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Abstract
Semiconductor nanowire (NW) quantum devices offer a promising path for the pursuit and
investigation of topologically-protected quantum states, and superconducting and spin-based
qubits that can be controlled using electric fields. Theoretical investigations into the impact of
disorder on the attainment of dependable topological states in semiconducting nanowires with
large spin–orbit coupling and g-factor highlight the critical need for improvements in both
growth processes and nanofabrication techniques. In this work, we used a hybrid lithography
tool for both the high-resolution thermal scanning probe lithography and high-throughput direct
laser writing of quantum devices based on thin InSb nanowires with contact spacing of 200 nm.
Electrical characterization demonstrates quasi-ballistic transport. The methodology outlined in
this study has the potential to reduce the impact of disorder caused by fabrication processes in
quantum devices based on 1D semiconductors.

Supplementary material for this article is available online
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Introduction

Low-dimensional semiconductors are of significant impor-
tance for the development of quantum technologies. For
example, InSb and InAs NWs show a diverse range of
appealing characteristics, such as strong spin–orbit coupling
(SOC) [1] and substantial g-factors of up to ∼50 [2, 3]. These
properties make them optimal candidates for the realization of

topological qubits based on Majorana zero modes (MZMs)
[4–7] and of spin–orbit qubits [8–10]. In addition, these
materials can interface well with superconductors, enabling
electrostatically-tunable gatemon-type superconducting
qubits [11–13]. In general, the development of such devices
requires precise nanopatterning and the integration of dis-
similar materials, such as superconductors or other metals and
insulators, with the NWs.

Recent theoretical works [14, 15] suggest that disorder
plays a significant role in obscuring topological features in
MZM devices, and ultimately prevents their reliable observa-
tion. Disorder can arise from growth, but even in pristine
materials it can be induced during the device nanofabrication
process. Therefore, complementary to improvements in synth-
esis, optimizing the device nanofabrication and suppressing the
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effects of fabrication-induced disorder are key requirements for
the creation of robust quantum states in devices based on NWs
and other low-dimensional semiconductors.

Nanomanufacturing techniques play a crucial role in the
fabrication of quantum devices with low-dimensional semi-
conductors. Top-down methods like photolithography, elec-
tron beam lithography (EBL) [16], and ion beam lithography
[17], are commonly employed. However, recent observations
suggest that these methods may induce structural damage or
introduce resist contamination in low-dimensional materials,
further complicating the fabrication of high-performance
electronic devices [18–20].

Among these techniques, EBL stands out as a widely
used and reliable method for metal electrode patterning at the
nanoscale [21]. This method creates precise patterns using a
high-acceleration electron beam (e-beam) on electron-sensi-
tive resist, achieving nanometric resolutions. However, the
high acceleration voltage that is required to achieve such
resolution might cause charge traps in the dielectric and
damage the semiconductor [22, 23]. EBL also requires high
vacuum conditions and lacks facile in situ imaging cap-
abilities due to the complexity and cost associated with multi-
beam systems. Another limitation of EBL arises from the
need of implementing proximity effect correction methods to
mitigate unintended exposure of the resist in areas not directly
targeted by the e-beam [24]. While attempts have been made
to improve the NW growth process and the dielectric
environment [25, 26], alternatives to EBL have received
relatively little attention.

Recently, a reduction of overall contact resistance and
enhancement of the performance of field effect transistors
(FET) was achieved in monolayer MoS2 by using thermal
scanning probe lithography (t-SPL) instead of e-beam litho-
graphy [16], suggesting that the t-SPL prevents damaging the
semiconductor material while exposing the pattern, which is
desirable for semiconducting NW based quantum devices.

Thermal scanning probe lithography (t-SPL), uses a
heatable ultra-sharp tip for the simultaneous writing and
reading of nanoscale structures on thermally-responsive sur-
faces, namely on thermal resists [27, 28]. The t-SPL canti-
lever integrates a thermal height sensor and a heating element,
both instrumental in the fabrication of nanoelectronics, and
quantum computing devices [29]. Additionally, the t-SPL tip
can be used for in situ thermal nanoimaging during the pat-
terning, allowing for the inspection of the quality of the
written features without the need for separate metrology
instruments. For writing, the heatable ultra-sharp tip is scan-
ned over a sample surface, inducing localized changes
through thermal stimulation, which results in patterns with
sub-20 nm features. To increase the throughput of the high-
resolution thermal probe and make it more suitable for
applications that require microscale and millimeter-scale
features, we exploited the capabilities of the integrated laser
writer in the hybrid lithography tool. The laser writer head
uses a continuous wave (CW) laser with an emission wave-
length of 405 nm for the residual-free direct laser sublimation
(DLS) of thermal resists and the creation of larger-area
structures (>500 nm).

In this work we patterned quantum devices based on
∼65 nm wide InSb NW using a mix and match lithographic
approach combining both t-SPL and direct laser writing in a
single commercial hybrid lithography instrument. This setup
enables us to achieve high resolution through t-SPL, and high
throughput via direct laser writing, utilizing the same tool, the
same resist stack, and the same thermal decomposition pro-
cess of the resist layer. The contact spacing between source
and drain electrodes, set to ∼200 nm to achieve quasi-ballistic
transport, was patterned using the thermal probe. The vias and
the bonding pads were patterned using the laser writer head to
reduce the overall patterning time. We show using magneto-
conductance measurements at low temperatures that transport
in the resulting device can be mediated by a small number of
quantum modes upon suitable electrostatic gating.

Experimental

InSb NWs with ∼65 nm diameter were grown using the vapor
liquid solid (VLS) technique. The growth process is described
in detail in [26]. The NWs were deterministically transferred
from the growth substrate to a local Ti/Au back gate covered
with ∼40 nm of ALD-grown AlOx using a dedicated transfer
station (see schematic description in figure 1(a)). A bilayer
resist stack consisting of 250 nm of Poly(methylmethacrylate-
co- methacrylic acid) (PMMA co MA, i.e. PMMA/MA) as
underlayer and 55 nm of Polyphthalaldehyde (PPA) as top
layer was spin coated over the substrate.

The device patterning took place in a NanoFrazor
Explore (Heidelberg Instruments Nano AG), equipped with a
thermal scanning probe for the writing of nanometric features
i.e. the source drain electrodes that are ∼200 nm apart, and a
laser writer head that utilizes direct laser sublimation (DLS) to
create the larger contact features, such as the pads and vias to
the leads. Before initiating the electrode patterning process,
the InSb nanowire is imaged in situ beneath the resist stack
using the tip in cold mode similarly to conventional atomic
force microscopy. Existing topographical features in a sample
are detected on the topography reading of the resist layer
coated on the sample surface [30]. This thermal nanoimaging
technique is damage-free and allows for the in situ generation
of topography images, hence avoiding the need to expose the
sample to an e-beam or to move it to a separate metrology
tool for inspection. The residual topography of the nanowire
buried under the polymer stack is detected with great accur-
acy, with lateral resolutions of less than 10 nm and sub-nm
vertical resolution.

Once the topography image is generated, it can be used
as a reference for overlaying the electrode patterns with an
alignment error of less than 5 nm, without the need for
additional alignment markers on the sample [27] figure 1(b)
shows in situ topography image of the InSb NW coated with
the resist stack and the pattern overlay for t-SPL. The NW
appears wider, ∼1 m,m compared to ∼65 nm shown in the
SEM image, as a result of flattening of the wire topography
and softening of its edges due to the height of the resist stack.
After spin-coating the two resist layers, the initially flat resist
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surface develops a residual topography amplitude, which is
vertically aligned with the nanowire underneath [30]. From
the resulting image, we measured a residual topography of
approximately 4.5 nm, which allows for easy detection and
precise markerless overlay on the nanowire.

Next, we initiated the patterning process by delineating the
high-resolution sections of the source and drain electrodes
through t-SPL. The remaining components of the device archi-
tecture, including the electrode fan-outs and 200 μm × 200 μm
electrode pads, were then written using direct laser writing.
The fine features produced by t-SPL cover an area of roughly
20 μm × 20 μm and were patterned within a span of 5min. On
the other hand, the electrode fan-outs and contact pads, mea-
suring approximately 700 μm × 1200 μm, were written using
the laser writer head in a time frame of 45min. Consequently,
the entire writing process for the NW device required less than
1 h to complete. In this hybrid lithography setup, the laser
writing as well as the t-SPL patterning use the same positioning
system, and the lateral offset between the two is automatically
calibrated via the tool’s software. To the best of our knowledge,
there have not been reports of complete device writing using
solely the mix and match of lithography techniques, namely, no
reports of millimeter-large area electrode patterning using DLS.

Similar to the thermal probe, the laser beam utilized
initiates thermal decomposition of the PPA layer, causing it to
sublimate immediately without redepositing on the sample.
This reaction, which is residual-free, endothermic, and devoid
of damage to the underlying sample and nanowire, eliminates
the need for subsequent chemical development to pattern the
PPA. The layer can then serve as a mechanically stable
etching mask for the underlying PMMA/MA organic transfer

layer. Subsequently, we begin the PMMA/MA chemical wet
etching process to transfer the patterns written in PPA and
achieve an undercut. A solution consisting of 5 vol% deio-
nized water (DIW) in isopropanol (IPA) is employed to
ensure a controlled PMMA/MA etch rate of 1 nm s−1. The
pattern creation and transfer process is shown in details in the
Supplementary data.

The wet etching process in diluted isopropanol (IPA)
reveals the NW under the bilayer resist stack within five
minutes. Before the subsequent contact metallization step, it
is necessary to remove the native oxide from the NW. The
native oxide was removed from the InSb NW using an argon
(Ar) ion milling step. Then, the metallic contacts (10 nm of
titanium and 120 nm of gold) were deposited in an Ultra High
Vacuum deposition system with in situ Ar ion milling cap-
abilities. The patterned devices were measured in a dilution
refrigerator at base temperature of ∼10 mK using standard
lock-in techniques.

Results and discussion

Figure 2(a) shows the patterned PPA after t-SPL process. The
gold square is the Au/AlOx back gate with the lead to the
bonding pad. The metallic gate is coated with a ∼40 nm
conformal layer of atomic layer deposition (ALD) grown
AlOx. The small leads were patterned using the t-SPL and the
vias that connect them to the bonding pad were patterned
using DLS. A topography map that was obtained using the
thermal scanning probe is shown in figure 2(c). This map
shows that the regions patterned by both techniques (t-SPL

Figure 1. (a) Schematic showing a cross-section of the substrate used, with the NW and the metallic top gate separated by an oxide layer. (b)
SEM image of the InSb NW growth chip. (c) Topography reading (top) of the nanowire buried under the resist stack, generated in situ via
thermal nanoimaging. The image of the nanowire is then use as a reference for the markerless overlay of t-SPL fine electrode lines (bottom).
The part of the electrodes that will be patterned by the t-SPL and laser are shown in blue and red, respectively. (d) Optical microscope of the
sample after the t-SPL, upper image, and after the laser writing, lower image (e), after the DLS step.
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and DLS) have well-defined lateral boundaries. The t-SPL-
patterned region is ∼70 nm deep, while the laser-patterned
one is ∼90 nm deep, which indicates that for both pattering
techniques the nanowire was protected by the PMMA/MA
resist.

The right panel in figure 2(b) shows a SEM image of the
measured device after wet etching the PMMA/MA using a
mixture of 5 vol% DIW in IPA, ion milling and metal
deposition. The Ti/Au electrodes are shown in yellow, the
NW in blue and the Au-AlOx back gate in purple.

The ability to use the thermal scanning probe to image
the NW through the resist stack without causing damage to
either the resist or the wire enables precise patterning of
devices with narrow contact spacing, as well as, in principle,
the incorporation of side gates in close proximity to the wire
for enhanced tunability (though here we used a single metallic
back gate).

Figure 3 shows the electrical characterization of the NW
device, a thin InSb nanowire with electrodes spacing of ∼200
nm. The electron mean-free-path of InSb nanowires is
∼100–300 nm [2, 31] and therefore, when applying Vbias

across 200 nm long 1D channel the transport behavior is
expected to be quasi-ballistic and the conductance as a
function of gate voltage (Vg) should ideally increase in integer
steps of 1G0 ( /G e h20

2= ) if effects from the contact-induced
band-bending are minor [26, 32]. However, if there are sub-
stantial impurities, this can introduce scattering sites that can
lead to the suppression of ballistic transport.

Figure 3(a) shows the conductance in the units of G0 as a
function of source-drain voltage (Vsd) at a given Vg. The
conductance increases as a function of Vg, a typical behavior
for a semiconducting NW. In addition, the NW is not con-
ducting at zero Vg which suggests that it is relatively free of
accidental dopants. The differential conductance plot in
figure 3(a) and the line cuts (figure 3(b)) that were extracted
from figure 3(a) show oscillations that could be related to
Fabry−Pe  rot (FP) interference, which occurs when electron

waves traverse a partially transmitting cavity [26, 33]. This
would imply phase coherence of the electrons over the device
length. In addition, the conductance values evolve along
plateau-like regions with values around a few G0, consistent
with transport through a small number of quantum modes.

Applying out-of-plane magnetic field can lead to
dephasing between multiple trajectories and thus suppress the
FP oscillation and lead to the emergence of conductance
plateaus. In addition, it is expected to lead to Zeeman splitting
of subbands and hence plateaus near both integer and half-
integer values of G0 [2]. Figure 3(c) shows the differential
conductance plot in units of G0 /e h2 2= as a function of Vsd at
a given gate voltage (Vg) under magnetic field of 2.8 T out-of-
plane to the substrate. Linecuts of the conductance map
(figure 3(d)) show that at these finite values of the magnetic
field, the FP oscillations appear to be suppressed. In addition,
it appears that between Vsd = −3 mV and Vsd = 3 mV the
lines coalesce into plateau-like features at ∼0.5 G0 and ∼1.5
G0 as Vg is varied, possibly due to Zeeman splitting of the
subbands, further suggesting that transport is quasi-ballistic
over the inter-contact distance and is mediated by a small
number of quantum modes in this range of Vg.

In conclusion, we demonstrated the ability to pattern
nanowire devices using a mix and match writing approach,
with a single hybrid lithography tool on the same resist stack,
and with a single pattern transfer step. The thermal scanning
probe was used for both the writing and reading of nanoscale
electrode features, while the direct laser writer head was
employed for the micron and millimeter sized leads and
contact pads. The in situ thermal nanoimaging capability of
the ultra-sharp tip was exploited for the precise markerless
overlay of the contact on the nanowire. Moreover, the pat-
terning was carried out in a closed-loop manner, eliminating
the need for additional metrology tools to examine the quality
and topography of the patterned structures separately. Within
one hour of combined t-SPL and laser writing, we achieved a
device with contact spacing of ∼200 nm that showed quasi-

Figure 2. (a) Full image of the patterned device after wet etching, the large vias and the pads were patterned using the laser and the high-
resolution electrodes were patterned using the t-SPL. (b) Optical image of the devices after metal deposition and lift-off, a zoom in SEM
image of the spacing is shown on the right panel. (c) Topography scan of the overlap area between the t-SPL and the DLS written areas of the
electrode lines, showing a continuous electrode line across both areas.

4

Nanotechnology 35 (2024) 255302 L Shani et al



ballistic, phase-coherent transport. By integrating nanoscale
and microscale lithography methods and bypassing the
necessity for separate alignment markers, this approach holds
promise for expediting the prototyping of quantum devices.
Specifically, it could streamline the fabrication process of
quantum devices, which traditionally require multiple gates to
tune a one-dimensional wire, without the need to expose to
the wire to SEM for high resolution alignment, see for
example [34]. In addition, using t-SPL could potentially
prevent damage induced by the electron beam, including the
formation of charge traps in the nanowire and dielectric lay-
ers. Moreover, the ability to fit the tool in glove-box and use
water-free developers, e.g. Ethanol instead of DIW:IPA, may
allow further reduction of fabrication induced disorder by
eliminating the need to break the native oxide shell using ion
milling or sulfur passivation if the NWs are transfer dierectly
from the growth system to the glovebox [35]. Taken together,
along with other measures such as choice of nanowire
materials, dielectrics and device layout, these factors could
facilitate the development of low-defect quantum devices
based on semiconductor nanowires.
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