges

Excitation of inner-shell
electrons (ionization) by the
electron beam, where the
energy loss can be probed by
scanning transmission electron
microscopy-electron energy
loss spectroscopy for features
referred to as ‘edges’

the signal recorded on a high-angle annular dark-field
(HAADEF) detector is known as a Z-contrast image. The
benefit of the HAADF mode is that it allows relatively
simple image interpretation to a good approximation. In
many cases, the bright spots on a Z-contrast image relate
to the positions of the atoms and spot intensity relates to
atomic number in an intuitive way. Finding atomic posi-
tions therefore depends on locating local maxima and
image intensity provides clues as to the number of atoms
or their atomic numbers. This simplicity is particularly
convenient for ML because initial testing can often be
done with very simplified models and training data can
typically be classified by human operators.

A critical aspect of STEM experiments is sample
preparation. The electron beam has a mean free path
for scattering measured in tens of nanometres for most
materials, which requires very thin specimens to pro-
duce high-quality measurements in transmission modes.
Samples can be thinned using a variety of methods
ranging from mechanical polishing to focused ion
beam milling. The thinness of the sample causes most
of the beam electrons to remain near the optical axis
and the electron interaction with the sample primarily
changes the phase of the beam. A small detector close to
the axis gives a bright-field image. One of the key diffi-
culties in bright-field imaging is that detectors record
the intensity, whereas most of the details of the beam-
sample interaction are contained in the phase. To obtain
a phase-contrast bright-field image, a small amount of
defocus is typically used to give an extra phase shift and
cause the total intensity at the detector to depend on
the phase®. An annular detector, typically with a big-
ger diameter, yields an ABF image. The type and size
of detector used will affect the information contained
in the image.

It is also possible to use segmented detectors to
record finer angular ranges. A very common example is
the use of four or more segments arranged as pie slices
on the unscattered electron probe in order to measure
beam shifts in differential phase contrast**. A more
recent addition is the use of high-speed direct electron
detectors to record a full image of the diffracted elec-
tron beam and generate a 4D dataset via 2D images
of the probe scanned over a 2D grid of probe positions,
a technique often referred to as 4D-STEM*.

An additional reason for requiring thin specimens
is to aid interpretation of even the most basic imaging
modes. This is because the probe electron undergoes
multiple scattering, often referred to as dynamical scat-
tering in electron microscopy, because it propagates
through the specimen. This causes the probe to change
shape depending on the local sample structure. For
example, a probe placed above an atomic column tends
to travel down along the column, a phenomenon often
referred to as channelling. For modern high-resolution
STEM, the distance the probe channels down the col-
umn is crucially dependent on the atomic mass of the
atoms in the column, meaning that different columns
are illuminated to different extents. This can make direct
quantitative interpretation of images complicated for
specimens of thickness more than 10 nm or so, depending
on the accelerating voltage used.

Electron energy loss spectroscopy

One of the key aspects of using an annular detector to
form a STEM image is that only a small fraction of the
electrons is scattered to high angles. The disadvantage
is that ADF-STEM can be an inefficient way to form an
image; however, the benefit is that on-axis signals can be
collected simultaneously from the same position to pro-
vide complementary specimen information. As the fast
electrons in the beam go through the sample, they inter-
act with the sample, exchanging energy and momentum
with it. These effects are separated into elastic scattering,
where the total kinetic energy is conserved, and inelastic
scattering, where energy is transferred to the sample in
some other form. For example, if the fast beam electron
excites a sample electron to a higher-energy state, it loses
a corresponding amount of energy, which can be meas-
ured with EELS. An excellent introduction to EELS can
be found in REF".

The first EELS spectrometers* consisted of a mag-
netic prism followed by several quadrupoles and were
subsequently optimized®. In an electron spectrometer,
a magnetic field is used to disperse the beam, depend-
ent on its kinetic energy. A position-sensitive detector is
used to provide an EELS spectrum. This spectrum will
have several peaks at energies that depend on the ele-
ments in the sample, with shapes that depend on sample
thickness and electronic structure. Various complica-
tions in the interpretation arise because the beam elec-
trons can interact with the sample in a variety of ways,
and perhaps multiple times, especially for thick samples.
Untangling these competing effects could be a promising
application of ML techniques.

EELS in STEM has emerged as a powerful analyt-
ical technique; the small electron probe dimensions
means that excitations associated with core-loss™,
plasmon®' and optical transitions in materials can now
be routinely interrogated, in some cases at single-atom
resolution®>*. We typically divide the EELS spectrum
into different regions depending on how the fast beam
electrons interact with the sample. The zero-loss peak
contains electrons that have not lost a measurable
amount of energy. Interactions with the atomic vibra-
tions of the material lattice can excite phonons and
such measurements are usually referred to as vibra-
tional spectroscopy. Collective excitation of the sample
electrons are referred to as plasmons, which are closely
related to the electrical and photonic properties of a
material and depend on material shape and size®~.
Energy losses that correspond to excitations of core
electrons in the sample are referred to as core losses
and these characterize the elements present at the probe
location. The detailed shape of the core-loss edges will
depend on the characteristics of the initial and final
state of the sample electrons as well as many of the same
thickness and orientation effects that affect the imaging
modes.

Recording a spectrum at each probe position gives a
spectrum image, also referred to as a hyperspectral data-
set’””. The strength of EELS in a STEM microscope is
that it provides information on the local chemistry and
electronic structure while the Z-contrast image simul-
taneously provides a map of the atomic configuration.
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This concept can be extended to other imaging modal-
ities and combined with multiple signals. For example,
when an excited sample electron relaxes back to its
ground state it will emit the excess energy as a photon,
which can simultaneously be analysed with a cathodo-
luminescence or X-ray detector. A recent review article
contains a more comprehensive discussion of these and
associated methods™.
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One of the factors that limits the energy resolution
in EELS experiments is that the beam of electrons has a
small but finite energy spread. Depending on the type
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demands on the performance of the microscope power
supplies: we might want to measure energy losses of a
few millielectronvolts for a beam energy of several tens
(or hundreds) of kiloelectronvolts, which corresponds
to a stability above one part per million. Perhaps even
more importantly, the tails of the distribution extend out
over a far larger energy range, meaning that very weak
signals are easily swamped by the background®. Solving
the energy spread problem requires an electron mono-
chromator. In a monochromator, energy-dispersive ele-
ments disperse the beam before the sample and a range
of energies is selected using a slit or an aperture®'. This
selection necessarily reduces the amount of current
available to form the probe. Since the slit used to select
the energy has a finite size and the monochromator
may introduce aberrations, using an electron mono-
chromator typically degrades the spatial resolution.
However, a new generation of monochromated instru-
ments has been carefully designed to allow high energy
and high spatial resolution while minimizing the loss
of current. Just as for aberration-correctors, computer
control is usually essential to the operation of electron
monochromators.

One of the most exciting aspects of these new mono-
chromated STEM microscopes so far is the exploitation
of modes such as aloof spectroscopy, where the beam
passes near the sample instead of through it®*“. Such
modes might enable non-damaging analysis modes or be
used to provide data on sensitive biological or complex
quantum states. Another surprising example is electron
energy gain spectroscopy'®, where the fast beam electron
can gain energy from the sample, in a reversal of the nor-
mal energy-loss process. Such novel modes are likely to
allow access to new information streams about the local
nanoscale properties of materials. For example, compar-
ing energy loss and energy gain probabilities can now

Fig. 2 | Angle-dependent STEM-EELS, 4D-STEM and beam engineering. a| Schematic
representation of one of the possible scattering geometries used in angle-dependent
scanning transmission electron microscopy-electron energy loss spectroscopy
(STEM-EELS) experiments. In this setup, the angular resolution is achieved by displacing
the EELS spectrometer entrance (collection) aperture (schematically represented by

the small overlapping red disks in the figure) along a vector q’ relative to the optical axis.
This relative shift is experimentally achieved by projecting the centre of the spectrometer
entrance aperture of the bright-field disk using the microscope’s post-specimen
electronics. The aperture is shifted at increasingly higher values of momentum q,
represented by the resultant scattered wavevector q=k, —k, where k;and k, are the
incident and scattered vectors, respectively. In this representation, the optical axis lies
along the incident vector k; in the figure. The momentum resolution Aq is dependent on
the beam convergence semi-angle a and spectrometer collection angle 8; larger beam
convergence angles result in broad, overlapping diffraction disks, limiting the g-space
resolution of the spectral data. b | In 4D-STEM, simultaneous recordings of a STEM image
and a 2D diffraction pattern for each probe position yields a highly redundant 4D dataset
containing rich sample information. c—f| Examples of uses of structured illumination

and detection in STEM. c| Vortex beams can be used to probe magnetism; here, a large
quantum of orbital angular momentum can probe vertical magnetic field. d | Matched
illumination and detector interferometry (MIDI)-STEM can be used to probe light
material through linear contrast. e | Gaussian probe can be used to simplify the electron
probe propagation in crystals. f| Scanning a Bessel probe can be used for nano-
diffraction and strain analysis. Part a adapted with permission from REF., APS Physics.
Part c reprinted from REF.*%, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
Part d reprinted from REF*°, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
Part e reprinted with permission from REF.'”, American Physical Society. Part f reprinted
with permission from REF.**, AIP publishing.

be used to measure the local temperature of materials in
a parameter-free model'*%.

Momentum-resolved EELS

STEM-EELS experiments are typically performed at
small scattering angles with the spectrometer entrance
aperture positioned along the optical axis to exclude
the collection of electrons with a scattering angle 9
larger than the collection semi-angle § (REF). In the
STEM optical geometry where a converged probe is
used, the probed signal is dominated by inelastic scat-
tering wavevectors parallel to the forward scattering
direction ¢, and averaged with contributions from
other non-parallel wavevectors determined by the probe
convergence semi-angle o (REF.).

In momentum- or angular-resolved EELS measure-
ments (q-EELS), the spectra are acquired as a function
of the scattering angle or momentum vector q. The
measurements are performed by displacing the collec-
tion aperture relative to the optical axis. This proce-
dure is shown schematically in FIG. 2a. In practice, this
is achieved by tilting the incident electron beam by an
angle whose magnitude determines the effective dis-
placement wavevector q' of the spectrometer entrance
aperture with respect to the forward scattered direction.
The orientation dependence of core-loss edges from ani-
sotropic materials can be determined by angle-resolved
inelastic scattering of fast electrons® . Alternatively, the
effective displacement along g’ can be achieved by shift-
ing the relative position of the spectrometer entrance
aperture using post-specimen electronics®.

Momentum-dependent experiments have been
successfully implemented over the entire range of the
energy loss spectrum. High-loss q-EELS has been
employed to probe the anisotropy of chemical bonds®*
and the detection of a magnetic dichroic signal™. In the
low-loss energy range, the different g-space dispersion
relations of the spectral peaks can be used to probe the
dielectric characteristics”, the plasmonic™ and excitonic
dispersions’, and to identify optically forbidden tran-
sitions’. More recently, the introduction of improved
monochromator designs with energy resolutions of a few
millielectronvolts has allowed for momentum-resolved
vibrational EELS®>7.

Although it is extremely powerful, STEM q-EELS is
not without challenges, the first being the fundamental
physical limit of momentum versus spatial resolution,
with the momentum resolution, Ag, being inversely
proportional to the electron probe size as determined
by the beam convergence semi-angle « (REF.’°). The large
beam convergence angles used in STEM result in broad,
overlapping diffraction disks, limiting the g-space res-
olution of the spectral data. Nevertheless, by carefully
choosing the experimental conditions, the momentum
resolution®”* can be balanced with the achievable spa-
tial resolution, as recently demonstrated by atomically
resolved STEM-EELS phonon spectroscopy experi-
ments®”*. The second challenge lies in the weak sig-
nals associated with vibrational EELS specifically and
the rapidly decaying EELS signal off the optical axis”’,
which require lengthy experiments and the sacrifice of
different types of resolution (such as spatial, momentum
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Dynamical scattering

A term commonly used

in electron microscopy

to describe the multiple
scattering of the incident
electron probe as it propagates
through the specimen.

Electron optical elements
Electromagnetic lenses used

to focus or otherwise shape the
electron beam.

or energy resolution) in favour of signal detection. The
introduction of new rapid, high-efficiency direct elec-
tron detectors’ promises to expand the range of q-EELs
experiments in the future.

4D-STEM

Faster and more sensitive detectors are becoming avail-
able for electron microscopy. This is partly due to gen-
eral advances in microelectronics devices and partly
due to developments such as direct electron detectors’.
Pixelated detectors can be used to acquire the electron
intensity depending on the scattering angle. Different
areas can then be selected during post-processing to
allow a variety of images to be effectively constructed.
In addition, pixelated detectors can acquire multidimen-
sional sets of data (FIC. 2b), which can potentially be used
to reveal additional information about the structure and
properties of materials at higher resolutions.

In electron microscopy, the reciprocity theorem of
Helmbholtz suggests that swapping the source and the
detector should give the same image in the case of elas-
tic scattering”. Applying this principle to STEM thus
indicates that a small on-axis detector in STEM should
give a bright-field image equivalent to a conventional
TEM image. However, in order to obtain a highly cohe-
rent image, the collection angle must be very small and
most of the electrons that have interacted with (and pos-
sibly damaged) the sample will not be used, which is
why bright-field STEM imaging has traditionally been
regarded as inefficient owing to the low SNR ratio.
Another way to look at coherence issues is to think of each
part of the detector as forming an image at a different tilt
angle”. Adding these slightly different images together,
for instance by using a larger detector, will tend to blur
some of the fine details and limit spatial coherence®.
However, all the transmitted electrons can be collected as
a function of the angle at a particular probe position using
a pixelated detector to obtain a nanodiffraction®* pat-
tern, also known as an electron Ronchigram®. In STEM,
the electron Ronchigram provides several ways to meas-
ure aberrations, which is important for aberration correc-
tion*>**~” and for measuring spatial coherence, whichis a
resolution-limiting factor in aberration-corrected instru-
ments and important for quantitative interpretation of
images’**. Nanodiffraction patterns can be collected at
every probe position to generate a 4D-STEM dataset, also
called a scanning nanodiffraction dataset. Such operat-
ing modes potentially use all the transmitted electrons
to reconstruct an image and can be more efficient™*.
4D-STEM has become a frequently used method with
the commercial availability of high-quality detectors
(see a recent, comprehensive review™).

The strength of 4D imaging is the extra information
available within the collected data. First, as the elec-
tron beam transmits through the sample, it might be
deflected by fields inside the sample. This deflection can
be differentially detected>*** for differential phase con-
trast with multiple detectors, potentially at atomic res-
olution*, and can be used to reconstruct the measured
fields'. Differential phase contrast contains details of
the sample’s electrical and magnetic fields, although how
to untangle all of these subtle effects is not always clear,

particularly in the presence of dynamical scattering. Other
information that can be obtained includes polarization
domains'”, strain fields'*"'*°, octahedral tilts'"’, and local
symmetry”. An ongoing question is how to maximize
the amount of information that can be extracted.

One way to maximize information extraction uses
ptychography, where the redundancy in combining
real-space and diffraction-space data can be used to solve
for both the phase and amplitude of the electron beam'"
and permit more details of the sample to be recon-
structed. Modern ptychography solutions are typically
iterative methods derived from the Gerchberg-Saxton
algorithm'”, with seminal implementation found in
REFS>!'%-112 The main issue with these iterative methods
is that they are still computationally intensive and have
yet to incorporate the full effect of dynamical scattering,
which limits their applicability to strongly scattering
specimens with high-Z elements and/or specimens that
are more than a few nanometres thick. One solution is
simply to apply more computer power to the problem,
but using artificial intelligence/ML techniques could
present a better route'”. Similarly, a significant amount
of three-dimensional (3D) information encoded in the
electron Ronchigram and 4D datasets'*'"* could also
be extracted using artificial intelligence/ML techniques.
There are several other applications for ML in the context
of 4D imaging. Because only a small fraction of the beam
electrons interacts strongly with the sample, almost all
signals tend to be noisy or blurred by instrumental effects,
meaning that, for example, even simple deconvolution or
denoising procedures can be extremely useful.

Finally, there is plenty of scope for future develop-
ment of 4D-STEM techniques. In principle it might
be possible to record an energy loss at every scattering
angle at every probe position, combining q-EELS and
4D-STEM information, or to extend dimensionality
further by combining 4D-STEM with tomography. One
problem is that current detectors are 2D, which means
that acquiring a higher-dimensional dataset requires
multiple scans of the same area. If the sample is dam-
aged by the beam, changes over time, drifts away, or
contamination builds up, repeating the same scan mul-
tiple times over the same area of the sample may not be
possible. Thus, using ML methods to infer a model that
informs an automated experiment to obtain a subset of
this multidimensional data is one way to approach the
multidimensional information challenge.

Beam engineering

Although most efforts have concentrated on reducing
probe size and increasing lateral and depth resolution, a
new frontier of STEM is in beam engineering or shaping
as a way to address emergent physical phenomena that
are not usually observable using conventional imaging
techniques''*'"*. Owing to new electron optical elements,
the amplitude and phase profile of the probe can be
determined beyond the typical diffraction-, aberration-
and coherence-limited shape. The functional beams cre-
ated by beam shaping can widen the range of quantities
that can be measured, determine the dynamical diffrac-
tion in the material®*'?!, and enhance the part of the
electron scattering to be characterized.
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Electron holography

A technique for viewing the
phase of the exit surface
wavefunction using the
interference of a scattered and
unscattered electron beam.

Azimuthal phase gradient
(APG). A wavefunction where
the phase is linearly
proportional to the angle in
polar coordinates, and the
total phase shift is an integer
multiple of 2 for each
revolution (see orbital angular
momentum).

Orbital angular momentum
(OAM). Orbital angular
momenta are quanta given

by the number of multiples

of 2 in the phase of an
electron beam, per angular
revolution in polar coordinates

(see azimuthal phase gradient).

Engineering of the shape of the electron beam has
evolved from the initial use of electron holography!''¢-!'
based on a nanofabricated thin slab of material, to mag-
netic phase plates'”, to applications based on electro-
static controllable phase modulators'*~'** that can be
directly positioned in the condenser diaphragm. Below
and in FIG. 2 we give some examples of functional beams.
A vortex beam, which is a doughnut-shaped beam with
an azimuthal phase gradient, is shown in FIG. 2c with a
rotation of 27, although multiple integer rotations in the
phase are also possible. The presence of the vortex in
the phase results in zero intensity at the centre of the
probe. Vortex beams initially aimed to probe the spin
state of atoms in magnetic materials by elastic'*'* and
inelastic scattering'**'*’, and have also been used to form
holograms to measure the vertical magnetic field'*°.
More recently, nearly linear contrast images have been
generated by matched illumination and detector inter-
ferometry (MIDI)-STEM, which combines structured
illumination based on modified zone plates phase with
a high-speed direct electron detector'* (FIC. 2d). The
image of the beam recorded on the direct electron detec-
tor is post-processed with a mask matching the phase
plate. Phase-shaped electron beams have also been used
to probe the symmetry of localized surface plasmon
resonances'’'. Appropriately tuned Gaussian-shaped
beams'” couple strongly with the column and propagate
almost unperturbed in the crystal. As shown in FIC. 2e,
this is predicted to produce contrast that does not oscil-
late as a function of specimen thickness and to produce
images that are simpler to interpret quantitatively. Bessel
beams or equivalently hollow cone illumination can be
used to increase the depth of focus of the beam”'", to
facilitate strain analysis through nanodiffraction'*>'**
or to improve the interpretability of low-loss EELS" by
mimicking the idea of precession electron diffraction
and combining beams of different directions to mini-
mize the effects of channelling (FIG. 21). This produces a
more complex diffraction pattern that requires special-
ized post-processing and removes the need for expensive
microscope modifications.

Finally, one key challenge in STEM is to control both
the initial and the final state of the beam after scattering.
For example, the HAADF-STEM detector has been used
as a form of filter'** but more sophisticated filters allow
for the direct measurements of new final states without
acquiring the full 4D-STEM, such as the measurement
of orbital angular momentum through an orbital angular
momentum sorter'*. It is clear that the increasing com-
plexity of such optical systems will require more sophis-
ticated control. For this reason, techniques such as the
use of convolutional neural networks'” as well as more
advanced approaches such as Bayesian optimization'**
and reinforcement learning'* will have an increasing
role in the control of the complex optical system and in
the alignment of the microscope in general.

Results

Because modern electron cameras record data digitally,
analysis of STEM experiments is typically carried out
using software programs or computational methods.
The initial analysis steps are to evaluate the quality of the

experimental data and select one or more datasets for
inclusion in a study. For STEM images, the minimum data
processing required is to scale the image contrast and
brightness and to crop around the features of interest.
Quantitative measurements may also be performed, such
as measuring the position of atomic columns, the length
of atomic bonds, or comparing calibrated measurements
signals with image simulations in order to estimate local
structure or composition.

Higher-dimensional STEM datasets often require
substantially more analysis and data processing. 3D data-
sets may include time-series movies that may require
drift correction to remove sample motion; tomographic
tilt series requiring software to reconstruct 3D sample
volumes; or spectroscopic datasets such as EDS or EELS
that are usually interpreted from dictionaries of known
signals or first-principles calculations. 4D datasets such
as qEELS or 4D-STEM also require specialized software
code for very large datasets.

STEM data format and analysis programs

Modern STEM instruments are capable of producing
large data streams from a variety of measurement chan-
nels to deliver important specimen information. This
data is most valuable when analysed in a quantitative,
transparent and reproducible manner. Most STEM
datasets are currently recorded in proprietary formats
defined by the hardware vendors. Some progress has
been made toward saving data in open formats and
defining standards for interoperability, but there is a
long way to go before all STEM experiments follow the
findable, accessible, interoperable and reusable (FAIR)
data principles'*.

Since STEM data is usually recorded on vendor
software platforms, data analysis typically starts there.
These platforms include the Gatan Microscopy Suite
(GMS) with Digital Micrograph from Gatan, Velox from
Thermo Fisher Scientific, Swift from Nion, ESPRIT from
Bruker, and so on. These acquisition and analysis pro-
grams all offer the ability to visualize data as it is being
recorded and are invaluable for providing feedback dur-
ing experiments. They often include complex analysis
methods such as quantification of EDS experiments
from reference spectra. However, these vendor analysis
platforms and methods are often closed-source ‘black
box’ methods where the underlying code cannot be read
or modified (to date, the Nion Swift is the exception).
Some of these platforms allow execution of external
analysis scripts, which in the case of Digital Micrograph
has led to a vast number of user-developed analysis
methods. There is, however, no central listing of these
methods and few have been vetted by the community.
Nevertheless, many papers are published each year con-
taining STEM results that have been entirely analysed on
vendor software platforms.

To perform more complex analyses of STEM data, many
users either write their own software or use community-
developed code. One of the most popular programs for
analysing imaging data is Image], an open-source image
processing program written in Java. Many scientists
have written Image] plugins to read proprietary STEM
data formats and to perform various medium- and
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Electron energy loss near
edge structure

The intensity variation

of the electron energy loss
spectroscopy signal as a
function of energy loss near the
onset of the core-loss signal.

L, ratio

The ratio of the L3 to L2 peaks
formed by the transition of the
2p,, and 2p, , electrons to
empty states.

atomic-resolution corrections or measurements'*"*?,

Another widely used programming language for analy-
sis of STEM data is MATLAB, which (despite not being
open source) does have a large library of user-created
analysis tools either available on the central file exchange
or on researcher websites. There are also free languages
that are mostly compatible with MATLAB such as
Octave.

Recently, the Python programming language has
started to overtake other choices for the analysis of
STEM data, in no small part because Python has become
the de facto standard for ML data analysis. For conven-
tional analysis methods, there are various community-
developed Python codes devoted to various aspects of
STEM analysis. The Python package most widely used in
the electron microscopy community is HyperSpy, which
was originally developed to analyse spectroscopic data
such as STEM-EELS experiments. HyperSpy has grown
into a general-purpose analysis toolkit for STEM data,
with many plugins targeting specific data types. These
include atomic-resolution image analysis with Atomap,
luminescence spectroscopy data analysis with LumiSpy,
4D-STEM data analysis with pyxem'*’, and others.
Another family of STEM analysis methods can be
found in the Python-based Pycroscopy ecosystem'*,
which includes the STEMTools toolkit, the AtomAI
library for applications of deep learning to micro-
scopy data (including deep kernel learning and invari-
ant representation learning), the PyTEMLIb library
for model-based quantification analysis, and others.
In addition, there are 4D-STEM-specific analysis codes
currently under development, including LiberTEM'*
and py4aDSTEM'*. All these packages are fully open-
source and can be freely modified to match the specific
needs of a given research project.

Finally, simulation also plays a large part in STEM
research. The most common simulations are imaging
simulations incorporating the electron-scattering
process within the specimen together with the image-
formation system for the various imaging modalities,
which can be performed using open-source simulation
codes including QSTEM'*, uSTEM'", Dr. Probe'*,
MULTEM", STEMsalabim'’, abTEM""!, Prismatic'**
and others. These codes are often specialized; for
example, abTEM includes the ability to use the electro-
static potential of a structure directly from DFT calcu-
lations performed with the open-source code GPAW'*,
while Prismatic focuses on fast calculations. Recently,
it has become possible to simulate STEM spectro-
scopic signals such as plasmon scattering'**'**, double-
channelling core-loss STEM-EELS scattering'*, very large
crystals containing crystallographic defects'”’, and other
modalities. Many new computational methods are under
active development and large STEM simulations can
be tackled with the widespread availability of graphics
processing unit (GPU) resources.

Analysis of hyperspectral data

The discussion of ML in STEM necessitates a brief over-
view of exploratory data analysis that originally emerged
in the context of EELS hyperspectral image analy-
sis. Core-loss EELS provides a wealth of information

such as chemical composition and local bonding but
correct interpretation requires careful analysis and
processing. For example, truly quantitative analysis of
electron energy loss near edge structure (ELNES) requires
the removal of plural scattering using methods such as
Fourier-ratio deconvolution, where the simultaneously
acquired zero-loss-peak region is used to deconvolve
the plural scattering from the core-loss signal'**. This
process makes the edge structure more interpretable
and provides increased SNR ratios. Quantitative inter-
pretation of features such as the L,; ratio also requires
background subtraction and removal of the continuum
components'*'®’. Background subtraction is often done
using a simple power-law fit to the spectrum prior to the
edge of interest, but alternative methods are also avail-
able'®". Following this preprocessing, quantification can
be carried out by estimating peak heights and separa-
tion by either Gaussian fitting'*> or more sophisticated
model-fitting approaches'®.

Principal component analysis. Because the cross-
sections for ionization are quite small, especially for
higher-energy edges, the SNR ratio of ELNES is generally
quite low. This is also the case for other spectroscopies
such as energy dispersive X-ray spectroscopy (EDX). To
improve the SNR ratio, multivariate statistical analysis
of EELS was first demonstrated in the late 1980s**2'.
Although many multivariate methods exist'’, the most
common method for denoising EELS data is princi-
pal component analysis (PCA). PCA has been widely
applied to both chemical mapping and near-edge struc-
ture analysis'*"'*® and has been used as a first step in
more advanced analysis methods such as vertex compo-
nent analysis'®’ or the study of precipitates in manganese
steels'®*'%°. An alternative linear method is non-negative
matrix factorization (NMF), which has been applied to
core-loss EELS and EDX'”’ and plasmonic data'”'. PCA
and NMF are available in freely available software pack-
ages and straightforward implementations are available
in popular languages such as Python, making them
accessible methods of denoising EELS data.

PCA represents a dataset as a linear sum of weighted
orthogonal components with the weighting determined
by the commonality of each component. Features that
are common throughout a dataset will receive a higher
weighting, whereas features such as noise, which is essen-
tially random, get a much smaller weighting. Removing
the lower-weighted components before reconstruction
results in the removal of most of the random noise.
However, because features such as interfaces and defects
cover only a small volume of the dataset, they receive
low weightings as well. This means that components
containing valuable information about local structures
may be removed along with the noise. While PCA has
therefore been successfully applied to perfect crystals, the
method can introduce unexpected artefacts in the pro-
cessed data when the raw data contains interfaces and
defects®”'*"172 This can result in changes to the features
to be measured, such as shifting apparent peak positions
in near-edge structures and changes in intensity. Since
much of the most interesting physics happens at inter-
faces, defects and other localized structural features,
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Dark count rate

(D). This is the mean value of a
scanning transmission electron
microscopy image acquired
with the beam blanked
preferably near the gun by,

for example, closing the gun
vacuum valve.

Gain

(C). Adjustment to ensure that

the measured signal covers the
optimal range of the amplifier.

Faraday cup

A conductive cup that can
capture charged free particles,
with which the electron beam
current can be estimated by

integrating the recorded signal.

this is highly problematic and ways to successfully exa-
mine small changes in near-edge structure due to local
structural changes are required.

Quantitative STEM

Whereas conventional STEM analysis methods study
contrast or image features, quantitative STEM makes
use of the absolute scattered intensity in each pixel of
a STEM image to enable more information about the
specimen to be extracted. Quantitative STEM is essen-
tial to quantifying noise and information content and
for quantitative comparison between STEM images and
quantum mechanical image simulations'”. The addi-
tional information that quantitative STEM can deliver
about a specimen has been used in applications such
as atom counting'”*, local composition measurements®
and nanoparticle shape'” and surface stability measure-
ments'”°. Unless the sample allows for internal calibra-
tion of the image intensity'”’, calibration of the STEM
detector and the microscope optics are essential'7*!”’.

Intensity measurement. Modern STEM detectors
respond linearly to the incident electron current,
with the dark count rate D and the gain G both adjust-
able by the user. The intensity in electrons in a pixel,
I, is connected to the measured digital counts, C, by
I=(C-D)/G. Gis measured by placing a signal of known
intensity on the detector and there are several ways to
measure it. For example, one convenient signal is the
intensity of a single electron'**'*, C,. C, can be measured
by acquiring an image while allowing almost all of the
beam to pass through the hole in the detector to yield
G=(C,-D). Another convenient signal is the full current
of the beam, B, which can be measured separately by
using a Faraday cup for example, to yield G=(C-D)/B.
Comparing STEM images to simulations requires nor-
malizing the image intensity to the incident beam'”, and
is straightforward if D and G are known and B is known
in amperes. if B is known only in digital counts as B, a
quantitative image I , expressed as a fraction of the inci-
dent beam current, can also be obtained. In this case,
I,=(C-D)/(B.-D) REF'7).

Calibration. Comparison to simulations requires careful
calibration of a variety of other microscope factors that
must then be included in the simulations. These factors
include detector inner angles'®” and outer angles, cutoffs
or shadowing from complex pre-specimen optics such as
aberration correctors'’, and the non-uniform response
of common scintillator detectors'’>'®*, Finally, the simu-
lated image intensity must be convolved using a calibrated
incoherence function'”. For aberration-limited systems,
the incoherence function is typically a Gaussian with
FWHM slightly smaller than the STEM image reso-
lution and can be calibrated by comparing experiments
to simulations for a known crystal sample, with thick-
ness independently measured by position-averaged
convergent beam diffraction'®.

The incoherence function also accounts for fast
instrument instabilities on the pixel-acquisition times-
cale, such as high-frequency mechanical vibrations or
probe jitter. These effects can be measured separately

and may not be Gaussian’*'**. When made in an appro-
priate optical plane, these measurements incorporate the
effects of all mechanical and electronic instabilities in
the STEM system, as well as the partial spatial coherence
of the electron emitter'®.

For aberration-corrected systems, the mathematical
form of the incoherence function at high spatial frequen-
cies can become important for quantitative analysis and
needs to be measured in the absence of any other adjust-
able parameters’”'”. In systems corrected to higher
angles, that is, with larger probe-forming apertures,
temporal incoherence becomes significant and may also
need to be measured and incorporated into quantitative
analysis'®"%,

From images to atomic positions

The information about a material contained in the data
of an atomic-resolution STEM image can often be cap-
tured in a list of the positions, intensities and shapes
of the atomic columns'***** and uncertainties in those
quantities. The combination of positions and intensi-
ties encodes crystallographic phase and orientation,
the positions and crystallography of interfaces and
defects, and strain fields. Intensities can be used to count
atoms in each column along the beam direction'”*"’
and the intensities and column shapes can be used
to determine the presence and depth of impurities in
a column®*>1,

Classical approach. The classical method of determin-
ing atomic column parameters from atomically resolved
STEM images is to use a particle-finding approach,
potentially informed by the translation symmetry of
the underlying lattice', to find approximate positions
for all the columns in the image, and then to refine the
parameters for each column by the least-squares fitting
of its intensity I(x, y) to an assumed functional form for
the microscope’s point spread function'"*>**°. These
approaches assume that the atomic column position
corresponds to a specific form of intensity distribution,
typically a local intensity maximum. This assumption
has greatest validity in the case of Z-contrast images
but care must be taken to understand the influence of
dynamical scattering, which can shift intensity maxima
in an image relative to the actual position of the atomic
column'”. An example of a Z-contrast image of GaN
[1120][110] is shown in FIG. 3. FIGURE 3a shows the image
with red dots marking the initial, approximate posi-
tions of the Ga columns (the light N columns are not
detected), determined by fitting to a two-dimensional
Gaussian:

I(x,y)
=I,+A

ex [ - ] — 2+ "% 2
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Fig. 3 | Identifying positions of atoms and atomic columns from STEM images.

a| High-quality high-angle annular dark-field-scanning transmission electron microscopy
(HAADF-STEM) image after distortion correction and averaging with refined atom
positions marked by red dots. b | Residual between image intensity in red box in panel a
and best-fit Gaussian. ¢ | Lower-quality, single-shot annular dark-field-STEM (ADF-STEM)
image of graphene. d | Atomic positions determined using a convolutional neural
network (CNN). e,f | Localization of point defects from noisy STEM data in graphene by
applying a simple graph analysis to the output of a deep CNN (Si atoms in green, C atoms
inred). Panels a and b adapted from REF.**, Springer Nature Limited. Panels cand d
adapted with permission from REF.’%%, Wiley. Panels e and f adapted with permission from
REF.?%*, CC BY-NC (https://creativecommons.org/licenses/by-nc/4.0/).

Residual

The difference between
the fitted image and the
experimental image after
atom location.

where I is the local background intensity, A is the peak
intensity of the column, (x,, y,) is the column position,
x, and y_ are the widths, and ¢ controls the rotation
of the major and minor axes of the fitted Gaussians,
accounting for the slight variations in the atomic shape.
FIGURE 3b shows the residual between the data and the
fit, which is both small and random, indicating a good fit
in this case. Obtaining meaningful uncertainties in the
fitting parameters requires weighting the data by its
uncertainty. The uncertainty in N detected electrons in

a pixel is never less than -/N and may be greater, owing
to detector noise for example.

Equation (1) describes local fitting around each
atomic column, so the procedure must be repeated for
every column in the image. If several atomic columns are
close enough together that their images overlap, simul-
taneous fitting to the sum of several 2D Gaussians may
be required for an ‘all at once’ fitting of every column
in the image'*, which necessitates a more complicated
function for I, with additional fitting parameters. For a
high SNR ratio and low-distortion data, which can be
achieved by distortion correction and averaging, this fit-
ting procedure can result in sub-picometre precision in
locating atomic columns even if the columns are around
100 pm wide'". High-quality images also lead to high
success rates for the initial approximate column find-
ing and reliable convergence for fitting. For SNR ratios
and distortions more typical of single STEM images,
the achievable precision is closer to 15 pm (REF.'*) and
initial column finding and fitting convergence may
require more manual operator tuning. Smoothing or
image denoising using methods such as Fourier filter-
ing, total variational denoising, or non-local algorithms
such as block matching and 3D filtering'” can improve
atom finding, but as these methods do not typically pre-
serve image intensities, the fitting step should still be
performed on the original intensities. Classical fitting
methods are therefore less suitable for single-shot images
and prohibitively time-consuming to apply to very large
images or to a time series of images.

Computer vision approach. Computer vision methods
such as convolutional neural networks (CNNs) have
recently been used to identify atom column positions
in STEM images*~**>. CNNs mimic human vision by
identifying image features, which are patterns in inten-
sity, rather than by numerically comparing intensities to
a model, for example by using a least-squares method.
CNNs must be trained on pre-analysed example images
or on simulated data similar to the images that will be
analysed. Training an entirely new deep CNN from
scratch is a major undertaking and requires an enor-
mous volume of labelled examples. Fortunately, STEM
simulations can be used to generate computer-labelled
example images without the human effort of locating
the atom positions and data augmentation can further
increase the scope of the training dataset?**""2,
FIGURES 3¢ and 3d show an example STEM image
of graphene and the deep convoluted neural network
(DCNN)-derived atomic positions, respectively. Despite
the low quality of the single-shot image, the DCNN
correctly identifies all the atom positions. In general,
DCNN atom identification is robust against both noise
and distortion provided both were part of the train-
ing set, making it a powerful approach for single-shot
images. The precision in atomic column positions can
exceed traditional methods**>*". In addition, most of
the computational cost in using a DCNN lies in the
training. Once trained, execution of the DCNN is very
fast, making analysis of large images*”” and time series
straightforward. At present, atom-finding DCNNs can-
not generate the entire set of atom column parameters
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Latent variables

A variable that is not directly
observable, often obtained
using variational auto
encoders.

Latent spaces
A vector space spanned by the
latent variables.

Evidence lower boundary
The lower bound of the
probability of observing a
particular result for a given
model.

in equation (1) but the DCNN-derived positions can
serve as initial positions for fitting. It is not yet clear how
to quantify the domain of applicability for a particular
DCNN given its training data, and therefore success-
ful application to images of unusual crystal structures
or heavily distorted atomic columns, for example, may
require some retraining. Applications of DCNNs can go
beyond simply identifying atom positions to identify-
ing clusters of atom positions characteristic of defects as
shown in FIG. 3e,f (REF*").

Autoencoders. One way of denoising data while retaining
small changes in the dataset is to use exploratory data
analyses based on autoencoders. An autoencoder consists
of two neural networks and learns a low-dimensional
embedding of the data, called latent representation, in
an unsupervised manner””. In an autoencoder, the first
encoder neural network compresses the data into a small
number of latent variables and the second decoder neu-
ral network tries to reconstruct the original data from
the latent code. In the process, the autoencoder learns the
optimal representation of high-dimensional data, such as
images, while rejecting noise, which makes it a great tool
for both nonlinear dimensionality reduction and image
or spectrum denoising. Latent spaces can often highlight
regions where differences in spectra occur and lead to
additional scientific insights. The autoencoder concept
can be extended towards learning correlative relation-
ships between structure in an image and property in

Sub-image
stack

!

Encoder
layer 1

!

|
Encoder
layer 2

1 Latent

Y 1% YollZ0) %

|

s-Decoder
layer 1

¥

|
s-Decoder
layer 2

!

Sub-image
stack

spectral data as has been demonstrated with the im2spec
encoder-decoder models®”. Finally, transformation-
invariant VAEs build upon classical autoencoders by
making the reconstruction process probabilistic and
incorporating prior knowledge into the latent space
structure””. FIGURE 4 shows the application of rotationally
invariant VAEs to the analysis of graphene data.

Typically, a VAE is a directed latent-variable proba-
bilistic graphical model that learns a stochastic mapping
between observations x with a complicated empirical
distribution and latent variables z, whose distribution
can be relatively simple’”. A VAE consists of a gener-
ative model as a decoder that reconstructs x,; from a
latent code z,, and an inference model as an encoder,
whose role is to approximate a posterior of the gen-
erative model via amortized variational inference®"’.
Implementation-wise, both encoder and decoder mod-
els are approximated by deep neural networks whose
parameters are jointly learned by maximizing the
evidence lower boundary via a stochastic gradient descent
with randomly drawn mini-batches of data. VAEs can
therefore build relationships between high-dimensional
datasets and a small number of latent variables, in a way
reminiscent of manifold learning.

One important aspect of the VAEs, similar to many
manifold learning methods, is that the variability of
the behaviours in the latent space allows one to reveal
relevant features of the system behaviour, equivalent to
primary nonlinear degrees of freedom. Another is their

Fig. 4| Application of a variational auto encoder to graphene. a | Simplified schematic of the rotationally invariant
variational auto encoder (rVAE). The encoder (inference) network compresses input image data into a small number

of latent variables. By default, the first three latent variables (y, x, y) are designed to absorb rotations and translations of
structures in the input images. The remaining latent variables (z) aim at disentangling variations in the structure itself. The
prefix s refers to a spatial-encode/decoder. The remaining latent variables aim at disentangling variations in the structure

itself. b,c

Encoded angle (panel b) and one of the latent variables (panel c) for each atom in a snapshot (single scanning

transmission electron microscopy frame) of graphene undergoing structural transformations under electron-beam
irradiation. d | Latent space manifold learned by the VAE from data in unsupervised fashion. Panels b and c reprinted
with permission from REF*’°, AAAS. Panel d reprinted with permission from REF*?%, Cornell University.
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parsimony — the training process generates the best
short descriptors representing the data. The primary
limitation of the classical VAE approach is the sensitivity
of the VAE to the details of experimental parameters;
for example, the presence of autoencoder networks to
parameterize atomic STEM data imposing a known
structural relationship between latent variables as
an input for statistical analysis, including Bayesian
inference and Gaussian process regression.

Distortion corrections

High-resolution STEM experiments are distinguished
from conventional plane-wave TEM experiments by the
small dimensions of the converged electron probe, which
is able to reach sizes below atomic bond lengths with
modern aberration-correction technology. The small
probe dimensions means that the electron beam must be
scanned over the sample surface in order to collect spa-
tially resolved information in the detector plane, which
leads to relatively long experimental acquisition times
on the scale of seconds per image for most experiments.
Any relative motion of the probe with respect to the sam-
ple during the acquisition time will introduce artefacts
that can be due to thermal sample motion, mechanical
vibration, local fields induced by charging or electronic
instabilities of the electron beam®''. To perform precise
measurements of atomic positions at the maximum
instrument resolution, these residual drift artefacts must
be measured and removed from STEM experiments”'*.

The most straightforward method for reducing errors
due to sample motion is to simply record an image series,
align all the images, and take the mean value of each
pixel**?!*. However, this method does not efficiently
make use of all the available information since it does
not attempt to recover any information lost by distor-
tions in the imaging system. A more advanced cor-
rection method uses the STEM microscope’s ability to
scan in any direction and rotate the orientation of the
scanning direction relative to the sample*”” to measure
linear sample drift due to thermal motion and correct
acquired images by applying an affine transformation”°.
This approach can be extended to measure and correct
local nonlinear or nonrigid distortions in acquired
images by using gradient descent*”’~*"”. These correction
approaches have also been applied to STEM-EELS and
4D-STEM data®**!.

Another family of methods for distortion correction
makes use of information measured from the sample
itself. For example, if the crystalline lattice parameters
of a material are known, the linear drift can be removed
from a single image*”. In atomic-resolution images, it
is also possible to track the measured position of atoms
in a time series directly to estimate the undistorted
configuration®->*,

Finally, STEM is not restricted to recording square
or rectangular scan patterns. A variety of complex scan
patterns have been proposed to produce a more uni-
form acceleration of the electron beam. Some examples
include spiral scans**”***, randomized beam shifts****,
blanking™' and fractal Hilbert-space-filling curves*”.
More complex patterns can help to decouple the direc-
tion of motion of the sample from the movement of the

beam, allowing for more isotropic information trans-
fer in all directions. We note, however, that all of the
above-mentioned methods correct only relative errors
between images. Length measurements on an absolute

233

scale still require precise calibration”’.

Applications

Advances in STEM over the last decade have allowed
routine visualization of atomic structure of solids and
localization of atomic columns with sub-picometre
precision. Descriptors that are strongly correlated with
the functional properties of materials, such as atomic-
bond lengths and angles, can now be measured at the
single-atom level. For example, the bond length in car-
bon compounds is directly linked to reactivity and bond
strength. Similarly, bond length and bond angle in per-
ovskites are strongly correlated with metal-insulator
and ferromagnetic—antiferromagnetic transitions**>*.
Traditionally, these descriptors have only been accessible
on a macroscopic level via X-ray and neutron scattering;
advances in STEM naturally lead to questions as to how
it can be used to explore the local physics and chemistry
of crystalline and disordered solids. For example, one
advantage of local imaging is the measurement of bond
lengths and bond angle variations within a material, such
as at surfaces, interfaces and defects, to map strain fields
via direct measurement of atomic column positions.
Correspondingly, multiple examples of strain mapping
in the vicinity of second-phase inclusions, dislocations
and surfaces have been reported””~**, with the experi-
mental structure compared with the classical solid-state
mechanics models*’ in many cases. In this section, we
show examples of the application of HAADF-STEM
imaging to several topical materials science problems.
Although this work focuses on HAADF imaging, the
STEM microscope has many other imaging modes that
can be applied to materials science®"', but applications to
biology are also common**.

Mapping ferroelectric phenomena
The high spatial resolution of STEM makes it a perfect
tool for exploring the physics of materials with strong
coupling between the order parameter and structural
distortions**>***. Seminal works using TEM***-** and
STEM*#® demonstrated that quantitative measure-
ments of atomic column positions can be used to map
the polarization order parameter field. This approach
was rapidly extended to other physical functionalities
strongly coupled to structure, including octahedra tilting
in perovskites in both the image plane**~**' and the beam
direction®” and chemical and physical strain fields****.
Common to this approach is an a priori postulated rela-
tionship between the observed contrast (for example,
atomic column positions) and the physical descriptor
(for example, polarization).

The observation of the order parameter field and
its evolution near surfaces and interfaces opens up a
pathway to learn the mesoscopic physics of the systems,
such that mesoscopic models with a small number of
free parameters can be matched to STEM observations.
For example, the correlation and interfacial terms in
the Ginzburg-Landau free energies can be extracted
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from order parameter profiles across domain walls and
interfaces”"*****, whereas analyses of ferroelectric vor-
tex shapes can be used to derive the numerical values
of the flexoelectric tensor”*. Recently, these approaches
were extended into the Bayesian domain to take into
consideration any prior knowledge about the system
and evaluate changes in our understanding of material
behaviour given new experimental data®”’. Comparing
experimental data to models can systematically address
issues such as the resolution and information limits
required to observe specific physical phenomena
and whether prior knowledge of the system enables
additional insights from the experimental data.

Although determining the atomic positions in an
image to assess polarization in a ferroelectric domain is
a valid approach®®, it is an indirect way of revealing a
material’s ferroelectric property. A more direct approach
that maps polarization in ferroelectric materials is based
on differential phase contrast STEM, where an annular
detector split into at least four independent azimuthal
segments is used to derive changes to the centre of
mass in the diffraction pattern caused by the in-plane
component of the electrostatic field in the sample*.
A centre-of-mass change is determined by calculating
the difference in intensity between two opposite detec-
tor segments and is proportional to the electrostatic field
in the specimen, which affects the angular propaga-
tion of the beam while interacting with the ferroelec-
tric specimen. This approach has recently successfully
mapped large polarization gradients across naturally
formed domains in a doped ferroelectric material*”.
Although clear features due to ferroelectric polarization
can be observed at the atomic scale, the differential phase
contrast image intensity requires careful interpretation
because the nanoscale field component due to the ferro-
electric field is superimposed on the electrostatic field
of the atomic potentials®. As mentioned above, any
in-plane electrostatic field in the sample leads to a change
of the centre of mass in the diffraction pattern formed
behind the sample. The same is also true for magnetic
fields, which similarly affect the propagation of the elec-
tron beam. By carefully disentangling the electrostatic
contribution from its magnetic counterpart, differen-
tial phase contrast STEM can also be used to measure
magnetic properties of materials at the nanoscale’,
similar to off-axis electron holography*' carried out in
broad-beam TEM mode.

Grain boundaries and interfaces

STEM imaging is a valuable probe of the atomic struc-
ture at grain boundaries and interfaces in crystalline
materials. However, despite improvements in spatial
resolution and depth estimation’, it remains difficult
to determine the 3D atomic structure of interfaces.
Computational methods such as DFT can be used to
supplement STEM results to improve structure determi-
nation®”~*, but extending such methods to simulating
long-range behaviour across interfaces of practical size is
not straightforward. Although ML and materials infor-
matics have played a significant role in the development
of crystal structure and material property descriptors*”
to extend length scales and serve as a proxy for expensive

calculations®***%’, reliable descriptors and data-driven

modelling paradigms are lacking for interfacial systems.

To transform existing trial-and-error approaches®®,
high-throughput computation is used together with
energetic evaluation from atomistic modelling, STEM
image simulations, and computer vision-based image
comparison in order to determine 3D atomic structures
at grain boundaries and interfaces®”. For energetic
modelling of practical interfaces, interatomic poten-
tials provide a computationally efficient alternative to
electronic structure methods such as DFT, while often
capturing the same essential physics. Interatomic poten-
tial structure search schemes such as basin hopping and
genetic algorithms sample a space of the lowest-energy
solutions and are often sufficient if the task is to find the
most stable structures. It is problematic if the system of
interest contains possible metastable configurations, as
is the case with grain boundaries and interfaces, because
these interatomic potentials will often work to minimize
energy regardless of whether the resultant structure is
consistent with observations. With suitable constraints
at the boundaries, simulated annealing using empirical
potentials has been used to determine structural motifs
during grain boundary migration in aluminium oxide*”’
(FIC. 5a—c). However, there is no guarantee that the com-
putational structures obtained in the simulated anneal-
ing simulations will match the experimental structures
and the process of matching can be labour-intensive.
Therefore, it is desirable to have an additional constraint
that involves a measure of similarity between simulated
and experimental STEM images to ensure that the space
of structures explored is somewhat consistent with
observations.

For image comparisons, similarity measurements
are functions or processes that quantify how alike two
images are. Some similarity measurements are direct
pixel measurements, where pixel values are explicitly
considered when making a comparison. In the simplest
case, a direct-pixel measurement is a sum of the errors
between pixel values or the mean squared error. A more
sophisticated method, such as the structural similarity
index measure (SSIM)*”, processes collections of pixels
as patches and provides similarity measurements based
on a multiplicative combination of intensity, contrast
and structure terms. By normalizing image patches
for intensity and contrast differences, SSIM reveals
the structure of the image signal. Finally, state-of-the
art image comparison for image and video processing
applications are often based on a visual information
fidelity in the pixel domain (VIFP)”>*”. The principle
behind VIFP is that image quality (in our case similarity
with respect to a reference) corresponds to a measure
of Shannon information fidelity loss between the ref-
erence and distorted image relative to the information
of the reference, using a combination of sub-band-
coding, distortion models, and models of the human
visual system.

FIGURE 5d-g shows a HAADF-STEM image of a
cadmium telluride grain boundary*”*, from which the
corresponding 3D structures are obtained using high-
throughput computation with an iterative basin hop-
ping scheme. The optimization objective combines the
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Fig. 5| HAADF imaging of grain boundaries. a—c| High-angle annular dark-field-scanning
transmission electron microscopy (HAADF-STEM) images of grain boundary migration in
AL O,, overlaid with structural models from simulated annealing. d-g | Reconstruction of
3D atomistic structure of a CdSe,,. Te, ,, grain boundary’’*. d | The experimental image.
e|The density functional theory-optimized structure based on the experimental image.

f| A convolution image based on panel e. g | The overlay of panels d and f. Panels a—c
adapted from REF.*%, Springer Nature Limited. Panels d—g adapted with permission from

REF.#"*, AIP publishing.

interfacial energy obtained from the Stillinger-Weber
interatomic potential with image similarity between the
simulated and experimental STEM image using SSIM
image matching. Rather than a single 3D structure, a
family of structures is obtained that can be further inves-
tigated using first-principles computation and statistical
analysis. It can be seen that the 3D structures obtained
using this method are not composed of simple dislocation
core models and cannot otherwise be conjectured.

Chemistry

STEM is widely used to investigate interactions between
atoms and atomically thin supports owing to its
sub-angstrom resolution. In particular, HAADF-STEM
can provide a higher image intensity for heavy elements
than lighter elements based on Z-contrast imaging,
where the signal intensity is proportional to the vth
power of the atomic number of an element for [ Z*.
The exponent, v, ranges typically from 1.6 to 1.9 depend-
ing on the radius of the atoms, their scattering factor,
the surrounding atomic structure and the specimen
thickness28,275—277-

Heavy atoms on 2D substrates. HAADF-STEM ena-
bles the tracking of heavy metal atoms on monolayer
2D substrates, shedding light on their diffusion, aggre-
gation and the physics of various atomic interactions.
For example, the atomic interactions between single
platinum atoms and monolayer molybdenum disulfide,
a 2D substrate, have been extensively investigated, with
the migration of single platinum atoms on the surface
of molybdenum disulfide well tracked by sequential
imaging”®. The atomic model of the hopping of plat-
inum atoms between sulfur vacancy sites is shown in
FIG. 6a. All platinum atoms are on sulfur instead of
molybdenum sites, confirming the affinity of platinum
atoms to sulfur vacancies on the clean molybdenum
disulfide surface. The trapping of platinum nanoclus-
ters at dislocations in molybdenum disulfide has also
been studied””. FIGURE 6b shows that upon annealing
of a chloroplatinic acid precursor at 350 °C on an in situ
heating holder, seeds and clusters of platinum appear
at the grain boundaries of polycrystalline molybdenum
sulfide. The platinum nanocrystals at the grain bound-
aries reveal a tilt angle of 60° between the two grains,
which is confirmed by fast Fourier transform, and
highlight the interactions between platinum dopants
and grain boundaries of 2D materials. The presence
of hydrocarbon contamination on 2D substrates, com-
monly introduced during the growth of 2D materials,
has also been shown to play a significant part in the trap-
ping and stabilization of metal atoms and nanoclusters.
For example, gold, iron and chromium atoms primar-
ily reside on the amorphous carbon contamination of
graphene substrates™.

In situ heating. In situ heating in aberration-corrected
STEM is a powerful tool for investigating the epitaxial
growth of nanocrystals on a 2D substrate. Upon heat-
ing of a precursor to 800 °C, platinum atoms diffuse
on the surface of molybdenum disulfide and grow into
nanocrystals®®' (FIC. 6¢). The (111) plane of the platinum
nanocrystal aligns along the zigzag direction of molyb-
denum disulfide (FIC. 5d), while the (002) plane aligns
with the armchair direction of the substrate. The d spac-
ing of the platinum nanocrystals (d=2.28 A), obtained
from a Fourier transform analysis of the image of the
platinum nanocrystal and a reference material, is com-
parable to that of a bulk platinum crystal (d=2.265 A),
indicating that little strain formed in the crystals (FIC. 6e¢).
In addition, strategies have been developed to control
the morphologies of metal nanoclusters forming on 2D
materials. One example is a metal precursor incorporat-
ing a bulky organic ligand around a metal to suppress
the formation of 3D atom clusters on the 2D support
at raised temperature and instead to yield 2D clusters
with flat surfaces and single metal atoms after anneal-
ing’®. Some reports in which the epitaxial interactions
between the metal nanoclusters and the substrates are
analysed by STEM imaging include the growth of 2D
palladium diselenide nanocrystals on monolayer molyb-
denum disulfide’”’, monolayer lead iodide nanodisks on
graphene**, a 2D molybdenum diselenide film on hexa-
gonal boron nitride** and pyrochlore Nd,Ir,O, grown
on yttria-stabilized zirconia®*.
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The van der Waals interactions between a flat aro-
matic molecule and the basal plane of an underlying
substrate has also been elucidated by STEM. In REF*",
a planar aromatic molecule containing platinum metal
as a marker for tracking was designed. During depo-
sition, the molecules were found on the basal plane

of the molybdenum disulfide near the edges of nano-
pores, owing to the strong van der Waals interactions
between the aromatic core of the molecule and the
underlying molybdenum disulfide substrate. Molecule
configurations were hypothesized by measuring the dis-
tance between the platinum markers and the edges of
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Fig. 6 | STEM examples in chemistry. a| Schematic of single-atom platinum migration on a molybdenum disulfide

2D surface. b | High-magnification annular dark-field-scanning transmission electron microscopy (ADF-STEM) image
showing deposition of platinum nanocrystals on a grain boundary (GB). The inset is a fast Fourier transform of panel b,

in which one set of reflections is observed. ¢ | Image of a region containing many platinum nanocrystals epitaxially grown
on a 2D surface. d | Magnified ADF-STEM image of yellow box in panel ¢ showing a platinum nanocrystal attached to

the edge of molybdenum disulfide. e | Fast Fourier transform analysis of panel d where reflections from platinum and
molybdenum disulfide are labelled in white and yellow/green, respectively. f | Structural change of photo-switches.
Schematic of isomerization of azobenzene derivative (left) and ADF-STEM image showing change of platinum marker
distances (right). UV, ultraviolet. Panel a adapted with permission from REF.?’¥, American Chemical Society. Panel b adapted
with permission from REF.?”°, American Chemical Society. Panels c—e reprinted with permission from REF.”*, American
Chemical Society. Panel f reprinted with permission from REF.**, American Chemical Society.
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Penrose structures

Local structural units that,
when displaced and rotated,
can fully tile space, but do not
have periodic translational
symmetry. Such atomic
structures can be found in
quasicrystals.

molybdenum disulfide pores in the STEM images. This
heavy-metal tagging method presents an opportunity for
studying the interactions between tagged molecules and
the underlying 2D substrates.

In situ reactions. Recently, STEM has contributed to
elucidating chemical reaction mechanisms during
catalysis by directly imaging and tracking metal cata-
lysts. For example, in the gold core of a core-shell nano-
particle with a nickel phosphide shell, gold atoms have
been shown to diffuse into the nickel phosphide shell
during annealing and cause an inward expansion of the
structure’®. The direct visualization of transition metal
catalysts has provided chemical insight into the perfor-
mance and mechanism of the hydrogen evolution reac-
tion”, hydrogenation®”, dehydrogenation®' and carbon
monoxide oxidation®**”’. STEM has also been used to
monitor the structural changes of stimuli-responsive
organic molecules®*. When platinum atom markers
were incorporated in azobenzene photoswitches, the
photo-irradiation of a flat trans isomer of azobenzene
caused it to switch to a bent cis structure and reduced
the platinum-platinum distance markers from about
2.1nm to about 1.4 nm (FIC. 67). Finally, the self-assembly
of mesoscale systems has been investigated by STEM
using heavy-metal-marked macromolecules. Platinum-
marked porphyrin hexamers were imaged on graphene
at alow electron dose to minimize beam-induced dam-
age’” and shown to align along the graphene zigzag
direction owing to strong epitaxial interaction with the
substrate even in the presence of hydrocarbon contam-
ination. In addition, the self-assembly and packing of
non-planar, bowlike macromolecules has been studied
on graphene®*. The W-marked calix[4]azoarene mole-
cules stacked in a head-to-tail fashion, forming molecu-
lar chains and lamellar structures at high concentrations.
In low-concentration areas, various types of intermole-
cular interactions were detected, such as side-by-side
and head-to-head interactions.

When studying processes such as chemical reac-
tions or the transformation of small catalytic clusters
whose properties depend strongly on the instantane-
ous atomic configuration, temporal resolution of the
imaging process becomes critical. As mentioned above,
STEM acquisition speeds are usually in the range of
seconds per frame. With a temporal resolution in the
range of seconds, important dynamics might be missed.
However, advanced scan engines allow for faster acqui-
sition speeds. Recently, recording speeds in STEM mode
exceeding 100 frames per second have been used to
unravel structural transitions and the stability of small
catalytic clusters®’. One major drawback of such high
frame rates in STEM mode is increased noise in the
data because the electron dose is limited and needs to
be balanced against the stability of the sample under
investigation. With dwell times in the range of 100 ns
or less, only a few tens of electrons transmit through
the sample per scan position and fewer are eventually
scattered to the detector to form the noisy signal, which
suffers from shot noise. Noisy image series stemming
from time-resolved data or from beam-sensitive sam-
ples, which do not tolerate a high enough electron dose

for achieving a suitable signal-to-noise (SNR) ratio, can
be processed with classical, powerful denoising algo-
rithms** that are typically slow and require long process-
ing times. However, denoising of data is an area where
ML can provide large benefits. Recently implemented
denoising algorithms based on DCNNs*” can process
(both denoise and restore) time-resolved image series in
near real time. A well-trained algorithm therefore ena-
bles reliable restoration of atomic-resolution data and
paves the way for further increases in the temporal reso-
lution in STEM and further minimization of the electron
dose for radiation-sensitive materials.

Structure of solids from atoms up

In modern condensed matter physics and materials sci-
ence, our current understanding of condensed matter
and quantum systems hinges on macroscopic symmetry.
Formalized via point and space group theory™’, symme-
try underpins areas such as structural analysis and serves
as the basis for the descriptive formalism of quasiparti-
cles and elementary excitations, phase transitions, and
mesoscopic order-parameter-based descriptions. The
natural counterpart of symmetry-based descriptors
is the concept of physical building blocks. Crystalline
solids or magnetic or ferroelectric behaviour can gen-
erally be described via a combination of unit cells with
discrete translational symmetry of the lattice. Other
systems such as Penrose structures possess well defined
building blocks but do not possess long-range trans-
lational symmetry. Finally, a broad range of materials
fully lack translational symmetry, with examples rang-
ing from structural glasses to ferroelectric and magnetic
morphotropic systems® %, Typically, symmetry-based
descriptors have led to much deeper insights into the
structure and functionalities of materials, with trans-
lational symmetries compared with partially and fully
disordered systems®'*~'2,

To date, the analysis of atomically resolved imaging
data has almost invariably been based on mathematics
developed for macroscopic scattering data***'! despite
the fundamentally different nature of microscopic
measurements. As a simple example, consider an ideal
crystal containing a macroscopic number of structural
units. The symmetry of the diffraction pattern repre-
sents the symmetry of the lattice and the width of the
peaks in the Fourier space is determined by intrinsic
factors such as angular resolution of the measurement
system rather than disorder in the material. The presence
of symmetry-breaking distortions, such as a cubic-to-
tetragonal state transition, is instantly detectable via dif-
fraction peak splitting. In comparison, only a small part
of the object is visible in microscopic observations. The
positions of the atoms are known only within an uncer-
tainty interval and this uncertainty can be comparable
to the magnitude of the symmetry-breaking feature of
interest, such as tetragonality or polarization. Hence,
two questions arise: at which image size is it justified
to define symmetry from atomically resolved data and
at which level of confidence can symmetry be defined?
Ideally, such an approach should be applicable to struc-
tural data and more complex multidimensional datasets
such as EELS***'* and ptychographic imaging™'*>*".
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Electron beam irradiation
This occurs when an electron
beam induces changes in

a specimen due to energy
transfer, often called beam
damage.

Dwell time
The time period of the data
collection in each pixel.

The alternative to conventional top-down descriptors
is a bottom-up structural analysis, where unsupervised
or semi-supervised ML methods are used to determine
common structural blocks and the patterns they form in
asolid. For materials with an ideal crystalline lattice, the
conventional way to describe structures is in reference to
the lattice. FIGURE 7 shows a bottom-up structural analy-
sis for a ferroelectric material. The experimental image
(FIG. 7a) can be converted into a stack of sub-images
describing either raw STEM contrast or a DCNN-based
segmented image and subsequent application of linear
or nonlinear dimensionality methods yields the com-
ponents and loading maps (FIC. 7d). The component
describes the salient elements of the material’s struc-
ture, whereas the loading map describes the structure
of the solid.

The analysis is considerably more complicated in
cases where the system does not possess discrete trans-
lational symmetry. When materials have atomic bond
disorder, linear dimensionality reduction methods do
not perform well owing to the large number of orien-
tational variants necessitating alternative descriptors.
If the atomic positions are established, analyses can be
based on the analysis of the nearest neighbours® ',
Alternatively, the analysis can be performed using other
rotationally invariant representations such as graph
networks™”’.

Finally, bottom-up analysis can be performed via
transformation-invariant VAEs**. Shown in FIG. 3
is the application of a rotationally invariant (r)VAE
to the analysis of graphene data. Here, the graphene
lattice undergoes structural transformations due to
electron beam irradiation, which results in the forma-
tion of topological defects. The rVAE is able to segment
chemical space by separating the graphene lattice
from topological defects and grouping some of the top-
ological defects together in the latent space. This was
achieved by explicitly separating the variation in orienta-
tions of individual building blocks from the variation in
structural content. The rVAE approach was also shown
to enable effective exploration of the chemical evolu-
tion of the system based on local structural changes™
and may be extended to more complex systems®'.
Importantly, the rVAE allows discovery of the molecular
building blocks and chemical reactions pathways in an
unsupervised manner.

Physics of atomic interactions

Solids can be described based on generative models that
give rise to the equivalent stochastic atomic, dipole or
spin microstructure’”. Generative models for systems
with defined atomic lattices and chemical site dis-
order are represented by lattice models such as Ising’*,
Kitaev’*!, Heisenberg®” and so on. For example, binary
solid solutions can be fully described via the correspond-
ing Ising-like Hamiltonian that gives rise to statistically
similar (in the sense of Kullback-Leibler divergence of
distributions) microstructures, and this description is
compact and generalizable to non-observed concentra-
tions and temperatures. STEM data yields the microstates
of physical systems and enables comparison between
generative models and experimental observations.

Direct observation of the mesoscopic degrees of free-
dom can be directly compared with the lattice model via
statistical distance minimization**>*>>**. Beyond statis-
tical analyses, observations of the multiple metastable
configurations have been used to reconstruct the force
fields acting between atoms®**. Learning the genera-
tive model from atomically resolved data, incorporating
prior knowledge, and yielding corresponding uncer-
tainties as posterior parameter distributions is there-
fore a clear opportunity for characterizing the intrinsic
properties of material systems.

Reproducibility and data deposition

In this section, we summarize the requirements for data
storage in STEM. In any experiment, it is vitally impor-
tant to include the metadata that allows the experiment
to be reproduced. In a STEM study, the most important
experimental parameters are the accelerating voltage
of the microscope, the convergence angle of the STEM
probe (also called the numerical aperture), the step size
between adjacent probe positions, the dwell time, and at
least a rough estimate of the beam current in the initial
STEM probe. Specific imaging modalities require addi-
tional metadata. 2D images recorded using monolithic
detectors require a precise description of the detector
response and detector coordinates, such as the angular
range for annular detectors or the position and rota-
tion of detector quadrants in differential phase contrast
measurements, as well as the position and orientation of
the diffraction pattern relative to these coordinates. 3D
datasets such as time series require the time stamp of
each frame, while tomography tilt series must specify the
stage tilt angles for each time, and spectroscopic meas-
urements such as EDS or EELS must specify the energy
range or bin width. Spectroscopic measurements should
specify any other parameters needed to reproduce the
experiment, such as the monochromation conditions
of the beam if applied and the collection angles of the
spectrometer used.

In pixelated measurements of the probe such as in
4D-STEM, one must specify the calibrated output pixel
size or provide absolute reference data and the rotation
or direction of the probe scan steps relative to the detec-
tor coordinates. In 4D-STEM, it is also useful to record
an image of the STEM probe passing only through
vacuum, which can be used a probe reference image for
ptychography, orientation or strain mapping.

Other microscope parameters such as the voltage
settings of the source, focusing optics, corrector optics,
projector system, the vacuum levels of the microscope,
hardware models and software version numbers can also
be recorded as a matter of course. Detailed notes regard-
ing the sample including the preparation, geometry and
beam exposure conditions should also be recorded. In
STEM studies it is particularly easy to record data at
vastly different magnifications, making the task of
generating survey images of the sample layout straight-
forward. Of particular importance in most STEM
experiments is the sample tilt used for each measure-
ment; one of the strengths of STEM imaging is that it
can combine observations at different orientations to
construct a more complete picture of the specimen.
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While new technologies have led to dramatic important in the long run: the digitization of TEM and
improvements in data quality, they have introduced a ~ STEM studies. Because STEM imaging experiments typi-
parallel development that we consider to be even more  cally use large monolithic detectors that directly output
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Fig. 7 | Bottom-up structural analysis for a ferroelectric material. a | Experimental scanning transmission electron
microscopy image of La-doped BiFeO,. b | Local descriptors (sub-images) of different sizes centred on atoms from one of
the sub-lattices extracted from CNN output. ¢ | Scree plot for principal component analysis (PCA) performed on the full
stack of extracted descriptors (subimages) showing explained variance as a function of number of PCA components for
different-sized sub-images. d | PCA decomposition of local descriptors into four components. PCA eigenmodes (associated
with distortions) and corresponding loading maps (showing where the distortion occurred in the image) are shown in the
top and bottom rows of panel d, respectively. Adapted with permission from REF?*!, AIP publishing.

20| Article citation ID: (2022) 2:11 www.nature.com/nrmp



Inferential biases

The assumptions and
constraints implemented in the
structure of the network, loss
function or training set that
impose specific limitations

on the outputs.

Exploration
Uncertainty minimization.

Exploitation
Balancing exploration and
pursuing target functionalities.

Out-of-distribution data
When observational conditions
change between experiments,
precluding a direct comparison
of data between experiments.

electronic signals, they provided many early examples
of the benefits of running experiments online, where a
local computer is used to drive the experiment, record
and analyse the data, or both**-**? (FIC. 1). The benefits
of recording scientific data digitally are numerous. First,
performing quantitative analysis is much easier on far
larger scales using computational tools and methods.
Some recent experiments only made possible by com-
bining computational methods with STEM experiments
include picometre-precision measurements of atomic
column positions'”, atomic-resolution 3D tomogra-
phy*** and imaging past the conventional information
limit with ptychography’”®. The next step along these
lines is to further close the loop between experiment and
online analysis and perform data-driven STEM experi-
ments*****. Secondly, digital data can be shared easily
with the wider scientific community, both in raw for-
mats and after processing for further analysis, provided
data transfer pipelines for big data are available. It has
also become standard practice for many scientific jour-
nals to require authors to provide open access to data®*.
In parallel, the ‘open science’ movement aims to increase
transparency;, efficiency and reproducibility in scientific
research’”**%, Reproducibility is a major concern for all
scientific disciplines including STEM?*; researchers
should make their data available in open-source file for-
mats such as ASCII, CSV or hdf5 with all of the informa-
tion required to understand and reproduce the results at
the time of publication.

Data deposition can be performed using various
online services such as the Materials Data Facility**.
However, these services do not prescribe what metadata
is required or any specific data formats and are therefore
typically less useful than online databanks that target
specific classes of data. The largest example in materi-
als science is the Materials Project, which stores various
calculated parameters for a large number of materials®'.
In biological electron microscopy, there are several
examples of large databases that aid in transparency
and reproducibility, including the Electron Microscopy
Public Image Archive’* and the Protein Data Bank®*.
Recently, a similar repository for atomic-resolution 3D
structures for materials science applications called the
Materials Data Bank®* has also been established. There
are a few examples of repositories of experimental or
simulated STEM datasets, such as in REFS'****. There
is currently, however, no repository that is both open-
ended to support all kinds of STEM experiment while
being specific enough to require submission of all meta-
data and data required to reproduce published results.
There is a strong need to develop this infrastructure for
STEM research™**,

Limitations and optimizations

The remarkable progress in high-resolution STEM imag-
ing and spectroscopies over the past decades is based
upon essentially unchanged instrument operation. The
typical operation of the microscope starts with stabili-
zation tuning and focusing of the microscope, a process
that can take minutes to hours and hinges upon prede-
fined tuning routines and operator intuition. The oper-
ator then chooses the regions of interest on the sample

and performs imaging and spectroscopy. The scanning
process almost invariably uses a rectangular scann-
ing pattern with beam rastering in a zig-zag shape. The
process is well recognized and accepted in the micro-
scopy community but is often opaque to the general
scientific community.

The development of ML and artificial intelligence
methods over the past ten years has naturally led to the
concept of automated and autonomous experiments in
STEM and other microscopies, which typically includes
the concept of a microscope that automatically chooses
optimal imaging parameters, identifies the regions of
interest on the sample, and performs the required meas-
urements. In addition, the ability of STEM to potentially
control beam-induced changes means that it can be
used as an atomic fabrication platform, which has been
demonstrated by the creation of individual vacancies®”**%,
the insertion of dopant atoms®, the directed motion of
atomic units*>**, and the assembly of homo- and hetero-
atomic molecules®**!. Below, we mention what is needed
to achieve synergy between the STEM and ML methods.

Beam control and image reconstruction

The central premise for automated experiments is
the ability to alter the probe path via external control,
together with scanning along non-rectangular beam
paths. Although it is fairly straightforward to do, alter-
ing the probe raster path requires access to the micro-
scope scan functions, which is infrequently available
for high-resolution STEMs, which often possess black-
box manufacturer-developed controls. Scanning the
beam using predefined non-rectangular paths such as
spirals*?>** has, however, been demonstrated.

The reconstruction of images from the data acquired
along non-rectangular beam paths is another issue,
which has been addressed using several approaches
based on compressed sensing and a Gaussian pro-
cess*®2 or reconstructive autoencoders and VAEs.
The compressed sensing and Gaussian process meth-
ods are generally interpolated between the acquired
data points during the experiment and do not have
inferential biases or prior information. Gaussian process
methods also allow quantification of uncertainty maps
and enable automated experiment workflows based on
exploration or exploitation. By contrast, the VAE approach
utilizes prior knowledge in the form of a trained network,
which strongly increases the efficiency of this approach
but makes it sensitive to out of distribution data.

Automation and image-based feedback

Arbitrary scan paths provide a necessary engineering
element for the development of automated experiment
workflows. Another key element is the identification of
objects of interest in the image plane, which depends
on sensitivity to small variations in imaging condi-
tions. For example, some of the early demonstrations of
image-based feedback in STEM include the detection
of material crystallinity from the magnitude of the peak
in the line-by-line fast Fourier transform of the image™”.
The broad introduction of deep learning image recog-
nition networks offers another approach to automating
experiments. However, despite significant and justified
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Distribution shift

In machine learning, this shift
occurs when training and test
sets do not come from the
same distribution.

Knock-on damage
thresholds

The energy of the incident
electron required to remove an
atom from the crystal lattice.

enthusiasm about potential of DCNNs in image analysis,
these technologies are associated with strong inference
biases. This implies that DCNNs will be sensitive to past
data and generally sensitive to small changes in micro-
scope parameters. A common challenge for pre-trained
DCNN s comes from the distribution shift****” when a
neural network trained on one set of parameters (such
as acquisition parameters, sample condition, and so on)
fails to generalize to parameters outside of the training
range. For spectroscopic experiments that aim to iden-
tify regions of a sample where a particular behaviour/
functionality is maximized (or minimized), one solu-
tion is the deep kernel learning approach®* that actively
learns a correlative relationship between structural data
and functionality of interest and uses it to navigate the
spectroscopic measurements®. Finally, target auto-
encoders are set by human operators and rapidly emerg-
ing techniques such as curiosity-based learning offer an
automation solution. In general, the likely pathways for
the adoption of autoencoders in STEM are high-level
decisions at the human timescale with ML making fast
low-level decisions.

Atomic fabrication
Electron beams can induce changes in the structure of
materials from amorphization to complete evaporation.
Correspondingly, minimization of beam damage has
been a primary driver in electron microscopy develop-
ment, with its breakthrough achieved with the inven-
tion and rapid adoption of aberration correction, which
enables high-resolution low-voltage imaging below the
knock-on damage thresholds. of many materials. In this
regime, beam damage can often be sufficiently slow and
associated with reconstruction of the chemical bond net-
work rather than its complete destruction. Phenomena
such as beam-induced phase transformations’®*,
vacancy ordering®**', and crystallization and amor-
phization**~*°, have been reported. In monolayers™ of
graphene and layered dichalcogenides, STEM studies
have demonstrated the presence of a broad spectrum
of chemical transformations including vacancy forma-
tion®"’, grain boundary motion®, fast beam-induced
motion of dopant atoms, and the dynamic motion of
molecular groups®”. Observing such precise dynamic
changes under the action of a 50-100kV electron beam
is highly surprising and the mechanisms responsible for
the observed phenomena are still actively discussed’*~"*.
However, irrespective of the exact mechanisms, these
observations clearly suggest the potential of using the
electron beam for direct atomic fabrication. In bulk
materials, beam-induced crystallization of silicon and
strontium titanate was harnessed using image-based
feedback’”. Recently, the direct formation of vacancies
and site-specific dopants, directed motion of silicon ada-
toms on graphene, and assembly of homo- and hetero-
atomic molecules have been demonstrated’. However,
the atomic fabrication process to date has been driven by
a human operator, typically at the timescale of minutes
and tens of minutes for a single operation.

The simple examination of intrinsic latencies of
STEM suggests that electron beam assembly can be
accelerated by many orders of magnitude but necessitates

the seamless combination of image recognition on
potentially noisy and out of distribution data to identify
the objects of interest together with reinforcement learn-
ing or similar methods™*. Unlike popularized examples
using reinforcement learning such as Atari or Go games,
the rules that control electron beam transformations
are unknown. Hence, we need either a determination
of these rules or algorithms that can base reinforcement

learning on observations only, such as muZero®”.

Outlook

In this Primer, we hope we have illustrated the tremen-
dous potential of deep learning for post-acquisition
analysis, physics extraction from data, and especially
automated and autonomous experiments. Fully realizing
this potential necessitates significant developments on
multiple levels, from instrumental platforms to common
workflows, shared data and codes. These developments
also require progress in ML methods, which will be
common to many other areas of physics.

At the instrument level, realizing the full potential of
ML methods requires enabling open software architec-
ture to control microscope operation and allow for cus-
tom experiments. General software platforms for such
development are well established and exemplified by
industry standards such as LabView. In recent years,
some of the microscope manufacturers have provided
open software for microscope operation, such as Nion
Swift and JEOL PyJem. Complementary to open soft-
ware architectures will be the development of local com-
puting capabilities to provide the computational power
necessary to run complex calculations at the latencies of
microscope operation. It should be noted that rapid pro-
gress in computational infrastructure now offers multi-
ple opportunities for such development, from extremely
light computational platforms such as Raspberry Pi
and the NVIDIA Jetson series to the NVIDIA DGX and
cluster solutions.

At the facility level, progress requires the develop-
ment of universal yet flexible analysis workflows on sam-
ple preparation, imaging and data analytics. This allows
reproducible and traceable measurements and also
serves as a necessary condition for transition to auto-
mated and autonomous experiments. Complementary
to this are data repositories for the storage of data, meta-
data providing context for the measurements and data
meaning, and the codes used in the original analysis.
Examples of such workflow developments are given by
cryo-electron microscopy (cryo-EM) imaging of bio-
logical systems’”®. It should be noted that historically,
developments of workflows do not exclude the human
operator from the research process. Rather, these work-
flows allow delegation of the low-level, low-latency
operations to automated systems so that a human
operator can focus on high-level decision-making.

At the level of the STEM community, there is a clear
imperative for community-wide development and shar-
ing of data analysis and, when possible, instrument control
codes. Platforms such as GitHub that enable effective dis-
tributed code development are now mainstream and we
hope to see the development of a code-sharing and
credit-sharing culture within the community, from home
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institutions and from sponsor agencies. Equally impor-
tant is data sharing, both within the STEM community
and as a bridge to the broader physics community.
Finally, the most serendipitous developments are
possible at the interface between STEM and the gen-
eral scientific community. STEM offers a treasure trove
of precise data on atomic position and functionalities
linked to deep electronic levels, the Fermi level and col-
lective excitations. Extracting accurate physical informa-
tion from this data and linking it to materials physics
will revolutionize our understanding of condensed
matter physics and chemistry at the atomic level. This
will necessitate matching developments in ML, includ-

ing physics-based ML, deep kernel learning and active

learning methods. Special sets of opportunities and
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experimentation, necessitating engineering controls,
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mately atomic fabrication. To close this Primer, we quote
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ties enabled by the synergy of the experimental method
with ML, STEM promises us a true understanding of
the atomic world.
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