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We revisit the issue of plasmon damping due to electron-electron interaction. The plasmon linewidth can
be related to the imaginary part of the charge susceptibility or, equivalently, to the real part of the optical
conductivity, Reσ (q, ω). Approaching the problem first via a standard semiclassical Boltzmann equation, we
show that Reσ (q, ω) of a two-dimensional (2D) electron gas scales as q2T 2/ω4 for ω � T , which agrees
with the results of Principi et al. [Phys. Rev. B 88, 195405 (2013)] and Sharma et al. [Phys. Rev. B 104,
045142 (2021)] but disagrees with that of Mishchenko et al. [Phys. Rev. B 69, 195302 (2004)], according to
which Reσ (q, ω) ∝ q2T 2/ω2. To resolve this disagreement, we rederive Reσ (q, ω) using the original method
of Mishchenko et al. for an arbitrary ratio ω/T and show that while the last term is, indeed, present, it is
subleading to the q2T 2/ω4 term. We give a physical interpretation of both leading and subleading contributions
in terms of the shear and bulk viscosities of an electron liquid, respectively. We also calculate Reσ (q, ω) for a
three-dimensional electron gas and doped monolayer graphene. We find that, all other parameters being equal,
finite temperature has the strongest effect on the plasmon linewidth in graphene, where it scales as T 4 ln T for
ω � T .

DOI: 10.1103/PhysRevB.109.045431

I. INTRODUCTION

Collective modes of a Fermi liquid (FL) are the direct
manifestation of its many-body nature. In a charged FL, the
most well-studied mode is the plasmon. The plasmon disper-
sion and linewidth contain important information about the
many-body dynamics in electron systems and are also crucial
parameters for plasmonic devices. Traditionally, plasmons
have been observed by electron energy-loss spectroscopy
[1]. The interest in plasmon dynamics has recently intensi-
fied due to near-field optical spectroscopy of graphene-based
devices [2–4] and momentum-resolved electron energy-loss
spectroscopy of superconducting cuprates and related com-
pounds [5]. On the theoretical side, within the random-phase
approximation (RPA) and at T = 0 a plasmon has an infinitely
long lifetime as long as it stays outside the particle-hole
continuum and thus cannot decay via the Landau-damping
mechanism [6]. Beyond the RPA, plasmons do decay into
multiple particle-hole pairs. In terms of Feynman diagrams,
these processes are accounted for by dressing the free particle-
hole bubbles with interaction lines. Damping of plasmons in
three dimensions (3D) was studied by DuBois and Kivelson as
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early as in 1969 [7]. Damping of plasmons in two dimensions
(2D) was studied in Refs. [8–14] in both the collisionless
and hydrodynamic regimes. However, the results of different
papers for damping in the collisionless regime [8–11,14] do
not always agree with each other, although all of them are
obtained under the same assumptions, the most important of
which is weak coupling. The goal of this communication is to
finalize the result for the lifetime of plasmons due to electron-
electron interaction, at least at weak coupling. We will limit
our attention to the collisionless regime, which occurs if the
plasmon frequency is much higher than the rate of relaxation
towards equilibrium, and consider the cases of 2D and 3D
electron gases with parabolic dispersion, as well as of doped
monolayer graphene. We will also consider only damping
due to intraband excitations, although interband excitations
need to be accounted for to explain plasmon damping in real
materials [15]. In what follows, we set kB = 1 and h̄ = 1.

Formally, damping of plasmons is due to the fact that the
imaginary part of the charge susceptibility χc(q, ω) is finite
outside the particle-hole continuum. Thanks to the Einstein
relation [16,17]

Reσ (q, ω) = e2ω

q2
Imχc(q, ω), (1)

the same condition can be reformulated in terms of the real
part of the conductivity. To facilitate the comparison, we list
below the results of different papers for Reσ (q, ω) [18].

Mishchenko, Reizer, and Glazman (MRG) [10] considered
a Galilean-invariant 2D electron gas (2DEG), i.e., a 2D elec-
tron system with εk = k2/2m dispersion. Using an original
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method to calculate the absorption rate of electromagnetic
radiation by electrons, they obtained the following result for
the conductivity at finite q, ω, and T :

Reσ (q, ω) = e2

12π2

q2

k2F

ω2 + 4π2T 2

ω2
ln

vFκ

max{|ω|,T } , (2)

where kF and vF are the Fermi momentum and velocity, re-
spectively, and κ = 2me2 is the inverse radius of the screened
Coulomb interaction in 2D, defined by

VQ = 2πe2

Q + κ
. (3)

Equation (2) is derived under the following assumptions:
max{ω,T } � vFκ � EF and q � max{ω,T }/vF. (We remind
the reader that vFκ � EF at weak coupling.) The results of
this paper will also be obtained under the same assumptions.
Please note that henceforth T stands for the temperature of
the electron system, which may be different from the lattice
temperature; for example, Ref. [3] reports the electron tem-
perature of graphene under near-field pumping to be as high
as 3200 K.

The vanishing of Reσ (q, ω) in Eq. (2) at q = 0 reflects
the fact that internal forces in a Galilean-invariant system do
not affect the motion of the center of mass and, therefore, the
dissipative part of the conductivity must vanish at q = 0 and
finite ω. Such a constraint is no longer valid for graphene,
which is not a Galilean-invariant system. Indeed, the low-
energy excitations near the K and K ′ points of the Brillouin
zone in graphene have a linear (Dirac) dispersion. This in
turn implies that the velocity is constant in magnitude and
given by vk = vDk̂. Therefore, momentum conservation does
not automatically imply current conservation, as it does in
Galilean-invariant systems. As a result, graphene has a finite
optical conductivity even in the presence of a uniform ac field,
i.e., at q = 0. The optical conductivity of graphene away from
the charge neutrality was analyzed in Refs. [8,9], which identi-
fied the limiting form of the conductivity at q = 0. In addition,
Refs. [8,9] presented an O(q2) term, which is necessary for
determining the plasmon linewidth. The complete result, as
derived in Ref. [9], reads

Reσ (q, ω) = Reσ1(ω) + Reσ2(q, ω), (4a)

Reσ1(ω) = e2

240

ω2

E2
F

(
1 + 4π2 T

2

ω2

)

×
(
3 + 8π2 T

2

ω2

)
ln

vDκ

max{|ω|, 2πT } , (4b)

Reσ2(q, ω) = e2

24π2

q2κ2

m∗2ω2

(
1 + 4π2 T

2

ω2

)
ln

kF
κ

, (4c)

where Reσ1(ω) and Reσ2(q, ω) are the O(q0) and O(q2) con-
tributions, respectively, vD is the Dirac velocity, which plays
the role of vF for the Dirac spectrum, and m∗ = kF/vD [19].
Note that although Reσ1 is finite at q = 0, it is suppressed by
a factor of (ω/EF)2 compared with a regular FL contribution
[20,21].

It was further conjectured in Refs. [8,9] that the O(q2)
contribution should be the same for the Dirac and parabolic
spectra, up to the redefinitions of the effective mass and

inverse screening length, i.e., the optical conductivity of a
2DEG should read

Reσ (q, ω) = e2

24π2

q2κ2

m2ω2

(
1 + 4π2 T

2

ω2

)
ln

kF
κ

. (5)

If this is the case (and we will show explicitly that it is), then
there is a contradiction with the MRG result, Eq. (2). Indeed,
Eqs. (2) and (5) differ by a factor of (vFκ/ω)2 ∼ ω2

p(κ )/ω
2,

where ωp(q) is the plasmon dispersion. This implies that
Eq. (5) is parametrically larger than Eq. (2) for ω � ωp(κ ).

The difference between Eqs. (2) and (5) is not purely
mathematical. In fact, the corresponding contributions arise
from different physical processes and, on a general level, are
related to the bulk and shear viscosities of the electron liquid,
correspondingly.

The real part of the optical conductivity is related to the
plasmon linewidth, �(q), defined by the complex dispersion
relation ω = ωp(q) − i�(q). In 2D [10],

�(q) = πqReσ (q, ω)|ω=ωp(q). (6)

In a 2DEG, ωp(q) = vF
√

κq/2. Accordingly, Eqs. (2) and (4c)
give quite different results for the plasmon linewidth. At T =
0, for example,

�(q)|Eq. (2)/�(q)|Eq. (4c) ∼ q/κ, (7)

which is smaller than unity for q � κ .
The approaches employed in previous works [8–10] in-

volve quite complicated computations. We find it instructive
to start with a more straightforward approach, namely, with a
semiclassical Boltzmann equation, which is valid for ω � T .
In this regime, Eqs. (2) and (5) reduce to

Reσ (q, ω) = e2

3k2F

q2T 2

ω2
ln

vFκ

T
(8)

and

Reσ (q, ω) = e2κ2

6m2

q2T 2

ω4
ln

kF
κ

, (9)

respectively, and it should be fairly easy to see which one is
correct. This exercise is the subject of Sec. II.

The rest of this paper is organized as follows. Section III A
gives a brief review of the MRG method. In Sec. III B, we
rederive the result for the optical conductivity of a 2DEG
using the MRG method and show that, in agreement with
the conjectures of Refs. [8,9], it is given by Eq. (5) rather
than Eq. (2). We must emphasize that the error in Ref. [10] is
purely computational and reflects neither on the MRGmethod
itself nor on the results of this reference for plasmon damping
due to electron-phonon interaction. Using the MRG method,
we also calculate the optical conductivity of a 3D electron
gas in Sec. III C and supply the details of the derivation of
Eqs. (4a)–(4c) for graphene. In Sec. IV, we give a physical
interpretation of our results in terms of the bulk and shear
viscosities of an electron liquid. In Sec. V, we discuss the
plasmon linewidth. Section VI presents our conclusions.
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II. OPTICAL CONDUCTIVITY VIA THE SEMICLASSICAL
BOLTZMANN EQUATION

In this section, we calculate the longitudinal conductivity
of a 2D Galilean-invariant electron system, using the semi-
classical Boltzmann equation (BE) with a collision integral
that does not depend on the frequency of an external electric
field. Such a BE is valid for ω � T . Assuming the electric
field to be of the form E = E0ei(q·r−ωt ), the BE for the Fourier
transform of the nonequilibrium part of the distribution func-

tion δ f (q, ω; k) ≡ δ fk reads

−i(ω − vk · q + i0+)δ fk − e(E0 · vk )n
′
k = Iee[δ fk], (10)

where nk = nF(εk ) is the Fermi function, n′
k = ∂nF(εk )/∂εk,

Iee[δ fk] is the electron-electron collision integral, and an in-
finitesimally small imaginary term i0+ was added to ensure
the retarded nature of the response. With a definition δ fk =
nk(1 − nk )gk = −Tn′

kgk, the equation for gk reads [22]

i(ω − vk · q + i0+)gk − e

T
(E0 · vk ) = 1

Tn′
k

∫
k′pp′

Wk,p→k′p′ (1 − nk′ )(1 − np′ )npnkδ(εk + εp − εk′ − εp′ )

× δ(k + p − k′ − p′)(gk + gp − gk′ − gp′ ), (11)

where Wk,p→k′p′ is the scattering probability and
∫

k is a shorthand for
∫
d2k/(2π )2 (and similarly for other momenta). The

overall scale of the collision integral is given by the relaxation rate due to electron-electron interactions at finite T , 1/τee(T ). The
temperature is assumed to be low enough so that the condition 1/τee(T ) � ω is satisfied (yet high enough such that T 
 ω).
In this case, Eq. (11) can be solved by subsequent iterations in the collision integral. To zeroth order, we neglect the collision
integral and obtain

g(0)k = 1

T

e(E0 · vk )

i(ω − vk · q + i0+)
. (12)

At the next step, we substitute gk = g(0)k + g(1)k back into Eq. (11) and neglect g(1)k inside the collision integral, to obtain

g(1)k = e

n′
kT

2(ω − vk · q + i0+)

∫
k′pp′

Wk,p→k′p′ (1 − nk′ )(1 − np′ )npnkδ(εk + εp − εk′ − εp′ )

× δ(k + p − k′ − p′)
(

vk

ω − vk · q
+ vp

ω − vp · q
− vk′

ω − vk′ · q
− vp′

ω − vp′ · q

)
· E0. (13)

The conductivity is read off from the electrical current j = −e
∫

k δ fkvk = Te
∫

k n
′
kgkvk, as a coefficient of linear proportionality

between j and E. As we are interested in the longitudinal part of the conductivity, we choose q ‖ E. Then the conductivity can
be found as

Reσ (q, ω) = 1
2 [Reσxx(q, ω) + Reσyy(q, ω)], (14)

where σαα (q, ω) denotes the conductivity calculated with both E and q being along the α axis.
The real part of the zeroth-order conductivity, obtained from Eq. (12), is nonzero only within the particle-hole continuum,

i.e., for |ω| < vFq, and is not relevant here, while the first-order correction in Eq. (13) yields

Reσ (q, ω) = e2

8T

∫
kpk′p′

Wk,p→k′p′ (1 − nk′ )(1 − np′ )npnkδ(εk + εp − εk′ − εp′ )δ(k + p − k′ − p′)

×
(

vk

ω − vk · q
+ vp

ω − vp · q
− vk′

ω − vk′ · q
− vp′

ω − vp′ · q

)2

. (15)

To arrive at the last result, we used the symmetry properties ofWk,p→k′p′ [23,24]. At q = 0, the second line of Eq. (15) is reduced
to (vk + vp − vk′ − vp′ )2/ω2, which vanishes identically for the Galilean-invariant case, when vk = k/m. A finite result for the
conductivity is obtained by expanding Eq. (15) in q. To order q2, we obtain

Reσ (q, ω) = e2q2

8Tω4

∫
kpk′p′

Wk,p→k′p′ (1 − nk′ )(1 − np′ )npnkδ(εk + εp − εk′ − εp′ )δ(k + p − k′ − p′)

×[vk(vk · q̂) + vp(vp · q̂) − vk′ (vk′ · q̂) − vp′ (vp′ · q̂)]2, (16)

where q̂ = q/q. The general form of Reσ (q, ω) can be deduced already at this step. Indeed, Eq. (16) contains integrals over
three independent energies (say, εk, εp, and εk′), each of them contributing a factor of T to the final result. Therefore

Reσ (q, ω) ∝ q2T 2

ω4
, (17)

which is consistent with Eq. (9).
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The result (17) can be understood in the following way. A
factor of q2 follows immediately from the fact that Reσ (q, ω)
must vanish at q = 0 and be analytic in q (at finite ω and T ).
The scaling 1/ω4 follows from the fact that we need to iterate
the BE once and expand the result in vFq/ω. Finally, the factor
of T 2 is the expected FL scaling of the scattering rate.

The rest of the calculation proceeds assuming that
Wk,p→k′p′ is given by the Born approximation for the screened
Coulomb potential (3), i.e., Wk,p→k′p′ = 8πV 2

k−k′ . After a
straightforward calculation (see Appendix B), we arrive at

Reσ (q, ω) = e2κ2

6m2

q2T 2

ω4
ln

kF
κ

, (18)

which coincides with Eq. (9) rather than with Eq. (8). Given
also that the conductivity must satisfy the first-Matsubara-
frequency rule [25–27], i.e., σ (ω = ±2π iT,T ) = 0, one can
generalize the result in Eq. (18) for the case of an arbitrary
ratio of ω to T as Reσ (q, ω) ∝ q2(ω2 + 4π2T 2)/ω4, which is
Eq. (5). In the next section, we will see that this is, indeed, the
correct result.

III. OPTICAL CONDUCTIVITY VIA THE
MISHCHENKO-REIZER-GLAZMAN METHOD

In this section, we resolve the disagreement between the
result of Ref. [10] and the results of Refs. [8,9] and finalize
the correct expression for the optical conductivity of a 2DEG.
Using the MRG method, we will show that in addition to the
contribution found by MRG [Eq. (2)], there is also another
contribution given by Eq. (5). For completeness, we will also
derive the expressions for the optical conductivities of a 3D
electron gas and graphene in Secs. III C and III D, respec-
tively.

A. MRG method

In the MRG method, one calculates the rate at which elec-
tromagnetic radiation is absorbed by a system of interacting

electrons. The differential probability of an electron-electron
collision in the presence of a photon is written via the Fermi
golden rule as

dws,sz = 2π |Ls,sz |2δ(εp + εk − εp′ − εk′ + ω)

×δ(p + k − k′ − p′ + q)
dDp′dDk′

(2π )2
, (19)

where p, k (p′, k′) are the initial (final) momenta of electrons,
s is the total spin of two electrons in the initial state, sz is
the spin projection on the quantization axis, and Ls,sz is the
matrix element which depends on s and, in general, on sz.
To first order in the screened Coulomb interaction, the matrix
elements for the singlet and triplet states are given by

L0,0 = eφ0

(
Vk−k′ +Vp′−k

εp − εp+q + ω
+ Vk−k′ +Vp−k′

εp′ − εp′−q − ω

+ Vp′−p +Vp−k′

εk − εk+q + ω
+ Vp′−p +Vp′−k

εk′ − εk′−q − ω

)
(20)

and

L1,0 = L1,±1 = eφ0

(
Vk−k′ −Vp′−k

εp − εp+q + ω
+ Vk−k′ −Vp−k′

εp′ − εp′−q − ω

+ Vp′−p −Vp−k′

εk − εk+q + ω
+ Vp′−p −Vp′−k

εk′ − εk′−q − ω

)
, (21)

respectively, where qφ0 is the in-plane component of the elec-
tric field of an electromagnetic wave.

Next, one derives the total probability of absorption using
Eq. (19) with matrix elements from Eq. (20), which is then
used to calculate the dissipation rate. The latter is then related
to the real part of the longitudinal conductivity, which is given
by [10]

Reσ (q, ω) = (1 − e−ω/T )

4q2ω3φ2
0

∫∫∫∫
dDpdDkdDp′dDk′

(2π )3D−1
(|L0,0|2 + 3|L1,0|2)nknp(1 − np′ )(1 − nk′ )

× δ(εp + εk − εp′ − εk′ + ω)δ(p + k − k′ − p′ + q). (22)

The matrix elements can be written as L0,0 = eφ0(A + Aex)/ω2 and L1,0 = eφ0(A − Aex)/ω2, where

A = ω2

[
Vk−k′

(
1

εp − εp+q + ω
+ 1

εp′ − εp′−q − ω

)
+Vp′−p

(
1

εk − εk+q + ω
+ 1

εk′ − εk′−q − ω

)]
(23)

and Aex is the exchange term obtained by interchanging p′ ↔ k′ in Eq. (23) [28]. From now on, we will neglect the exchange
term Aex, which contains the interaction potential at large momenta transfers and is, therefore, small for a weakly screened
Coulomb interaction. It is also convenient to introduce the momentum and energy transfers via Q = p − p′ = k′ − k − q and
� = εp − εp′ = εk′ − εk − ω, respectively, upon which Eq. (22) becomes

Reσ (q, ω) = e2(1 − e−ω/T )

(2π )3D−1q2ω3

∫∫∫∫
dDQdDpdDkd�A2 nF(εk )nF(εp)[1 − nF(εp − �)][1 − nF(εk + � + ω)]

× δ(εp − εp−Q − �)δ(εk − εk+Q+q + � + ω). (24)
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Interestingly, the last formula can be expressed as a convolution of two free-electron response functions. For example, as shown
in Appendix D, the dominant contribution to the conductivity of a Galilean-invariant system can be cast in the following form:

Reσ (q, ω) = bD
e2q2

ω5m2

∫
dDQQ2

(2π )D

∫ ∞

−∞

d�

π
V 2

Q[nB(�) − nB(� − ω)]ImχT (Q,� − ω)Imχc(Q,�), (25)

where nB(z) is the Bose function, bD = 8/15 for D = 3 and bD = 1/2 for D = 2, and where we have introduced the imaginary
parts of the density-density response function [17]

Imχc(Q, ν) ≡ −2π
∫

dDk

(2π )D
[nF(εk−Q/2) − nF(εk+Q/2)]δ(k · Q/m − ν) (26)

and of the transverse current-current response function

ImχT (Q, ν) ≡ −2π
∫

dDk

(2π )D
[nF(εk−Q/2) − nF(εk+Q/2)]|k × Q̂/m|2δ(k · Q/m − ν). (27)

(The factors of 2 in the equations above account for spin
degeneracy.) In the zero-temperature limit, the � integral is
restricted to the range 0 < � < ω (for positive ω). Further-
more, because both response functions vanish linearly at low
frequency, we see that the integral goes as ω3, and the final
result for the conductivity is proportional to q2/ω2, as it
should. Similar formulas for the subdominant contributions
to the conductivity of Galilean-invariant systems are provided
in Appendix D. Equation (25) helps to elucidate the nature
of excitations responsible for plasmon damping, as will be
discussed in detail in Sec. IV.

We now proceed with applying Eq. (24) to specific cases.

B. Two-dimensional electron gas

First, we consider a 2D electron gas with a parabolic
dispersion εk = k2/2m. As we are interested in the limit of
vFq/ω � 1, we expand A in Eq. (23) in 1/ω as

A = A1 + A2, (28a)

A1 = Vk−k′

[
(vp − vp′ ) · q + q2

m

]

+Vp−p′

[
(vk − vk′ ) · q + q2

m

]
, (28b)

A2 = 1

ω
{Vk−k′[(vp · q)2 − (vp′ · q)2]

+Vp−p′ [(vk · q)2 − (vk′ · q)2]}. (28c)

The A1 term in the equation above is the one that was found
in Ref. [10]. However, as will be shown below, one also needs
to keep the A2 term, despite the fact that it appears to be
next order in 1/ω. [Note that we have already neglected O(q4)
terms in A2.]

Expanding the interaction potential as VQ+q = VQ + q ·
∇QVQ and retaining only up to O(q2) terms, we rewrite A1

in Eq. (28b) as

A1 = 1

m
[q2VQ + (Q · q)(q · ∇VQ)]. (29)

The MRG result, Eq. (2), is reproduced by keeping the first
term in the equation above. Indeed, each of the three energy
integrations in Eq. (24) (over εk, εp, and �) contribute a factor
of ω, thereby canceling out a factor of 1/ω3. Next, each of the

two delta functions contributes a factor of 1/Q, which leads
to a logarithmic divergence in the integral over Q at the lower
limit. Cutting off this divergence at Q ∼ ω/vF, we reproduce
the structure of Eq. (2). Since the second term in Eq. (29)
contains an extra factor of Q, the resultant Q integration does
not lead to a logarithmic divergence and is thus subleading in
the leading-logarithm sense.

Now, we turn to the “new” (compared with MRG) term,
A2 in Eq. (28c). Expanding this term to order q2, we obtain

A2 = 2VQ

m2ω
(q · Q)[q · (p − k − Q)]. (30)

As is to be expected (and indeed shown to be the case in
Appendix C 1), a typical value of |k − p| ∼ kF 
 Q � κ .
Then A2 can be estimated as |A2| ∼ q2QkFVQ/m2ω. The
resultant integral over Q is convergent at Q = 0 but needs
to be cut off at Q ∼ kF at the upper limit, upon which one
reproduces the structure of Eq. (5). (The cross-term, A1A2,
vanishes to leading order upon angular integration.)

We pause here to emphasize a nontrivial structure of the
expansion in 1/ω. Indeed, the expansion of the individual
components in Eq. (23) starts with the 1/ω terms, which can-
cel each other, followed by the O(vk,p · q/ω2) terms, which
are supposed to be the leading ones. However, the latter also
almost cancel each other, and one needs to keep two O(q2)
terms: the q2/2m terms in Eq. (28b) and the entire A2 term in
Eq. (28c). For ω � ωp(κ ), the “new” term (A2) exceeds the
“old” one.

Deferring further details to Appendix C 1, we present here
the final result for the optical conductivity of a 2DEG with
parabolic dispersion:

Reσ (q, ω) = e2

48π2

q2

k2F

(
1 + 4π2 T

2

ω2

)
ln

vFκ

max{|ω|, 2πT }

+ e2

24π2

q2κ2

m2ω2

(
1 + 4π2 T

2

ω2

)
ln

kF
κ

. (31)

The second (“new”) term coincides with Eq. (5), which con-
firms the conjecture made in Refs. [8,9], while the second one
is subleading to the first one for ω � ωp(κ ).
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C. Three-dimensional electron gas

For a 3D electron gas with parabolic dispersion, the form
of A is the same as in Eqs. (28a)–(30), but the integrals are
different due to a change in the phase space. Deferring the
details to Appendix C 2, we present here only the final result
for the optical conductivity in the limit of ω � vFκ:

Reσ (q, ω) = e2κ

720

q2κ2

m2ω2

(
1 + 4π2 T

2

ω2

)
, (32)

where the inverse screening length is given by κ2 = 8πe2NF

and NF = mkF/2π2 is the density of states per spin.

D. Doped monolayer graphene

The optical conductivity of graphene was calculated in
Refs. [8,9], but the most complete result was given in Ref. [9]
without a derivation. Here, we rederive this result using the
MRG method.

Without loss of generality, we assume that the Fermi en-
ergy is located in the upper Dirac cone. In the low-energy
limit, i.e., for max{ω,T } � EF, one can neglect the presence
of the lower Dirac cone [29]. Also, for a long-range Coulomb
interaction, one can neglect processes that lead to swapping
of electrons between the K and K ′ valleys, as well as the
exchange parts of both intra- and intervalley scattering am-
plitudes. For the same reason, the phase factors in the matrix
elements between spinor states can be replaced by unities.
With all these simplifications, electrons in graphene can be
described by the following low-energy Hamiltonian:

H0 =
∑
ς,k,s

(vDk − EF)c
†
ς,k,scς,k,s + 1

2

∑
k,p,Q

∑
s,s′,ς,ς ′

V (0)
Q

× c†
ς,k+Q,sc

†
ς ′,p−Q,s′cς ′,p,s′cς,k,s (33)

where ς = ±1 labels the K and K ′ valleys, k is the electron
momentum measured from the center of the corresponding
valley, s = ±1 is the spin projection, and V (0)

Q = 2πe2/Q is
the bare Coulomb potential. Within this approximation, the
valley index plays the role of a conserved isospin. Therefore
the optical conductivity can be calculated by applying the
MRG method to the case of spin-1/2 fermions occupying a
single valley, i.e., using Eq. (24) and then multiplying the
result by 22 = 4.

In contrast to 2D and 3D electron gases, graphene is a non-
Galilean-invariant system. Therefore its optical conductivity
is finite even at q = 0. However, we will see that in order
to determine the plasmon linewidth accurately, one needs to
retain both O(1) and O(q2) terms in the optical conductivity.
Recalling the factor of 1/q2 in Eq. (24), we see that A should
have terms of O(q) and O(q2), which would give the O(1)
and O(q2) contributions to the conductivity, respectively. As
shown in Appendix C 3, the result for A to required accuracy
is given by

A = A1 + A2, (34a)

A1 = −VQ
qvD
EF

[(εp − εp − Q) cos θqp + (εk − εk + Q) cos θqk],

(34b)

A2 = VQ
q2vD
2kF

[
1

2
sin2 θpq + 2

vDQ

ω
(Fp − Fk )

]
, (34c)

where

Fk = cos θqk(cos θqQ − cos θqk cos θkQ),

Fp is obtained by interchanging k and p in Fk, and θnn′ denotes
the angle between the vectors n and n′.

The q-independent part of Reσ is exactly the same as
calculated in Ref. [9], and we will give only a brief sum-
mary of the computational steps. Once A2

1 is substituted into
Eq. (24), the differences of electronic dispersions in Eq. (34c)
can be expressed via the frequencies ω and �, using the con-
straints imposed by the delta functions in Eq. (24). Suppose
that T = 0. Then, given that � ∼ ω, we have A2

1 ∝ ω2. The
three energy integrations (over εk, εp, and �) are effectively
constrained to the interval (0, ω) by the Fermi functions and
therefore contribute a factor of ω each. Altogether, it follows
that Reσ1(ω) ∝ ω2 × ω3/ω3 = ω2. This is the leading con-
tribution to the conductivity for ω � EF. Therefore one can
neglect the frequencies in the delta functions, upon which they
impose purely geometric constraints on the angular variables;
for Q � kF, we simply have cos θpQ = cos θkQ = 0. The Q
integration is the same as that for a 2DEG (see Appendix C 1):
Given that each of the two delta functions gives a factor of
1/Q, the integral over Q diverges logarithmically at the lower
limit. Cutting this divergence off atQ = |ω|/vD, we reproduce
the T = 0 limit of Eq. (4b). The reasoning for the opposite
limit of ω � T is essentially the same, except for now the
dispersions in A2

1 give a factor of T
2, another T 3 comes from

the energy integrations, and the factor of 1 − e−ω/T in Eq. (24)
is reduced to ω/T . Cutting off the Q integration at Q = T/vD,
we obtain Reσ1(ω) ∝ (ω/T ) × T 5 × ln T/ω3 = T 4 ln T/ω2,
which is the ω � T limit of Eq. (4b). Details of calculating
the O(q2) term can be found in Appendix C 3, and the final
result is given by Eqs. (4a)–(4c).

IV. PHYSICAL INTERPRETATION

To clarify the physical meaning of the results obtained in
the previous sections, we start from the relation between the
real part of the conductivity and the viscosities of the electron
liquid [31]. This relation can be inferred from the equation of
motion for the current density and has the form

Reσ (q, ω) = e2
nq2

mω2

[
νL +

(
2 − 2

D

)
νT

]
, (35)

where νL = ζ/nm and νT = η/nm are the bulk and shear
viscosities, respectively (also known as longitudinal and trans-
verse kinematic viscosities, respectively), of the electron gas
with number density n, evaluated in the collisionless regime
(not to be confused with the hydrodynamic viscosities, which
are nonperturbative in the Coulomb interaction).

Interestingly, Eq. (35) can be viewed as an extension of the
Einstein relation for the conductivity. The standard Einstein
relation (for electrons in the presence of impurities) reads

σ = e2N (0)D, (36)

where N (0) = limq→0 χc(q, 0) is the density of states at the
Fermi level, χc(q, ω) is the charge susceptibility, and D
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is the diffusion coefficient. Equation (35) can be obtained
by replacing N (0) = limq→0 χc(q, 0) with limq→0 χc(q, ω) =
−nq2/mω2 at finite frequency (notice, however, the change of
sign in front of χc) and replacing D with νL + (2 − 2/D)νT ,
which is the diffusion coefficient of the momentum density.

The key question now is: What is the low-frequency behav-
ior of the transport coefficients νL and νT ? The answer is that
νT tends to a finite value at ω → 0 (plus corrections of order
ω2), while νL vanishes at ω → 0 as ω2. Thus we see that the
terms proportional to ω−2 arise from the shear viscosity, while
the ω-independent terms arise from the ω2 contributions to the
shear viscosity as well as the bulk viscosity. (We stress that
this is valid in dimensionsD > 1, where a transverse viscosity
can be defined.)

What is the physical reason for the difference? The two
viscosity coefficients can be expressed in terms of the stress-
stress response function as follows:

νL(ω) = − 1

D2

Im〈〈P̂μμ; P̂νν〉〉ω
nmω

(37)

and

νT (ω) = − Im〈〈P̂xy; P̂xy〉〉ω
nmω

, (38)

where

〈〈Â; B̂〉〉ω ≡ −i
∫ ∞

0
dt〈[Â(t ), B̂(0)]〉ei(ω+i0+ )t , (39)

[·, ·] is the commutator of two operators, and 〈·〉 denotes the
statistical average over the equilibrium density matrix. The
time evolution of Â is generated by the noninteracting Hamil-
tonian. The spectral density of an observable Ô is obtained
from Eq. (39) by calculating Im〈〈Ô; Ô〉〉ω. Furthermore, the
stress-tensor operator is given by [32]

P̂μν = T̂μν + Ŵμν, (40)

where

T̂μν =
∑

k

kμkν

m
â†kâk, (41)

Ŵμν = 1

2

∑
k,Q

(
QμQν

Q

dV (0)
Q

dQ
+ δμνV

(0)
Q

)
â†kn̂

†
Qâk−Q, (42)

V (0)
Q is the bare Coulomb potential, and n̂Q = ∑

p â
†
p−Qâ

†
p is

the number density operator.
Let us consider the bulk viscosity first. The trace of the

stress tensor is easily seen to be given by P̂μμ = T̂ + Ĥ , where
T̂ is the kinetic energy operator and Ĥ is the total Hamiltonian
of the electron system, i.e., the sum of the kinetic and inter-
action parts. Ĥ is a constant of the motion and thus does not
contribute to the response function.

Then we are left with

νL(ω) = − 1

D2

Im〈〈T̂ ; T̂ 〉〉ω
nmω

, (43)

which can be rewritten in terms of the time derivatives of T̂ as

νL(ω) = − 1

D2

Im〈〈 ˙̂T ; ˙̂T 〉〉ω
nmω3

, (44)

where we used that

iω〈〈Â; B̂〉〉ω = i〈[Â, B̂]〉 − 〈〈 ˙̂A; B̂〉〉ω
= i〈[Â, B̂]〉 + 〈〈Â; ˙̂B〉〉ω. (45)

The second line of this equation follows from time-
translational invariance of the response function. Equa-
tion (44) is obtained by noting that the commutator of two
Hermitian operators is anti-Hermitian, and therefore all its
eigenvalues are imaginary. Thus the term i〈[ ˙̂T, T̂ ]〉, obtained
by applying Eq. (45) to 〈〈T̂ ; T̂ 〉〉ω twice, is purely real and can
only contribute to the real part of the response function.

Due to the Coulomb interaction, the kinetic energy opera-
tor depends on time, and its time derivative is given by

˙̂T = −i
∑

Q

V (0)
Q (Q · ĵ−Q)n̂Q. (46)

(Notice that ˙̂T is proportional to the scalar product of the
Coulomb force density F̂Q = −iQV (0)

Q n̂Q and the longitudinal

current density ĵ−Q.)
In the limit of a large number of fermion flavors [33]

the spectral function Im〈〈 ˙̂T ; ˙̂T 〉〉ω is the convolution of
two electron-hole spectral functions, associated with den-
sity fluctuations and longitudinal current density fluctuations,
respectively. The spectral function of density fluctuations van-
ishes as ω at ω → 0, while that of longitudinal current density
fluctuations vanishes as ω3, as one can see from the well-
known relation Im〈〈Q · ĵQ;Q · ĵ−Q〉〉ω = ω2Imχc(Q, ω) [17].
Therefore at zero temperature we have

Im〈〈 ˙̂T ; ˙̂T 〉〉ω ∼
∫ ω

0
d��3(ω − �) ∝ ω5. (47)

Substituting the last result into Eq. (44) gives νL ∝ ω2 as an-
nounced. The essential reason for this result is the scarcity of
longitudinal electron-hole pair excitations at low frequency:
Their spectral density vanishes as ω3.

Let us now consider the shear viscosity, Eq. (38). Without
loss of generality we can orient the x axis along Q and the
y axis perpendicular to Q. It can be easily shown that the
averages 〈〈Ŵxy;Ŵxy〉〉ω and 〈〈T̂xy;Ŵxy〉〉ω involve only longi-
tudinal current density fluctuations and, therefore, vanish as
ω2 as before. However, the average 〈〈T̂xy; T̂xy〉〉ω now involves
transverse current density fluctuations. As before, we rewrite
νT (ω) as

νT (ω) = − 1

D2

Im〈〈 ˙̂Txy; ˙̂Txy〉〉ω
nmω3

(48)

and note that
˙̂Txy = −i

∑
Q

V (0)
Q (Qx ĵTy,−Qn̂Q + Qy ĵT x,−Qn̂Q) + · · · , (49)

where ĵTy,−Q is the y component of the transverse current
density (i.e., parallel to y and perpendicular to Q) and · · ·
stands for subleading terms that contain the longitudinal com-
ponent of the current density operator. Now we see that the
spectral function Im〈〈 ˙̂Txy; ˙̂Txy〉〉ω is the convolution of two
electron-hole spectral functions, one associated with density
fluctuations and the other one associated with transverse cur-
rent density fluctuations. The spectral density of transverse
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QQQ-Q

Transverse

Transverse

Longitudinal
Q-Q

FIG. 1. The horizontal arrows represent the momenta of low-
energy electron-hole pair excitations, Q and −Q. Such excitations
contribute to plasmon damping. Due to kinematic constraints, the
initial momenta of the excited electrons are confined to the crescent-
shaped regions (external to the dashed lines), within the Fermi
surface (solid circle). The short red segments denote the widths of
allowed regions of the initial momenta for excitations of a given
(small) energy. Notice that these excitations are essentially trans-
verse, meaning that the average momentum of the initial and final
state of the excited electron (black arrow) is almost orthogonal to the
momentum of the excitation, Q. The size of the integration region
(red segments) vanishes linearly as the energy of the excitation tends
to zero, consistent with the fact that the spectral function of density
fluctuations vanishes linearly at low frequency. By contrast, longitu-
dinal current excitations with the same wave vector Q (indicated by
the red horizontal arrows) have much higher energies: Their contri-
bution to the low-frequency spectrum vanishes as the third power of
the excitation energy.

current density fluctuations vanishes as ω as opposed to ω3.
Therefore we now have

Im〈〈 ˙̂Txy; ˙̂Txy〉〉ω ∼
∫ ω

0
d��(ω − �) ∝ ω3. (50)

Substituting the last result into Eq. (48) gives a finite value of
νT in the ω → 0 limit.

The reason for the different behavior of the longitudi-
nal and transverse current spectral functions is illustrated in
Fig. 1.

V. PLASMON LINEWIDTH

A. Definitions

We now derive the expressions for the plasmon linewidth,
using the results for Reσ (q, ω) obtained in previous sections.
The linewidth, �(q), is calculated at the plasmon pole and is
given by

�(q) = πqReσ (q, ω)|ω=ωp(q) (51)

in 2D and

�(q) = 2π Reσ (q, ω)|ω=ωp(q) (52)

in 3D. It is also customary to define a dimensionless inverse
quality factor (IQF)

γ (q) = 2�(q)

ωp(q)
. (53)

B. Electron gas with parabolic dispersion

1. 2D electron gas

In a 2DEG, the plasmon frequency is ωp(q) = vF
√

κq/2
with κ = 2me2. Substituting the leading term in the optical
conductivity [Eq. (5)] into Eq. (51), we obtain the plasmon
linewidth as

�(q) = e2

12π
ln

kF
κ

q2κ

k2F

(
1 + 4π2 T 2

ω2
p(q)

)
. (54)

Defining Tp ≡ vFκ ∼ ωp(κ ), we see that �(q) behaves as qT 2

for q � κ (T/Tp)2 and as q2 for q 
 κ (T/Tp)2. The corre-
sponding IQF can be written in a dimensionless form as

γ (q) = 2
√
2

3π
α3
e ln

1

αe
q̄3/2

(
1 + 8π2T̄ 2

q̄

)
, (55)

where αe = e2/vF is the dimensionless coupling constant of
the Coulomb interaction, q̄ = q/κ , and T̄ = T/Tp.

2. 3D electron gas

Neglecting the q-dependent part of the plasmon disper-
sion, the plasmon frequency of a 3D electron gas is given
by ωp =

√
4πne2/m, where n = k3F/π

2 is the number density.
Substituting Reσ from Eq. (32) into Eq. (52), we obtain

�(q) = πe2κ

360

q2κ2

m2ω2
p

(
1 + 4π2 T

2

ω2
p

)
, (56)

where κ2 = 8πe2NF with NF = mkF/2π2, and

γ (q) =
√
3

15
α2
e q̄

2(1 + 12π2T̄ 2), (57)

where the dimensionless parameters are the same as those
defined after Eq. (55). The asymptotic forms of �(q) and γ (q)
are the same as for a 2DEG.

C. Doped monolayer graphene

So far, we discussed graphene in the isotropic approxima-
tion, which neglects trigonal warping of the Fermi surfaces
around the K and K ′ points. The corresponding optical con-
ductivity is given by the sum of Reσ1 and Reσ2 from Eqs. (4b)
and (4c), respectively. Trigonal warping breaks the degener-
acy of the K and K ′ valleys, and intervalley scattering is now
allowed to contribute to the conductivity, even if there is no
swapping of electrons between the valleys. The corresponding
contribution to the conductivity was found in Ref. [9]:

Reσ3(ω) = 29e2

48π2

e2

vD
ln

kF
κ
(kFa)

2

(
1 + 4π2 T

2

ω2

)
, (58)

where a is the distance between two nearest carbon atoms.
This contribution is of a regular FL type [20], i.e., it is finite
at q = 0 and, in contrast to Reσ1, is not suppressed due to
partial Galilean invariance. However, being a lattice effect, it
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becomes significant only at sufficiently high filling, when the
product kFa is not too small.

Accordingly, the plasmon linewidth is written as the sum
of three parts:

�(q) = �1(q) + �2(q) + �3(q), (59a)

�1(q) = πe2

480

q2κ

k2F

(
1 + 4π2 T 2

ω2
p(q)

)

×
(
3 + 8π2 T 2

ω2
p(q)

)
ln

vDκ

max{ωp(q),T } , (59b)

�2(q) = e2

12π

q2κ

k2F
ln

kF
κ

(
1 + 4π2 T 2

ω2
p(q)

)
, (59c)

�3(q) = 29e2

48π

e2q

vD
ln

kF
κ
(kFa)

2

(
1 + 4π2 T 2

ω2
p(q)

)
, (59d)

where ωp(q) = vD
√

κq/2 is the plasmon frequency and κ =
4e2kF/vD. For q � κ

√
T/Tp, the linewidth is determined pri-

marily by �1(q) in Eq. (59b), which is independent of q
and scales as T 4 ln T in this limit. In the opposite limit of
q 
 κ

√
T/Tp, the contributions from �1 and �2 are of the

same order of magnitude (although�2 is numerically smaller),
and both scale as q2. On the other hand, the contribution from
�3 is much smaller than that from �1 for any reasonable value
of kFa.

In terms of the dimensionless variables introduced after
Eq. (55), the IQF for graphene is written as

γ (q) = γ1(q) + γ2(q) + γ3(q), (60a)

γ1(q) = 2�1(q)

ωp(q)
=

√
2π

15
q̄3/2α3

g

(
1 + 8π2T̄ 2

q̄

)

×
(
3 + 16π2T̄ 2

q̄

)
ln

1

max{q̄,
√
T̄ }

, (60b)

γ2(q) = 2�2(q)

ωp(q)
= 4

√
2

3π
q̄3/2α3

g ln
1

αg

(
1 + 8π2T̄ 2

q̄

)
, (60c)

γ3(q) = 2�3(q)

ωp(q)
= 29

√
2

24π
q̄1/2α2

g ln
1

αg
(kFa)

2

(
1 + 8π2T̄ 2

q̄

)
,

(60d)

where αg = e2/vD.

D. Discussion

The IQFs for 2D and 3D electrons gases are plotted as
a function of q̄ = q/κ in Fig. 2. All other parameters being
equal, damping is stronger in 2D (solid curve) than in 3D
(dashed line) over a wide range of q. This is primarily due to
the fact that finite temperature has little effect on damping in
3D. Indeed, the temperature dependence of γ (q) in Eq. (57)
is weak as long as T̄ � 1 (or T � ωp), and γ (q) scales as
q̄2 for any q̄. In contrast, γ (q) in 2D [Eq. (55)] decreases
with q̄ more slowly than in 3D, i.e., as q̄1/2T̄ 2 for q̄ � T̄ 2

(or q � κ
√
T/Tp). As q̄ approaches 1 from below, damping

in 2D and 3D becomes comparable.

( )

/

2D

3D

FIG. 2. Inverse qualify factor, γ (q) [Eq. (53)], for 2D (solid
curve) and 3D (dashed curve) electron gases as a function of q/κ ,
where κ is the inverse screening radius. The electron temperature
is T = 0.02 vFκ , where vF is the Fermi velocity, and the coupling
constant of the Coulomb interaction is α = e2/vF = 0.7.

The partial components of γ (q) as well as total γ (q) in
graphene are plotted in Fig. 3. First, we note that γ1(q) dom-
inates over the other two components for the entire range
of q. Next, we see that the effect of finite temperature on
damping in graphene is even stronger than for a 2DEG: For
q̄ � 1, γ (q) ≈ γ1(q) scales as T̄ 4/

√
q̄, i.e., the (relative) plas-

mon linewidth decreases with increasing q̄. In this regime,
the usual numerical prefactor of 2π , amplifying the effect of
finite temperature on collective modes, plays a very important
role, as it leads to an enhancement of the linewidth by a
factor of 2(2π )4 ≈ 3120. An apparent divergence of γ (q) at
q → 0 signals a breakdown of the collisionless approximation
and a crossover to the hydrodynamic regime. As q increases,
γ (q) goes through a shallow minimum at q̄ = (4π2(

√
13 −

2)/9)T̄ 2 ≈ 7.0T̄ 2 and then increases as q̄3/2. Comparing the
vertical scales of Figs. 2 and 3, we see that, all other parame-
ters being equal, damping is, in general, stronger in graphene
than in an electron gas with parabolic dispersion, even though
the IQF for the latter is higher order in the coupling constant
(third vs second). This is, again, due to a higher sensitivity of

( )

/

( )

1( )

2( )

3( )

FIG. 3. Inverse qualify factor, γ (q) [Eq. (53)], for doped mono-
layer graphene as a function of q/κ , where κ is the inverse screening
radius. γ1(q) (dashed curve), γ2 (dotted curve), and γ3 (dash-dotted
curve) are the partial components of total γ (q) (solid curve), as de-
fined by Eqs. (60a)–(60d). The electron temperature T = 0.02 vDκ ,
where vD is the Dirac velocity, the filling factor kFa = 0.01, and
the coupling constant of the Coulomb interaction αg = e2/vD = 0.7,
which corresponds to the case of monolayer graphene mounted on a
semi-infinite boron nitride substrate.
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the linewidth of graphene to finite T . For q̄ � T̄ 2, the ratio
γ (q)|2DEG/γ (q)|graphene ∼ q̄/T̄ 2 � 1.

Damping of plasmons in graphene at finite T was dis-
cussed by Lucas and Das Sarma [14], who conjectured that
�(q) ∝ qT 2 in the collisionless regime. This result is con-
sistent with Eq. (54) for a 2DEG with parabolic dispersion
and with the subleading, �2(q) contribution to the linewidth
in graphene [Eq. (59c)]. However, the leading contribution
to the linewidth in graphene is given by �1(q) [Eq. (59b)],
which is independent of q and scales as T 4 ln T for small
q � κ (T/Tp)2. The discrepancy between our result and that of
Ref. [14] is due to the assumption of Ref. [14] that the relevant
relaxation rate in graphene scales in a canonical FL way, i.e.,
as T 2. However, whereas the single-particle relaxation rate in
graphene indeed scales as T 2 (modulo a factor of ln T ), the
current relaxation rate, defined as Reσ = ne2/m∗ω2τj(ω,T )
with n being the carrier number density, scales as 1/τj ∝
max{ω4 ln |ω|,T 4 ln T }; see, e.g., Ref. [27] and references
therein. This property is not unique to graphene, but
common for any 2D or 3D FL with an isotropic but non-
parabolic spectrum (except that there is no ln T factor in 3D)
[9,30].

VI. CONCLUSIONS

Prompted by some discrepancies between results of differ-
ent theoretical papers, we revisited the optical conductivity,
Reσ (q, ω), of an electron system due to electron-electron in-
teraction and a related issue of plasmon damping, focusing on
the collisionless (as opposed to hydrodynamic) regime. Set-
ting aside more sophisticated methods, we first showed that a
semiclassical Boltzmann equation for a two-dimensional elec-
tron gas (2DEG) with parabolic dispersion yields the optical
conductivity which behaves as q2T 2/ω4 for vFq � ω � T .
This behavior is consistent with the results of Refs. [8,9] but
not with those of Ref. [10]. Next, we rederived the full expres-
sion for Reσ (q, ω) of a 2DEG [Eq. (5)], using the original
and elegant method of Ref. [10], and identified the reason
for the discrepancy between the result of Ref. [10] and the
results of Refs. [8,9]. We showed that the results of Ref. [10]
and Refs. [8,9] correspond to physically distinct contributions,
arising from the bulk and shear viscosities of an electron
liquid. While the bulk viscosity vanishes at ω → 0, the shear
one approaches a finite value. This explains why at suffi-
ciently low frequency, the conductivity found in Refs. [8,9]
is larger than the one found in Ref. [10]. For completeness,
we also calculated Reσ (q, ω) of a 3D electron gas and doped
graphene, using the same method. The optical conductivity
of a 3D electron gas [Eq. (32)] is found to be similar to the
optical conductivity in the 2D case: In both cases, Reσ (q, ω)
vanishes at q → 0 due to Galilean invariance. However, the
case of doped graphene is different due to broken Galilean
invariance. As a result, Reσ (q, ω) is finite at q = 0 and scales
as ω2 ln |ω| at T = 0. This result was derived in our previous
work [9], using the equations-of-motion method. Here, we
also rederived the O(q2) term in the conductivity and found
that it is exactly the same as in a 2D electron gas (up to a
redefinition of an effective electron mass), in agreement with
a conjecture of Refs. [8,9].

Using our results for the optical conductivity, we ana-
lyzed the behavior of the plasmon linewidth, �(q), in various
systems. Given that the electron temperature in an experi-
ment may be significantly higher than the lattice one, we
paid special attention to the T dependence of �(q). We
found that, all parameters being equal, the effect of finite
T on plasmon damping is the strongest in graphene: �(q)
is independent of q and scales as T 4 ln T for q � T 2/v2Dκ ,
where vD is the Dirac velocity and κ is the inverse screening
length. This scaling reflects the fact that the current relax-
ation rate in a non-Galilean-invariant but isotropic system
behaves as max{ω4,T 4} (with an extra ln max{|ω|,T } fac-
tor in 2D) [9,30]. We remind the reader that our results are
valid in the collisionless regime, i.e., for ωτj(ω = 0,T ) 

1. For example, 1/τj(ω = 0,T ) ∼ T 4 ln(EF/T )/E3

F for
graphene.

To compare with experiment, we focus on the near-
field-spectroscopy study described in Ref. [2], in which the
dispersion and linewidth of plasmons were measured in
monolayer graphene encapsulated by hexagonal boron nitride
(hBN). A subsequent theoretical calculation [33] showed that
the primary damping mechanism is scattering by graphene
acoustic phonons. Using the effective dielectric constant for
graphene between two semi-infinite slabs of hBN, ε∗ ≈ 5.0
[33], we obtain αg = 0.43. Correspondingly, ωp = 66meV
at n = 7.2 × 1012 cm−2 and q = 0.25 × 106 cm−1, and ac-
cording to Fig. 5 of Ref. [33], the inverse plasmon lifetime
due to electron-phonon interaction is 1/τeph ≈ 3.0 × 1012 s−1

at room temperature. Using the same parameters, we obtain
from Eqs. (59a)–(59d) for the inverse plasmon lifetime due
to electron-electron interaction 1/τee = 2� ≈ 1.5 × 1012 s−1,
which is smaller than 1/τeph only by a factor of 2. (We remind
the reader that the dominant contribution to � is given by
�1.) Furthermore, 1/τee increases rapidly with electron tem-
perature; for example, 1/τee ≈ 4/τeph already at T = 600K,
which is still well within the collisionless regime (ωpτee ≈
13). We note that graphene encapsulated by hBN has rela-
tively weak electron-electron interaction, due to a larger value
of ε∗. Therefore one would expect the electron-electron damp-
ing mechanism to be the dominant one in graphene deposited
on substrates with smaller ε∗, e.g., on SiO2 with ε∗ ≈ 2.45,
and, even more so, in freestanding graphene. Finally, we
note that recent experiments have demonstrated that plasmons
in systems with strong spin-orbit coupling can be observed
directly by Raman spectroscopy [34]. Such a situation can
be achieved in graphene on transition-metal dichalcogenide
substrates. We hope that the results of our paper will be useful
for the interpretation of the existing and future experiments.
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APPENDIX A: PLASMON DAMPING AT FINITE
TEMPERATURE WITHIN THE RANDOM-PHASE

APPROXIMATION

Within the RPA, the plasmon mode is the solution of the
following equation:

1 −V (0)
q �(q, ω) = 0, (A1)

where V (0)
q is the bare Coulomb potential and

�(q, ω) = 2
∫

dDk

(2π )D
nF(εk ) − nF(εk+q)

ω − εk+q + εk + i0+ (A2)

is the polarization bubble (Lindhard function). The plasmon
linewidth is determined by the imaginary part of �(q, ω). For
small q,

Im�(q, ω) = 2πω

∫
dDk

(2π )D
n′
F(εk )δ(ω − q · k/m). (A3)

In two dimensions (D = 2) and for a parabolic dispersion with
mass m,

Im�(q, ω) = ω

∫ ∞

0

dkk

2π
n′
F(εk )

∫ 2π

0
dφδ(ω − qk cosφ/m)

= mω

πq

∫ ∞

m|ω|/q
dk k

n′
F(εk )√

k2 − (
mω
q

)2 . (A4)

Changing the integration variable from k to ε = k2/2m, ex-
pressing ε in units of EF as ε = xEF, and defining ν ≡ ω/qvF,

we obtain

−Im�(q, ω) = mν

π

EF

T

∫ ∞

ν2

dx√
x − ν2

1

4 cosh2
[
(x − 1) EF

2T

] .

(A5)

We are interested in the plasmon range, when ν 
 1, such that
x � ν 
 1. In the degenerate case, we also have EF 
 T ; thus
the argument of cosh is always large, and cosh z ≈ ez/2. The
integral can be then simplified as

−Im�(q, ω) ≈ mν

π

EF

T
eEF/T

∫ ∞

ν2

dxe−xEF/T

√
x − ν2

= mν

π

√
EF

T
e− EF

T (ν2−1)
∫ ∞

0

dye−y

√
y

= mν√
π

√
EF

T
e− EF

T (ν2−1)

= m
ω

vFq

√
EF

πT
e
− EF

T ( ω2

v2Fq
2 −1)

. (A6)

(This result was presented in Ref. [10] without a factor of
eEF/T .)

The plasmon linewidth is given by

�(q) = −ωp(q)Vq
2

�(q, ωp(q)), (A7)

where ωp(q) = vF
√

κq/2 is the plasmon frequency, κ = 2me2

is the inverse Thomas-Fermi screening radius, and V (0)
q =

2πe2/q. According to Eq. (53), the inverse quality factor is
given by

γ (q) = 2�(q)

ωp(q)
=

√
πEF

2T

(
κ

q

)3/2

e− EF
T ( κ

2q −1)
, (A8)

which is exponentially small for q � κ and T � EF.

APPENDIX B: DERIVATION OF EQ. (18)

Substituting Wk,p→k′p′ = 8πV 2(|k − k′|) into Eq. (16), eliminating one of the four momenta in favor of the momentum
transfer Q = k′ − k = p − p′, and introducing the energy transfer via � = εk′ − εk = εp − εp′ , we obtain

Reσ (q, ω) = 8πe2q2N2
F

8Tω4

∫
d2Q

(2π )2

∫
d�

∫
dεk

∫
dεp

∫
dθpQ

2π

∫
dθkQ

2π
V 2

Qnknp(1 − nk+Q)(1 − np−Q)

× δ(� + εk − εk+Q)δ(� − εp + εp−Q)[vk(vk · q̂) + vp(vp · q̂) − vk+Q(vk+Q · q̂) − vp−Q(vp−Q · q̂)]2, (B1)

where NF = m/2π is the density of states and θab is the angle between the vectors a and b. Expanding the factor in the square
brackets in Eq. (B1) in Q/kF to order Q2 and projecting the electron momenta onto the Fermi surface, we obtain

[· · ·]2 = k2FQ
2

m4
(Q̂ cos θkq + k̂ cos θqQ − Q̂ cos θpq − p̂ cos θqQ)

2. (B2)

Writing θqp = θqQ + θQp, θqk = θqQ + θQk and integrating over θqQ, we get∫ 2π

0

dθqQ

2π
[· · ·]2 = 2

k2FQ
2

m4
[3 − cos(θkQ + θpQ)] sin

2 θkQ − θpQ

2
. (B3)

To integrate over θkQ and θpQ, we use the constraints imposed by energy conservation via the delta functions in Eq. (B1).
With � = 0 and O(Q2) terms discarded, these constraints are θkQ = ±π/2 and θpQ = ±π/2. The last term in Eq. (B3) ensures
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that only the combinations of θkQ = −θpQ = ±π/2 give nonzero contributions. Summing up these contributions, we obtain∫ 2π

0
dθkQ

∫ 2π

0
dθpQ[· · ·]2 = 8k2FQ

2

m4
. (B4)

Next, the energy integration gives∫
d�

∫
dεk

∫
dεp[1 − nF(εk + �)][1 − nF(εp − �)]nF(εp)nF(εk ) = 2π2T 3

3
. (B5)

Substituting Eqs. (B4) and (B5) back into Eq. (B1), and calculating the Q integral to leading logarithmic accuracy with an upper
limit cutoff at Q ∼ kF, we arrive at the final result,

Reσ (q, ω) = e2κ2

6m2

q2T 2

ω4

∫ kF

0

dQQ

(Q + κ )2
≈ e2κ2

12m2

q2T 2

ω4
ln

kF
κ

, (B6)

which is Eq. (18) of the main text.

APPENDIX C: OPTICAL CONDUCTIVITY VIA THE MRG METHOD

1. 2D electron gas

In this Appendix, we derive Eq. (31) of the main text. We start with a 2D version of Eq. (24) with A given by the sum of the
first term in Eq. (29) and the entire equation (30):

A = VQ

m

{
q2 + 2

(q · Q)[q · (p − k − Q)]

mω

}
, (C1)

where VQ = 2πe2/(q + κ ) is the screened Coulomb potential. Replacing the integration over p (k) by that over εp (εk) and
angles θpQ (θkQ), and confining the energy integrations to the narrow vicinity of the Fermi energy, we obtain

Reσ (q, ω) = e2(1 − e−ω/T )

(2π )3ω3q2
N2
F

∫
d2Q

∫ ∞

−∞
dεp

∫ ∞

−∞
dεk

∫ ∞

−∞
d�

∫ 2π

0
dθpQ

∫ 2π

0
dθkQA2(θkQ, θpQ)nF(εp)nF(εk )

× [1 − nF(εk − �)][1 − nF(εp + � + ω)]δ(vp · Q − Q2/2m + (� + ω))δ(vk · Q + Q2/2m + �), (C2)

where NF = m/2π is the density of states per spin orientation. Writing θqp = θqQ + θQp and θqk = θqQ + θQk, and folding the
angular integrations down to the (0, π ) intervals, we get

Reσ (q, ω) = e2(1 − e−ω/T )

(2π )3ω3q2
N2
F

∫ ∞

−∞
dεk

∫ ∞

−∞
dεp

∫ ∞

−∞
d�

∫
d2Q

∫ π

0
dθpQ

∫ π

0
dθkQ

× [A2(θkQ, θpQ) + A2(−θkQ,−θpQ) + A2(−θkQ, θpQ) + A2(θkQ,−θpQ)]nF(εp)nF(εk )(1 − nF(εk − �))

× (1 − nF(εp + � + ω))δ(vp · Q + Q2/2m − (� + ω))δ(vk · Q − Q2/2m − �), (C3)

where

A(θkQ, θp,Q) = q2VQ

m

{
1 − 2

Q cos θqQ

mω
[kF cos(θqQ + θQp) − kF cos(θqQ + θQk ) + Q cos θqQ]

}
(C4)

is the projection of A onto the Fermi surface.
To perform the angular integrations in Eq. (C3), we use the constraints imposed by the delta functions in Eq. (C4), i.e.,

θkQ = cos−1

[
�

vFQ
+ Q

2kF

]
,

θpQ = cos−1

[
(� + ω)

vFQ
− Q

2kF

]
. (C5)

Simple trigonometry yields

cos(θqQ ± θQp) = cos θqQ

(
� + ω

vFQ
− Q

2kF

)
∓ sin θqQ

√
1 −

(
(� + ω)

vFQ
− Q

2kF

)2

,

cos(θqQ ± θQk ) = cos θqQ

(
�

vkQ
+ Q

2kF

)
∓ sin θqQ

√
1 −

(
�

vFQ
+ Q

2kF

)2

. (C6)
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Substituting Eq. (C6) back into Eq. (C4), we get

A(θkQ, θpQ) = A(−θkQ,−θpQ) = q2VQ

m

×
{
1 − 2 cos2 θqQ − 2

kFQ

mω
cos θqQ sin θqQ

[√
1 −

(
� + ω

vFQ
− Q

2kF

)2

−
√
1 −

(
�

vFQ
+ Q

2kF

)2
]}

, (C7a)

A(±θkQ,∓θpQ) = q2VQ

m

{
1 − 2 cos2 θqQ ∓ 2

kFQ

mω
cos θqQ sin θqQ

[√
1 −

(
� + ω

vFQ
− Q

2kF

)2

+
√
1 −

(
�

vFQ
+ Q

2kF

)2
]}

.

(C7b)

We anticipate (and will prove later) that typical values of the energy and momentum transfers are such that � ∼ ω � vFQ
and Q � kF. If so, then the factor in square brackets in Eq. (C7a) is small, as√

1 −
(

� + ω

vFQ
− Q

2kF

)2

−
√
1 −

(
�

vFQ
+ Q

2kF

)2

≈ −1

2

ω + 2�

vFQ

(
ω

vFQ
− Q

kF

)
, (C8)

and can be neglected. Under the same conditions, the factor in square brackets in Eq. (C7b) is almost equal to 2. With these
simplifications, we have

A(θkQ, θpQ) = A′(−θkQ,−θpQ) ≈ q2VQ

m
(1 − 2 cos2 θqQ),

A(±θkQ,∓θpQ) ≈ q2VQ

m

(
1 − 2 cos2 θqQ ∓ 4

vFQ

ω
cos θqQ sin θqQ

)
. (C9)

The square brackets in Eq. (C3) can now be written as

A2(θkQ, θpQ) + A2(−θkQ,−θpQ) + A2(−θkQ, θpQ) + A2(θkQ,−θpQ)

= q4V 2
Q

m2

[
4
(
1 − 2 cos2 θqQ

)2 + 32
(vFQ)2

ω2
cos2 θqQ sin2 θqQ

]
. (C10)

On calculating the angular and energy integrals as (2π )−1
∫ 2π
0 dθqQ(1 − 2 cos2 θqQ)2 = 1/2 and (2π )−1

∫ 2π
0 dθqQ cos2 θqQ

sin2 θqQ = 1/8, and as∫ ∞

−∞
d�

∫ ∞

−∞
dεp

∫ ∞

−∞
dεknF(εp)nF(εk )(1 − nF(εk − �))(1 − nF(εp + � + ω)) = ω(ω2 + 4π2T 2)

6(1 − e−ω/T )
, (C11)

respectively, Reσ is reduced to

Reσ (q, ω) = e2

12π2

q2N2
F

k2F

ω2 + 4π2T 2

ω2

∫
dQ

Q
V 2

Q

[
1 + 2

(
vFQ

ω

)2
]
. (C12)

With VQ given by Eq. (3), the integrals over Q in the last equation are calculated to leading logarithm accuracy as∫
max{|ω|,T }/vF

dQ

Q

1

(Q + κ )2
≈ 1

κ2
ln

vFκ

max{|ω|,T } , (C13a)

∫ kF

0

dQQ

(Q + κ )2
≈ ln

kF
κ

. (C13b)

Substituting the results of the Q integration back into Eq. (C12) gives Eq. (31) of the main text.

2. 3D electron gas

The starting point for the 3D case is an expression which differs from Eq. (C2) only in the angular integrals:

Reσ (q, ω) = e2(1 − e−ω/T )

4(2π )4ω3q2
N2
F

∫ ∞

0
dQQ2

∫ ∞

−∞
dεp

∫ ∞

−∞
dεk

∫ ∞

−∞
d�

∫
dOQq

∫
dOpQ

∫
dOkQA2

× nF(εp)nF(εk )[1 − nF(εk − �)][1 − nF(εp + � + ω)]δ(vp · Q)δ(vk · Q), (C14)

where dOnn′ = dxnn′dφn, xnn′ = cos θnn′ , θ ′
nn is the polar angle of vector n measured with respect to n′, and φn is the azimuthal

angle of n. Please note that, based on the result for the 2D case, we already discarded the subleading terms in the delta functions.
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Anticipating that, as in 2D, Eq. (30) gives the leading contribution to the conductivity, we replace A by A2 in Eq. (C14). In a
spherical system, A can be written as

A = A2 = 2VQ
q2QxQ

m2ω
[kF(xpq − xkq) − QxQq], (C15)

where VQ = 4πe2/(Q2 + κ2) is the screened Coulomb potential in 3D, xpq = xpQxQq +
√
1 − x2pQ

√
1 − x2Qq cos(ϕp − φQ), and

similarly for xkq. Next, we take into account the constraints imposed by the delta functions in Eq. (C14), i.e., xpQ = 0 and
xkQ = 0, and also, using the condition Q � kF, neglect the QxQq term in Eq. (C15). Then Eq. (C15) is simplified to

A = 2VQ
q2

m

vFQ

ω
xQq

√
1 − x2Qq[cos(φp − φQ) − cos(φk − φQ)]. (C16)

Integrating over the angles, we obtain∫
dOQq

∫
dOpQ

∫
d OkQA2δ(vp · Q)δ(vk · Q) = 96π3

15

q4V 2
Q

m2ω2
. (C17)

Using Eq. (C11) for the energy integration, we arrive at

Rσ (q, ω) = e2q2

60πv2
Fm

2ω2
(4πe2)2N2

F
ω2 + 4π2T 2

ω2

∫ ∞

0

dQQ2

(Q2 + κ2)2

= e2κ

720

q2

k2F

v2
Fκ

2

ω2

ω2 + 4π2T 2

ω2
, (C18)

which is Eq. (32) of the main text.

3. Doped monolayer graphene

Expanding the graphene dispersion to O(q2) as

εp+q = vD|p + q| − EF = εp + vp · q + q2vD
2p

sin2 θpq (C19)

with vp = vDp/p, we obtain

1

ω − εp+q + εp
= 1

ω

[
1 + vp · q

ω
+ q2vD

2p
sin2 θpq +

(q · vp

ω

)2
]
, (C20)

and similarly for other terms in Eq. (23). Substituting these expansions into Eq. (23), we obtain

A = Vk−k′

[
vp · q − vp′ · q + q2vD

2p
sin2 θpq + q2vD

2p′ sin2 θp′q + (vp · q)2 − (vp′ · q)2

ω

]

+Vp′−p

[
vk · q − vk′ · q + q2vD

2k
sin2 θkq + q2vD

2k′ sin2 θk′q + (vk · q)2 − (vk′ · q)2

ω

]
. (C21)

The momentum transfer Q is defined by p − p′ = Q, and from momentum conservation we have k′ − k = Q + q. As for the
parabolic case, the difference between Vk−k′ = VQ+q and Vp−p′ = VQ can be neglected. Next, we split A into two parts as
A = B + C, where

B = VQq · (vp + vk − vp′ − vk′ ) = vDVQq ·
(

p
p

+ k
k

− p − Q
|p − Q| − k + Q + q

|k + Q + q|
)

. (C22)

Expanding B to O(q2), we obtain

B = vDVQ

[
q · p
p

+ q · k
k

− q · (p − Q)

|p − Q| − q · (k + Q)

|k + Q| − q2 sin2 θk+Q,q

|k + Q|

]
. (C23)

Note that if we replace the magnitudes of the momenta in the O(q) part of the last equation (the first four terms), the resultant
expression would vanish. To obtain a nonzero result for the O(q) part, we need to expand the magnitudes of the momenta near
the Fermi surface. Performing such an expansion in the O(q) part and replacing |k + Q| by kF in the last, O(q2), term, we obtain

B = VQ

{
q

kF

[
(εp+Q − εp) cos θqp + (εk−Q − εk ) cos θqk + Q

kF
(εp+Q − εk−Q)

]
1

− vDq2

kF
sin2 θk−Q,q

}
. (C24)
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Finally, we recall that in our case of Q � kF the last term in [· · ·]1 can be neglected, while θk−Q,q in the last term can be replaced
with θkq. With these simplifications,

B = VQ

{
q

kF
[(εp+Q − εp) cos θqp + (εk−Q − εk ) cos θqk] − vDq2

kF
sin2 θkq

}
. (C25)

As the remaining part of Eq. (C21), C, is already proportional to q2, we can neglect q everywhere else in that part. Then,

C = VQ

{
q2vD
2

[
sin2 θpq

p
+ sin2 θp−Q,q

|p − Q| + sin2 θkq

k
+ sin2 θk+Q,q

|k + Q|

]
2

+ 1

ω
[(vp · q)2 − (vp−Q · q)2 + (vk · q)2 − (vk+Q · q)2]3

}
. (C26)

Under the condition of Q � kF, we can safely set Q = 0 in the square brackets denoted by [· · ·]2. Also, because C is already
proportional to q2, momenta p and k can be replaced by kF. Then [· · ·]2 is reduced to

[· · ·]2 = 2

kF
(sin2 θpq + sin2 θpk ). (C27)

The square brackets denoted by [· · ·]3 vanish at Q = 0. Expanding to O(Q) and again replacing p and k by kF, we obtain

[· · ·]3 = 2q2vD2Q

kF
(Fp − Fk ), (C28)

where

Fn = cos θnq(cos θQq − cos θnQ). (C29)

Substituting Eqs. (C27) and (C28) back into Eq. (C26), we obtain

C = q2vDVQ

kF

[
sin2 θpq + sin2 θkq + 2

vDQ

ω
(Fp − Fk )

]
. (C30)

Adding up Eqs. (C25) and (C30), we rewrite A as the sum of the O(q) and O(q2) parts:

A = A1 + A2, (C31a)

A1 = qVQ

kF
[−(εp − εp−Q) cos θqp + (εk − εk+Q) cos θqk], (C31b)

A2 = q2vDVQ

kF

[
sin2 θpq + 2

vDQ

ω
(Fp − Fk )

]
, (C31c)

as given by Eq. (34c) of the main text. On substituting A2 = A2
1 + A2

2 + 2A1A2 into Eq. (24) for the conductivity, we see that
A2

1 and A2
2 give the q-independent and O(q2) terms, respectively, while the angular integration nullifies the cross term, 2A1A2.

The q-independent part of Reσ is exactly the same as that calculated in Ref. [9] and thus need not be discussed here. In what
follows, we focus on the O(q2) part.

First, we assume (and will confirm later) that typical momentum transfers satisfy Q 
 |ω|/vD. Then the first term in the
square brackets in Eq. (C31c) can be neglected, and A2 is reduced to

A2 = 2q2vDQ

m∗ω
VQ(Fp − Fk ), (C32)

where m∗ = kF/vD.
Substituting Eq. (C32) into Eq. (24), we obtain

Reσ2(q, ω) = 4e2q2(1 − e−ω/T )

(2π )3ω5
N2

vN
2
F

v2
D

m∗2

∫
d2QQ2V 2

Q

∫ ∞

−∞
dεp

∫ ∞

−∞
dεk

∫ ∞

−∞
d�

∫ 2π

0
dθpQ

∫ 2π

0
dθkQnF(εp)nF(εk )

× [1 − nF(εk − �)][1 − nF(εp + � + ω)]
∫ 2π

0
dθpQ

∫ 2π

0
dθkQ

(
Fp − Fk

)2
δ(vp · Q)δ(vk · Q), (C33)

where Nv = 2 is the valley degeneracy. The two delta functions in the last equation are the energy-conservation delta functions
in Eq. (24), in which we neglected frequencies ω and � and also expanded the dispersions to order O(Q). As before, these delta
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functions impose the constraints cos θpQ = cos θkQ = 0. Imposing these constraints and integrating over θqQ, we get

Reσ2(q, ω) = 4e2q2(1 − e−ω/T )

ω5m∗2(2π )2
N2

vN
2
F

∫
dQQV 2

Q

×
∫ ∞

−∞
dεp

∫ ∞

−∞
dεk

∫ ∞

−∞
d�nF(εp)nF(εk )[1 − nF(εk − �)][1 − nF(εp + � + ω)]. (C34)

The energy integrals in Eq. (C34) give

I = (1 − e−ω/T )
∫ ∞

−∞
dεp

∫ ∞

−∞
dεk

∫ ∞

−∞
d� nF(εp)nF(εk )[1 − nF(εk − �)][1 − nF(εp + � + ω)]

= ω

6
(ω2 + 4π2T 2), (C35)

while the integral over Q is already solved in Eq. (C13b). Combining everything together, we obtain

Reσ2(q, ω) = e2

24π2

q2κ2

m∗2ω2

(
1 + 4π2 T

2

ω2

)
ln

kF
κ

, (C36)

with κ = 8πNFe2 in graphene, which is Eq. (4c) of the main text.

APPENDIX D: DERIVATION OF EQ. (25)

We consider Eq. (24) for the case of an electron gas with parabolic dispersion. In the limit of vFq/ω � 1, we can neglect q in
the Fermi functions and write A = A1 + A2, where A1 and A2 are given in Eqs. (29) and (30), respectively. On redefining the
integration variables as p → p + Q/2, k → k − Q/2 and � → � − ω, Eq. (24) becomes

Reσ (q, ω) = e2(1 − e−ω/T )

(2π )3D−1q2ω3

∫
dDQ

∫
dDp

∫
dDk

∫
d�

{
1

m
[q2VQ + (Q · q)(q · ∇VQ)] + 2VQ

m2ω
(q · Q)[q · (p − k)]

}2

× nF(εk−Q/2)nF(εp+Q/2)[1 − nF(εp−Q/2)][1 − nF(εk+Q/2)]δ(p · Q/m − � + ω)δ(� − k · Q/m). (D1)

Here, we used that εp+Q/2 − εp−Q/2 = p · Q/m and εk−Q/2 − εk+Q/2 = −k · Q/m. Next, we rewrite the q · (p − k) factor in the
curly brackets in Eq. (D1) as

q · (p − k) = (q · Q̂)[Q̂ · (p − k)] − q · {[(p − k) × Q̂] × Q̂}
→ −(q · Q̂)

mω

Q
− [(p − k) × Q̂] · (Q̂ · q), (D2)

where Q̂ = Q/Q. At the last step, we used the fact that the delta functions in the last line of Eq. (D1) allow one to replace
Q̂ · p → m(� − ω)/Q and Q̂ · p → m�/Q. Substituting Eq. (D2) back into Eq. (D1), we write the conductivity as the sum
Reσ (q, ω) = Reσa(q, ω) + Reσb(q, ω), where

Reσa(q, ω) = e2(1 − e−ω/T )

(2π )3D−1q2ω3m2

∫
dDQ

∫
dDp

∫
dDk

∫
d� [q2VQ + (Q · q)(q · ∇VQ) − 2VQ(q · Q̂)2]2

× nF(εk−Q/2)nF(εp+Q/2)[1 − nF(εp−Q/2)][1 − nF(εk+Q/2)]δ(p · Q/m − � + ω)δ(� − k · Q/m) (D3)

and

Reσb(q, ω) = 4e2(1 − e−ω/T )

(2π )3D−1q2ω5m4

∫
dDQ

∫
dDp

∫
dDk

∫
d�V 2

Q(q · Q)2{[(p − k) × Q̂] · (Q̂ × q)}2

× nF(εk−Q/2)nF(εp+Q/2)[1 − nF(εp−Q/2)][1 − nF(εk+Q/2)]δ(p · Q/m − � + ω)δ(� − k · Q/m). (D4)

We have neglected the cross-products of the two terms in Eq. (D2), since they vanish on angular integration for a homogeneous
electron gas. Indeed, the delta functions in Eq. (D1) fix the value of the cosine of the angles between p and Q and between k
and Q. For the products of the two terms in Eq. (D2), the solutions of the delta functions yield contributions which are equal in
magnitude but opposite in sign. This is because the second term in Eq. (D2) depends on the sines of the angles between p and Q
and between k and Q.

We first focus on Eq. (D3), which can be further simplified by assuming that VQ ∝ (QD−1 + κD−1)−1. Then,

Reσa(q, ω) = (1 − e−ω/T )

(2π )3D−1q2ω3m2

∫
dDQdDpdDkd�V 2

Q

[
q2 − (D − 1)QD−1

QD−1 + κD−1
(Q̂ · q)2 − 2(q · Q̂)2

]2

nF(εk−Q/2)nF(εp+Q/2)

× [1 − nF(εp−Q/2)][1 − nF(εk+Q/2)]δ(p · Q/m − � + ω)δ(� − k · Q/m). (D5)
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We note that, using the delta functions, one can rewrite

(1 − e−ω/T )nF(εk−Q/2)nF(εp+Q/2)[1 − nF(εp−Q/2)][1 − nF(εk+Q/2)]

→ [nB(�) − nB(� − ω)][nF(εk−Q/2) − nF(εk+Q/2][nF(εp+Q/2) − nF(εp−Q/2)], (D6)

where nB(ω) = (eω/T − 1)−1 is the Bose distribution function. Using this expression and introducing the density-density
response function as in Eq. (26), we rewrite Eq. (D5) as

Reσa(q, ω) = 1

2q2ω3m2

∫
dDQ

(2π )D

∫ ∞

−∞

d�

π
V 2

Q

[
q2 − (D − 1)QD−1

QD−1 + κD−1
(Q̂ · q)2 − 2(q · Q̂)2

]2

× [nB(�) − nB(� − ω)]Imχc(Q,�)Imχc(Q,� − ω)

= q2

ω3m2

∫ ∞

0

dDQ

(2π )D

∫ ∞

−∞

d�

π
V 2

QaD(Q)[nB(�) − nB(� − ω)]Imχc(Q,�)Imχc(Q,� − ω), (D7)

where

a3(Q) = 23Q4 + 18Q2κ2 + 7κ4

30(Q2 + κ2)2
κ→0−→ 23

30
,

a2(Q) = 11Q2 + 12Qκ + 4κ2

16(Q + κ )2
κ→0−→ 11

16
. (D8)

Note that we are allowed to take the limit of κ → 0 in aD(Q) in the limit of weak interaction since the integral in Eq. (D7)
remains convergent in this limit.

We now focus on Eq. (D4). Introducing the density-density response function as per Eq. (26) and the current-current response
function as

Imχαβ (Q, ν) ≡ −2π
∫

dDk

(2π )D
(nF(εk+Q/2) − nF(εk−Q/2)

kαkβ

m2
δ(k · Q/m − ν), (D9)

we obtain for Eq. (D4)

Reσb(q, ω) = 4e2

q2ω5m2

∫
dDQ

(2π )D

∫ ∞

−∞

d�

π
V 2

Q(q · Q)2εαβγ εα′β ′γ ′Q̂βQ̂β ′ (Q̂ × q)γ (Q̂ × q)γ ′

× [nB(�) − nB(� − ω)]Imχαα′ (Q,� − ω)Imχc(Q,�), (D10)

where εαβγ is the Levi-Civita tensor and a sum over repeated Greek indices is implied. Owing to the isotropy of the electron gas,
the current-current response function can be written as

χαβ (Q, ν) = QαQβ

Q2
χL(Q, ν) +

(
δαβ − QαQβ

Q2

)
χT (Q, ν), (D11)

where χL(Q, ν) and χT (Q, ν) are the longitudinal and transverse current-current response functions, respectively. The imaginary
part of the latter is given in Eq. (27), while the former is connected to χc(Q, ν) by the relation ν2χc(Q, ν) = Q2χL(Q, ν). Note
that both χL and χT depend only on the magnitude of Q, a fact that reflects the isotropy and rotational invariance of the electron
gas. It can be readily seen that only the term proportional to the Kronecker delta in Eq. (D11) contributes to Eq. (D10), which
thus becomes

Reσb(q, ω) = 4e2

q2ω5m2

∫
dDQ

(2π )D

∫ ∞

−∞

d�

π
V 2

Q(q · Q)2|Q̂ × q|2[nB(�) − nB(� − ω)]ImχT (Q,� − ω)Imχc(Q,�). (D12)

Finally, performing the angular integration, we get

Reσb(q, ω) = bD
e2q2

ω3m2

∫
dDQ

(2π )D

∫ ∞

−∞

d�

π

Q2

ω2
V 2

Q[nB(�) − nB(� − ω)]ImχT (Q,� − ω)Imχc(Q,�), (D13)

where bD = 8/15 for D = 3 and bD = 1/2 for D = 2. We note that the results given in Eqs. (D7) and (D13) agree with those of
Ref. [35] once the conductivity is converted into the dynamical exchange-correlation potential fxc as [17,35]

Im fxc(ω) = lim
q→0

m2ω3

n2e2q2
Reσ (q, ω), (D14)

where n is the carrier number density.
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