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Abstract: Let g be a symmetrisable Kac—-Moody algebra and
Urg its quantised enveloping algebra. Answering a question of P.
Etingof, we prove that the quantum Weyl group operators of Uyg
give rise to a canonical action of the pure braid group of g on any
category O (not necessarily integrable) Uyg-module V. By relying
on our recent results [ATL15], we show that this action describes
the monodromy of the rational Casimir connection on the g-module
V' corresponding to V. We also extend these results to yield equiv-
alent representations of parabolic pure braid groups on parabolic
category O for Upg and g.
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1. Introduction
1.1.

Let g be a symmetrisable Kac-Moody algebra, Uxg its quantized enveloping
algebra and W their Weyl group. We denote by O the category of deformation
highest weight modules of g, by O™ C O the full subcategory of integrable
ones, and by Op* C O, the corresponding categories for Upg. In [ATL15],
we constructed an equivalence O™ — O}p* which intertwines the monodromy
of the rational Casimir connection of g and the quantum Weyl group action
of the braid group By of g, respectively, thus extending the equivalence ob-
tained in [TLO02, TLO8, TL16] when g is finite-dimensional. P. Etingof asked
whether this equivalence extends to suitable categories of modules which are
not necessarily integrable, while remaining equivariant under the pure braid
group Py of g.

The goal of the present paper is to answer this question in the affirmative.
Specifically, we prove that the quantum Weyl group action of Py, on category
O modules can be extended to all category Op modules. We then show
that this action is equivalent to the restriction to Py of the equivariant
monodromy of the Casimir connection, which is defined on any category O
module. Our results hold more generally for the category O of modules
which are locally finite under the action of the Borel subalgebra, though for
simplicity we restrict to category O in the Introduction.

1.2.

We turn now to a more detailed description of our results. Endow O with the
associativity and commutativity constraints arising from the KZ equations
[Dri90]. In [EK96, EK98, EKO08|, Etingof-Kazhdan constructed a braided
tensor equivalence F : O — Op which is Tannakian, that is endowed with
a natural isomorphism « fitting in the diagram
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where Vecty, is the category of topologically free modules over C[h], f, fj, are
the forgetful functors, and f is endowed with an appropriate tensor structure.
The pair (F, «) gives rise to an isomorphism ¥, : End(f;) — End(f) via the
composition

End(f;) — End(fs o F) — End(f)

where the first isomorphism is induced by F, and the second is given by
Ad(«). Note that « is only unique up to an automorphism ~ of f, and that
Uooq = Ad(y) 0 ¥y

1.3.

Building on our earlier work [ATL18, ATL19a, ATL19b], we constructed in
[ATL15] an automorphism v € Aut(f) such that W.., is equivariant with
respect to the action of the braid group By on integrable category O modules.
Specifically, the Etingof-Kazhdan functor F restricts to an equivalence O™ —
Op* and therefore leads to an isomorphism ¥y : End(f*) — End(f™) for any
o : fpoF = f. Regard the quantum Weyl group action of By, on objects in
Op* as a morphism A : By — End(f}), and the monodromy of the Casimir
connection as a morphism p : By — End(f™). Then, v may be chosen so
that the following is a commutative triangle [ATL15]

(1.1) / X

End(f;") End(f™)

L2
As a consequence, the monodromy of the Casimir connection on a module
V € O™ is equivalent to the quantum Weyl group action of By on F(V).

1.4.

P. Etingof asked us whether such an equivalence holds for a larger class of
not necessarily integrable modules, provided Byy is replaced by the pure braid
group Pw . The choice of the latter is suggested by the fact that By, does not
act on all category O modules for either g or Urg, while Py does on category
O g-modules via the monodromy of the Casimir connection.

To the best of our knowledge, no action of Py on category Op modules
has been previously constructed. The main result of the present paper is to
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construct such an action, and then show the commutativity of the resulting
diagram

(1.2) o

1.5.

To state our results in more detail, recall first that the abelianisation Pjy; =
Pw /[Pw, Pw] of the pure braid group is isomorphic to the free abelian group
with a generator p,, for each positive real root a [Tit66, Digl5]. Set ¢ = /—1,
and define the sign character to be the morphism

(1.3) en : Piy — Aut(fp) Pa — exp(mihy)

where exp(mih,,) acts as multiplication by exp(miv(hy)) on the v-weight space
of an integrable category Oy module. The morphism ey, arises as the reduction
mod & of the quantum Weyl group action of Py, on category Op*.

As a subgroup of By, P is generated by the elements S7, ; = 5,575,
where S; is a generator of By, w € W is such that wa; is a positive root,
and Sy, € By is the canonical lift of w [DGO01]. Moreover, the quantum Weyl
group action of Sy, ; on a module V € Op* is given by

(1.4) )‘(Sg;,ﬁ = exp(mhwai)q’cw”' = Eh(SwJ)q’Cw’i

where the second factor is the truncated quantum Casimir operator for the
copy of Upsly C Upg corresponding to the pair (w,i) [Lus93], and ¢ =
exp(h/2).

1.6.

To extend this action to an arbitrary category Op module, we lift the sign
character €5 to a morphism

Py — Aut(fr) Do — exp(mihy)
which we denote by the same symbol. We then prove that the quantum
Casimirs ¢*vi € Uyg give rise to a morphism .# : Py — (Urg)?. It fol-
lows that

(1.5) A Pw — Aut(fn) Si,z‘ — exp(Tthywa, )<
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is an extension of the quantum Weyl group action of Py to all category Op,
modules.

1.7.

The fact that % is a morphism would follow at once if End(fs) acted faithfully
on fi*. This, however, is clearly false: if ¢ is any function on h* which vanishes
on integral weights, then ¢ € End(fs), but ¢ maps to zero in End(fy*). To
remedy this, we rely on the fact that Upg acts faithfully on f;*, whose proof
is due to Etingof. This implies that any \(p) € End(fz*), p € Pw, arises from
the action of a unique element of Upg, thereby yielding the required action of
PW on End(fh).l

A similar argument works for the quantum group U,g, where ¢ is either
an indeterminate, or not a root of unity. In that case, the quantum Casimirs
¢~ do not lie in U,g, but in a variant D, of an algebra originally introduced
by Drinfeld [Dri92, Sect. 8], which consists of formal, infinite series of the
form Y ex X, where X runs over a weight basis of Un™ and cx € Ugb™.
Etingof’s faithfulness result also applies to Dy, and yields an action of Py, on
any category O module for U,g.

1.8.

Let now Y be the complexification of the Tits cone of g, X C Y its set of
regular points, and zg € X a basepoint. By a theorem of van der Lek [vdL83],
which generalises Brieskorn’s [Bri71], the pure and full braid groups may be
realised as

PW = Hl(X; $0) and BW = Hl(X/W, [.’EQ])

The Casimir connection is the Ug-valued formal meromorphic connection
on X with logarithmic singularities on the root hyperplanes given by

(1.6) V,C:d—hzd—a-/cg
«

a>0

where K = Y0 e@aeg) is the normally ordered truncated Casimir oper-
ator corresponding to the positive root «, and h = h/2m. [MTL05, TL02,

Note that this bypasses having to explicitly check that the quantum Casimirs
satisfy the relations of the generators S,,; given in [DGO1, Cor. 6].
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Pro96, FMTV00]. The sum (1.6) over « is locally finite on any (not neces-
sarily integrable) category O module V', and gives rise to a well-defined flat
connection on the holomorphically trivial vector bundle V on Y with fibre V.
Its monodromy therefore gives rise to a morphism

(1.7) P i(X;20) — End(f)
1.9.

The normal ordering in (1.6) breaks the equivariance of Vi with respect to
the action of W on X and the subalgebra of h-invariants Ug? C Ug, which
contains the Casimirs 7.

Nevertheless, it is possible to modify the monodromy of Vi so that it
gives rise to a representation of the braid group By, on integrable category O
modules [ATL15, Sect. 4] (see also Section 5). This relies on the equivalence
of groupoids

(1.8) Ero + LI (X/ W5 [m0]) = W x TI1 (X; W)

where the right-hand side is the semi-direct product of W with the funda-
mental groupoid of X based at the orbit Wz, and &,, is given by the unique
lifting of loops through xg, and proceeds as follows.

e Extend the monodromy of Vi to a morphism

e Replace the target of &2 by a subalgebra 7y C End(f) which, unlike
End(f), is acted upon by W. Ty is the image of the holonomy algebra
of the root arrangement of g, and is a completion of the subalgebra of
UgP[h] generated by the Casimirs A} and the Cartan subalgebra hb.

e The lack of equivariance of Vi can then be measured by a 1-cocycle
o« W — Hom (ITy (X; Wxy), Tg)

defined by #,(y) = 2(y)"t - w P (wy).

e We prove that <7 is abelian i.e., takes values in
M = Hom (IT; (X; Wxg), exp(hb))

and that it is the coboundary of an essentially unique cochain & € M
i.e., that <, = B - (w1%)~! for any w € W.
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e As a consequence, & can be modified to a W-equivariant morphism
Pp (X Wag) = Ty Pa(v) = 2(v) - A7)

e Composing &4 with the morphism &,, (1.8) then yields an action of
Bw on any W x Tg-module.

o It is well-known that W does not act on an integrable module V', but
that the triple exponentials

(1.10) i = exp(e;) - exp(—f;) - exp(e;)

are well-defined on V', permute its weight spaces according to the W-
action, and give rise to a morphism 7 : By — Aut(f™).

e Finally, lifting &, to &, : I} (X/W;[x0]) — Bw x I (X; W), and
composing with 7 ® &5 yields a morphism

(1.11) Pz By — Aut(f™) v = T1(y) - P(y) - B(y)
which we term the equivariant monodromy of Vi.

1.10.

By [ATL15], the equivariant monodromy of Vi on an integrable module
V € O™ is canonically equivalent to the quantum Weyl group action of
By on the Etingof-Kazhdan quantisation F(V') € Op* i.e., the diagram (1.1)
is commutative for 4 = &2 ». This can be used to give a monodromic de-
scription of the action A (1.5) of Py on category Op modules as follows.

The restriction of the triple exponential map 7 (1.10) to Py is the sign
character

e : Pip — Aut(f™) Do — exp(mihy)

Lifting it to € : Piy — Aut(f) as in 1.6 therefore lifts the equivariant mon-
odromy action of Py to

P Pw — Aut(f) y—e(y) 20 20)

i.e., extends the restriction of &2, % to Py to any category O module.
To relate &,  to A, denote the restriction morphisms by

Res: End(f) » End(f")  and  Resy : End(f) — End(f")
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The commutativity of (1.1) implies that, for any p € Py

ResoW_ ., o A(p) = VI, o Resp oA(p) = ResoZ, 5(p)
and therefore that ResoW_ 0% (p) = Res o( Z(p)%B(p)), since e = V_,(cn).
In turn, this implies that W_,, o % (p) = &(p)%(p), so that ¥, intertwines
A and &, g, since ¥, maps the Drinfeld algebra Dy D Upg to its classical
analogue D, the latter acts faithfully on f, and the algebra Ty > Z(p), %(p)

is contained in D.
1.11.

The above can also be used to give a description of the (non-equivariant)
monodromy & : Py — Aut(f) of the Casimir connection Vg (1.7) in terms
of quantum Weyl group operators as follows.

We prove that the restriction to Py of the cochain & is the map Pjj —
exp(hbh) given by B(p.) = exp(fit,/2), where t,, € b corresponds to a via the
isomorphism h* — b induced by the chosen inner product on g. Define the
morphism

Aoz : Pw — Aut(fy) p—en(p) - Ap) - Blp)™ = A (p)- B(p)~!

We refer to A\ # as the normally ordered quantum Weyl group action of Py,
on category Op modules. The terminology is motivated by the fact that,
while \(S?) = exp(mih;) - ¢“* by (1.5), A\. %(S?) = ¢*Cri where the latter
is a normally ordered version of the quantum Casimir. The commutativity
of (1.1) then implies that A. % computes the monodromy of Vi, that is that
\Ij'yoa o )‘5,3? = 2.

1.12.

The above results can be generalised to the parabolic setting as follows. Let
J be a subset of nodes of the Dynkin diagram of g, gy C g the corresponding
Lie subalgebra, Wy C W its Weyl group, and PB3 C By, the parabolic pure
braid group given by the preimage of Wj.

We construct a quantum Weyl group action of PBj on any category Op
module whose restriction to Upgy is integrable. This action is such that

e its restriction to the braid group By, is the quantum Weyl group action
of By, on integrable Upgy-modules
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e its restriction to the pure braid group Py coincides with the quantum
Weyl group action (1.5) on category Oy modules

We also define a normally ordered version of this quantum Weyl group action,
in analogy with 1.11.

We then construct a monodromy action of PBjy on any category O module
whose restriction to gy is integrable. We do so by relying on the fact that
PBj is isomorphic to ITy (X/Wjy; [xg]), and correcting the equivariance of the
Casimir connection, as outlined in 1.9, but only with respect to Wj3. The
resulting Wj-equivariant monodromy action is such that

e its restriction to By, is the equivariant monodromy action of By, on
integrable category O gy-modules

e its restriction to Py coincides with the monodromy action (1.9) on
category O modules (up to a simple correction on Py, ).

Finally, we show that the above quantum Weyl group and monodromic
actions of PBjy are equivalent by relying on the fact that PBj is generated
by Bw, and Py, and using the equivalences (1.1) for By, and (1.2) for Py .

1.13. Outline of the paper

In Section 2, we review the definition of quantum Weyl group operators. In
Section 3, we introduce the Drinfeld algebra and prove that it acts faithfully
on Op*. In Section 4, we construct the quantum Weyl group action of Py, on
category O. Section 5 reviews the definition of the Casimir connection, and
the equivariant extension of its monodromy to a representation of the braid
group By . Section 6 reviews the definition of a braided Coxeter category,
and Section 7 the main result of [ATL15]. In Section 8, we prove the stated
equivalence. We also point out that it continues to hold if F is replaced by the
Etingof-Kazhdan equivalence F® corresponding to an arbitrary Lie associator
® rather than the one arising from the KZ equations. Finally, in Section 9,
we generalise these results to parabolic pure braid groups.

2. Kac—Moody algebras and quantum groups
2.1. Symmetrisable Kac—Moody algebras [Kac90]
Let I be a finite set and A = (a;;);je1 a generalised Cartan matrix, i.e.,

ai; = 2, a;j € Zgo, 1 # J, and a;; = 0 implies aj; = 0. Let (h, II, 1Y) be a
realization of A, i.e.,
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b is a finite-dimensional complex vector space?

IT = {«@; }iex is a linearly independent subset of h*
ITY = {h; }ic1 is a linearly independent subset of b
a;(hj) = a;; for any i,j € I

The Kac-Moody algebra corresponding to A and the realisation (b, IT, T1V)
is the Lie algebra g generated by h and elements {e;, f; }ic1, with relations
[b,b] = 0 and

[, ;] = a;(h)e; [h, fi] = —ai(h) f; lei, f3] = 0ihi
and, for any i # j,

ad(e0)! =" (e;) = 0 = ad(£)' ()

Let n* C g be the Lie subalgebras generated by {e;}ic1 and {f;}ie1, respec-
tively.

Assume that A is symmetrisable, and fix an invertible diagonal matrix
D = diag(d;);e1 with coprime entries d; € Zs( such that DA is symmetric.
Then, there is a symmetric, non-degenerate bilinear form (-,-) on b such
that (h;, —) = d; 'a; (see, e.g., [ATL19b, Prop. 11.4]). The corresponding
identification v : h — h* intertwines the actions of W, satisfies v(h;) = d; Loy
and therefore restricts to an isomorphism h’ — Q®7zC, where b’ is the span of
{hi}ier and Q = @;c1 Za; C h* is the root lattice. Note that (h;, h;) = Zdi—l,
while the induced form on h* satisfies (o, o) = 2d; € 2Z~.

By [Kac90, Thm. 2.2], (-,-) uniquely extends to a non-degenerate, in-
variant symmetric bilinear form on g, which satisfies (e;, f;) = d;;d; ! and
[z,y] = (z,y) - to for any x € go, Y € g—a, Where t, = v ().

2.2. Category O, representations

If V is an h-module and A\ € h*, we denote the corresponding weight space of
V by

VIN = {veV|ho=Ah)v, heh}
and set P(V) = {\ € b*| V[\] # 0}. A g-module V is
(C1) a weight module if V = @, cq V[A].

2Note that, unlike [Kac90], we do not require h to have minimal dimension
2|I| — rank(A).
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(C2) integrableif it is a weight module, and the elements {e;, f; }icr act locally
nilpotently. This implies that A(h;) € Z for any A € P(V) and ¢ € I,
and that V' is completely reducible as a (possibly infinite) direct sum
of simple finite-dimensional modules over sl5" = (e;, h;, fi) C g.

(C3) in category O 4 if the action of b™ is locally finite, i.e., any v € V is
contained in a finite-dimensional b™-submodule of V. This implies in
particular that V is the direct sum of its generalised weight spaces and
that, for any v € V., (Un")gv = 0 for all but finitely many § € Q4.

(C4) in category Oy if it is a weight module with finite-dimensional weight
spaces, such that

(2.1) P(V)C D(M)U---UD(A\p)

for some A1,..., A\ € b*, where D(A) = {p e b* | p < A} and p < A
IHA_ME Q+ = @ieINai.

The categories Oy C Ou g are symmetric tensor categories. Denoting
by Og* C Oy and (9‘“‘ C O,y the full tensor subcategories of integrable
representatlons we have the following inclusions

Oq C Oco,g
U U

int int
Oy C O%.g

2.3. Deformation category O, representations

Similar notions can be defined for g-modules in the category Vecty of topo-
logically free C[h]-modules. Namely, a g-module V € Vecty, is called

(D1) a weight moduleif V = @y cp- V[A],* where @ is the direct sum in Vecty,
i.e., the completion of the algebraic direct sum in the h-adic topology.

(D2) integrable if it is a weight module and, for any ¢ € T and v € V,
limy, o0 €v = 0 = limy, 00 fi0.

(D3) in category (’)2079 if the action of b on V/h"V is locally finite for any
n > 0.

(D4) in category (’)l’;I if it is a weight representation with finite-rank weight
spaces, and such that P(V) satisfies (2.1).

3Note that the eigenvalues of the action of h are required to lie in b* C h*[R].
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It is easy to see that ) is a weight (resp. integrable) module in Vecty, if
and only if V/R"™V is a weight (resp. integrable) module in Vect for any n > 0.
We denote by OF™ < O! and Ol Ol . the full tensor subcategories of
integrable representations.

2.4. Braid group action

Let W be the Weyl group of g, and {s; }e1 its set of simple reflections. The
braid group By is the group generated by the elements {S; };cr, with relations

(2.2) Si S-S =8;-5i-8; -

mij mij

for any 7 # j, where m;; is the order of s;s; in W. If V' is an integrable
g-module in Vect or Vecty, the operators

(2.3) 5i = exp(e;) - exp(—f;) - exp(e;) € GL(V)

are well-defined, and satisfy the braid relations (2.2) [Tit66]. The correspond-
ing action of By on V factors through the Tits extension W, an extension of
W by the sign group Z3.

2.5. The quantum group Uyg [Dri87, Jim85]

Let h be a formal variable, set ¢ = exp(h/2) and ¢; = ¢%, i € I. The Drinfeld-
Jimbo quantum group of g is the algebra Upg over C[A] topologically gener-
ated by b and the elements {E;, F; };c1, subject to the relations [h, h'] = 0,

g —q "
[h. E}) = a;(h) E; [h, Fi] = —ai(h)F; B By} = 0= — o

? %

for any h,h' € b, i,5 € I, and the ¢-Serre relations

1—ai 1— qs

S (-1)’”[ ”] XWX XM = ()
m

m=0 i

for X = E,F,i+# j €1, where [n]; = q?_qf:: and, for any k < n,

K i

n
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Define weight, integrable, category O and O modules for Upg in Vecty,
analogously to Section 2.3, and denote by

int int
oo,Ung C Ooo,Uhg and OUhg C OUhg

the subcategories of integrable modules.*

2.6. Quantum Weyl group operators
[KR90, Lus90, Lus93, Sa94, So90]

For any V € O ;, ;, define the endomorphisms {S;}ie1 of V as follows.® For

any v, € V[u], set

a,b,c€Z>q
a—bte=—p(hi)

where X% = X4/[a];\.

Then, S;(V[u]) € V[si(u)] and the S; give rise to an action of the braid
group By on V, which deforms the action by triple exponentials described
in 2.4 [Lus93, Sec. 39.4].

2.7. Action of By on Uxg ([Lus88], [Lus93, Chaps. 37-39])

Consider the algebra automorphisms {T; };er of Urg defined by
Ti(h) = si(h) Ti(E;) = —Fiq" Ti(F) = —q; " E;

where h € b and, for any ¢ # j € I,

Ca
Ti(X) = > (—1) g7 XXX

3 K
r=0

where X = E,F and 0(F) = —1 = —o(F).
The automorphisms {T;};c1 define an action of the braid group By on
Urg which we denote by b(X), b € By and X € Upg. Moreover, for any

X €Ung, V € O 1), and v € V, one has S;(X - v) = T;(X) - Si(v).

4Note in particular that a representation V' of Upg is in category O if the action
of Upb™ on V/R™V is locally finite for any n > 0.
5The operator S; is the operator T;", | defined in [Lus93, Sec. 5.2].
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3. Faithfulness of category O integrable modules

Integrable Upg-modules are well-known to be faithful, ¢.e., the only element
of Upg acting trivially on every integrable module is zero [Lus93, Prop. 3.5.4].
To the best of our knowledge, the analogous result for the more restrictive
class of integrable modules in category O does not appear in the literature.
We present here a proof due to P. Etingof, which establishes faithfulness for
a larger algebra containing Upg.

3.1. The Drinfeld algebra Dy

For any 8 € Q4, let Bg = {Xg,} be a basis of Uhng and set B = ||gcq, Bs-
Set

Dy = {Z cxX :cx € th_} = H Urb™ ®Uhn§ D Urg
XeB BEQ+
Dy, has an algebra structure which extends that of Uxg. Moreover, the
action of Upg on any module V € Oy, 4 extends to one of Dy since, for any
v eV, Uhngv = 0 for all but finitely many g € Q...

Theorem (Etingof). Category O integrable Ung-modules are faithful for Dy,.
The proof is carried out in Sections 3.2-3.4.

Remark. A variant Qp of the algebra Dy was introduced by Drinfeld in
[Dri92, Sect. 8] as follows. For any 8 € Q4, let Ig C Urg be the left ideal
generated by Upgg for any 4 > S, or equivalently by {Uhng/}5/>5, and set
Qp, = limg Upg/I3. Since Upg/I5 = @ﬁ,fﬂ Upb~ ®Uhng,, Qp, embeds into Dy,
as the subalgebra consisting of series > gcq, Xg, Xp € Upb™ ® Uhng, where
for any 8 € Qy, Xg = 0 for all but finitely many 5 % (. The algebra Qp
is less natural than Dy, however. For instance, if ) C J C I is a proper non-
empty subset, gy C g the corresponding subalgebra, and Qy p (resp. Dy p)
the analogue of Qp (resp. Dp) for gy, then Dy C Dy while Qy p does not
map to Q.

3.2. Verma modules

For A € h*, let M(\) be the Verma module of highest weight A and vy € M(\)
its cyclic vector. For any € Q4, let M(X)g C M(A) be the weight space of
weight A — . Note that there is a natural identification M(X)g ~ (Upn™)g.
Recall that the contragredient Verma module MY () is the pullback through
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the Chevalley involution of the restricted dual M*(\) = @geq, M (N3,
where M (M)} denotes the dual in Vects. The contragredient Verma mod-
ule is equipped with a morphism M () — MY (\), vy — v}. The Shapovalov
form on M () is defined by

(o M) @ M(X) — M(\) @ MY(\) — C[R]

By construction, it satisfies (vx,va)x = 1, (M(X)g, M(N)g)x = 0 if 5 # /7,
and (zv,w)) = —(r,w(z)w), for any z € g, v,w € M(N). It is well-known
that (-, ) is symmetric and non-degenerate only for generic A € h*.

For generic A € h*, let B} 5 = {X},} be the dual basis of Upng with re-
spect to the Shapovalov form. In particular, one has (X} ;ux, w(S(Xp,7))v) =
d;5. Thus, modulo elements of weights lower than A, Xp X500 = 0ijUx.

Proposition. Verma modules are faithful for Dy.

Proof. Assume that x € Dy, acts trivially on every M ()), and write
S_—
xr = Z Jfﬂ’ix'ﬂinﬁ’i
B

where x%i € Uh[h] and x5, € Upn™. Note that, for any A € b*, the action of
x on the cyclic vector vy € M(X) gives

Therefore, ) = 0 = z, . We shall prove that, for any X3 ; € B, 35%,1‘ =0=uzg4,.
Proceeding by induction, we assume that z,; = 0 = x?m for any X, ; € B
such that hty < n. Fix § € Q4 with ht = n. Then, for generic A € h*, we
have X7 v\ € M()\)g and, since Xp ; X} v\ = dj50,

0= X0\ =D 5,75, Xp,; X500 = MNah,) w5 0x
7

Therefore, x%i =0=uag,. O
3.3. Regularity of the matrix coefficients on M ()

For any A € b*, let M*(X\) be the (restricted) dual Verma module and
(s )y s M(A) @ M*(A) — C[R] the natural pairing.

Proposition. For any A € h*, v € M(N), and f € M(N)*, the matriz coeffi-
cient (zv, f) ey lies in C[A][R].
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Proof. Note that, for any % € Upn®T, the coefficient (z~v,ztf) € C[h]

is independent of X\. We can write x = Y,z 20z, , for some x] € Upn™,

29 € Uh[R], and z; € (Upn™)g,, with 3; € Q4. Then, we have

(v, ey = @0z 0, 5@ Hapy = DA = Bi) (@) (@7 v, S e -

The result follows. O

3.4. Proof of Theorem 3.1

Assume that = € Dy, acts trivially on every category O integrable Upg-module.
We shall prove that x acts trivially on any Verma module, so that z = 0 by
Proposition 3.2.

Clearly, = acts trivially on M ()) if and only if, for any v € M(\) and
f € M()\)*, the matrix coefficient (zv, f)az(n) vanishes. By Proposition 3.3,
it is enough to check that this holds for A in a Zariski open subset of h*. To
this end, note that, if v € M(\)g, then zv = z(8)v, where z(5) € Ug is the
truncation of x at 5. Therefore, it is possible to choose A € P, large enough
such that

(zv, f)M(/\) = (v, f)L(,\) =0

i.e., (vv, f)ar(n) is equal to the matrix coefficient of 2 on the unique irreducible
quotient L(A) of M(A). By assumption on x, the latter is zero, since L(\) is
integrable for A € P,. The result follows.

4. Quantum Weyl group actions of pure braid groups
4.1. Completions

Let A be an algebra, C C Rep(A) a full subcategory, and End(f¢) the algebra
of endomorphisms of the forgetful functor fo : C — Vect. By definition, an
element of End(f¢) is a collection

¢ ={ovivec € [] End(V)
vec

which is natural, i.e., such that fopy = pw o f forany f:V — W in C.
The action of A on any V € C yields a morphism of algebras A — End(fe),
and factors through the action of End(f¢) on V. We shall refer to End(f¢) as
the completion of A with respect to the category C.
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4.2. Braid groups and completions

The braid group actions considered in Section 2 can be concisely described
in terms of completions. For instance, let End(f3*) be the algebra of endo-
morphisms of the forgetful functor f* : OF ;, ; — Vectp. The quantum Weyl
group operators S; defined by (2.4) are elements of Aut(f;*), and yield a group
homomorphism A : By — Aut(f;).

4.3. Sign character of the pure braid group

Let Z be the free abelian group with a generator p,, for each positive real root
a, endowed with the W-action given by wps = pjua|, Where |wal = fwa
according to whether wa is positive or negative.

Let Py C Bw be the pure braid group. Its abelianisation Piy = P/
[Pw, Pw] is acted upon by By /Pw ~ W. By [Tit66, Thm. 2.5] and [Digl5]
the assignment p,, — S? uniquely extends to a W-equivariant isomorphism
Z — Piyp.

Define the sign character of Py to be the morphism

(4.1) en : Piy — Aut(fp) en(pa) = exp(tmhy)

where exp(tmhy) is the operator acting on a weight space of (integral) weight
A as multiplication by exp(¢mA(hy)).

4.4. Canonical lift of the sign character

Let f, : Oco,v,g — Vecty be the forgetful functor, and consider the morphism
Aut(f,) — Aut(fi*) corresponding to the inclusion O ;. C O s, - The
sign character €5 has a canonical lift

Py — Aut(f,) Pa — exp(tmhy,)

which is well-defined since for any V € O 1,4 and n > 0, V/R™V is a locally
finite h-module. We denote this lift by the same symbol.

4.5. Pure braid group action on category O,

The following is one of the main results of this paper.

Theorem. Let A : By — End(fi) be the quantum Weyl group action of the
braid group By . Then, the following holds.
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(1) For any p € Pw,
A(p) = en(p) - ()

where e (p) is the sign character (4.1), and J (p) is a unique element
of Ung which is invertible and of weight zero.

(2) The assignment p — K (p) is a homomorphism Py — (Ung)® which is
By -equivariant.

(3) The quantum Weyl group action of the pure braid group Py on inte-
grable modules extends to an action

(4.2) A Pw — Aut(f,) given by Ap) =en(p) - H# (p)

(4) The map X\ intertwines the inner action of Pw on Ugg i.e., for any
element Y € Urg and p € Pw

AP)Y A(p)~' =p(Y)
in End(fy).

Proof. (2), (3) and (4) follow from (1).

(1) It suffices to prove the existence of ¢ (p) for a set of generators of Pyy.
The uniqueness of J# (p) for any p € Py then follows from Theorem 3.1. By
[DGO1, Cor. 6] (see also [Digl5, Prop. 2.5]), Pw is generated by the elements
SwS2S, L where i € I, w € W is such that wa; > 0, and S, € By is the
canonical lift of w.

Consider first the case w = 1. By [Lus93, Sec. 5.2], the square of the oper-
ator S; is related to the quantum Casimir operator of Uysly® = (E;, F;, h;) C
Urg as follows. Let f;i!,]tz : O:;,Uns[gi — Vecty be the forgetful functor. An ele-
ment of End(f}) is determined by its action on each of the indecomposable
representations {V!},>o, where V! is of rank r + 1. The Casimir operator C;
of Upsly® acts on Vi as multiplication by d;r(r + 2)/2. Set K; = C; — d;h?/2,
so that KC; acts on the subspace of V¢ of weight ma;/2 as multiplication by
di(r(r +2) —m?)/2. Then,

(4.3) S? = exp(vrhy) - ¢~
By [Dri89, Sec. 5],

(4.4) ¢ =Y FonEl"

m2=0
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for some explicit ¢,,, € Ub;[R]. It follows that ¢“ lies in Upg, and therefore
so does ¢ = ¢Ciq~ % /2. Thus, setting ¢ (S2) = ¢ € D, we get

A(S?) = S} = exp(urhy) - ¢ = ep(S7) - H#(S7)

Note next that if w € W satisfies wa; > 0, then T,, = Ad(S,,) satisfies
T (E;) € Upbf,., and T (F;) € Upb_,,, [Lus93, Sec. 37.1]. It follows that

wo; !

¢“wi = T, (¢™) is a weight zero element in Dy, and if we set #(S,,S25,') =
¢, then

)\(SwaS;l) = SwS?S;l = exp(tmhy,;) - ¢ i = en(p) - H (p) O

Remarks.

e The proof of Theorem 4.5 shows that the action A on category Oy
modules for Uxg is explicitly given on the generators of Py by

A(SwS} ") = exp(umhu) - ¢

e Since J# maps to Upg, it defines a (signless quantum Weyl group) action
of Py on any Upg-module.

4.6. The normally ordered quantum Weyl group action

We shall be interested in the following modification of the action (4.2). Let
P . Pw — exp(hh) C Ung be given by  B(pa) = ¢"* = exp(hto/2)
(cf. Section 1.11). Define the morphism
Az :Pw = Ung by Aa(p) = (p) B(p)

so that A(p) = en(p) - A\e.z(p) - B(p) for any p € Py .

We refer to A\; # as the normally ordered quantum Weyl group action
of Pw. The terminology is justified by the fact that, for any i € I, A, %(S?)
acts as the normally ordered quantum Casimir operator, in contrast with (4.3).
Namely, one has

Ae#(S2) = H(S2) - Blpa,) "+ = 50

where K = (KC;—t,,)/2. This modified action will be relevant in Theorem 8.2.
Note also that for any element Y € Upg of weight v € Q and p € Py, one has

Ad(Aez()(Y) =p(Y) - (en(p), )" - (B(p), 7)™

in End(fp).
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4.7. Pure braid group actions for U,g

Let K be a field of characteristic zero, ¢ € K* an element of infinite order,
e.g., ¢ € C* not a root of unity or ¢ € Q(gq), and U,g the corresponding
quantum group over K.

The definition of (integrable) category On Ujg-modules is similar to the
formal case (see e.g., [Lus93, Ch. 3]). The analogues of Theorem 4.5 and
Section 4.6 hold for U,g and defines actions of Py, on category O modules.

In this case, the quantum Casimirs ¢® do not lie in U,g, but in the
Drinfeld algebra D, of U,g, and the morphism ¢ takes values in D,. Note
that the latter acts on any category Oy module V since, for any v € V,
(Un™)gv = 0 for all but finitely many 5 € Q4.

5. The Casimir connection
5.1. Fundamental group of root system arrangements

Let A be a symmetrisable generalised Cartan matrix, (hg, IT, ITV) a realisation
of A over R, and (h = C ®g bg, I, 11V) its complexification. Let II* C b be
the annihilator of II, set h® = h/II+, and note that h¢ is independent of the
realisation of A. Let

C={heby|Viel a;(h) >0}

be the fundamental Weyl chamber in h%, and Yg = U, e w(C) the Tits cone.
Yr is a convex cone, and the Weyl group W acts properly discontinuously on
its interior Yg and complexification Y = Yr + thx € h° [Loo80, Vin71]. The
regular points of this action are given by

X=Y\ (J Ker(a)

OlGA+

The action of W on X is proper and free, and the space X/W is a complex
manifold. The following result is due to van der Lek [vdL83], and generalises
Brieskorn’s Theorem [Bri71] to the case of an arbitrary Weyl group.

Theorem. The fundamental groups of X/W and X are isomorphic to By
and Py respectively.

The generators {S;};cr of By may be described as follows. Let p : X —
X/W be the canonical projection, fix a point zg € C and use [zg] = p(z0) as a
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base point in X/W. For any ¢ € I, choose an open disk D; in xo+Ch;, centered
in xg — %hi, and such that D; does not intersect any root hyperplane
other than Ker(«;). Let 7; : [0,1] — x¢ + Ch; be the path from xq to s;(zo)
in X determined by 7;jo,1/3012/3,1) is affine and lies in zo + Rh; \ D;, the
points 7;(1/3),7:(2/3) are in 0D;, and ~;|[1/3,2/3) is a semicircular arc in dD;,
positively oriented with respect to the natural orientation of xg + Ch;. Then,

Si = p oy
5.2. The Casimir connection

For any positive root o € Ay, let {eg)a im be bases of g1, which are dual
with respect to (-,-), and

Ki=> e el

i=1
the corresponding truncated and normally ordered Casimir operator. Let V
be a g-module in category (’)(';10,g and V = X x V the holomorphically trivial

vector bundle over X with fibre V. Finally, set h = %

Definition. The Casimir connection of g is the connection on V given by

Ve=d-h Y © ok

acA a

Note that the sum converges in the hA-adic topology since, for any v € V and
n >0, Ktv € iV for all but finitely many o € A

The Casimir connection for a semisimple Lie algebra was discovered by
De Concini around ’95 (unpublished, though the connection is referenced in
[Pro96]) and, independently, Millson-Toledano Laredo [TL02, MTLO05] and
Felder-Markov-Tarasov—Varchenko [FMTV00]. In [FMTVO00], the case of an
arbitrary symmetrisable Kac-Moody algebra is considered.

The connection Vi is flat (see [FMTV00] and [ATL15, Thm. 3.4]) and
therefore yields a monodromy representation

Moreover, since the coefficients of Vi have weight zero, the action of Py,
preserves the generalised weight spaces of V.

This is more conveniently expressed in terms of completions. Let f :
(’)Z}o’g — Vecty, be the forgetful functor. Then, the monodromy of Vi yields
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an action
P Pw =I11(X; z9) — Aut(f)
5.3. The orbifold fundamental groupoid of X

Let IT;(X; W) be the fundamental groupoid of X based at the W-orbit of
xg. Then, IT;(X/W;[x¢]) is equivalent to the orbifold fundamental groupoid
W x II; (X; W), which is defined as follows.

o Its set of objects is Wxy.

e A morphism between z,y € Wxg is a pair (w,~), where w € W and ~
is a path in X from  to w™'y.

e The composition of (w,v) : z — y and (w',’) : y — z is given by
(', ) o (w,7) = (Ww,w(y)oy): =z
The projection functor

(5.1) P W x (X Wao) — T (X/W; [20])

given by P(wxg) = [zo] and P(w,~) = [v] is fully faithful since, for any given
x,y € Waxg, aloop [y] € T (X/W; [x0]) lifts uniquely to a path v : 2 — w1y,
for a unique w € W. Any z € Wxq therefore determines a right inverse &, of
P given by &, ([zo]) = = and E,([7]) = (w, v), where 7 is the lift of [y] through
x, and w is such that v(1) = w™'x.

5.4. Obstruction to W-equivariance [ATL15, Sec. 4]

Extend the monodromy of Vi to ITy(X;Wxg), and lift it to a map & :
IT, (X; Wao) — Tg, where Ty is the holonomy algebra of the root arrangement
of g. The lack of W-equivariance of Vi can then be described by the 1-cocycle

o - W — Hom (IT; (X; Wxy), Tg)

defined by #,(y) = 2(y)"1 - w1 2(wy).
The following summarises the main properties of o7

Theorem.

(1) o is abelian, that is takes values in M = Hom (ITy (X; Wx), exp(hb)).
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(2) o is a coboundary, that is <t, = dB, = B - (wL1B)~L for some
B eM, and any w € W.

(3) The cochain % can be normalised so that AB(v;) = exp(ha;ty,;) for any
given choice of {a;}ier C C, and is then unique.

Remark. (1) follows from the fact that w='Z?(w~) is the parallel transport
of

d
w*Vix = Vi — hay where Ay = Z ae o

aEA:
waEA_

Since Vi and the h-valued 1-form a,, commute, <7, is the parallel transport
of d — hay, and in particular takes values in M.

5.5. Equivariant monodromy [ATL15, Sec. 4]

For any b € By, let 7(b) € Aut(f™) be its action by the triple exponen-
tials (2.3), and b € II;(X; Wxg) the unique lift of b through x. The following
is a direct consequence of Theorem 5.4

Theorem. There is a unique morphism % : II1(X; Wxo) — exp(hb) such
that

(1) The assignment
Prz: Bw — Aut(f™) Prz(b) =7(b) - P(b) - (D)
is a group homomorphism.
(2) For anyi €1, B(v:) = exp(hty,/4).
Remarks.

e The normalisation of #(v;) is chosen so that, if g = sly with simple
root «;,

(5.2) P 5(Si) = $i - exp(hK] /2) - exp(hita,/4) = 5; - exp(hK,, /4)

where C,. = e;fi + fie; is the truncated Casimir of sly.

e We shall refer to &2, 4 as the monodromy action of By, . This is justified
by the fact that, when g is of finite or affine type, & is the monodromy
of the connection d—hA, where A is a resummation of the formal abelian
1-form
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(cf. [ATL15, Prop. 4.9 and Appendix A]). Thus, in these cases, &, %
is the monodromy of the pushdown of the connection Vi — hA to the
quotient X/W.

5.6. Monodromy action of the pure braid group on category O

Let
(5.3) e : Piy — Aut(f™) £(pa) = exp(tmhy)

be the sign character (cf. 4.3), f : O  — Vecty the forgetful functor, and

00,9

lift € to a morphism Pjy — Aut(f) as in 4.4.
Proposition. The following holds.

(1) For any o € A%, 7(pa) = €(pa) and B(pa) = exp(hta/2).
(2) The restriction of 2.z to Pw lifts to an action

Pem:Pw — Aut(f)  given by  P.z(p) =c(p)- P(p) - Bp)

Proof. (1) For any i € I, 7(5?) = 5? = exp(tmh;) so that, for any w € W
such that wa; > 0, 7(S,525,1) = exp(1mhya,). Thus, 7(p) = &(p) for any
p € Pw.

For the second identity, it is enough to verify the relation on the loops
Pwa; = W(Pa;) € 1 (X; wxg), where p,, = si(7i) oy, for i € I, and w € W is
such that wa; > 0 (cf. Section 5.1). For w = id, one has

B(po,) = B(5i(7:) B(vi) = si(e, (i) B (1)) B(vi) = si( Ao, (7))

where the second equality follows from &/ = d%, and the third one from
PB(vi) € exp(Cht,,). By Remark 5.4, o, is the parallel transport of the
abelian connection

d
(5.4) d—h Y =t

aEAL:
vaEA

For v = s;, this is d — hdlog «; - t,,, so that 7, (v;) = exp(hty,/2).
For w # id, one has

B(w(pay)) = w(ﬂw(pai)ilﬁ(pai)) = w(%w(pai))il exp(Mitwa, /2)
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Note that da/a has a non-zero residue on the hyperplane «; = 0 only if
a = +a;. It follows from (5.4) for v = w, and wa; € Ay that <, (pa,) = 1,
whence the result.

(2) follows from (1) and Theorem 5.5. O

6. Braided Coxeter categories

We review below the notion of braided Cozeter category introduced in
[ATL19a]. Informally speaking, such an object is a collection of braided
monoidal categories labelled by the subdiagrams of a given diagram D —
in the relevant examples the Coxeter graph of g. These are equipped with
relative fiber functors corresponding to the inclusions of subdiagrams and an
additional combinatorial datum — a mazimal nested set — which labels points
at infinity in the De Concini-Procesi model of the Cartan subalgebra of g
[DCPY5]. The functors corresponding to the inclusion () C D additionally
carry distinguished automorphisms — the local monodromies — which give rise
to an action of the generalised braid group Byy.

4 int 3
For Upg, such a structure arises on O 1, o from the R-matrix and quan-

tum Weyl group operators. For the category C’)go’if;, it arises from the dynami-
cal coupling of the KZ and Casimir connections of g [TL16]. This is analogous
to the fact that the monodromy of the KZ equations gives rise to a braided
tensor category structure on Of}o’g [Dri89], and the fact that the canonical
fundamental solutions of the Casimir equations constructed by Cherednik
and De Concini-Procesi [Che89, DCP95] give rise to a Coxeter structure on

oL [TLOS).
6.1. Nested sets [ATL15, Sec. 5]

A diagram is an undirected graph D with no multiple edges or loops. A sub-
diagram B C D is a full subgraph that is, a graph consisting of a (possibly
empty) subset of vertices of D, together with all edges of D joining any two
elements of it.

Two subdiagrams By, By C D are orthogonal if they have no vertices in
common, and no two vertices iy € By, 15 € By are joined by an edge in D.
Two subdiagrams By, Bo C D are compatible if either one contains the other
or they are orthogonal.

A nested set on D is a collection H of pairwise compatible, connected
subdiagrams of ID which contains the empty subdiagram and the connected
components of D. We denote by Mns(D) the collections of maximal nested
sets on D.



54 Andrea Appel and Valerio Toledano Laredo

More generally, if B* C B C D are two subdiagrams, a nested set on B
relative to B’ is a collection of pairwise compatible subdiagrams of B which
contains the connected components of B and B’, and in which every element
is compatible with, but not properly contained in any of the connected com-
ponents of B’. We denote by Mns(B, B’) the collections of maximal nested
sets on B relative to B’.

Remark. It is well-known that when D is a diagram of type A,,_1

1 2 n—2 n—1
e — o — - — 90—

maximal nested sets on D are in bijection with complete bracketings on the
non-associative monomial z1z5 - - - x,,. Specifically, for any 1 <7 < j < n, the
connected subdiagram [i, j] C D corresponds to the brackets

$1...(xi...xj+l)...xn

and two subdiagrams Bi, B, C D are compatible if and only if the correspond-
ing brackets are consistent. Similarly, maximal nested sets on I relative to a
subdiagram B C DD are in bijection with partially complete bracketings, i.e.,
complete except for the monomials (x;---x;41), where [i,j] is a connected
component of B.

6.2. Braided Coxeter categories [ATL15, Sec. 9]

A labelling m of a diagram D is the assignment of an element m;; €
{2,3,...,00} to any pair i, j of distinct vertices of I such that m;; = my;
and m;; = 2 if 7 and j are orthogonal.

Let (D, m) be a labelled diagram. A braided Coxeter category % of type
(D, m) consists of the following data

e Diagrammatic categories. For any subdiagram B C D, a braided
monoidal category Cp.

e Restriction functors. For any pair of subdiagrams B’ C B and rela-
tive maximal nested set F € Mns(B, B’), a tensor functor Fr : Cp —
Cp.5

e Generalised associators. For any pair of subdiagrams B’ C B and
relative maximal nested sets F,G € Mns(B, B’), an isomorphism of
tensor functors Ygr : Fr = Fg.

5Note that Fr is not assumed to be braided.
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Vertical joins. For any chain of inclusions B” € B’ C B, F €
Mns(B, B), and F' € Mns(B’, B”), an isomorphism of tensor functors
aj;', c Fro Fr = Fryr.

Local monodromies. For any vertex ¢ of D with corresponding re-
striction functor Fi; : C; — Cp, a distinguished automorphism S; €
Aut(F{i}).7

These data are assumed to satisfy the following properties.

Normalisation. If 7 = { B} is the unique element in Mns(B, B), then
Fr =1id¢g, with the trivial tensor structure.
Transitivity. For any B C B and F,G,’H € Mns(B,B’), Tyr =
Ty o Ygr as isomorphisms Fir = Fy. In particular, Tr7 = idp, and
Tgr = T;—é
Associativity. For any B” C B” C B’ C B, F € Mns(B,B’), F' €
Mns(B’, B"), and F" € Mns(B", B"),

af” a%, = afu gz - 2%
as isomorphisms Frr o Frr o Fr = Frunyrur.
Vertical factorisation. For any B” C B’ C B, F,G € Mns(B,B’)
and F',G" € Mns(B’, B"),

. Tor
T(gug)Fum) 0ap =ag o | o
Tg/]:/

as isomorphisms F'r o Fir = Fg o Fg.

Generalised braid relations. For any B C D, ¢ # j € B and maximal
nested sets K[i], K[j] on B such that {i} € K[i],{j} € K[j], the following
holds in Aut Fi;

Ad (T;5) (53) - 57 - Ad (T5) (53) - = 57 - Ad (T) () 57 -

Mg mij

where T;; = Tipcpy and S7 = Ad agj(Sz) € Aut Fipy.®
Coproduct identity. For any i € D, the following holds in Aut(F; ®

Fiy)

(6.1) J 1o Fy(ci) o A(S;) o Ji = cyo (5, ®S;)

)

"Note that S, is not assumed to be a tensor automorphism of Fy;y.
8K[i], and K[i]" denote the truncations of K[i] at {i}.
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where J; is the tensor structure on Fi; and ¢, ¢y are the opposite
braidings in C; and Cy, respectively.’

6.3. Representations of braid groups

Let B% be the braid group with generators S;, ¢ € D, and relations (2.2) for
the labelling m. Let By < Bg be the subgroup generated by S; with i € B.
Finally, let B, be the braid group associated to the symmetric group &,,
with generators T1,...,T,_1, and br, the set of complete bracketings on the
non-commutative monomial x1zs - - - Ty,.

Let € = (Cp, F'r, T rg, af,, S;) be a braided Coxeter category. Then, there
is a family of representations

A%, BE x B, — Aut(FE")

labelled by B C D, F € Mns(B), and b € br,,, which is uniquely determined
by the conditions
o AE,(S) = Ad(a}:)(S))1. if {i} € F and AG, = Ad(Tgr)1..n 0 L),
L )\_%;7“7;) = Ré,i,i+1 if b= Ty --- (LL‘iZL'H_l) Ty and )\.(i,b/ = Ad(q)BJ,/b) o
/\]C‘{’b7 where ®p and R); are the associativity and commutativity con-
straints of Cg.

6.4. Equivalence of braided Coxeter categories

Let €, €’ be two braided Coxeter categories of type (ID,m). An equivalence
H : % — ¢’ is the data of

e For any B C D, a braided tensor equivalence Hg : Cp — Cj
e For any B C B and F € Mns(B, B’), an isomorphism ~x of tensor
functors

CB%

Hp C;;
(6.2) FJ{ % lp}

/
CB/ TB’> CB’

These are required to preserve the generalised associators, vertical joins, and
local monodromies.

9Given a braided monoidal category with braiding 3, we set ng,y = ,8;1X
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e For any B C BC D and F,G € Mns(B, B'),
Toronr=160Y5r

as isomorphisms Fr o Hg = Hp o Fg.
e Forany B”" C B C BCD, F € Mns(B,B’), and F' € Mns(B’, B"),

VF
vruFo (ax) =afo| o
VF

as isomorphisms %, o Fiz0 Hg = Hp o Fryp.
e For any i € D, S; o yy; = p; © S as isomorphisms F! o H; = Hy o F;.

Let H : € — %’ be an equivalence of braided Coxeter categories. Then,

the representations of the braid groups )\z’b and )\;{’_j:b are equivalent through
the natural isomorphism v : Fiz 0 Hg = Fr.

6.5. The braided Coxeter category ﬁﬁ;g,R,s

Let now A be a symmetrisable generalised Cartan matrix, (h, II, IIV) a realisa-
tion of A, g the corresponding Kac-Moody algebra and D its Dynkin diagram
with the standard labelling (2.2), thus By = By . To simplify the exposition,
we assume that A is of finite or affine type, and b is its minimal realisation.

For any proper subdiagram B C ), we denote by g C g the subalgebra
generated by {e;, fi, hi }ien, and set gp = g.'° Similarly, we denote by Urgp C
Urg the subalgebra topologically generated by { E;, F;, h; }ic g, and set Upgp =
U hg-

Then, the braided Coxeter category Oy g g is given by the following
data.

e The diagrammatic category corresponding to B C D is the monoidal
category O with braiding induced by the universal R-matrix Rp

oo,Ungp’
of Urgp.
e For any B' C B and F € Mns(B, B’), Fr is the restriction functor

h . int int : 3t
Respp : O%v,as = Ose,ung, With the trivial tensor structure.

e The generalised associators and vertical joins are trivial.

10Gince A is assumed to be of finite or affine type, g = g is the Kac-Moody
algebra corresponding to the Cartan submatrix Ap. For a general A, the definition
of gp and Urgp requires a realisation which is diagrammatic in the sense of [ATL15,
Sect. 2.4].
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The local monodromy corresponding to ¢ € D is the quantum Weyl
group operator S; € Aut(fy).

Remarks.

(1)

(2)

The braided Coxeter structure on 0y | g g is particularly simple in that
the restriction functors, the generalised associators, and the vertical join
do not depend upon the choice of a maximal nested set F € Mns(B, B'),
but only on the subdiagrams B’ C B.

The category 07 s g g gives rise to a single representation of the braid
group By (independent of F) which is the quantum Weyl group action
p: Bw — Aut(fz*) from Section 4.2.

Strictly speaking, for the coproduct identity (6.1) to hold, it is necessary
to consider a Cartan correction of the quantum Weyl group operator S;
(cf. [ATL15, Sec. 17.3]). For simplicity, we shall gloss over this technical
detail and refer the reader to [ATL15].

6.6. The braided Coxeter category ﬁg:@t

In [ATL15, Sec. 16], we defined a braided Coxeter category Oy which un-
derlies the equivariant monodromy of the Casimir connection, together with
that of the KZ equations for all the subalgebras gp C g. In outline, O’ is
described as follows.

9,

The diagrammatic category corresponding to B C D is the braided
monoidal category O&ij‘,;B, with associativity and commutativity con-
straints given by the KZ associator ®}, and R-matrix R, = exp(h2p/2),
where Qp € gp®gp is the Casimir tensor of gp, cf. [Dri90].

For any B’ C B and F € Mns(B, B’), Fr is the standard restriction
functor fp'p : (’)20’1’33 — (’)2&'33/, with tensor structure given by the
relative twists J¥ constructed in [TL16], see also [ATL15, Sec. 13].
For any B’ C B and F,G € Mns(B, B’), the natural isomorphism of
tensor functors Fg = Fr is given by the De Concini—Procesi (relative)
associator TY; constructed in [DCP95], see also [ATL15, Sec. 8].

e The vertical joins are trivial.
e The local monodromy corresponding to any ¢+ € D is the operator

(cf. (5.2))

(6.3) SY =5 - exp(hK,, /4)

Remark. Contrary to the local monodromies Sy, the data (®%,RY,,J, ng)
acts on category O, modules. By replacing the diagrammatic categories
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(92533 with (9(’;‘07g , and excluding the SV one obtains a braided pre-Coxeter
category ﬁg,v [ATL15, Sec. 15].

In 6.7-6.9, we briefly outline the construction of the relative De Concini—
Procesi associators ng and the relative twists J;.

6.7. Monodromy data of the Casimir connection

Following Cherednik [Che89, Che91] and De Concini-Procesi [DCP95] (see
also [ATL15, Sec. 8)), for any F € Mns(ID), there is a canonical universal so-
lution Gx of Vi valued in Aut(f). It is uniquely determined by its prescribed
asymptotics on a point at infinity pz corresponding to a choice of blow-up
coordinates on X associated to F.

For any F,G € Mns(D), the De Concini—Procesi associator Yy is the
element of Aut(f) defined by

Gg(a) = Grlr) - T

where z lies in the fundamental Weyl chamber. The datum of the De Concini—
Procesi associators yields a combinatorial description of the equivariant mon-
odromy of Vi as follows (cf. [ATL15, Thm. 9.3]). Let SY be given by (6.3).
Then, there is a family of representations

pr By — Aut(f™)

labelled by F € Mns(D), which is uniquely determined by the conditions
o ur(S) =9y if{i} e F
 pug = Ad(Tgr) o ur

The representation pr is the equivariant monodromy of Vi computed with
respect to the fundamental solution Gr.

6.8. Generalised associators

For any B C D, one similarly obtains the associators T;Q € Aut(fp) with
F,G € Mns(B) which, together with the local monodromies {SY };cp, de-
scribe the equivariant monodromy of the Casimir connection of gp. These
associators are related to those for g as follows. Let H € Mns(D, B) and
F,G € Mns(B,0). Then, [DCP95, Thm. 3.6] implies that

(6.4) T?Ytug HUF = LDB(Tgf)
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where tpp : End(fg) — End(fp) is induced by the equality fp = fpp o fp.
The relative associators corresponding to an inclusion B’ C B are con-
structed as follows. Let F,G € Mns(B, B’), choose H € Mns(B’, ), and set

V. _~V
Tg]-' - TQUH]-'U”H

One then proves that the definition is independent of the choice of H, and

that T centralises gp: [DCP95, Thm. 3.6], and therefore can be thought of

as an automorphism of the restriction functor fp/p : (’)gg I (9?0793,.
These associators satisfy the vertical factorisation since if B” C B’ C B,

F,G € Mns(B,B’), F',G' € Mns(B’, B"),
Youg rur = Youg gur - Your rur = tep(To7) - Tor
where the second equality follows from (6.4) and the definition of T .

6.9. Monodromy data of the joint KZ-Casimir system

The tensor structures {J;} Femns(p) on the forgetful functor f = fp are ob-
tained from the dynamical KZ equations in n = 2 points

Q
(6.5) d— (h + u“)) dz
z

where z = 21 — 25, pp € h and () = @ 1 as follows.

These admit a canonical solution Gy which is asymptotic to z"* near
z = 0. If u is regular and real, they also admit two canonical solutions G4
which are asymptotic to 2"% -exp(z,u(l)) as z — oo with Im z 2 0, where Qg
is the projection of Q onto h ® h [TL16, Sect. 6]. Define the differential twist
Je (1) by

Je(u) = Gg'(2) - G(2)

where Im z 2 0.

Then, J4 (p) kills the KZ associator for g. As a function of u € C, where C
is the fundamental Weyl chamber, Jy (1) is real analytic and varies according
to the Casimir equations [TL16, Sect. 7]

h d
dei:§ Z _Oé

aEAL

(AKD I —Je (K ®1+10KY))

(%

It follows that, for any maximal nested set F € Mns(D), the twist

Y = MG ™ - Je(n) - Gr()®
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where Gr(u) is the fundamental solution of the Casimir connection corre-
sponding to F (see 6.7), is independent of 1 € C, and a tensor structure
on fp.

The relative twists JY corresponding to any B’ C B and F € Mns(B, B')
are obtained by relying on vertical factorisation as follows. Fix H € Mns(B’, (),
let F° ;UH and FX be the tensor structures on fp, fg: corresponding to F UH
and H respectively. Then, define J¥ by

for (J¥) = Trum - (J) ™
More precisely, the right-hand side is a collection of natural isomorphisms
fB/ (fB/B<U) ® fB/B(V)) — fB(U ® V) = fB/ (fB/B(U & V))

defined for any U,V € (’)507g - One can prove that it satisfies the centraliser
property, i.e., commutes with the action of gp [TL16, Sect. 8]. Since fp is
faithful, it follows that it is of the form fp/(J¥) for a unique JY. Moreover,

the latter is independent of the choice of H.

7. The equivariant monodromy theorem
We review in this section the main result of [ATL15], which extends that of
[TLO8, TL16] to the case of an arbitrary symmetrisable Kac-Moody algebra,
and yields an equivalence of braided Coxeter categories ﬁ;@t = O gRrS-

Its proof relies on the Etingof~-Kazhdan equivalence, which is briefly reviewed
in 7.1-7.2.

7.1. The Etingof-Kazhdan equivalence

In [EKO08, Thm. 4.2], Etingof and Kazhdan construct an equivalence of cate-
gories F : Og‘o,g — Ooo,Usg, together with an isomorphism a of functors

A F
Ooo,g OOO,UHB

N

Vecty

where f and f; are the forgetful functors.!' The equivalence F is the identity
on h-modules and preserves integrability [ATL15, Lemma 22.9]. It therefore

' More precisely, in [EK08] Etingof-Kazhdan construct an equivalence F between
the larger categories of deformation Drinfeld—Yetter modules over the negative Borel



62 Andrea Appel and Valerio Toledano Laredo
gives rise to a diagram of functors in which every face commutes

Oh,int Fint Oint
00,9 oo,Uhg

fo'nt Ogo’g L> Ooo,Uhg
(7.1) fint S fo fr.0 y fpint
f Mod? = Modg
fy fy
Vecty, Vecty,

where the vertical arrows are restriction functors, and the natural isomor-
phisms are either trivial or induced from «.'?

7.2. The Etingof-Kazhdan isomorphism

In terms of completions, the Etingof-Kazhdan equivalence (F, «) gives rise to
an isomorphism V¥ : End(f;) — End(f) via the composition

(7.2) End(fp) — End(f, o F) — End(f)

where the first isomorphism is induced by F, and the second is given by Ad(«).
By (7.1), U restricts to an isomorphism ¥ : End(f3*) — End(f™") such that

End(fp) , End(f™)

[ o ]

End(fp) —5— End(f)

[ o ]

End(fh ) _ End(fh )

subalgebra b~ , and admissible Drinfeld—Yetter modules over U b~ (see also [ATL18,
6.13]). It easily follows that F restricts to an equivalence O% = — Ou 1,4 since it
is the identity on Drinfeld—Yetter h-modules, see [ATL15, Lemma 22.11]. By the
same argument, it also restrlcts to an equivalence Og = Ou,g-

12The categories Wy, O g and O naturally fit within the diagram (7.1),
but are omitted for simplicity.

0o0,Ung
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where the vertical arrows are restriction to category O, and integrable mod-
ules.

7.3. The classical Drinfeld algebra

Let D be the analogue of the Drinfeld algebra Dy, for Ug[h] (cf. Section 3.1).
Namely, for any § € Q4, let Bg = {Xs,} be a basis of Ung and B =

|—|5€Q+ Bﬁ Set

DQZ{ZCXXZ CXEUb}: H U67®Un§3Ug
XeB BEQ+

and D = Dy[h]. The algebra structure of Ug[h] extends to one on D and
yields a chain of morphisms Ug[h] C D — End(f). Proceeding as in Section 3
one shows that D embeds into End(f) and End(f™).

7.4. The monodromy theorem

In [ATL15, Thm. 22.1] we prove the following.
Theorem.

(1) There is a canonical equivalence of braided pre-Cozeter categories (cf.
Remark 6.6)

A
Hy = (Hp,v7) : Oyv — Oy, 4R s
such that
— forany B C D, the equivalence Hg is the Etingof-Kazhdan functor
h
Fos - Ocgs = OscUngs

— for any B' C B and F € Mns(B, B’), the natural isomorphism ~yr
is induced by the action of an invertible weight zero element gr in
the Drinfeld algebra of gp, i.e., there is a commutative diagram of
functors
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OOO:Uth
FEB :
fr g
A h,B'B
OOO 9B
YF
ferp U
Fo 00 h9B’
B/
(7.3) /
¢ h
B gr 000793’ fh B
Vectﬁ
fB/
Vecth

where the unmarked back face is the identity and the two unmarked
lateral faces are the isomorphisms « for gg and gp.

(2) Hy restricts to an equivalence of braided Coxeter categories

He' = (H5 7F) : 008 — Ot o ms

where Hg' = Fg) .
(8) For any F € Mns(D), the isomorphism

Ui = Ad(gr) o U™ : End(fy") — End(f™)

intertwines the quantum Weyl group and the monodromy actions of By,

ie.,
By
A HF
End(fy") — End(f™)
v

where ur = e@f% denotes the monodromy action of By around the
point at infinity in the De Concini—Procesi compactification of X corre-
sponding to JF.
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Since the diagrammatic equivalences are fixed, the proof amounts to
constructing suitable isomorphisms (6.2). The construction is in two steps.
First, we prove that O g g is equivalent to a braided Coxeter category
ﬁg”i{ts with diagrammatic categories O&ijB, B C D, and standard restric-
tion functors with non-trivial tensor structures. The equivalence is given by
the diagrammatic Etingof-Kazhdan functors, equipped with natural isomor-
phisms 77 whose construction is carried out in [ATL18, ATL19a]. Then, re-
lying on the rigidity result from [ATL19b], we prove that ﬁ’;ﬁis is equiv-
alent to ﬁ;’@t with diagrammatic equivalences given by the identity func-
tors. Finally, we observe that, by [ATL19a, Thm. 10.7], the resulting iso-
morphisms £ satisfy (7.3) for weight zero elements gz in the Drinfeld alge-

bra.
8. The monodromy theorem in category O,

In this section, we show the equivalence of the actions of Py, constructed in
Sections 4 and 5. The proof relies on the equivariant monodromy Theorem 7.4,
the explicit description of the actions of Py from Sections 4 and 5, and the
following auxiliary result.

8.1. Isomorphism between Drinfeld algebras

We show below that the isomorphism W : End(fs) — End(f) (7.2) restricts
to an isomorphism ¥? : D, — D. Our proof closely follows Etingof and
Kazhdan’s argument [EK08, Rem. p. 535] for the analogous algebra Qj =
limg Urg/Is (cf. Remark 3.1), and completes their affirmative answer to a
question raised by Drinfeld [Dri92, Question 8.2].13

For any =Y, kia; € Q4, define the height of 8 by ht 5 = 3, k;. For any
n = 0, let J, C Upg be the left ideal generated by (Upn')s with ht(3) > n.
Set U,gn) = Ung/Jn, and denote by iF U,(in) — U,(im) (m < n) the natural
morphisms. Their classical analogues U™ and t,,, : U™ — U™ (m < n)

are defined similarly for Ug[A].

13The argument in [EKO08] is not complete since the modules Ug/Is are not
equicontinuous for an arbitrary Kac-Moody algebra g, so that the Etingof-Kazhdan
equivalence F cannot be applied to them. In particular, the existence of an isomor-
phism between Qp and its classical counterpart raised in [Dri92, Question 8.2] is
not settled by [EK08]. Theorem 8.1 yields such an isomorphism for the algebra Dy,.
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Theorem.

(1) There is a canonical isomorphism of Upg-modules Dy, ~ lim,, Ué”).
(2) There is a canonical isomorphism of Ug[h]-modules D =~ lim,, U™,
(3) VU restricts to an isomorphism of algebras WP : Dy — D.

Proof. (1)-(2) The action of Dy, on the cyclic vector yields surjective mor-
phisms ¢, : Dy — Uén) of Upg-modules such that /,ﬁm o ¢p = ¢m. The
corresponding morphism ¢ : Dy — lim, U;Ln) is easily seen to be an isomor-
phism.

(3) The algebra structure of Dy, is encoded by the morphisms between

the modules U, én). Namely, we have a natural isomorphism
D;P ~ Endy, 4 (lim Uén)) ~ lim colim HomUhg(Uf(.Ln), Uém))

(see also [Appl3, Appendix A.1]). A similar results holds for D.

The module U™ (resp. U;(i")) does not lie in OF - (resp. Ouou,g) since
it is free over Uh[h]. However, the fact that Unfv = 0 (resp. Uhngv =0) for
all but finitely many 8 € Q4 for any weight vector v € U™ (resp. v € U ;L"))
implies that U™ is an equicontinuous g-module and therefore a Drinfeld-
Yetter module over b~, and that U. én) is an admissible Drinfeld—Yetter module
over Upb~. One can therefore apply the equivalence F to U™, and finds
that F(U™) = U™ and F(iny) = 1, [EK08, Thms. 4.1-4.2]. This yields a

collection of natural isomorphisms
Hong[[FL]](U(n)a U(m)) = HomUng(U(n)> Urgm))
and the desired isomorphism ¥P : Dy — D. O
8.2. The monodromy theorem

Theorem. The monodromy of the normally ordered Casimir connection on
a g-module V € (’)gg is canonically equivalent to the normally ordered quan-
tum Weyl group action of the pure braid group Pw on the Etingof-Kazhdan
quantisation F(V) € O 1/,g-

Proof. Let F € Mns(D). By Theorem 7.4 (3), there is a weight zero element
gr € D* C Aut(f) such that ¥ = Ad(gr) o U™ intertwines the quantum
Weyl group and the monodromy actions of By, cf. (7.4). We claim that this
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yields a commutative diagram

nd(fy") End(f"™)

Agy‘j/ \;}]—"

Dy D

N

End(fh)

End(f)

where U2 = Ad(gr) o P, #7 denotes the normally ordered monodromy
action of Py, around the point at infinity corresponding to JF, and every face
is commutative. Then, the result follows from the commutativity of the back
face.

We first prove the commutativity of the top face. Since gz € D is weight
zero and F™ : (9251’5 — OX g 1s the identity at the level of h-modules
in Vect, V¥ = Ad(gr) o U™ intertwines the characters of Py given by
£(pa) = exp(tmhy), and B(pa) = exp(hity/2). Therefore, by Theorem 4.5 (1)
and Proposition 5.6 (3), we can remove ¢ and 4, and obtain the result.

The commutativity of the lateral faces follows from Sections 4 and 5.
Namely, by Theorem 4.5 (2) and Section 4.6, the normally ordered quantum
Weyl group action of the pure braid group Py C By factors through the
Drinfeld algebra Dy C End(fs). Moreover, by definition, & is the normally
ordered monodromy action of Py, which readily factors through the classical
Drinfeld algebra D C End(f).

The commutativity of the bottom and front faces follows from Section 8.1.
Namely, by Theorem 3.1 (and its analogue for Ug[h]), the restriction to in-
tegrable category O modules yields the embeddings Dy < End(f3*) and
D — End(f™). Since gr € D, it follows from Theorem 8.1 that W% also
restricts to an isomorphism \Il]’f- = Ad(gr) o VP: Dy, — D.

Finally, since D embeds in End(f™), the commutativity of the top, lateral,
bottom, and front faces yields that of the diagram

7\

and the result follows. O
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8.3. The equivariant monodromy theorem

The following is a direct consequence of Theorem 8.2.

Theorem. Let V be a g-module in category O, F(V) its Etingof-Kazhdan
quantisation,

Pz Pw — GL(V) and  X:Pw — GL(F(V))

the equivariant monodromy of the Casimir connection given by Proposition
5.0, and quantum Weyl group action given by Theorem 4.5.

Then, &P 5 and X are canonically equivalent. Specifically, for any F €
Mns(D) the following diagram is commutative

Pw
A ys,.@}—
/ O \
End(f;,) v End(f)

8.4. Extension to other Lie associators

Although Theorem 8.2 and Corollary 8.3 are formulated in terms of the tensor
equivalence F : Oy — O v, ¢ corresponding to the KZ associator, they hold
true for the Etingof-Kazhdan equivalence corresponding to an arbitrary Lie
associator ®.

Indeed, by [ATL18, ATL19a] the braided Coxeter category Oy ;g g un-
derlying the R-matrix and quantum Weyl group of Upg (see 6.5) is equiv-

,int,®

alent to a braided Coxeter category ﬁ; rRs With diagrammatic categories

{(’)Zg,i,"gtB} Bch, and standard restriction functors, with the corresponding hori-
zontal equivalences O?oyg 5 — OooUngp given by the Etingof-Kazhdan tensor
equivalence FE’B corresponding to gp and the choice of .

By the rigidity result of [ATL19b], ﬁ; RS IS equivalent to ﬁ’;’ivm, with
diagrammatic equivalences given by the identity functors endowed with a
non-trivial tensor structure.

Composing yields an equivalence ﬁ;@t — O, o m,s Whose diagrammatic
equivalences are the Etingof-Kazhdan functors corresponding to ¢, which
then yields Theorem 8.2 and Corollary 8.3 for F®.

9. Parabolic pure braid group actions

In this section, we extend the results of Sections 4 and 8 to parabolic pure
braid groups.
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9.1. The group PBj;

For any subset J C I, let PB3y C By be the preimage of Wy = (s;) ey under
the projection By — W. Thus, PBy = Pw and PBy = By . The parabolic
pure braid group PBy is generated by the braid group By, and the pure braid
group Pyr. Moreover, as an abstract group,

PBy ~ (Pw x Bw,)/Pw, where Pw, ={(p,p")|p € Pw,} C Pw x Bu,
2. Quantum Weyl group action of PBj

Let Ungs C Urg be the Hopf subalgebra generated by {Ej, Fj, h;}jcy, and
g’oi’“{]ng C Ouo,¢ the full subcategory of modules whose restriction to Ungy

is integrable. We have the inclusions

int J-int
OOO,UhE C U Ung © OOO,Uﬁg

together with the equalities O3, - = Oco,v,g and Oy, o = O 1,
Let fi ™ : OL7, 4 — Vecty be the forgetful functor. We define below and

in 9.3 two actions
)\7 )\6[‘1],%[‘]] . PBJ — Aut(f;[int)
such that

e for J = (), they recover the quantum Weyl group action A : Py —
Aut(fy) from Theorem 4.5 (3) and the normally ordered quantum Weyl
group action A; z : Pw — Upg from Section 4.6, respectively.

e for J = I, both give the quantum Weyl group action A : By — Aut(f}).

Let f‘“t : (’)g“g’Uth — Vecty be the forgetful functor and Ay : By, —
Aut(fy) the quantum Weyl group action of Byy,. Let A ™ : By, — Aut(f} ™)

be its lift through the restriction functor OZ'v, —— O

oo,Ung oo, Ungs*
Theorem. The following holds.

(1) The quantum Weyl group action of PBy on integrable modules in cate-
gory O ,g has a unique extension to an action X : PBy — Aut(fj ™)
such that g, = X" and Apy, is the restriction of the action (4.2)
to O e C (’)OO Ung-

(2) The map X intertwines the inner action of PBy on Upg, i.e., for any
element Y € Upg and b € PBy

ABY D)™ = b(Y)

in End(f7).
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Proof. The uniqueness of A follows from the fact that PBjy is generated by
Pw and Byy,. To prove the existence of ), it is enough to observe that on the
one hand there is a commutative diagram

By —2— Aut(fy")

| I

B, o Aut(f ™)

where the right vertical arrow is induced by the inclusion OF , . C O, 4-

On the other, by Theorem 4.5, the quantum Weyl group action of Py on
integrable modules extends canonically to Ouo 1,4 and therefore to OL7;, o C
Oso,Up g, I-€., there is a commutative diagram

By —— Aut(f}")

| I

Pw —— Aut(fy )

The actions of By, and Py on f2* give rise to an action of Py x By,
since, for any p € Pw and b € Byy,, one has

N ) A(p) = X (0) - enlp) A ()
= ben(p)) DA (1)) X ()
= en(bpb 1) - A (b))
= Apb ) X ()

where the third equality follows the By-equivariance of J# (Theorem 4.5
(2)). Moreover, they coincide on Py, = Pw N By, , and therefore give rise to
the desired action A : PBy — Aut(fi™). O

9.3. Normally ordered quantum Weyl group action of PBj
Let Ay € A be the root subsystem generated by {c;},cy, and let
(9.1) 5[;3] : PBy — Aut(fi ™) and B9 PBy — exp(hb)

be the morphisms uniquely defined by the following conditions.
e For any b € By, Eg](b) =1=2Y).
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e For any a € Ay, 5%](pa) =1=2Y(p,).
e Forany a € AT\A¥ £h](pa) = exp(tmhy) and B (p,) = exp(ht, /2).

Note that 6;33] and A are both Byy,-equivariant. They therefore give rise
to a morphism

)\E[J]V@[J PBy — Aut(fJ mt) by )\(b) = 5%”([)) . )\5[‘]]7:@[‘]] (b) . gg[-]] (b)

for any b € PBj, which we shall refer to as the normally ordered quantum
Weyl group action of PBy on O . If J =0, A\ g is the action of Py,

oo, Urg"
constructed in 4.6 while, if J =1, )\ 2 is the quantum Weyl group action
of By on OF p, 4

9.4. Tits extension and PB;

Let now gy C g be the subalgebra generated by {e;, fj}jes, O th C Oh
the full subcategory of modules whose restriction to gy is mtegrable and
fIint O&fg"t — Vecty the forgetful functor.

Let eM: PBy — Aut(f* ™) be the sign character defined as in (9.1), and
define epz) : Py — Aut(f™) by the relation

e(p) = e (p) - M (p)

for any p € Pw, where ¢ is given by (5.3). Thus, e3(pa) = exp(imhy) if
a €Ay, and e3)(pa) = 1if a ¢ A |

Lemma. Let V be a module in (’)25{3“. Then, there is an action 731 of PBj
on V uniquely determined by the following conditions.

(1) The restriction of T3 to Bw, is given by the action Ty of the triple
exponentials (2.3) indexed by J.
(2) The restriction of T3 to Pw is given by the sign character e[g).

Proof. The result follows at once from Proposition 5.6 (1). O

Remark. Equivalently, 7(3) is given by a projection of PBj onto the Tits

extension WJ. Note also that, for J = 0, i) is trivial, while, for J =
T[_]] =T.

)
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9.5. Monodromy action of PBj on category O™

We construct below an action
@T[J],%[J] : PBJ — Aut(f-]—int)

by making the monodromy of the Casimir connection Vg of g equivariant, as
described in 1.9 and 5.4-5.6, but only with respect to the parabolic subgroup
Wj. For J = 0, Z,, #, is the monodromy & : Py — Aut(f) of Vi (cf.
Section 5.2) while, for J =1, L@TW %5 is the equivariant monodromy action
Pz Bw — Aut(f*") of Theorem 5.5.

Let & : ILi(X;Wzy) — T4 be the monodromy of Vg, where 7y is
the image of the holonomy algebra (cf. 1.9), and consider its restriction to
IT; (X; Wyzg). The lack of equivariance of & under Wy is controlled by the
1-cocycle

Ay = iy o |w, : Wy = Hom (ITy (X; Wyxo), exp(hb))

where iy : I1; (X; Wyzg) — II;(X; Wzg) is the inclusion.
The obstruction @) is related to the one for the Casimir connection of
gy as follows. Consider the quotient map

py S —5°/ ﬂ Ker(a) ~ b5

a€Ay

p3 is equivariant under Wy and, by [Kac90, Prop. 3.12], restricts to a map
X — Xz of Tits cones. It therefore induces a morphism of groupoids py :
IT; (X; Wyzg) — TI1(X3; Wilzo)s), where [z9]5 = p3(zo), which we denote by
the same symbol.

Lemma. Let

oy : Wy — Hom (I (Xy; Wx[zoly), exp(hby))
be the 1-cocycle measuring the lack of equivariance of the Casimir connection
of g3 with respect to Wy. Then, o3 = pj<y.

Proof. Let w € Wj3. By Remark 5.4, 47, is the monodromy of the connection
d — hay,, where

da da
hay = Vi —w*'Vie=h Y —to=h Y —ta=pj(Vig—w'Viy)
(0% (0%
a€A;: OéEAJY_*_Z
wa<0 wa<0

O
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By Theorem 5.5 for gy, @y = d%y, where B3 € Hom(II; (Xz; Wyxols),
exp(hbyg)). Set By = p3#s. Then,

Ay = pydy = pydBy = dpy B3 = d By
It follows that %3 gives rise to a Wj-equivariant morphism
Py i(Xi Wizo) — Ty Py () =2 () B (v)
Consider next the equivalence of groupoids
Py : Wy x II1 (X; Wyzg) — I3 (X/Wy; [20]) = PBjy

generalising (5.1). Composing with Py ! yields a morphism PBy — Wy x Tq
and its lift PBy — PBjy x Ty. Combining this with the action 73, of PBy on
f7»* defined in Lemma 9.4, yields the following generalisation of Theorem 5.5.

Theorem. There is a morphism P. . z, : PBy — Aut(f ™) given by

‘@T[le%’m (0) = 713 (b) - 2(b) - B13)(b)

where b € IT, (X; Wyxg) is the unique lift of b through x.

Remark. Note that, for any j € J, B5(v;) = exp(hto,;/4), since py maps
7; to the corresponding generator of vy, € I11(Xg; Wi[zols) and Sy (v;) =
exp(htq,/4) by construction.

9.6. The monodromy theorem for PBj

Theorem. The Wj-equivariant monodromy of the Casimir connection on
a g-module V € (925{3“ 1s canonically equivalent to the normally ordered
quantum Weyl group action of the parabolic braid group PBy on the Etingof-

Kazhdan quantisation F(V) € OX, .

Proof. The result follows from the combination of Theorem 7.4 for By, and
Theorems 8.2-8.3 for Py .

Specifically, let B C D be the subdiagram corresponding to J, F a max-
imal nested set containing B C I corresponding to J, and Fj the induced
maximal nested set on B. Let

fJ : Oh — Vecth and fJ,h : Ooo,Uth — Vecth

00,83
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be the forgetful functors. By Theorem 7.4 (1) and (7.3), the isomorphism ¥ »
restricts to Wz , i.e., there is a commutative diagram

End(fy ;) —*— End(fi")

Lo

End(fy) ———— End(f)

where the vertical arrows are induced by the restriction functors ijo,g —

(’)fo’ng and O v, = Ooo U9y respectively.

Further, since the Etingof-Kazhdan equivalence preserves the categories
of O™ modules, W, restricts to an isomorphism W™ : End(fj ™) —
End(f) such that

(1) There is a commutative diagram

int

End(fj},) ———— End(f}")

| o |

End(f%iint) T End(f‘liint)
F

where the vertical arrows are induced by the restriction functors

(’)gg,f;m — (’)251’;,; and O, o — Oy o, respectively.
(2) There is a commutative diagram
‘Ij]:
End(fs) End(f)

| o |

End (f}!{im) T) End (f']iim)
f

. . . . h,J-in
where the vertical arrows are induced by the inclusions Ox'g™ — C’)fqg

and OL7, o = Oco,U g, respectively.

We claim that W™ intertwines the actions of By, and Py, and therefore
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that of PBjz. To this end, consider the diagram

1,2l PB; D3

/\

‘1/.] int

End(f ™) End(f? ™)

The front face commutes by (1); the top face by Theorem 7.4 (3) for gy; the
left lateral face by Theorem 9.2 (1). For the right lateral face, recall that, for
any b € PBjy,

@fmv@m(b) = 71ay(b) - 27 (b) 2N (b)

Let b € By,. By Lemma 9.4 (1), we have that 7135(b) = 73(b). Then, by Re-
mark 9.5, Zy (b) = By (by), where by € II;(Xy, Wy[zo]s) denotes the unique
lift of b through [zo]y. Finally, 27 (b) = 2% (by) since the monodromy
in the De Concini-Procesi compactification is recursive in nature [DCP95,
Thm. 3.6]. Thus, W™ intertwines the actions of By, through PBj;.

Similarly, consider the diagram

A3 1)
v

End(fp) FJ End(f)
PBj
y \[‘]j[‘]
End(f ™) . End(f* )
F

Let p € Py and recall the identities

e(p) =em(p) - e (p) and B(p) = By (p) - B (p)
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from 9.4 and Remark 9.5. The commutativity of the top face then follows
from Theorem 8.2 by correcting simultaneously A, z and 27 by g(y) and
Hi3). The left lateral face commutes by Theorem 9.2 (1). The right lateral
face commutes by Lemma 9.4 (2). Thus, W™ intertwines the actions of Py,
through PBj. O

The (non normally ordered) quantum Weyl group action of PBy admits
a similar monodromic interpretation, in analogy with Theorem 8.3. Namely,
define Z. z : PBy — Aut(f} ™) by

(9.2) Pra(b) = E[J](b) ‘ QT[J],,%’[J](b) : %[J](b)

for any b € PBjz. Then, the following holds.

Corollary. LetV be a g-module in category O%2-" F(V) its Etingof-Kazhdan
quantisation,

Pz PBy— GL(V) and A:PBy — GL(F(V))

the corrected Wy-equivariant monodromy of the Casimir connection (9.2),
and the quantum Weyl group action given by Theorem 9.2 respectively. Then,
P # and X are canonically equivalent.
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