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Abstract: Let g be a symmetrisable Kac–Moody algebra and
U�g its quantised enveloping algebra. Answering a question of P.
Etingof, we prove that the quantum Weyl group operators of U�g

give rise to a canonical action of the pure braid group of g on any
category O (not necessarily integrable) U�g-module V. By relying
on our recent results [ATL15], we show that this action describes
the monodromy of the rational Casimir connection on the g-module
V corresponding to V. We also extend these results to yield equiv-
alent representations of parabolic pure braid groups on parabolic
category O for U�g and g.
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1. Introduction

1.1.

Let g be a symmetrisable Kac–Moody algebra, U�g its quantized enveloping
algebra and W their Weyl group. We denote by O the category of deformation
highest weight modules of g, by Oint ⊂ O the full subcategory of integrable
ones, and by Oint

� ⊂ O� the corresponding categories for U�g. In [ATL15],
we constructed an equivalence Oint → Oint

� which intertwines the monodromy
of the rational Casimir connection of g and the quantum Weyl group action
of the braid group BW of g, respectively, thus extending the equivalence ob-
tained in [TL02, TL08, TL16] when g is finite-dimensional. P. Etingof asked
whether this equivalence extends to suitable categories of modules which are
not necessarily integrable, while remaining equivariant under the pure braid
group PW of g.

The goal of the present paper is to answer this question in the affirmative.
Specifically, we prove that the quantum Weyl group action of PW on category
Oint

� modules can be extended to all category O� modules. We then show
that this action is equivalent to the restriction to PW of the equivariant
monodromy of the Casimir connection, which is defined on any category O
module. Our results hold more generally for the category O∞ of modules
which are locally finite under the action of the Borel subalgebra, though for
simplicity we restrict to category O in the Introduction.

1.2.

We turn now to a more detailed description of our results. Endow O with the
associativity and commutativity constraints arising from the KZ equations
[Dri90]. In [EK96, EK98, EK08], Etingof–Kazhdan constructed a braided
tensor equivalence F : O → O� which is Tannakian, that is endowed with
a natural isomorphism α fitting in the diagram

O O�

Vect�

F

f f�

α



Pure braid group actions on category O modules 31

where Vect� is the category of topologically free modules over C[[�]], f, f� are
the forgetful functors, and f is endowed with an appropriate tensor structure.
The pair (F, α) gives rise to an isomorphism Ψα : End(f�) → End(f) via the
composition

End(f�) −→ End(f� ◦ F) −→ End(f)

where the first isomorphism is induced by F, and the second is given by
Ad(α). Note that α is only unique up to an automorphism γ of f, and that
Ψγ◦α = Ad(γ) ◦ Ψα.

1.3.

Building on our earlier work [ATL18, ATL19a, ATL19b], we constructed in
[ATL15] an automorphism γ ∈ Aut(f) such that Ψγ◦α is equivariant with
respect to the action of the braid group BW on integrable category O modules.
Specifically, the Etingof–Kazhdan functor F restricts to an equivalence Oint →
Oint

� and therefore leads to an isomorphism Ψint
α′ : End(f int

� ) → End(f int) for any
α′ : f� ◦ F ⇒ f. Regard the quantum Weyl group action of BW on objects in
Oint

� as a morphism λ : BW → End(f int

� ), and the monodromy of the Casimir
connection as a morphism μ : BW → End(f int). Then, γ may be chosen so
that the following is a commutative triangle [ATL15]

(1.1)

BW

End(f int

� ) End(f int)

λ μ

Ψint
γ◦α

As a consequence, the monodromy of the Casimir connection on a module
V ∈ Oint is equivalent to the quantum Weyl group action of BW on F(V ).

1.4.

P. Etingof asked us whether such an equivalence holds for a larger class of
not necessarily integrable modules, provided BW is replaced by the pure braid
group PW . The choice of the latter is suggested by the fact that BW does not
act on all category O modules for either g or U�g, while PW does on category
O g-modules via the monodromy of the Casimir connection.

To the best of our knowledge, no action of PW on category O� modules
has been previously constructed. The main result of the present paper is to
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construct such an action, and then show the commutativity of the resulting
diagram

(1.2)
PW

End(f�) End(f)

λ μ

Ψγ◦α

1.5.

To state our results in more detail, recall first that the abelianisation Pab
W =

PW /[PW , PW ] of the pure braid group is isomorphic to the free abelian group
with a generator pα for each positive real root α [Tit66, Dig15]. Set ι =

√
−1,

and define the sign character to be the morphism

(1.3) ε� : Pab

W → Aut(f int

� ) pα → exp(πιhα)

where exp(πιhα) acts as multiplication by exp(πιν(hα)) on the ν-weight space
of an integrable category O� module. The morphism ε� arises as the reduction
mod � of the quantum Weyl group action of PW on category Oint

� .
As a subgroup of BW , PW is generated by the elements S2

w,i = SwS2
i S−1

w ,
where Si is a generator of BW , w ∈ W is such that wαi is a positive root,
and Sw ∈ BW is the canonical lift of w [DG01]. Moreover, the quantum Weyl
group action of Sw,i on a module V ∈ Oint

� is given by

(1.4) λ(S2
w,i) = exp(πιhwαi

)qKw,i = ε�(Sw,i)q
Kw,i

where the second factor is the truncated quantum Casimir operator for the
copy of U�sl2 ⊂ U�g corresponding to the pair (w, i) [Lus93], and q =
exp(�/2).

1.6.

To extend this action to an arbitrary category O� module, we lift the sign
character ε� to a morphism

Pab

W → Aut(f�) pα → exp(πιhα)

which we denote by the same symbol. We then prove that the quantum
Casimirs qKw,i ∈ U�g give rise to a morphism K : PW → (U�g)h. It fol-
lows that

(1.5) λ : PW → Aut(f�) S2
w,i → exp(πιhwαi

)qKw,i
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is an extension of the quantum Weyl group action of PW to all category O�

modules.

1.7.

The fact that K is a morphism would follow at once if End(f�) acted faithfully
on f int

� . This, however, is clearly false: if ϕ is any function on h∗ which vanishes
on integral weights, then ϕ ∈ End(f�), but ϕ maps to zero in End(f int

� ). To
remedy this, we rely on the fact that U�g acts faithfully on f int

� , whose proof
is due to Etingof. This implies that any λ(p) ∈ End(f int

� ), p ∈ PW , arises from
the action of a unique element of U�g, thereby yielding the required action of
PW on End(f�).1

A similar argument works for the quantum group Uqg, where q is either
an indeterminate, or not a root of unity. In that case, the quantum Casimirs
qKw,i do not lie in Uqg, but in a variant Dq of an algebra originally introduced
by Drinfeld [Dri92, Sect. 8], which consists of formal, infinite series of the
form

∑
cXX, where X runs over a weight basis of Uqn

+ and cX ∈ Uqb
−.

Etingof’s faithfulness result also applies to Dq, and yields an action of PW on
any category O module for Uqg.

1.8.

Let now Y be the complexification of the Tits cone of g, X ⊂ Y its set of
regular points, and x0 ∈ X a basepoint. By a theorem of van der Lek [vdL83],
which generalises Brieskorn’s [Bri71], the pure and full braid groups may be
realised as

PW
∼= Π1(X; x0) and BW

∼= Π1(X/W ; [x0])

The Casimir connection is the Ug-valued formal meromorphic connection
on X with logarithmic singularities on the root hyperplanes given by

(1.6) ∇K = d − h
∑

α�0

dα

α
· K+

α

where K+
α =

∑mα

i=1 e
(i)
−αe

(i)
α is the normally ordered truncated Casimir oper-

ator corresponding to the positive root α, and h = �/2πι [MTL05, TL02,

1Note that this bypasses having to explicitly check that the quantum Casimirs
satisfy the relations of the generators Sw,i given in [DG01, Cor. 6].
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Pro96, FMTV00]. The sum (1.6) over α is locally finite on any (not neces-
sarily integrable) category O module V , and gives rise to a well-defined flat
connection on the holomorphically trivial vector bundle V on Y with fibre V .
Its monodromy therefore gives rise to a morphism

(1.7) P : Π1(X; x0) → End(f)

1.9.

The normal ordering in (1.6) breaks the equivariance of ∇K with respect to
the action of W on X and the subalgebra of h-invariants Ugh ⊂ Ug, which
contains the Casimirs K+

α .
Nevertheless, it is possible to modify the monodromy of ∇K so that it

gives rise to a representation of the braid group BW on integrable category O
modules [ATL15, Sect. 4] (see also Section 5). This relies on the equivalence
of groupoids

(1.8) Ex0 : Π1(X/W ; [x0]) → W � Π1(X; Wx0)

where the right-hand side is the semi-direct product of W with the funda-
mental groupoid of X based at the orbit Wx0, and Ex0 is given by the unique
lifting of loops through x0, and proceeds as follows.

• Extend the monodromy of ∇K to a morphism

(1.9) P : Π1(X; Wx0) → End(f)

• Replace the target of P by a subalgebra Tg ⊂ End(f) which, unlike
End(f), is acted upon by W . Tg is the image of the holonomy algebra
of the root arrangement of g, and is a completion of the subalgebra of
Ugh[[�]] generated by the Casimirs �K+

α and the Cartan subalgebra �h.

• The lack of equivariance of ∇K can then be measured by a 1-cocycle

A : W → Hom(Π1(X; Wx0), Tg)

defined by Aw(γ) = P(γ)−1 · w−1P(wγ).

• We prove that A is abelian i.e., takes values in

M = Hom(Π1(X; Wx0), exp(�h))

and that it is the coboundary of an essentially unique cochain B ∈ M

i.e., that Aw = B · (w−1B)−1 for any w ∈ W .
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• As a consequence, P can be modified to a W -equivariant morphism

PB : Π1(X; Wx0) → Tg PB(γ) = P(γ) · B(γ)

• Composing PB with the morphism Ex0 (1.8) then yields an action of
BW on any W � Tg-module.

• It is well-known that W does not act on an integrable module V , but
that the triple exponentials

(1.10) τi = exp(ei) · exp(−fi) · exp(ei)

are well-defined on V , permute its weight spaces according to the W -
action, and give rise to a morphism τ : BW → Aut(f int).

• Finally, lifting Ex0 to Ẽx0 : Π1(X/W ; [x0]) → BW � Π1(X; Wx0), and
composing with τ ⊗ PB yields a morphism

(1.11) Pτ,B : BW → Aut(f int) γ → τ(γ) · P(γ) · B(γ)

which we term the equivariant monodromy of ∇K.

1.10.

By [ATL15], the equivariant monodromy of ∇K on an integrable module
V ∈ Oint is canonically equivalent to the quantum Weyl group action of
BW on the Etingof–Kazhdan quantisation F(V ) ∈ Oint

� i.e., the diagram (1.1)
is commutative for μ = Pτ,B. This can be used to give a monodromic de-
scription of the action λ (1.5) of PW on category O� modules as follows.

The restriction of the triple exponential map τ (1.10) to PW is the sign
character

ε : Pab

W → Aut(f int) pα → exp(πιhα)

Lifting it to ε : Pab
W → Aut(f) as in 1.6 therefore lifts the equivariant mon-

odromy action of PW to

Pε,B : PW → Aut(f) γ → ε(γ) · P(γ) · B(γ)

i.e., extends the restriction of Pτ,B to PW to any category O module.

To relate Pε,B to λ, denote the restriction morphisms by

Res : End(f) → End(f int) and Res� : End(f) → End(f int)
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The commutativity of (1.1) implies that, for any p ∈ PW

Res ◦Ψγ◦α ◦ λ(p) = Ψint

γ◦α ◦ Res� ◦λ(p) = Res ◦Pε,B(p)

and therefore that Res ◦Ψγ◦α◦K (p) = Res ◦(P(p)B(p)), since ε = Ψγ◦α(ε�).
In turn, this implies that Ψγ◦α ◦K (p) = P(p)B(p), so that Ψγ◦α intertwines
λ and Pε,B, since Ψγ◦α maps the Drinfeld algebra D� ⊃ U�g to its classical
analogue D, the latter acts faithfully on f, and the algebra Tg � P(p), B(p)
is contained in D.

1.11.

The above can also be used to give a description of the (non-equivariant)
monodromy P : PW → Aut(f) of the Casimir connection ∇K (1.7) in terms
of quantum Weyl group operators as follows.

We prove that the restriction to PW of the cochain B is the map Pab
W →

exp(�h) given by B(pα) = exp(�tα/2), where tα ∈ h corresponds to α via the
isomorphism h∗ → h induced by the chosen inner product on g. Define the
morphism

λε,B : PW → Aut(f�) p → ε�(p)−1 · λ(p) · B(p)−1 = K (p) · B(p)−1

We refer to λε,B as the normally ordered quantum Weyl group action of PW

on category O� modules. The terminology is motivated by the fact that,

while λ(S2
i ) = exp(πιhi) · qK�,i by (1.5), λε,B(S2

i ) = q2K+
�,i , where the latter

is a normally ordered version of the quantum Casimir. The commutativity
of (1.1) then implies that λε,B computes the monodromy of ∇K, that is that
Ψγ◦α ◦ λε,B = P.

1.12.

The above results can be generalised to the parabolic setting as follows. Let
J be a subset of nodes of the Dynkin diagram of g, gJ ⊆ g the corresponding
Lie subalgebra, WJ ⊆ W its Weyl group, and PBJ ⊆ BW the parabolic pure
braid group given by the preimage of WJ.

We construct a quantum Weyl group action of PBJ on any category O�

module whose restriction to U�gJ is integrable. This action is such that

• its restriction to the braid group BWJ
is the quantum Weyl group action

of BWJ
on integrable U�gJ-modules
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• its restriction to the pure braid group PW coincides with the quantum
Weyl group action (1.5) on category O� modules

We also define a normally ordered version of this quantum Weyl group action,
in analogy with 1.11.

We then construct a monodromy action of PBJ on any category O module
whose restriction to gJ is integrable. We do so by relying on the fact that
PBJ is isomorphic to Π1(X/WJ; [x0]), and correcting the equivariance of the
Casimir connection, as outlined in 1.9, but only with respect to WJ. The
resulting WJ-equivariant monodromy action is such that

• its restriction to BWJ
is the equivariant monodromy action of BWJ

on
integrable category O gJ-modules

• its restriction to PW coincides with the monodromy action (1.9) on
category O modules (up to a simple correction on PWJ

).

Finally, we show that the above quantum Weyl group and monodromic
actions of PBJ are equivalent by relying on the fact that PBJ is generated
by BWJ

and PW , and using the equivalences (1.1) for BWJ
and (1.2) for PW .

1.13. Outline of the paper

In Section 2, we review the definition of quantum Weyl group operators. In
Section 3, we introduce the Drinfeld algebra and prove that it acts faithfully
on Oint

� . In Section 4, we construct the quantum Weyl group action of PW on
category O. Section 5 reviews the definition of the Casimir connection, and
the equivariant extension of its monodromy to a representation of the braid
group BW . Section 6 reviews the definition of a braided Coxeter category,
and Section 7 the main result of [ATL15]. In Section 8, we prove the stated
equivalence. We also point out that it continues to hold if F is replaced by the
Etingof–Kazhdan equivalence FΦ corresponding to an arbitrary Lie associator
Φ rather than the one arising from the KZ equations. Finally, in Section 9,
we generalise these results to parabolic pure braid groups.

2. Kac–Moody algebras and quantum groups

2.1. Symmetrisable Kac–Moody algebras [Kac90]

Let I be a finite set and A = (aij)i,j∈I a generalised Cartan matrix, i.e.,
aii = 2, aij ∈ Z�0, i �= j, and aij = 0 implies aji = 0. Let (h, Π, Π∨) be a
realization of A, i.e.,
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• h is a finite-dimensional complex vector space2

• Π = {αi}i∈I is a linearly independent subset of h∗

• Π∨ = {hi}i∈I is a linearly independent subset of h
• αi(hj) = aji for any i, j ∈ I

The Kac–Moody algebra corresponding to A and the realisation (h, Π, Π∨)
is the Lie algebra g generated by h and elements {ei, fi}i∈I, with relations
[h, h] = 0 and

[h, ei] = αi(h)ei [h, fi] = −αi(h)fi [ei, fj ] = δijhi

and, for any i �= j,

ad(ei)
1−aij (ej) = 0 = ad(fi)

1−aij (fj)

Let n± ⊂ g be the Lie subalgebras generated by {ei}i∈I and {fi}i∈I, respec-
tively.

Assume that A is symmetrisable, and fix an invertible diagonal matrix
D = diag(di)i∈I with coprime entries di ∈ Z>0 such that DA is symmetric.
Then, there is a symmetric, non-degenerate bilinear form 〈·, ·〉 on h such
that 〈hi, −〉 = d−1

i αi (see, e.g., [ATL19b, Prop. 11.4]). The corresponding
identification ν : h → h∗ intertwines the actions of W , satisfies ν(hi) = d−1

i αi

and therefore restricts to an isomorphism h′ ∼−→ Q⊗ZC, where h′ is the span of
{hi}i∈I and Q =

⊕
i∈I Zαi ⊆ h∗ is the root lattice. Note that 〈hi, hi〉 = 2d−1

i ,
while the induced form on h∗ satisfies 〈αi, αi〉 = 2di ∈ 2Z>0.

By [Kac90, Thm. 2.2], 〈·, ·〉 uniquely extends to a non-degenerate, in-
variant symmetric bilinear form on g, which satisfies 〈ei, fj〉 = δijd

−1
i and

[x, y] = 〈x, y〉 · tα for any x ∈ gα, y ∈ g−α, where tα = ν−1(α).

2.2. Category O∞ representations

If V is an h-module and λ ∈ h∗, we denote the corresponding weight space of
V by

V [λ] = {v ∈ V | h v = λ(h)v, h ∈ h}
and set P (V ) = {λ ∈ h∗| V [λ] �= 0}. A g-module V is

(C1) a weight module if V =
⊕

λ∈h∗ V [λ].

2Note that, unlike [Kac90], we do not require h to have minimal dimension
2|I| − rank(A).
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(C2) integrable if it is a weight module, and the elements {ei, fi}i∈I act locally
nilpotently. This implies that λ(hi) ∈ Z for any λ ∈ P (V ) and i ∈ I,
and that V is completely reducible as a (possibly infinite) direct sum
of simple finite-dimensional modules over slαi

2 = 〈ei, hi, fi〉 ⊂ g.
(C3) in category O∞,g if the action of b+ is locally finite, i.e., any v ∈ V is

contained in a finite-dimensional b+-submodule of V . This implies in
particular that V is the direct sum of its generalised weight spaces and
that, for any v ∈ V , (Un+)βv = 0 for all but finitely many β ∈ Q+.

(C4) in category Og if it is a weight module with finite-dimensional weight
spaces, such that

(2.1) P (V ) ⊆ D(λ1) ∪ · · · ∪ D(λm)

for some λ1, . . . , λm ∈ h∗, where D(λ) = {μ ∈ h∗ | μ � λ} and μ � λ
iff λ − μ ∈ Q+ =

⊕
i∈I Nαi.

The categories Og ⊂ O∞,g are symmetric tensor categories. Denoting
by Oint

g ⊂ Og and Oint
∞,g ⊂ O∞,g the full tensor subcategories of integrable

representations, we have the following inclusions

Og ⊂ O∞,g

∪ ∪

Oint
g ⊂ Oint

∞,g

2.3. Deformation category O∞ representations

Similar notions can be defined for g-modules in the category Vect� of topo-
logically free C[[�]]-modules. Namely, a g-module V ∈ Vect� is called

(D1) a weight module if V =
⊕

λ∈h∗ V [λ],3 where
⊕

is the direct sum in Vect�,
i.e., the completion of the algebraic direct sum in the �-adic topology.

(D2) integrable if it is a weight module and, for any i ∈ I and v ∈ V,
limn→∞ en

i v = 0 = limn→∞ fn
i v.

(D3) in category O�
∞,g if the action of b+ on V/�nV is locally finite for any

n ≥ 0.
(D4) in category O�

g if it is a weight representation with finite-rank weight
spaces, and such that P (V) satisfies (2.1).

3Note that the eigenvalues of the action of h are required to lie in h∗ � h∗[[�]].
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It is easy to see that V is a weight (resp. integrable) module in Vect� if
and only if V/�nV is a weight (resp. integrable) module in Vect for any n ≥ 0.
We denote by O�,int

g ⊂ O�
g and O�,int

∞,g ⊂ O�
∞,g the full tensor subcategories of

integrable representations.

2.4. Braid group action

Let W be the Weyl group of g, and {si}i∈I its set of simple reflections. The
braid group BW is the group generated by the elements {Si}i∈I, with relations

(2.2) Si · Sj · Si · · ·
︸ ︷︷ ︸

mij

= Sj · Si · Sj · · ·
︸ ︷︷ ︸

mij

for any i �= j, where mij is the order of sisj in W . If V is an integrable
g-module in Vect or Vect�, the operators

(2.3) s̃i = exp(ei) · exp(−fi) · exp(ei) ∈ GL(V )

are well-defined, and satisfy the braid relations (2.2) [Tit66]. The correspond-
ing action of BW on V factors through the Tits extension W̃ , an extension of
W by the sign group ZI

2.

2.5. The quantum group U�g [Dri87, Jim85]

Let � be a formal variable, set q = exp(�/2) and qi = qdi , i ∈ I. The Drinfeld–
Jimbo quantum group of g is the algebra U�g over C[[�]] topologically gener-
ated by h and the elements {Ei, Fi}i∈I, subject to the relations [h, h′] = 0,

[h, Ei] = αi(h)Ei [h, Fi] = −αi(h)Fi [Ei, Fj ] = δij
qhi

i − q−hi

i

qi − q−1
i

for any h, h′ ∈ h, i, j ∈ I, and the q-Serre relations

1−aij∑

m=0

(−1)m

[
1 − aij

m

]

i

X
1−aij−m
i XjX

m
i = 0

for X = E, F , i �= j ∈ I, where [n]i =
qn

i
−q−n

i

qi−q−1
i

and, for any k � n,

[n]i! = [n]i · [n − 1]i · · · [1]i and

[
n

k

]

i

=
[n]i!

[k]i! · [n − k]i
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Define weight, integrable, category O∞ and O modules for U�g in Vect�
analogously to Section 2.3, and denote by

Oint

∞,U�g
⊂ O∞,U�g and Oint

U�g
⊂ OU�g

the subcategories of integrable modules.4

2.6. Quantum Weyl group operators
[KR90, Lus90, Lus93, Sa94, So90]

For any V ∈ Oint
∞,U�g

, define the endomorphisms {Si}i∈I of V as follows.5 For
any vμ ∈ V[μ], set

(2.4) Si vμ =
∑

a,b,c∈Z�0

a−b+c=−μ(hi)

(−1)bqb−ac
i E

(a)
i F

(b)
i E

(c)
i · vμ

where X
(a)
i = Xa

i /[a]i!.
Then, Si(V [μ]) ⊆ V[si(μ)] and the Si give rise to an action of the braid

group BW on V , which deforms the action by triple exponentials described
in 2.4 [Lus93, Sec. 39.4].

2.7. Action of BW on U�g ([Lus88], [Lus93, Chaps. 37–39])

Consider the algebra automorphisms {Ti}i∈I of U�g defined by

Ti(h) = si(h) Ti(Ei) = −Fiq
hi

i Ti(Fi) = −q−hi

i Ei

where h ∈ h and, for any i �= j ∈ I,

Ti(Xj) =

−aij∑

r=0

(−1)rq
σ(X)r
i X

−aij−r
i XjX

r
i

where X = E, F and σ(E) = −1 = −σ(F ).
The automorphisms {Ti}i∈I define an action of the braid group BW on

U�g which we denote by b(X), b ∈ BW and X ∈ U�g. Moreover, for any
X ∈ U�g, V ∈ Oint

∞,U�g
, and v ∈ V, one has Si(X · v) = Ti(X) · Si(v).

4Note in particular that a representation V of U�g is in category O∞ if the action
of U�b

+ on V/�nV is locally finite for any n ≥ 0.
5The operator Si is the operator T ′′

i,+1 defined in [Lus93, Sec. 5.2].
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3. Faithfulness of category O integrable modules

Integrable U�g-modules are well-known to be faithful, i.e., the only element
of U�g acting trivially on every integrable module is zero [Lus93, Prop. 3.5.4].
To the best of our knowledge, the analogous result for the more restrictive
class of integrable modules in category O does not appear in the literature.
We present here a proof due to P. Etingof, which establishes faithfulness for
a larger algebra containing U�g.

3.1. The Drinfeld algebra D�

For any β ∈ Q+, let Bβ = {Xβ,p} be a basis of U�n
+
β and set B =

⊔
β∈Q+

Bβ .
Set

D� =

{
∑

X∈B

cXX : cX ∈ U�b
−

}
=
∏

β∈Q+

U�b
− ⊗ U�n

+
β ⊃ U�g

D� has an algebra structure which extends that of U�g. Moreover, the
action of U�g on any module V ∈ OU�g extends to one of D� since, for any
v ∈ V, U�n

+
β v = 0 for all but finitely many β ∈ Q+.

Theorem (Etingof). Category O integrable U�g-modules are faithful for D�.

The proof is carried out in Sections 3.2–3.4.

Remark. A variant Q� of the algebra D� was introduced by Drinfeld in
[Dri92, Sect. 8] as follows. For any β ∈ Q+, let Iβ ⊂ U�g be the left ideal
generated by U�gβ′ for any β′ > β, or equivalently by {U�n

+
β′}β′>β , and set

Q� = limβ U�g/Iβ. Since U�g/Iβ
∼=⊕β′≯β U�b

− ⊗U�n
+
β′ , Q� embeds into D�

as the subalgebra consisting of series
∑

β∈Q+
Xβ, Xβ ∈ U�b

− ⊗ U�n
+
β , where

for any β ∈ Q+, Xβ′ = 0 for all but finitely many β′ ≯ β. The algebra Q�

is less natural than D�, however. For instance, if ∅ � J � I is a proper non-
empty subset, gJ ⊂ g the corresponding subalgebra, and QJ,� (resp. DJ,�)
the analogue of Q� (resp. D�) for gJ, then DJ,� ⊂ D� while QJ,� does not
map to Q�.

3.2. Verma modules

For λ ∈ h∗, let M(λ) be the Verma module of highest weight λ and vλ ∈ M(λ)
its cyclic vector. For any β ∈ Q+, let M(λ)β ⊂ M(λ) be the weight space of
weight λ − β. Note that there is a natural identification M(λ)β � (U�n

−)β .
Recall that the contragredient Verma module M∨(λ) is the pullback through
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the Chevalley involution of the restricted dual M∗(λ) =
⊕

β∈Q+
M(λ)∗

β,
where M(λ)∗

β denotes the dual in Vect�. The contragredient Verma mod-
ule is equipped with a morphism M(λ) → M∨(λ), vλ �→ v∗

λ. The Shapovalov
form on M(λ) is defined by

〈·, ·〉λ : M(λ) ⊗ M(λ) → M(λ) ⊗ M∨(λ) → C[[�]]

By construction, it satisfies 〈vλ, vλ〉λ = 1, 〈M(λ)β, M(λ)β′〉λ = 0 if β �= β′,
and 〈xv, w〉λ = −〈x, ω(x)w〉λ for any x ∈ g, v, w ∈ M(λ). It is well-known
that 〈·, ·〉λ is symmetric and non-degenerate only for generic λ ∈ h∗.

For generic λ ∈ h∗, let B∗
λ,β = {X∗

β,p} be the dual basis of U�n
−
β with re-

spect to the Shapovalov form. In particular, one has 〈X∗
β,ivλ, ω(S(Xβ,j))vλ〉 =

δij . Thus, modulo elements of weights lower than λ, Xβ,jX
∗
β,ivλ = δijvλ.

Proposition. Verma modules are faithful for D�.

Proof. Assume that x ∈ D� acts trivially on every M(λ), and write

x =
∑

B

x−
β,ix

0
β,iXβ,i

where x0
β,i ∈ Uh[[�]] and x−

β,i ∈ U�n
−. Note that, for any λ ∈ h∗, the action of

x on the cyclic vector vλ ∈ M(λ) gives

0 = x · vλ = λ(ϕ0)x0 · vλ

Therefore, x0
0 = 0 = x−

0 . We shall prove that, for any Xβ,i ∈ B, x0
β,i = 0 = x−

β,i.

Proceeding by induction, we assume that xγ,j = 0 = x0
γ,j for any Xγ,j ∈ B

such that ht γ < n. Fix β ∈ Q+ with ht β = n. Then, for generic λ ∈ h∗, we
have X∗

β,ivλ ∈ M(λ)β and, since Xβ,jX
∗
β,ivλ = δijvλ,

0 = x · X∗
β,ivλ =

∑

j

x−
β,jx

0
β,jXβ,jX

∗
β,ivλ = λ(x0

β,i)x
−
β,ivλ

Therefore, x0
β,i = 0 = x−

β,i.

3.3. Regularity of the matrix coefficients on M(λ)

For any λ ∈ h∗, let M∗(λ) be the (restricted) dual Verma module and
(·, ·)M(λ) : M(λ) ⊗ M∗(λ) → C[[�]] the natural pairing.

Proposition. For any λ ∈ h∗, v ∈ M(λ), and f ∈ M(λ)∗, the matrix coeffi-
cient (xv, f)M(λ) lies in C[λ][[�]].
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Proof. Note that, for any x± ∈ U�n
±, the coefficient (x−v, x+f) ∈ C[[�]]

is independent of λ. We can write x =
∑

i x+
i x0

i x−
i , for some x+

i ∈ U�n
+,

x0
i ∈ Uh[[�]], and x−

i ∈ (U�n
−)βi

, with βi ∈ Q+. Then, we have

(xv, f)M(λ) =
∑

i

(x0
i x−

i v, S(x+
i )f)M(λ) =

∑

i

(λ − βi)(x
0
i )(x−

i v, S(x+
i )f)M(λ) .

The result follows.

3.4. Proof of Theorem 3.1

Assume that x ∈ D� acts trivially on every category O integrable U�g-module.
We shall prove that x acts trivially on any Verma module, so that x = 0 by
Proposition 3.2.

Clearly, x acts trivially on M(λ) if and only if, for any v ∈ M(λ) and
f ∈ M(λ)∗, the matrix coefficient (xv, f)M(λ) vanishes. By Proposition 3.3,
it is enough to check that this holds for λ in a Zariski open subset of h∗. To
this end, note that, if v ∈ M(λ)β, then xv = x(β)v, where x(β) ∈ Ug is the
truncation of x at β. Therefore, it is possible to choose λ ∈ P+ large enough
such that

(xv, f)M(λ) = (xv, f)L(λ) = 0

i.e., (xv, f)M(λ) is equal to the matrix coefficient of x on the unique irreducible
quotient L(λ) of M(λ). By assumption on x, the latter is zero, since L(λ) is
integrable for λ ∈ P+. The result follows.

4. Quantum Weyl group actions of pure braid groups

4.1. Completions

Let A be an algebra, C ⊂ Rep(A) a full subcategory, and End(fC) the algebra
of endomorphisms of the forgetful functor fC : C → Vect. By definition, an
element of End(fC) is a collection

ϕ = {ϕV }V ∈C ∈
∏

V ∈C

End(V )

which is natural, i.e., such that f ◦ ϕV = ϕW ◦ f for any f : V → W in C.
The action of A on any V ∈ C yields a morphism of algebras A → End(fC),
and factors through the action of End(fC) on V . We shall refer to End(fC) as
the completion of A with respect to the category C.
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4.2. Braid groups and completions

The braid group actions considered in Section 2 can be concisely described
in terms of completions. For instance, let End(f int

� ) be the algebra of endo-
morphisms of the forgetful functor f int

� : Oint
∞,U�g

→ Vect�. The quantum Weyl
group operators Si defined by (2.4) are elements of Aut(f int

� ), and yield a group
homomorphism λ : BW → Aut(f int

� ).

4.3. Sign character of the pure braid group

Let Z be the free abelian group with a generator pα for each positive real root
α, endowed with the W -action given by w pα = p|wα|, where |wα| = ±wα
according to whether wα is positive or negative.

Let PW ⊂ BW be the pure braid group. Its abelianisation Pab
W = PW /

[PW , PW ] is acted upon by BW /PW � W . By [Tit66, Thm. 2.5] and [Dig15]
the assignment pαi

→ S2
i uniquely extends to a W -equivariant isomorphism

Z → Pab
W .

Define the sign character of PW to be the morphism

(4.1) ε� : Pab

W → Aut(f int

� ) ε�(pα) = exp(ιπhα)

where exp(ιπhα) is the operator acting on a weight space of (integral) weight
λ as multiplication by exp(ιπλ(hα)).

4.4. Canonical lift of the sign character

Let f� : O∞,U�g → Vect� be the forgetful functor, and consider the morphism
Aut(f�) → Aut(f int

� ) corresponding to the inclusion Oint
∞,U�g

⊂ O∞,U�g
. The

sign character ε� has a canonical lift

Pab

W → Aut(f�) pα → exp(ιπhα)

which is well-defined since for any V ∈ O∞,U�g and n ≥ 0, V/�mV is a locally
finite h-module. We denote this lift by the same symbol.

4.5. Pure braid group action on category O∞

The following is one of the main results of this paper.

Theorem. Let λ : BW → End(f int

� ) be the quantum Weyl group action of the
braid group BW . Then, the following holds.
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(1) For any p ∈ PW ,

λ(p) = ε�(p) · K (p)

where ε�(p) is the sign character (4.1), and K (p) is a unique element

of U�g which is invertible and of weight zero.

(2) The assignment p → K (p) is a homomorphism PW → (U�g)h which is

BW -equivariant.

(3) The quantum Weyl group action of the pure braid group PW on inte-

grable modules extends to an action

(4.2) λ : PW → Aut(f�) given by λ(p) = ε�(p) · K (p)

(4) The map λ intertwines the inner action of PW on U�g i.e., for any

element Y ∈ U�g and p ∈ PW

λ(p)Y λ(p)−1 = p(Y )

in End(f�).

Proof. (2), (3) and (4) follow from (1).

(1) It suffices to prove the existence of K (p) for a set of generators of PW .

The uniqueness of K (p) for any p ∈ PW then follows from Theorem 3.1. By

[DG01, Cor. 6] (see also [Dig15, Prop. 2.5]), PW is generated by the elements

SwS2
i S−1

w , where i ∈ I, w ∈ W is such that wαi > 0, and Sw ∈ BW is the

canonical lift of w.

Consider first the case w = 1. By [Lus93, Sec. 5.2], the square of the oper-

ator Si is related to the quantum Casimir operator of U�sl
αi

2 = 〈Ei, Fi, hi〉 ⊂
U�g as follows. Let f int

�,i : Oint

∞,U�sl
αi
2

→ Vect� be the forgetful functor. An ele-

ment of End(f int

�,i) is determined by its action on each of the indecomposable

representations {V i
r}r≥0, where V i

r is of rank r + 1. The Casimir operator Ci

of U�sl
αi

2 acts on V i
r as multiplication by dir(r + 2)/2. Set Ki = Ci − dih

2
i /2,

so that Ki acts on the subspace of V i
r of weight mαi/2 as multiplication by

di(r(r + 2) − m2)/2. Then,

(4.3) S2
i = exp(ιπhi) · qKi

By [Dri89, Sec. 5],

(4.4) qCi =
∑

m�0

F m
i φmEm

i
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for some explicit φm ∈ Uhi[[�]]. It follows that qCi lies in U�g, and therefore
so does qKi = qCiq−dih2

i
/2. Thus, setting K (S2

i ) = qKi ∈ D�, we get

λ(S2
i ) = S2

i = exp(ιπhi) · qKi = ε�(S2
i ) · K (S2

i )

Note next that if w ∈ W satisfies wαi > 0, then Tw = Ad(Sw) satisfies
Tw(Ei) ∈ U�b

+
wαi

, and Tw(Fi) ∈ U�b
−
−wαi

[Lus93, Sec. 37.1]. It follows that
qKw,i = Tw(qKi) is a weight zero element in D�, and if we set K (SwS2

i S−1
w ) =

qKw,i , then

λ(SwS2
i S−1

w ) = SwS2
i S−1

w = exp(ιπhw,i) · qKw,i = ε�(p) · K (p)

Remarks.

• The proof of Theorem 4.5 shows that the action λ on category O∞

modules for U�g is explicitly given on the generators of PW by

λ(SwS2
i S−1

w ) = exp(ιπhw,i) · qKw,i

• Since K maps to U�g, it defines a (signless quantum Weyl group) action
of PW on any U�g-module.

4.6. The normally ordered quantum Weyl group action

We shall be interested in the following modification of the action (4.2). Let

B : PW → exp(�h) ⊂ U�g be given by B(pα) = qtα = exp(�tα/2)

(cf. Section 1.11). Define the morphism

λε,B : PW → U�g by λε,B(p) = K (p) · B(p)−1

so that λ(p) = ε�(p) · λε,B(p) · B(p) for any p ∈ PW .
We refer to λε,B as the normally ordered quantum Weyl group action

of PW . The terminology is justified by the fact that, for any i ∈ I, λε,B(S2
i )

acts as the normally ordered quantum Casimir operator, in contrast with (4.3).
Namely, one has

λε,B(S2
i ) = K (S2

i ) · B(pαi
)−1 = q2K+

i

where K+
i = (Ki−tαi

)/2. This modified action will be relevant in Theorem 8.2.
Note also that for any element Y ∈ U�g of weight γ ∈ Q and p ∈ PW , one has

Ad(λε,B(p))(Y ) = p(Y ) · (ε�(p), γ)−1 · (B(p), γ)−1

in End(f�).



48 Andrea Appel and Valerio Toledano Laredo

4.7. Pure braid group actions for Uqg

Let K be a field of characteristic zero, q ∈ K× an element of infinite order,
e.g., q ∈ C× not a root of unity or q ∈ Q(q), and Uqg the corresponding
quantum group over K.

The definition of (integrable) category O∞ Uqg-modules is similar to the
formal case (see e.g., [Lus93, Ch. 3]). The analogues of Theorem 4.5 and
Section 4.6 hold for Uqg and defines actions of PW on category O∞ modules.

In this case, the quantum Casimirs qKi do not lie in Uqg, but in the
Drinfeld algebra Dq of Uqg, and the morphism K takes values in Dq. Note
that the latter acts on any category O∞ module V since, for any v ∈ V,
(Uqn

+)βv = 0 for all but finitely many β ∈ Q+.

5. The Casimir connection

5.1. Fundamental group of root system arrangements

Let A be a symmetrisable generalised Cartan matrix, (hR, Π, Π∨) a realisation
of A over R, and (h = C ⊗R hR, Π, Π∨) its complexification. Let Π⊥ ⊂ h be
the annihilator of Π, set he = h/Π⊥, and note that he is independent of the
realisation of A. Let

C = {h ∈ he
R | ∀i ∈ I, αi(h) > 0}

be the fundamental Weyl chamber in he
R, and YR =

⋃
w∈W w(C) the Tits cone.

YR is a convex cone, and the Weyl group W acts properly discontinuously on
its interior Y̊R and complexification Y = Y̊R + ιhe

R ⊆ he [Loo80, Vin71]. The
regular points of this action are given by

X = Y \
⋃

α∈Δ+

Ker(α)

The action of W on X is proper and free, and the space X/W is a complex
manifold. The following result is due to van der Lek [vdL83], and generalises
Brieskorn’s Theorem [Bri71] to the case of an arbitrary Weyl group.

Theorem. The fundamental groups of X/W and X are isomorphic to BW

and PW respectively.

The generators {Si}i∈I of BW may be described as follows. Let p : X →
X/W be the canonical projection, fix a point x0 ∈ C and use [x0] = p(x0) as a
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base point in X/W . For any i ∈ I, choose an open disk Di in x0+Chi, centered

in x0 − αi(x0)
2 hi, and such that Di does not intersect any root hyperplane

other than Ker(αi). Let γi : [0, 1] → x0 + Chi be the path from x0 to si(x0)
in X determined by γi|[0,1/3]∪[2/3,1] is affine and lies in x0 + Rhi \ Di, the
points γi(1/3), γi(2/3) are in ∂Di, and γi|[1/3,2/3] is a semicircular arc in ∂Di,
positively oriented with respect to the natural orientation of x0 +Chi. Then,
Si = p ◦ γi.

5.2. The Casimir connection

For any positive root α ∈ Δ+, let {e
(i)
±α}mα

i=1 be bases of g±α which are dual
with respect to 〈·, ·〉, and

K+
α =

mα∑

i=1

e
(i)
−αe(i)

α

the corresponding truncated and normally ordered Casimir operator. Let V
be a g-module in category O�

∞,g and V = X × V the holomorphically trivial

vector bundle over X with fibre V . Finally, set h = �
2πι .

Definition. The Casimir connection of g is the connection on V given by

∇K = d − h
∑

α∈Δ+

dα

α
· K+

α

Note that the sum converges in the �-adic topology since, for any v ∈ V and
n ≥ 0, K+

α v ∈ �nV for all but finitely many α ∈ Δ+.
The Casimir connection for a semisimple Lie algebra was discovered by

De Concini around ’95 (unpublished, though the connection is referenced in
[Pro96]) and, independently, Millson–Toledano Laredo [TL02, MTL05] and
Felder–Markov–Tarasov–Varchenko [FMTV00]. In [FMTV00], the case of an
arbitrary symmetrisable Kac–Moody algebra is considered.

The connection ∇K is flat (see [FMTV00] and [ATL15, Thm. 3.4]) and
therefore yields a monodromy representation

P : PW = Π1(X; x0) → GL(V)

Moreover, since the coefficients of ∇K have weight zero, the action of PW

preserves the generalised weight spaces of V .
This is more conveniently expressed in terms of completions. Let f :

O�
∞,g → Vect� be the forgetful functor. Then, the monodromy of ∇K yields
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an action

P : PW = Π1(X; x0) → Aut(f)

5.3. The orbifold fundamental groupoid of X

Let Π1(X; Wx0) be the fundamental groupoid of X based at the W -orbit of
x0. Then, Π1(X/W ; [x0]) is equivalent to the orbifold fundamental groupoid
W � Π1(X; Wx0), which is defined as follows.

• Its set of objects is Wx0.

• A morphism between x, y ∈ Wx0 is a pair (w, γ), where w ∈ W and γ
is a path in X from x to w−1y.

• The composition of (w, γ) : x → y and (w′, γ′) : y → z is given by

(w′, γ′) ◦ (w, γ) = (w′w, w−1(γ′) ◦ γ) : x → z

The projection functor

(5.1) P : W � Π1(X; Wx0) −→ Π1(X/W ; [x0])

given by P (wx0) = [x0] and P (w, γ) = [γ] is fully faithful since, for any given
x, y ∈ Wx0, a loop [γ] ∈ Π1(X/W ; [x0]) lifts uniquely to a path γ : x → w−1y,
for a unique w ∈ W . Any x ∈ Wx0 therefore determines a right inverse Ex of
P given by Ex([x0]) = x and Ex([γ]) = (w, γ), where γ is the lift of [γ] through
x, and w is such that γ(1) = w−1x.

5.4. Obstruction to W -equivariance [ATL15, Sec. 4]

Extend the monodromy of ∇K to Π1(X; Wx0), and lift it to a map P :
Π1(X; Wx0) → Tg, where Tg is the holonomy algebra of the root arrangement
of g. The lack of W -equivariance of ∇K can then be described by the 1-cocycle

A : W → Hom(Π1(X; Wx0), Tg)

defined by Aw(γ) = P(γ)−1 · w−1P(wγ).

The following summarises the main properties of A .

Theorem.

(1) A is abelian, that is takes values in M = Hom(Π1(X; Wx0), exp(�h)).
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(2) A is a coboundary, that is Aw = dBw = B · (w−1B)−1 for some
B ∈ M, and any w ∈ W .

(3) The cochain B can be normalised so that B(γi) = exp(�aitαi
) for any

given choice of {ai}i∈I ⊂ C, and is then unique.

Remark. (1) follows from the fact that w−1P(wγ) is the parallel transport
of

w∗∇K = ∇K − haw where aw =
∑

α∈Δ+:
wα∈Δ−

dα

α
· tα

Since ∇K and the h-valued 1-form aw commute, Aw is the parallel transport
of d − haw, and in particular takes values in M.

5.5. Equivariant monodromy [ATL15, Sec. 4]

For any b ∈ BW , let τ(b) ∈ Aut(f int) be its action by the triple exponen-
tials (2.3), and b̃ ∈ Π1(X; Wx0) the unique lift of b through x0. The following
is a direct consequence of Theorem 5.4

Theorem. There is a unique morphism B : Π1(X; Wx0) −→ exp(�h) such
that

(1) The assignment

Pτ,B : BW → Aut(f int) Pτ,B(b) = τ(b) · P(b̃) · B(b̃)

is a group homomorphism.
(2) For any i ∈ I, B(γi) = exp(�tαi

/4).

Remarks.

• The normalisation of B(γi) is chosen so that, if g = sl2 with simple
root αi,

(5.2) Pτ,B(Si) = s̃i · exp(�K+
αi

/2) · exp(�tαi
/4) = s̃i · exp(�Kαi

/4)

where Kαi
= eifi + fiei is the truncated Casimir of sl2.

• We shall refer to Pτ,B as the monodromy action of BW . This is justified
by the fact that, when g is of finite or affine type, B is the monodromy
of the connection d−hA, where A is a resummation of the formal abelian
1-form

Â =
1

2

∑

α∈Δ+

dα

α
· mαtα
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(cf. [ATL15, Prop. 4.9 and Appendix A]). Thus, in these cases, Pτ,B

is the monodromy of the pushdown of the connection ∇K − hA to the
quotient X/W .

5.6. Monodromy action of the pure braid group on category O∞

Let

(5.3) ε : Pab

W → Aut(f int) ε(pα) = exp(ιπhα)

be the sign character (cf. 4.3), f : O�
∞,g → Vect� the forgetful functor, and

lift ε to a morphism Pab
W → Aut(f) as in 4.4.

Proposition. The following holds.

(1) For any α ∈ Δre
+, τ(pα) = ε(pα) and B(pα) = exp(�tα/2).

(2) The restriction of Pτ,B to PW lifts to an action

Pε,B : PW → Aut(f) given by Pε,B(p) = ε(p) · P(p) · B(p)

Proof. (1) For any i ∈ I, τ(S2
i ) = s̃2

i = exp(ιπhi) so that, for any w ∈ W
such that wαi > 0, τ(SwS2

i S−1
w ) = exp(ιπhwαi

). Thus, τ(p) = ε(p) for any
p ∈ PW .

For the second identity, it is enough to verify the relation on the loops
pwαi

= w(pαi
) ∈ Π1(X; wx0), where pαi

= si(γi) ◦ γi, for i ∈ I, and w ∈ W is
such that wαi > 0 (cf. Section 5.1). For w = id, one has

B(pαi
) = B(si(γi))B(γi) = si(Asi

(γi)
−1

B(γi))B(γi) = si(Asi
(γi))

−1

where the second equality follows from A = dB, and the third one from
B(γi) ∈ exp(C�tαi

). By Remark 5.4, Av is the parallel transport of the
abelian connection

(5.4) d − h
∑

α∈Δ+:
vα∈Δ−

dα

α
· tα

For v = si, this is d − hd log αi · tαi
, so that Asi

(γi) = exp(�tαi
/2).

For w �= id, one has

B(w(pαi
)) = w(Aw(pαi

)−1
B(pαi

)) = w(Aw(pαi
))−1 exp(�twαi

/2)
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Note that dα/α has a non-zero residue on the hyperplane αi = 0 only if
α = ±αi. It follows from (5.4) for v = w, and wαi ∈ Δ+ that Aw(pαi

) = 1,
whence the result.

(2) follows from (1) and Theorem 5.5.

6. Braided Coxeter categories

We review below the notion of braided Coxeter category introduced in
[ATL19a]. Informally speaking, such an object is a collection of braided
monoidal categories labelled by the subdiagrams of a given diagram D –
in the relevant examples the Coxeter graph of g. These are equipped with
relative fiber functors corresponding to the inclusions of subdiagrams and an
additional combinatorial datum – a maximal nested set – which labels points
at infinity in the De Concini–Procesi model of the Cartan subalgebra of g

[DCP95]. The functors corresponding to the inclusion ∅ ⊂ D additionally
carry distinguished automorphisms – the local monodromies – which give rise
to an action of the generalised braid group BW .

For U�g, such a structure arises on Oint
∞,U�g

from the R-matrix and quan-

tum Weyl group operators. For the category O�,int
∞,g , it arises from the dynami-

cal coupling of the KZ and Casimir connections of g [TL16]. This is analogous
to the fact that the monodromy of the KZ equations gives rise to a braided
tensor category structure on O�

∞,g [Dri89], and the fact that the canonical
fundamental solutions of the Casimir equations constructed by Cherednik
and De Concini–Procesi [Che89, DCP95] give rise to a Coxeter structure on
O�,int

∞,g [TL08].

6.1. Nested sets [ATL15, Sec. 5]

A diagram is an undirected graph D with no multiple edges or loops. A sub-
diagram B ⊆ D is a full subgraph that is, a graph consisting of a (possibly
empty) subset of vertices of D, together with all edges of D joining any two
elements of it.

Two subdiagrams B1, B2 ⊆ D are orthogonal if they have no vertices in
common, and no two vertices i1 ∈ B1, i2 ∈ B2 are joined by an edge in D.
Two subdiagrams B1, B2 ⊆ D are compatible if either one contains the other
or they are orthogonal.

A nested set on D is a collection H of pairwise compatible, connected
subdiagrams of D which contains the empty subdiagram and the connected
components of D. We denote by Mns(D) the collections of maximal nested
sets on D.
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More generally, if B′ ⊆ B ⊆ D are two subdiagrams, a nested set on B
relative to B′ is a collection of pairwise compatible subdiagrams of B which
contains the connected components of B and B′, and in which every element
is compatible with, but not properly contained in any of the connected com-
ponents of B′. We denote by Mns(B, B′) the collections of maximal nested
sets on B relative to B′.

Remark. It is well-known that when D is a diagram of type An−1

• • · · · • •1 2 n−2 n−1

maximal nested sets on D are in bijection with complete bracketings on the
non-associative monomial x1x2 · · · xn. Specifically, for any 1 � i � j � n, the
connected subdiagram [i, j] ⊆ D corresponds to the brackets

x1 · · · (xi · · · xj+1) · · · xn

and two subdiagrams B1, B2 ⊆ D are compatible if and only if the correspond-
ing brackets are consistent. Similarly, maximal nested sets on D relative to a
subdiagram B ⊂ D are in bijection with partially complete bracketings, i.e.,
complete except for the monomials (xi · · · xj+1), where [i, j] is a connected
component of B.

6.2. Braided Coxeter categories [ATL15, Sec. 9]

A labelling m of a diagram D is the assignment of an element mij ∈
{2, 3, . . . , ∞} to any pair i, j of distinct vertices of D such that mij = mji

and mij = 2 if i and j are orthogonal.
Let (D, m) be a labelled diagram. A braided Coxeter category C of type

(D, m) consists of the following data

• Diagrammatic categories. For any subdiagram B ⊆ D, a braided
monoidal category CB.

• Restriction functors. For any pair of subdiagrams B′ ⊆ B and rela-
tive maximal nested set F ∈ Mns(B, B′), a tensor functor FF : CB →
CB′ .6

• Generalised associators. For any pair of subdiagrams B′ ⊆ B and
relative maximal nested sets F , G ∈ Mns(B, B′), an isomorphism of
tensor functors ΥGF : FF ⇒ FG .

6Note that FF is not assumed to be braided.
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• Vertical joins. For any chain of inclusions B′′ ⊆ B′ ⊆ B, F ∈
Mns(B, B′), and F ′ ∈ Mns(B′, B′′), an isomorphism of tensor functors
aF

F ′ : FF ′ ◦ FF ⇒ FF ′∪F .
• Local monodromies. For any vertex i of D with corresponding re-

striction functor F{i} : Ci → C∅, a distinguished automorphism Si ∈
Aut(F{i}).7

These data are assumed to satisfy the following properties.

• Normalisation. If F = {B} is the unique element in Mns(B, B), then
FF = idCB

with the trivial tensor structure.
• Transitivity. For any B′ ⊆ B and F , G, H ∈ Mns(B, B′), ΥHF =

ΥHG ◦ ΥGF as isomorphisms FF ⇒ FH. In particular, ΥFF = idFF
and

ΥGF = Υ−1
FG .

• Associativity. For any B′′′ ⊆ B′′ ⊆ B′ ⊆ B, F ∈ Mns(B, B′), F ′ ∈
Mns(B′, B′′), and F ′′ ∈ Mns(B′′, B′′′),

aF ′∪F
F ′′ · aF

F ′ = aF
F ′′∪F ′ · aF ′

F ′′

as isomorphisms FF ′′ ◦ FF ′ ◦ FF ⇒ FF ′′∪F ′∪F .
• Vertical factorisation. For any B′′ ⊆ B′ ⊆ B, F , G ∈ Mns(B, B′)

and F ′, G′ ∈ Mns(B′, B′′),

Υ(G′∪G)(F ′∪F) ◦ aF
F ′ = aG

G′ ◦

⎛
⎜⎝

ΥGF

◦
ΥG′F ′

⎞
⎟⎠

as isomorphisms FF ′ ◦ FF ⇒ FG′ ◦ FG .
• Generalised braid relations. For any B ⊆ D, i �= j ∈ B and maximal

nested sets K[i], K[j] on B such that {i} ∈ K[i], {j} ∈ K[j], the following
holds in Aut FK[i]

Ad (Υij) (Sa
j ) · Sa

i · Ad (Υij) (Sa
j ) · · ·

︸ ︷︷ ︸
mij

= Sa
i · Ad (Υij) (Sa

j ) · Sa
i · · ·

︸ ︷︷ ︸
mij

where Υij = ΥK[i]K[j] and Sa
i = Ad a

K[i]i
K[i]i

(Si) ∈ Aut FK[i].
8

• Coproduct identity. For any i ∈ D, the following holds in Aut(F{i} ⊗
F{i})

(6.1) J−1
i ◦ F{i}(ci) ◦ Δ(Si) ◦ Ji = c∅ ◦ (Si ⊗ Si)

7Note that Si is not assumed to be a tensor automorphism of F{i}.
8K[i]i and K[i]

i
denote the truncations of K[i] at {i}.
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where Ji is the tensor structure on F{i} and ci, c∅ are the opposite
braidings in Ci and C∅, respectively.9

6.3. Representations of braid groups

Let Bm
D be the braid group with generators Si, i ∈ D, and relations (2.2) for

the labelling m. Let Bm
B � Bm

D be the subgroup generated by Si with i ∈ B.
Finally, let Bn be the braid group associated to the symmetric group Sn,
with generators T1, . . . , Tn−1, and brn the set of complete bracketings on the
non-commutative monomial x1x2 · · · xn.

Let C = (CB, FF , ΥFG , aF
F ′ , Si) be a braided Coxeter category. Then, there

is a family of representations

λC

F ,b : Bm
B × Bn → Aut(F�n

F )

labelled by B ⊆ D, F ∈ Mns(B), and b ∈ brn, which is uniquely determined
by the conditions

• λC

F ,b(Si) = Ad(a
F

i

F i)(Si)1...n if {i} ∈ F and λC

G,b = Ad(ΥGF)1...n ◦ λC

F ,b.

• λC

F ,b(Ti) = R∨
B,i,i+1 if b = x1 · · · (xixi+1) · · · xn and λC

F ,b′ = Ad(ΦB,b′b) ◦
λC

F ,b, where ΦB and R∨
B are the associativity and commutativity con-

straints of CB.

6.4. Equivalence of braided Coxeter categories

Let C, C ′ be two braided Coxeter categories of type (D, m). An equivalence
H : C → C ′ is the data of

• For any B ⊆ D, a braided tensor equivalence HB : CB → C′
B

• For any B′ ⊆ B and F ∈ Mns(B, B′), an isomorphism γF of tensor
functors

(6.2)

CB C′
B

CB′ C′
B′

HB

FF F ′
FγF

HB′

These are required to preserve the generalised associators, vertical joins, and
local monodromies.

9Given a braided monoidal category with braiding β, we set βop

X,Y := β−1

Y,X .
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• For any B′ ⊆ B ⊆ D and F , G ∈ Mns(B, B′),

ΥGF ◦ γF = γG ◦ Υ′
GF

as isomorphisms F ′
F ◦ HB ⇒ HB′ ◦ FG .

• For any B′′ ⊆ B′ ⊆ B ⊆ D, F ∈ Mns(B, B′), and F ′ ∈ Mns(B′, B′′),

γF ′∪F ◦ (aF
F ′)′ = aF

F ′ ◦

⎛
⎜⎝

γF

◦
γF ′

⎞
⎟⎠

as isomorphisms F ′
F ′ ◦ F ′

F ◦ HB ⇒ HB′ ◦ FF∪F ′ .
• For any i ∈ D, Si ◦ γ∅i = γ∅i ◦ S′

i as isomorphisms F ′
i ◦ Hi ⇒ H∅ ◦ Fi.

Let H : C → C ′ be an equivalence of braided Coxeter categories. Then,

the representations of the braid groups λC

F ,b and λ
C ′

F ,b are equivalent through
the natural isomorphism γF : F ′

F ◦ HB ⇒ FF .

6.5. The braided Coxeter category O int

U�g,R,S

Let now A be a symmetrisable generalised Cartan matrix, (h, Π, Π∨) a realisa-
tion of A, g the corresponding Kac–Moody algebra and D its Dynkin diagram
with the standard labelling (2.2), thus Bm

D = BW . To simplify the exposition,
we assume that A is of finite or affine type, and h is its minimal realisation.

For any proper subdiagram B � D, we denote by gB � g the subalgebra
generated by {ei, fi, hi}i∈B, and set gD = g.10 Similarly, we denote by U�gB �

U�g the subalgebra topologically generated by {Ei, Fi, hi}i∈B, and set U�gD =
U�g.

Then, the braided Coxeter category O int
U�g,R,S is given by the following

data.

• The diagrammatic category corresponding to B ⊆ D is the monoidal
category Oint

∞,U�gB
, with braiding induced by the universal R-matrix RB

of U�gB.
• For any B′ ⊆ B and F ∈ Mns(B, B′), FF is the restriction functor

Res�B′B : Oint
∞,U�gB

→ Oint
∞,U�gB′

with the trivial tensor structure.
• The generalised associators and vertical joins are trivial.

10Since A is assumed to be of finite or affine type, gB = g′
B is the Kac–Moody

algebra corresponding to the Cartan submatrix AB . For a general A, the definition
of gB and U�gB requires a realisation which is diagrammatic in the sense of [ATL15,
Sect. 2.4].
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• The local monodromy corresponding to i ∈ D is the quantum Weyl
group operator Si ∈ Aut(f int

�,i).

Remarks.

(1) The braided Coxeter structure on O int
U�g,R,S is particularly simple in that

the restriction functors, the generalised associators, and the vertical join
do not depend upon the choice of a maximal nested set F ∈ Mns(B, B′),
but only on the subdiagrams B′ ⊆ B.

(2) The category O int
U�g,R,S gives rise to a single representation of the braid

group BW (independent of F) which is the quantum Weyl group action
ρ : BW → Aut(f int

� ) from Section 4.2.
(3) Strictly speaking, for the coproduct identity (6.1) to hold, it is necessary

to consider a Cartan correction of the quantum Weyl group operator Si

(cf. [ATL15, Sec. 17.3]). For simplicity, we shall gloss over this technical
detail and refer the reader to [ATL15].

6.6. The braided Coxeter category O
�,int

g,∇

In [ATL15, Sec. 16], we defined a braided Coxeter category O int
g,∇ which un-

derlies the equivariant monodromy of the Casimir connection, together with
that of the KZ equations for all the subalgebras gB ⊆ g. In outline, O int

g,∇ is
described as follows.

• The diagrammatic category corresponding to B ⊆ D is the braided
monoidal category O�,int

∞,gB
, with associativity and commutativity con-

straints given by the KZ associator Φ∇
B and R-matrix R∇

B = exp(�ΩB/2),
where ΩB ∈ gB⊗̂gB is the Casimir tensor of gB, cf. [Dri90].

• For any B′ ⊆ B and F ∈ Mns(B, B′), FF is the standard restriction
functor fB′B : O�,int

∞,gB
→ O�,int

∞,gB′ , with tensor structure given by the
relative twists J∇

F constructed in [TL16], see also [ATL15, Sec. 13].
• For any B′ ⊆ B and F , G ∈ Mns(B, B′), the natural isomorphism of

tensor functors FG ⇒ FF is given by the De Concini–Procesi (relative)
associator Υ∇

FG constructed in [DCP95], see also [ATL15, Sec. 8].
• The vertical joins are trivial.
• The local monodromy corresponding to any i ∈ D is the operator

(cf. (5.2))

(6.3) S∇
i = s̃i · exp(�Kαi

/4)

Remark. Contrary to the local monodromies S∇
i , the data (Φ∇

B ,R∇
B ,J∇

F , Υ∇
FG)

acts on category O∞ modules. By replacing the diagrammatic categories
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O�,int
∞,gB

with O�
∞,gB

and excluding the S∇
i , one obtains a braided pre-Coxeter

category O�
g,∇ [ATL15, Sec. 15].

In 6.7–6.9, we briefly outline the construction of the relative De Concini–
Procesi associators Υ∇

FG and the relative twists J∇
F .

6.7. Monodromy data of the Casimir connection

Following Cherednik [Che89, Che91] and De Concini–Procesi [DCP95] (see
also [ATL15, Sec. 8]), for any F ∈ Mns(D), there is a canonical universal so-
lution GF of ∇K valued in Aut(f). It is uniquely determined by its prescribed
asymptotics on a point at infinity pF corresponding to a choice of blow-up
coordinates on X associated to F .

For any F , G ∈ Mns(D), the De Concini–Procesi associator Υ∇
FG is the

element of Aut(f) defined by

GG(x) = GF (x) · Υ∇
FG

where x lies in the fundamental Weyl chamber. The datum of the De Concini–
Procesi associators yields a combinatorial description of the equivariant mon-
odromy of ∇K as follows (cf. [ATL15, Thm. 9.3]). Let S∇

i be given by (6.3).
Then, there is a family of representations

μF : BW → Aut(f int)

labelled by F ∈ Mns(D), which is uniquely determined by the conditions

• μF (Si) = S∇
i if {i} ∈ F

• μG = Ad(ΥGF ) ◦ μF

The representation μF is the equivariant monodromy of ∇K computed with
respect to the fundamental solution GF .

6.8. Generalised associators

For any B ⊆ D, one similarly obtains the associators Υ∇
FG ∈ Aut(fB) with

F , G ∈ Mns(B) which, together with the local monodromies {S∇
i }i∈B, de-

scribe the equivariant monodromy of the Casimir connection of gB. These
associators are related to those for g as follows. Let H ∈ Mns(D, B) and
F , G ∈ Mns(B, ∅). Then, [DCP95, Thm. 3.6] implies that

(6.4) Υ∇
H∪G H∪F = ιDB(Υ∇

GF )
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where ιDB : End(fB) → End(fD) is induced by the equality fD = fDB ◦ fB.
The relative associators corresponding to an inclusion B′ ⊆ B are con-

structed as follows. Let F , G ∈ Mns(B, B′), choose H ∈ Mns(B′, ∅), and set

Υ∇
GF = Υ∇

G∪H F∪H

One then proves that the definition is independent of the choice of H, and
that Υ∇

GF centralises gB′ [DCP95, Thm. 3.6], and therefore can be thought of
as an automorphism of the restriction functor fB′B : O�

∞,gB
→ O�

∞,gB′
.

These associators satisfy the vertical factorisation since if B′′ ⊆ B′ ⊆ B,
F , G ∈ Mns(B, B′), F ′, G′ ∈ Mns(B′, B′′),

Υ∇
G∪G′ F∪F ′ = Υ∇

G∪G′ G∪F ′ · Υ∇
G∪F ′ F∪F ′ = ιBB′(Υ∇

G′F ′) · Υ∇
GF

where the second equality follows from (6.4) and the definition of Υ∇
GF .

6.9. Monodromy data of the joint KZ-Casimir system

The tensor structures {J∇
F }F∈Mns(D) on the forgetful functor f = fD are ob-

tained from the dynamical KZ equations in n = 2 points

(6.5) d −
(

h
Ω

z
+ μ(1)

)
dz

where z = z1 − z2, μ ∈ h and μ(1) = μ ⊗ 1 as follows.
These admit a canonical solution G0 which is asymptotic to zhΩ near

z = 0. If μ is regular and real, they also admit two canonical solutions G±

which are asymptotic to zhΩ0 · exp(zμ(1)) as z → ∞ with Im z ≷ 0, where Ω0

is the projection of Ω onto h ⊗ h [TL16, Sect. 6]. Define the differential twist
J±(μ) by

J±(μ) = G−1
0 (z) · G±(z)

where Im z ≷ 0.
Then, J±(μ) kills the KZ associator for g. As a function of μ ∈ C, where C

is the fundamental Weyl chamber, J±(μ) is real analytic and varies according
to the Casimir equations [TL16, Sect. 7]

dhJ± =
h

2

∑

α∈Δ+

dα

α

(
Δ(K+

α )J± − J±

(K+
α ⊗ 1 + 1 ⊗ K+

α

))

It follows that, for any maximal nested set F ∈ Mns(D), the twist

J∇
F = Δ(GF (μ))−1 · J±(μ) · GF (μ)⊗2
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where GF (μ) is the fundamental solution of the Casimir connection corre-
sponding to F (see 6.7), is independent of μ ∈ C, and a tensor structure
on fD.

The relative twists J∇
F corresponding to any B′ ⊆ B and F ∈ Mns(B, B′)

are obtained by relying on vertical factorisation as follows. Fix H ∈Mns(B′, ∅),
let F ∇

F∪H and F ∇
H be the tensor structures on fB, fB′ corresponding to F ∪ H

and H respectively. Then, define J∇
F by

fB′(J∇
F ) = J∇

F∪H · (J∇
H )−1

More precisely, the right-hand side is a collection of natural isomorphisms

fB′ (fB′B(U) ⊗ fB′B(V )) → fB(U ⊗ V ) = fB′ (fB′B(U ⊗ V ))

defined for any U, V ∈ O�
∞,gB

. One can prove that it satisfies the centraliser
property, i.e., commutes with the action of gB′ [TL16, Sect. 8]. Since fB′ is
faithful, it follows that it is of the form fB′(J∇

F ) for a unique J∇
F . Moreover,

the latter is independent of the choice of H.

7. The equivariant monodromy theorem

We review in this section the main result of [ATL15], which extends that of
[TL08, TL16] to the case of an arbitrary symmetrisable Kac–Moody algebra,
and yields an equivalence of braided Coxeter categories O

�,int

g,∇ → O int
U�g,R,S .

Its proof relies on the Etingof–Kazhdan equivalence, which is briefly reviewed
in 7.1–7.2.

7.1. The Etingof–Kazhdan equivalence

In [EK08, Thm. 4.2], Etingof and Kazhdan construct an equivalence of cate-
gories F : O�

∞,g → O∞,U�g, together with an isomorphism α of functors

O�
∞,g O∞,U�g

Vect�

F

f f�

α

where f and f� are the forgetful functors.11 The equivalence F is the identity
on h-modules and preserves integrability [ATL15, Lemma 22.9]. It therefore

11More precisely, in [EK08] Etingof–Kazhdan construct an equivalence F between
the larger categories of deformation Drinfeld–Yetter modules over the negative Borel
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gives rise to a diagram of functors in which every face commutes

(7.1)

O�,int
∞,g Oint

∞,U�g

O�
∞,g O∞,U�g

Mod�
h Mod�

h

Vect� Vect�

Fint

fint

f0
int f�,0

int

f�
int

F

f0

f

f�,0

f�

fh fh

where the vertical arrows are restriction functors, and the natural isomor-
phisms are either trivial or induced from α.12

7.2. The Etingof–Kazhdan isomorphism

In terms of completions, the Etingof–Kazhdan equivalence (F, α) gives rise to
an isomorphism Ψ : End(f�) → End(f) via the composition

(7.2) End(f�) −→ End(f� ◦ F) −→ End(f)

where the first isomorphism is induced by F, and the second is given by Ad(α).
By (7.1), Ψ restricts to an isomorphism Ψint : End(f int

� ) → End(f int) such that

End(f int

� ) End(f int)

End(f�) End(f)

End(fh) End(fh)

Ψint

Ψ

�

�

subalgebra b−, and admissible Drinfeld–Yetter modules over U�b
− (see also [ATL18,

6.13]). It easily follows that F restricts to an equivalence O�
∞,g → O∞,U�g since it

is the identity on Drinfeld–Yetter h-modules, see [ATL15, Lemma 22.11]. By the
same argument, it also restricts to an equivalence O�

g → OU�g.
12The categories W�, O�

∞,g and O∞,U�g
naturally fit within the diagram (7.1),

but are omitted for simplicity.
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where the vertical arrows are restriction to category O∞ and integrable mod-
ules.

7.3. The classical Drinfeld algebra

Let D be the analogue of the Drinfeld algebra D� for Ug[[�]] (cf. Section 3.1).
Namely, for any β ∈ Q+, let Bβ = {Xβ,p} be a basis of Un+

β and B =⊔
β∈Q+

Bβ. Set

D0 =

{
∑

X∈B

cXX : cX ∈ Ub−

}
=
∏

β∈Q+

Ub− ⊗ Un+
β ⊃ Ug

and D = D0[[�]]. The algebra structure of Ug[[�]] extends to one on D and
yields a chain of morphisms Ug[[�]] ⊂ D → End(f). Proceeding as in Section 3
one shows that D embeds into End(f) and End(f int).

7.4. The monodromy theorem

In [ATL15, Thm. 22.1] we prove the following.

Theorem.

(1) There is a canonical equivalence of braided pre-Coxeter categories (cf.
Remark 6.6)

Hg = (HB, γF ) : O
�
g,∇ → OU�g,R,S

such that

– for any B ⊆ D, the equivalence HB is the Etingof–Kazhdan functor

FgB
: O�

∞,gB
→ O∞,U�gB

– for any B′ ⊆ B and F ∈ Mns(B, B′), the natural isomorphism γF

is induced by the action of an invertible weight zero element gF in
the Drinfeld algebra of gB, i.e., there is a commutative diagram of
functors
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(7.3)

O∞,U�gB

O�
∞,gB

O∞,U�gB′

O�
∞,gB′

Vect�

Vect�

f�,B

f
�,B′B

γF

fB

fB′B

FgB

f
�,B′

Fg
B′

fB′

gF

where the unmarked back face is the identity and the two unmarked
lateral faces are the isomorphisms α for gB and gB′.

(2) Hg restricts to an equivalence of braided Coxeter categories

Hint

g = (H int

B , γF ) : O
�,int

g,∇ → O
int

U�g,R,S

where H int
B = Fint

gB
.

(3) For any F ∈ Mns(D), the isomorphism

Ψint

F = Ad(gF ) ◦ Ψint : End(f int

� ) → End(f int)

intertwines the quantum Weyl group and the monodromy actions of BW ,
i.e.,

(7.4)

BW

End(f int

� ) End(f int)

λ μF

Ψint
F

�

where μF = PF
τ,B denotes the monodromy action of BW around the

point at infinity in the De Concini–Procesi compactification of X corre-
sponding to F .
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Since the diagrammatic equivalences are fixed, the proof amounts to
constructing suitable isomorphisms (6.2). The construction is in two steps.
First, we prove that O int

U�g,R,S is equivalent to a braided Coxeter category

O
�,int

g,R,S with diagrammatic categories O�,int
∞,gB

, B ⊆ D, and standard restric-
tion functors with non-trivial tensor structures. The equivalence is given by
the diagrammatic Etingof–Kazhdan functors, equipped with natural isomor-
phisms γ̃F whose construction is carried out in [ATL18, ATL19a]. Then, re-
lying on the rigidity result from [ATL19b], we prove that O

�,int

g,R,S is equiv-

alent to O
�,int

g,∇ with diagrammatic equivalences given by the identity func-
tors. Finally, we observe that, by [ATL19a, Thm. 10.7], the resulting iso-
morphisms γF satisfy (7.3) for weight zero elements gF in the Drinfeld alge-
bra.

8. The monodromy theorem in category O∞

In this section, we show the equivalence of the actions of PW constructed in
Sections 4 and 5. The proof relies on the equivariant monodromy Theorem 7.4,
the explicit description of the actions of PW from Sections 4 and 5, and the
following auxiliary result.

8.1. Isomorphism between Drinfeld algebras

We show below that the isomorphism Ψ : End(f�) → End(f) (7.2) restricts
to an isomorphism ΨD : D� → D. Our proof closely follows Etingof and
Kazhdan’s argument [EK08, Rem. p. 535] for the analogous algebra Q� =
limβ U�g/Iβ (cf. Remark 3.1), and completes their affirmative answer to a
question raised by Drinfeld [Dri92, Question 8.2].13

For any β =
∑

i kiαi ∈ Q+, define the height of β by ht β =
∑

i ki. For any
n � 0, let Jn ⊆ U�g be the left ideal generated by (U�n

+)β with ht(β) > n.

Set U
(n)
� = U�g/Jn, and denote by ι�mn : U

(n)
� → U

(m)
� (m � n) the natural

morphisms. Their classical analogues U (n) and ιmn : U (n) → U (m) (m � n)
are defined similarly for Ug[[�]].

13The argument in [EK08] is not complete since the modules Ug/Iβ are not
equicontinuous for an arbitrary Kac–Moody algebra g, so that the Etingof–Kazhdan
equivalence F cannot be applied to them. In particular, the existence of an isomor-
phism between Q� and its classical counterpart raised in [Dri92, Question 8.2] is
not settled by [EK08]. Theorem 8.1 yields such an isomorphism for the algebra D�.
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Theorem.

(1) There is a canonical isomorphism of U�g-modules D� � limn U
(n)
� .

(2) There is a canonical isomorphism of Ug[[�]]-modules D � limn U (n).
(3) Ψ restricts to an isomorphism of algebras ΨD : D� → D.

Proof. (1)–(2) The action of D� on the cyclic vector yields surjective mor-

phisms φn : D� → U
(n)
� of U�g-modules such that ι�mn ◦ φn = φm. The

corresponding morphism φ : D� → limn U
(n)
� is easily seen to be an isomor-

phism.

(3) The algebra structure of D� is encoded by the morphisms between

the modules U
(n)
� . Namely, we have a natural isomorphism

Dop
� � EndU�g

(
lim

n
U

(n)
�

)
� lim

m
colim

n
HomU�g(U

(n)
� , U

(m)
� )

(see also [App13, Appendix A.1]). A similar results holds for D.

The module U (n) (resp. U
(n)
� ) does not lie in O�

∞,g (resp. O∞,U�g) since

it is free over Uh[[�]]. However, the fact that Un+
β v = 0 (resp. U�n

+
β v = 0) for

all but finitely many β ∈ Q+ for any weight vector v ∈ U (n) (resp. v ∈ U
(n)
� )

implies that U (n) is an equicontinuous g-module and therefore a Drinfeld–

Yetter module over b−, and that U
(n)
� is an admissible Drinfeld–Yetter module

over U�b
−. One can therefore apply the equivalence F to U (n), and finds

that F(U (n)) = U
(n)
� and F(ιmn) = ι�mn [EK08, Thms. 4.1–4.2]. This yields a

collection of natural isomorphisms

HomUg[[�]](U
(n), U (m)) � HomU�g(U

(n)
� , U

(m)
� )

and the desired isomorphism ΨD : D� → D.

8.2. The monodromy theorem

Theorem. The monodromy of the normally ordered Casimir connection on

a g-module V ∈ O�
∞,g is canonically equivalent to the normally ordered quan-

tum Weyl group action of the pure braid group PW on the Etingof–Kazhdan

quantisation F(V) ∈ O∞,U�g.

Proof. Let F ∈ Mns(D). By Theorem 7.4 (3), there is a weight zero element

gF ∈ D× ⊂ Aut(f) such that Ψint
F = Ad(gF ) ◦ Ψint intertwines the quantum

Weyl group and the monodromy actions of BW , cf. (7.4). We claim that this
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yields a commutative diagram

PW

End(f int

� ) End(f int)

D� D

End(f�) End(f)

λε,B PF

λε,B PF

Ψint
F

ΨD
F

Ψ
F

where ΨD
F = Ad(gF ) ◦ ΨD, PF denotes the normally ordered monodromy

action of PW around the point at infinity corresponding to F , and every face
is commutative. Then, the result follows from the commutativity of the back
face.

We first prove the commutativity of the top face. Since gF ∈ D is weight
zero and Fint : O�,int

∞,g → Oint
∞,U�g

is the identity at the level of h-modules
in Vect�, Ψint

F = Ad(gF ) ◦ Ψint intertwines the characters of PW given by
ε(pα) = exp(ιπhα), and B(pα) = exp(�tα/2). Therefore, by Theorem 4.5 (1)
and Proposition 5.6 (3), we can remove ε and B, and obtain the result.

The commutativity of the lateral faces follows from Sections 4 and 5.
Namely, by Theorem 4.5 (2) and Section 4.6, the normally ordered quantum
Weyl group action of the pure braid group PW ⊂ BW factors through the
Drinfeld algebra D� ⊂ End(f�). Moreover, by definition, P is the normally
ordered monodromy action of PW , which readily factors through the classical
Drinfeld algebra D ⊂ End(f).

The commutativity of the bottom and front faces follows from Section 8.1.
Namely, by Theorem 3.1 (and its analogue for Ug[[�]]), the restriction to in-
tegrable category O∞ modules yields the embeddings D� ↪→ End(f int

� ) and
D ↪→ End(f int). Since gF ∈ D, it follows from Theorem 8.1 that Ψint

F also
restricts to an isomorphism ΨD

F = Ad(gF ) ◦ ΨD : D� → D.
Finally, since D embeds in End(f int), the commutativity of the top, lateral,

bottom, and front faces yields that of the diagram

PW

D� D

λε,B PF

ΨD
F

�

and the result follows.
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8.3. The equivariant monodromy theorem

The following is a direct consequence of Theorem 8.2.

Theorem. Let V be a g-module in category O�
∞, F(V) its Etingof–Kazhdan

quantisation,

Pε,B : PW → GL(V) and λ : PW → GL(F(V))

the equivariant monodromy of the Casimir connection given by Proposition
5.6, and quantum Weyl group action given by Theorem 4.5.

Then, Pε,B and λ are canonically equivalent. Specifically, for any F ∈
Mns(D) the following diagram is commutative

PW

End(f�) End(f)

λ Pε,B
F

Ψ
F

�

8.4. Extension to other Lie associators

Although Theorem 8.2 and Corollary 8.3 are formulated in terms of the tensor
equivalence F : O∞ → O∞,U�g corresponding to the KZ associator, they hold
true for the Etingof–Kazhdan equivalence corresponding to an arbitrary Lie
associator Φ.

Indeed, by [ATL18, ATL19a] the braided Coxeter category O int
U�g,R,S un-

derlying the R-matrix and quantum Weyl group of U�g (see 6.5) is equiv-
alent to a braided Coxeter category O

�,int,Φ

g,R,S with diagrammatic categories

{O�,int
∞,gB

}B⊆D, and standard restriction functors, with the corresponding hori-
zontal equivalences O�

∞,gB
→ O∞,U�gB

given by the Etingof–Kazhdan tensor

equivalence FΦ
gB

corresponding to gB and the choice of Φ.

By the rigidity result of [ATL19b], O
�,int,Φ

g,R,S is equivalent to O
�,int

g,∇ , with
diagrammatic equivalences given by the identity functors endowed with a
non-trivial tensor structure.

Composing yields an equivalence O
�,int

g,∇ → O int
U�g,R,S whose diagrammatic

equivalences are the Etingof–Kazhdan functors corresponding to Φ, which
then yields Theorem 8.2 and Corollary 8.3 for FΦ.

9. Parabolic pure braid group actions

In this section, we extend the results of Sections 4 and 8 to parabolic pure
braid groups.
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9.1. The group PBJ

For any subset J ⊆ I, let PBJ ⊆ BW be the preimage of WJ = 〈sj〉j∈J under
the projection BW → W . Thus, PB∅ = PW and PBI = BW . The parabolic
pure braid group PBJ is generated by the braid group BWJ

and the pure braid
group PW . Moreover, as an abstract group,

PBJ � (PW � BWJ
)/P̃WJ

where P̃WJ
= {(p, p−1) | p ∈ PWJ

} ⊂ PW � BWJ

9.2. Quantum Weyl group action of PBJ

Let U�gJ ⊆ U�g be the Hopf subalgebra generated by {Ej , Fj , hj}j∈J, and
OJ-int

∞,U�g
⊆ O∞,U�g the full subcategory of modules whose restriction to U�gJ

is integrable. We have the inclusions

Oint

∞,U�g
⊂ OJ-int

∞,U�g
⊂ O∞,U�g

together with the equalities O∅-int

∞,U�g
= O∞,U�g and OI-int

∞,U�g
= Oint

∞,U�g
.

Let fJ–int

� : OJ-int
∞,U�g

→ Vect� be the forgetful functor. We define below and
in 9.3 two actions

λ, λε[J],B[J] : PBJ → Aut(fJ–int

� )

such that

• for J = ∅, they recover the quantum Weyl group action λ : PW →
Aut(f�) from Theorem 4.5 (3) and the normally ordered quantum Weyl
group action λε,B : PW → U�g from Section 4.6, respectively.

• for J = I, both give the quantum Weyl group action λ : BW → Aut(f int

� ).

Let f int

J,� : Oint
∞,U�gJ

→ Vect� be the forgetful functor and λJ : BWJ
→

Aut(f int

J,�) the quantum Weyl group action of BWJ
. Let λJ–int : BWJ

→ Aut(fJ–int

� )
be its lift through the restriction functor OJ-int

∞,U�g
→ Oint

∞,U�gJ
.

Theorem. The following holds.

(1) The quantum Weyl group action of PBJ on integrable modules in cate-
gory O∞,U�g has a unique extension to an action λ : PBJ → Aut(fJ–int

� )
such that λ|BWJ

= λJ–int and λ|PW
is the restriction of the action (4.2)

to OJ-int
∞,U�g

⊂ O∞,U�g.
(2) The map λ intertwines the inner action of PBJ on U�g, i.e., for any

element Y ∈ U�g and b ∈ PBJ

λ(b)Y λ(b)−1 = b(Y )

in End(fJ–int

� ).
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Proof. The uniqueness of λ follows from the fact that PBJ is generated by
PW and BWJ

. To prove the existence of λ, it is enough to observe that on the
one hand there is a commutative diagram

BW Aut(f int

� )

BWJ
Aut(fJ–int

� )

λ

λJ–int

where the right vertical arrow is induced by the inclusion Oint
∞,U�g

⊂ OJ-int
∞,U�g

.
On the other, by Theorem 4.5, the quantum Weyl group action of PW on
integrable modules extends canonically to O∞,U�g and therefore to OJ-int

∞,U�g
⊆

O∞,U�g, i.e., there is a commutative diagram

BW Aut(f int

� )

PW Aut(fJ–int

� )

λ

λ

The actions of BWJ
and PW on f int

� give rise to an action of PW � BWJ
,

since, for any p ∈ PW and b ∈ BWJ
, one has

λJ–int(b) · λ(p) = λJ–int(b) · ε�(p) · K (p)

= b(ε�(p)) · b(K (p)) · λJ–int(b)

= ε�(bpb−1) · K (bpb−1) · λJ–int(b)

= λ(bpb−1) · λJ–int(b)

where the third equality follows the BW -equivariance of K (Theorem 4.5
(2)). Moreover, they coincide on PWJ

= PW ∩ BWJ
, and therefore give rise to

the desired action λ : PBJ → Aut(fJ–int

� ).

9.3. Normally ordered quantum Weyl group action of PBJ

Let ΔJ ⊆ Δ be the root subsystem generated by {αj}j∈J, and let

(9.1) ε
[J]
� : PBJ → Aut(fJ–int

� ) and B
[J] : PBJ → exp(�h)

be the morphisms uniquely defined by the following conditions.

• For any b ∈ BWJ
, ε

[J]
� (b) = 1 = B[J](b).



Pure braid group actions on category O modules 71

• For any α ∈ Δre
J,+, ε

[J]
� (pα) = 1 = B[J](pα).

• For any α ∈ Δre
+\Δre

J,+, ε
[J]
� (pα) = exp(ιπhα) and B[J](pα) = exp(�tα/2).

Note that ε
[J]
� and B[J] are both BWJ

-equivariant. They therefore give rise
to a morphism

λε[J],B[J] : PBJ → Aut(fJ–int

� ) by λ(b) = ε
[J]
� (b) · λε[J],B[J](b) · B

[J](b)

for any b ∈ PBJ, which we shall refer to as the normally ordered quantum
Weyl group action of PBJ on OJ-int

∞,U�g
. If J = ∅, λε[J],B[J] is the action of PW

constructed in 4.6 while, if J = I, λε[J],B[J] is the quantum Weyl group action
of BW on Oint

∞,U�g
.

9.4. Tits extension and PBJ

Let now gJ ⊆ g be the subalgebra generated by {ej , fj}j∈J, O�,J-int
∞,g ⊆ O�

∞,g

the full subcategory of modules whose restriction to gJ is integrable, and
fJ–int : O�,J-int

∞,g → Vect� the forgetful functor.
Let ε[J] : PBJ → Aut(fJ–int) be the sign character defined as in (9.1), and

define ε[J] : PW → Aut(fJ–int) by the relation

ε(p) = ε[J](p) · ε[J](p)

for any p ∈ PW , where ε is given by (5.3). Thus, ε[J](pα) = exp(ιπhα) if
α ∈ Δre

J,+, and ε[J](pα) = 1 if α /∈ Δre
J,+.

Lemma. Let V be a module in O�,J-int
∞,g . Then, there is an action τ[J] of PBJ

on V uniquely determined by the following conditions.

(1) The restriction of τ[J] to BWJ
is given by the action τJ of the triple

exponentials (2.3) indexed by J.
(2) The restriction of τ[J] to PW is given by the sign character ε[J].

Proof. The result follows at once from Proposition 5.6 (1).

Remark. Equivalently, τ[J] is given by a projection of PBJ onto the Tits

extension W̃J. Note also that, for J = ∅, τ[J] is trivial, while, for J = I,
τ[J] = τ .
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9.5. Monodromy action of PBJ on category OJ-int

∞

We construct below an action

Pτ[J],B[J]
: PBJ → Aut(fJ–int)

by making the monodromy of the Casimir connection ∇K of g equivariant, as
described in 1.9 and 5.4–5.6, but only with respect to the parabolic subgroup
WJ. For J = ∅, Pτ[J],B[J]

is the monodromy P : PW → Aut(f) of ∇K (cf.
Section 5.2) while, for J = I, Pτ[J],B[J]

is the equivariant monodromy action
Pτ,B : BW → Aut(f int) of Theorem 5.5.

Let P : Π1(X; Wx0) → Tg be the monodromy of ∇K, where Tg is
the image of the holonomy algebra (cf. 1.9), and consider its restriction to
Π1(X; WJx0). The lack of equivariance of P under WJ is controlled by the
1-cocycle

A[J] = i∗
J A |WJ

: WJ → Hom(Π1(X; WJx0), exp(�h))

where iJ : Π1(X; WJx0) → Π1(X; Wx0) is the inclusion.
The obstruction A[J] is related to the one for the Casimir connection of

gJ as follows. Consider the quotient map

pJ : he → he/
⋂

α∈ΔJ

Ker(α) � he
J

pJ is equivariant under WJ and, by [Kac90, Prop. 3.12], restricts to a map
X → XJ of Tits cones. It therefore induces a morphism of groupoids pJ :
Π1(X; WJx0) → Π1(XJ; WJ[x0]J), where [x0]J = pJ(x0), which we denote by
the same symbol.

Lemma. Let

AJ : WJ → Hom(Π1(XJ; WJ[x0]J), exp(�hJ))

be the 1-cocycle measuring the lack of equivariance of the Casimir connection
of gJ with respect to WJ. Then, A[J] = p∗

J
AJ.

Proof. Let w ∈ WJ. By Remark 5.4, Aw is the monodromy of the connection
d − haw, where

haw = ∇K − w∗∇K = h
∑

α∈Δ+:
wα<0

dα

α
tα = h

∑

α∈ΔJ,+:
wα<0

dα

α
tα = p∗

J(∇K,J − w∗∇K,J)
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By Theorem 5.5 for gJ, AJ = dBJ, where BJ ∈ Hom(Π1(XJ; WJ[x0]J),
exp(�hJ)). Set B[J] = p∗

J
BJ. Then,

A[J] = p∗
JAJ = p∗

JdBJ = dp∗
JBJ = dB[J]

It follows that B[J] gives rise to a WJ-equivariant morphism

PB[J]
: Π1(X; WJx0) → Tg PB[J]

(γ) = P(γ) · B[J](γ)

Consider next the equivalence of groupoids

PJ : WJ � Π1(X; WJx0) → Π1(X/WJ; [x0]) ∼= PBJ

generalising (5.1). Composing with P −1
J

yields a morphism PBJ → WJ � Tg

and its lift PBJ → PBJ � Tg. Combining this with the action τ[J] of PBJ on
fJ–int defined in Lemma 9.4, yields the following generalisation of Theorem 5.5.

Theorem. There is a morphism Pτ[J],B[J]
: PBJ → Aut(fJ–int) given by

Pτ[J],B[J]
(b) = τ[J](b) · P(b̃) · B[J](b̃)

where b̃ ∈ Π1(X; WJx0) is the unique lift of b through x0.

Remark. Note that, for any j ∈ J, B[J](γj) = exp(�tαj
/4), since pJ maps

γj to the corresponding generator of γJ,i, ∈ Π1(XJ; WJ[x0]J) and B[J](γj) =
exp(�tαj

/4) by construction.

9.6. The monodromy theorem for PBJ

Theorem. The WJ-equivariant monodromy of the Casimir connection on
a g-module V ∈ O�,J-int

∞,g is canonically equivalent to the normally ordered
quantum Weyl group action of the parabolic braid group PBJ on the Etingof–
Kazhdan quantisation F(V) ∈ OJ-int

∞,U�g
.

Proof. The result follows from the combination of Theorem 7.4 for BWJ
and

Theorems 8.2–8.3 for PW .

Specifically, let B ⊆ D be the subdiagram corresponding to J, F a max-
imal nested set containing B ⊆ D corresponding to J, and FJ the induced
maximal nested set on B. Let

fJ : O�
∞,gJ

→ Vect� and fJ,� : O∞,U�gJ
→ Vect�
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be the forgetful functors. By Theorem 7.4 (1) and (7.3), the isomorphism ΨF

restricts to ΨFJ
, i.e., there is a commutative diagram

End(fJ,�) End(f int
J

)

End(f�) End(f)

Ψ
FJ

Ψ
F

�

where the vertical arrows are induced by the restriction functors O�
∞,g →

O�
∞,gJ

and O∞,U�g → O∞,U�gJ
, respectively.

Further, since the Etingof–Kazhdan equivalence preserves the categories

of OJ–int
∞ modules, ΨF restricts to an isomorphism ΨJ–int

F : End(fJ–int

� ) →
End(fJ–int) such that

(1) There is a commutative diagram

End(f int

J,�) End(f int
J

)

End(fJ–int

� ) End(fJ–int)

Ψint
FJ

ΨJ–int
F

�

where the vertical arrows are induced by the restriction functors

O�,J-int
∞,g → O�,int

∞,gJ
and OJ-int

∞,U�g
→ Oint

∞,U�gJ
, respectively.

(2) There is a commutative diagram

End(f�) End(f)

End(fJ–int

� ) End(fJ–int)

Ψ
F

ΨJ–int
F

�

where the vertical arrows are induced by the inclusions O�,J-int
∞,g → O�

∞,g

and OJ-int
∞,U�g

→ O∞,U�g, respectively.

We claim that ΨJ–int
F intertwines the actions of BWJ

and PW , and therefore
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that of PBJ. To this end, consider the diagram

BWJ

End(f int

J,�) End(f int
J

)

PBJ

End(fJ–int

� ) End(fJ–int)

λJ
P

FJ

τJ,BJ

Ψint
FJ

λ
ε[J],B[J] Pτ[J],B[J]

F

ΨJ–int
F

The front face commutes by (1); the top face by Theorem 7.4 (3) for gJ; the

left lateral face by Theorem 9.2 (1). For the right lateral face, recall that, for

any b ∈ PBJ,

P
F
τ[J],B[J]

(b) = τ[J](b) · P
F (b̃) · B[J](b̃)

Let b ∈ BWJ
. By Lemma 9.4 (1), we have that τ[J](b) = τJ(b). Then, by Re-

mark 9.5, B[J](b̃) = BJ(b̃J), where b̃J ∈ Π1(XJ, WJ[x0]J) denotes the unique

lift of b through [x0]J. Finally, PF (b̃) = PFJ(b̃J) since the monodromy

in the De Concini–Procesi compactification is recursive in nature [DCP95,

Thm. 3.6]. Thus, ΨJ–int
F intertwines the actions of BWJ

through PBJ.

Similarly, consider the diagram

PW

End(f�) End(f)

PBJ

End(fJ–int

� ) End(fJ–int)

λ
ε[J],B[J] PF

ε[J],B[J]

Ψ
F

λ
ε[J],B[J] Pτ[J],B[J]

F

ΨJ–int
F

Let p ∈ PW and recall the identities

ε(p) = ε[J](p) · ε[J](p) and B(p) = B[J](p) · B
[J](p)
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from 9.4 and Remark 9.5. The commutativity of the top face then follows
from Theorem 8.2 by correcting simultaneously λε,B and PF by ε[J] and
B[J]. The left lateral face commutes by Theorem 9.2 (1). The right lateral
face commutes by Lemma 9.4 (2). Thus, ΨJ–int

F intertwines the actions of PW

through PBJ.

The (non normally ordered) quantum Weyl group action of PBJ admits
a similar monodromic interpretation, in analogy with Theorem 8.3. Namely,
define Pτ,B : PBJ → Aut(fJ–int

� ) by

(9.2) Pτ,B(b) = ε[J](b) · Pτ[J],B[J]
(b) · B

[J](b)

for any b ∈ PBJ. Then, the following holds.

Corollary. Let V be a g-module in category O�,J–int
∞ , F(V) its Etingof–Kazhdan

quantisation,

Pτ,B : PBJ → GL(V) and λ : PBJ → GL(F(V))

the corrected WJ-equivariant monodromy of the Casimir connection (9.2),
and the quantum Weyl group action given by Theorem 9.2 respectively. Then,
Pτ,B and λ are canonically equivalent.
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