Abstract
Despite the importance of graphical reasoning, graph construction and interpretation has been
shown to be non-trivial. Paoletti et al. (2023) presented a framework that allows for a fine-
grained analysis of students’ graphical reasoning as they conceive of graphs as representing two
covarying quantities. In this paper, we show how the framework can be used to characterize a
student’s meanings and reasoning related to such graphical reasoning, to diagnose complexities
in a student's developing such reasoning and to design tasks that provide opportunities to resolve
such complexities. We draw on data from a teaching experiment with a sixth-grade student in the
U.S. to highlight how the framework allowed us to identify indications and contraindications of
the student’s engaging in reasoning compatible with the framework. Further, we describe how
this analysis supported us in designing a task that was aligned with the framework and proved
productive in supporting the students’ learning. We conclude with a discussion of our findings

and their implications for task design and future research.

Keywords: Graphs and Graphing; Covariational Reasoning; Quantitative Reasoning; Teaching

Experiment; Middle School



1. Introduction

Constructing and interpreting graphs are critical skills for students to develop both as
learners in STEM fields and as informed citizens (e.g., Gantt et al., 2023b; Glazer, 2011;
Potgieter et al., 2008). However, the difficulties that students and teachers experience with graph
construction and interpretation are well-documented (e.g., Glazer, 2011; Thompson et al., 2017).
In response, a small but growing body of literature has begun to explore ways to support
students’ development of graphing meanings across various grade levels (Ellis et al., 2015;
Hattikudur et al., 2012; Johnson, 2015; Liang & Moore, 2021; Nathan & Kim, 2007; Paoletti &
Moore, 2017; Rolfes et al., 2020).

One form of graphing reasoning, referred to as emergent graphical shape thinking
(EGST; Moore, 2020; Moore & Thompson, 2015), is important across STEM disciplines
(Paoletti et al., 2020). Paoletti et al. (2023) presented a framework (described in Section 2) that
allows for fine-grained analysis of students’ meanings and reasoning as they develop EGST.
They presented the activity of two advanced, 8"-grade students (who had taken Algebra I and
high school Geometry) to highlight the ways students’ meanings might progress as they develop
EGST. However, they did not describe how the framework could be used to provide indications
or contraindications of student thinking progressing towards EGST or to support the design of
novel tasks to support such reasoning.

The goal of this paper is to show how the framework can be used to identify indications
and contraindications of meanings and reasoning related to EGST and to design tasks that
support students’ making progress toward EGST. By focusing both on analyzing students’

reasoning and on designing tasks, we provide important implications for researchers and teachers



aiming to support students’ developing graphing meanings and for curriculum developers
designing tasks to support such meanings.
2. Literature review and theoretical framework

Moore and Thompson (Moore, 2020; Moore & Thompson, 2015) described emergent
graphical shape thinking (EGST) as conceiving of:

a graph simultaneously as what is made (a trace) and how it is made (covariation)...

[EGST] entails assimilating a graph as a trace in progress (or envisioning an already

produced graph in terms of replaying its emergence), with the trace being a record of the

relationship between covarying quantities. (Moore & Thompson, 2015, p. 785)

EGST is important for interpreting graphs across STEM fields. For example, interpreting graphs
in many STEM textbooks and practitioner journals requires such reasoning (Paoletti et al., 2020).
Further, there is evidence that students in middle school (e.g., Ellis et al., 2015; Paoletti, 2019)
and high school (e.g., Johnson, 2015) can develop meanings for graphs that include elements of
EGST.

Extending the work of Moore and Thompson, Paoletti et al. (2023) provided a framework
that described components necessary for students to engage in EGST. In this section, we describe
Paoletti et al.’s (2023) framework, including a synthesis of relevant literature around components
of the framework where appropriate. Figure 1 provides an overview of the original framework.
Visually, we note that students’ situational quantitative and covariational reasoning (abbreviated
M.S. to capture meanings and situational) is adjacent to their reasoning with graphical
representations (abbreviated M.R. to capture meanings and representation). This organization

conveys that students must engage in reasoning that bridges these meanings (Gantt et al., 2023b)



as a prerequisite to engaging in EGST (abbreviated M.E. to capture meanings and emergent). In

the sections that follow, we elaborate on each of these constructs.

Figure 1

A re-creation of the framework from Paoletti et al. (2023)

(M.S) Situational quantitative and covariational reasoning

(M.R) Reasoning with graphical representations of covarying quantities

M.S.1. Construct quantities in a contextualized or
decontextualized situation.

M.S.2. Coordinate how two quantities change in relation to
cach other.

M.S.3. Develop an operative image of covariation that entails a
multiplicative object.

M.R.1. Consider a varying segment length as representing a quantity’s
magnitude.

M.R.2. Consider variations in two orthogonal segment lengths on axes in a
coordinate system’ in relation to two covarying quantities.

M.R.3. Conceive of or anticipate a point as a multiplicative object in the
coordinate system simultaneously representing the two segments’ magnitudes.

(MLE) Emergent graphical shape thinking

conceived of in the situational multiplicative object (M.S.3).

M.E.0. Conceive a point as a multiplicative object in a coordinate system (M.R.3) whose motion is constrained by the covarying quantities

M.E.1. Conceive of or imagine a graph being produced by the trace of the point (M.E.0) as quantities covary.

M.E.2. Consider various situations that produce the same final graph via different traces.

2.1 Meanings

Paoletti et al. (2023) emphasized the importance of students’ developing meanings for

various situational and representational objects. Consistent with Thompson’s (2016) use, we

characterize a student’s meanings as the collection of actions, objects, or schemes they can call

on when they assimilate a situation. For example, when a student assimilates a drawn picture as a

linear graph, their meanings could entail a combination of interrelated elements including a

constant rate of change, tricks involved in determining the slope of the drawn graph, and/or an

analytic rule that represents the relationship.

All meanings are expressed in-the-moment in relation to a particular context or task.

Some in-the-moment meanings are stable whereas others are only experienced in-the-moment;

when a student first makes sense of a new idea, their in-the-moment meanings are often fleeting.

Students typically need repeated opportunities to (re)construct in-the-moment meanings before




the meanings become stable (Thompson, 2011). Once a meaning is stable, the student can
spontaneously use the meaning in novel situations. Hence, Paoletti et al.’s (2023) framework
emphasized providing students repeated opportunities to develop stable meanings for the
components necessary for EGST.

2.2. Quantitative and covariational reasoning (M.S.1 and M.S.2)

Students need to construct and reason about quantities as a pre-requisite to engaging in
EGST (Paoletti et al., 2023). Leveraging Steffe, Thompson, and colleagues’ (e.g., Smith &
Thompson, 2008; Steffe, 1991) stance on quantitative reasoning, we contend that a quantity is a
conceptual entity an individual constructs as they conceive of a measurable attribute of some
object or phenomena!. Because quantities are individual constructions, researchers (and teachers)
cannot presume that a student’s meanings for a particular quantity are compatible with their
intentions. Researchers (e.g., Paoletti, 2015; Paoletti et al., 2019; Moore & Carlson, 2012) have
provided numerous examples in which students develop meanings for a quantity that work for
the particular student but are inconsistent with the quantity researchers intended for them to
explore.

Although a student’s quantitative reasoning can involve both numeric and non-numeric
reasoning (Johnson, 2012; Moore et al., 2019), Smith and Thompson (2008) emphasize
quantitative reasoning as “thinking about and representing... the relationships inherent in the
quantities themselves, not the specific numeric values they take on” (p. 111). Hence, the essence
of quantitative reasoning is non-numeric, having more to do with an individual’s meanings for
attributes of objects or phenomena than with particular numeric values. However, we have often

observed students using numeric values as they develop meanings for a quantity or for how

' To construct a quantity, an individual needs to conceive of a reference point, direction, and unit to measure the
quantity (see Joshua et al., 2015; Thompson, 2011 for more on this).



quantities change together (e.g., Paoletti & Vishnubhotla, 2022). Hence, numeric quantitative
reasoning can support students as they develop meanings for quantities (Johnson, 2012). Our
goal, however, is to support students in developing conceptions for quantities that are non-
numeric (i.e., based in magnitudes, or ‘amount-ness’, rather than constrained to specific numeric
values). One way researchers can infer that students conceive of non-numeric quantities as they
describe the intensity of change of a quantity (e.g., a student describing a quantity as growing
quickly or growing slowly; see Johnson, 2012).

As students construct two (or more) quantities, they can engage in covariational
reasoning (Carlson et al., 2002; Saldanha & Thompson, 1998; Thompson & Carlson, 2017).
Saldanha and Thompson (1998) defined an individual to be reasoning covariationally when they
are “holding in mind a sustained image of two quantities’ values (magnitudes) simultaneously”
(p. 298). Carlson et al. (2002) highlighted that two stages of covariational reasoning involve
conceiving of the directional covariation and the amounts of change (hereafter AoC) relationship
between two quantities.? Researchers (e.g., Moore, 2014; Paoletti & Vishnubhotla, 2022) have
shown how coordinating directional and AoC relationships can form a foundation for students’
graphing activity.

We use the growing shape depicted in Figure 2 to describe these two stages. After
observing the shape grow through an animated series of screenshots, a student may first
construct the shape’s base length and area as individual quantities (M.S.1). The student may then
conceive that as the shape’s green base length increases, the purple area also increases (M.S.2 at

the stage of directional covariation). The student may further explore Zow the two quantities

2 We note there are numerous frameworks used to analyze students’ covariational reasoning (see Thompson &
Carlson, 2017 for a review). Particular to this report, Carlson et al.’s (2002) description of amounts of change is a
particular form of the chunky continuous reasoning in Thompson and Carlson’s (2017) framework. We use Carlson
et al.’s (2002) language given its greater specificity than newer frameworks.



increase together via an AoC relationship. For instance, from the animation represented in Figure
2, the student may construct an AoC of the purple area as a quantity of “chunks” of purple area
added between the screenshots of the growing triangle (Gantt et al., 2022); the student may
construct an AoC of green base length similarly via the added distance between screenshots.
Relating to the original quantities, the student may conclude that as the green base length
increases, the purple area increases and that for equal AoC in the green base length, the AoC of
the shape’s purple area decreases (M.S.2 at the AoC stage).

Figure 2

Several screenshots of a growing shape that results in a triangle.

Triangle 1 Triangle 1 Triangle 1 Triangle 1 Triangle 1

2.3. Reasoning with Graphical Representations (M.R.1 and M.R.2)

Students can construct quantities and reason about covarying quantities without
representing these quantities via typical mathematical representations (e.g., diSessa et al., 1991;
Paoletti & Moore, 2017). In order to represent a covariational relationship graphically in a
Cartesian coordinate system, Paoletti et al.’s (2023) framework emphasizes the importance of
students conceiving of a magnitude bar’s length as representing the magnitude (or amount) of a
quantity (M.R.1) prior to their using two orthogonal magnitude bars to represent covarying
quantities (M.R.2). Lee and colleagues (Lee & Hardison, 2016; Lee et al., 2020; Paoletti et al.,
2023) describe that the process of representing a quantity via a magnitude bar requires an

individual to:



establish quantities within the given space/phenomenon, disembed (Steffe & Olive, 2010)
these quantities (i.e., extract them from the situation while maintaining an awareness of
the quantities within the situation), and project them onto some new space, which is
different from the space in which the quantities were originally conceived. (Lee et al.,

2020, p. 34)

Magnitude bars serve as the ‘new space’ students can use to represent disembedded quantities.
Representing quantities via magnitude bars is fundamental to students’ bridging their meanings
for situational quantities and graphical representations of such quantities.

We note several mathematics education researchers have used magnitude bars
(sometimes referred to as dynagraphs) for various purposes. Stevens (2023) synthesized the use
of magnitude bars in the extant literature. She indicated that researchers have described ways
magnitude bars can support students in developing meanings for functional relationships
(Antonini et al., 2020; Goldenberg et al., 1992; Hollebrands et al., 2021), for linear measurement
(Curry et al., 2006; Kamii, 2006), and fractions (Beckmann & 1zsék, 2020; Yeo 2021). Particular
to students’ graphing activity, several researchers have described using magnitude bars (Liang &
Moore, 2021; Paoletti et al., 2021; Stevens et al., 2017; Stevens 2023) or finger dragging activity
that mimics magnitude bars (Castillo-Garsow, 2012; Thompson, 2002) to support students in
representing quantities via orthogonal magnitude bars along axes.

We use Figure 3 to exemplify how magnitude bars can support students’ graphing
reasoning. After conceiving of the situation depicted in Figure 2, a student can consider how they
can use a bar to represent the magnitude of each of the changing quantities. For example,
considering the first three screenshots (Figure 3a), a student can conceive of magnitude bars

whose changes reflect a base length increasing with equal AoC (Figure 3b) and a total area



increasing with decreasing AoC (Figure 3c). Such reasoning bridges the students’ meanings for

each quantity in the situation with a graphical representation of the quantity (M.S.1<>M.R.1).

The student can then consider overlaying these magnitude representations along axes (Figure 3d)

to represent two conceived covarying quantities graphically (M.S.2<>M.R.2).

Figure 3

Several screenshots of a growing shape that results in a triangle.
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The above example highlights how using magnitude bars can be helpful for students’
developing meanings for graphs. However, researchers have also noted conflations that can
occur when such bars are used (Liang & Moore, 2020; Stevens, 2023). For example, Stevens
(2023) described how one student compared the relative lengths of two magnitude bars despite
the two situational quantities being unlike (i.e., length and area). The student was given
magnitude bar corresponding to a varying length and potential magnitude bars corresponding to
the area of a growing shape. To narrow down the potential magnitude bars representing a shapes
area, the student argued that the magnitude bar representing the area must be longer than the
magnitude bar representing only a length because area involves the multiplication of two lengths.
The student used this (non-normative) reasoning to decide which bar represented area rather than
relying on the rate at which length and area were changing together (e.g., constant rate vs.
increasing rate). From these studies, we identify that students can experience conflations with
magnitude bars when they rely on non-quantitative meanings. Hence, it is important to support
students in explicitly connecting their use of magnitude bars to their reasoning about quantities
(M.S.2M.R.2).

2.4. Multiplicative objects (M.S.3, M.R.3, and M.E.0)



According to Paoletti et al.’s (2023) framework, constructing multiplicative objects? is
the third meaning necessary for EGST in both situational (M.S.) and representational (M.R.)
settings. Describing constructing multiplicative objects situationally, Saldanha and Thompson
(1998) stated:

[Covariational reasoning] entails coupling the two quantities, so that, in one’s

understanding, a multiplicative object is formed of the two. As a multiplicative object,

one tracks either quantity’s value with the immediate, explicit, and persistent realization

that, at every moment, the other quantity also has a value. (p. 299)
Hence, constructing covarying quantities as a multiplicative object entails anticipating the
simultaneity of the two quantities’ values in relation to each other. Because covariational
reasoning is developmental (Carlson et al., 2002; Paoletti et al., 2022; Saldanha & Thompson,
1998), students typically think of one quantity first, then the second, then back to the first, and so
on. Engaging in this process can eventually lead to their maintaining an explicit and persistent
awareness that both quantities simultaneously have a value. For example, using the context from
Figure 2, a student may first consider a particular base length, then a corresponding area, then a
new base length and a new corresponding area (M.S.2). After repeatedly engaging in such
activity, the student can couple the two quantities to conceive of a multiplicative object (M.S.3)
if they anticipate that, for all values of the green base length, there are simultaneous
corresponding values for the shape’s purple area.

Graphically, a dynamic coordinate point can be conceived of as a multiplicative object

representing the simultaneity of two varying bars’ magnitudes represented on each axis. Figure

3 Thompson and colleagues’ (Thompson et al., 2017; Saldanha & Thompson, 1998) use of multiplicative object is
akin to the logical multiplication necessary for multiple classification, seriation, and simultaneity (e.g., a young child
conceiving of an apple as both red and sweet).



3e depicts three such instantiations of a point corresponding to the endpoints of the two
magnitude bars on the axes (M.R.3). If the student understands that this point simultaneously
represents the two quantities they have conceived as varying together, they have bridged their
meanings for situational and graphical multiplicative objects (M.S.3<>M.R.3). According to
Paoletti et al. (2023), such reasoning is a prerequisite for EGST (M.E.0).
3. Methods

We conducted a 10-session teaching experiment (Steffe & Thompson, 2000) to further
explore students’ activity and the design of tasks using the EGST framework (Paoletti et al.,
2023). In what follows, we describe participants, contexts, data analysis, and the initial tasks.
Table 1 provides an overview of the teaching experiment sessions, including student attendance,
the primary task students engaged with, and a short description of the goals of each session.
Table 1

An overview of the teaching experiment

Session|Task Students present  |[Goal

1 Faucet Task Kennedy and Zee Establishing quantitative relationships and
developing understandings of coordinate

2 Faucet Task Kennedy and Zee systems (see Paoletti et al., 2023)
3 Faucet Task Kennedy and Zee
4 Growing Triangle Kennedy Constructing an increasing by more

relationship and representing the
relationship graphically (see Paoletti et al.,
Growing Triangle Kennedy and Zee |2023)

6 Growing Trapezoid Kennedy Constructing an increasing by less
relationship and representing the

7 Growing Trapezoid |Kennedy and Zee [relationship graphically

8 Four Shapes Task Kennedy Supporting students’ conception of area as
a quantity and representing area with a

9 Four Shapes Task Kennedy and Zee |magnitude bar

Constructing linear and non-linear
Growing relationships and representing each
10 Triangle/Rectangle Kennedy graphically




3.1 Participants, Context, Data Analysis, and Research Question

We conducted our teaching experiment with two sixth-grade students in a public school
in the Northeastern U.S. Our primary goal across the teaching experiment was to explore how
the 6"-grade students developed graphing meanings with tasks we designed to 1) align with
Paoletti et al.’s (2023) framework originally used with advanced 8™-grade students and 2)
include added structure, transparency, and accessibility for use by secondary classroom teachers.
As such, to design tasks for the teaching experiment, we began by adapting tasks originally
described in Paoletti et al. (2023) into the Desmos activity platform. Original tasks had been
designed strictly as dynamic applets in GeoGebra, in which the teacher-researcher guided
students through exploratory, verbal prompts. By designing tasks as Desmos activities, we could
provide students with self-paced, pre-planned, written prompts, share the tasks with teachers via
a free and widely used platform, and embed opportunities for teachers’ monitoring of students’
activities. Because the adaptation to Desmos activities involved fundamental changes to how
students would experience the tasks, our teaching experiment enabled us to study students’
graphing meanings within this new environment and develop responsive new tasks and prompts
to further support their graphical reasoning.

The first author facilitated the teaching experiment as the teacher-researcher (TR).
Although we initially selected a pair of students (Kennedy and Zee), Zee was often absent
(missing all or most of Sessions 4, 6, 8, and 10; Table 1). Hence, we focus our case on the
activity of one participant, Kennedy (age 11; self-identified as female and Dominican, Nova

Scotian, and African American). Each teaching episode lasted 35-40 minutes. We video- and



audio-recorded the sessions. We digitized records of the students’ written work at the end of each
session.

Consistent with the teaching experiment methodology (Steffe & Thompson, 2000), the
teaching sessions served as an exploratory tool, allowing us to examine and promote Kennedy’s
mathematical progress over the study. We used both ongoing and retrospective data analysis
techniques. In both phases, we conducted conceptual analysis, which is “building models of what
students actually know at some specific time and what they comprehend in specific situations”
(Thompson, 2008, p. 44). Our goal in conducting such an analysis was to develop and refine
models of Kennedy’s mathematics that viably explained her activity.

3.1.1. Ongoing analysis

During the teaching experiment, we iteratively built models of Kennedy’s mathematics
that served as catalysts for designing, refining, or adapting tasks for future sessions. These tasks
allowed us to test our models as we predicted how Kennedy might respond to a given task or
situation. This ongoing analysis led to our focusing on certain conjectures about Kennedy’s
meanings which we developed between teaching episodes. This is consistent with how teaching
experiments operate (Steffe & Thompson, 2000). Throughout ongoing analysis, the research
team met between sessions to debrief, watch videos from the previous session, and discuss
Kennedy’s reasoning to build preliminary models of her meanings. We documented our
hypothesized models made during this analysis as well as instructional decisions that were based
on these models.

As the teaching experiment progressed, we conjectured that Kennedy was experiencing
complexities related to constructing quantities and bridging her situational and representational

meanings. In response to this, we designed the Four Shapes Task to explore our conjectures and



to support Kennedy’s developing meanings. In the results, we report data describing our
conjectures regarding Kennedy’s reasoning and how our conjectures led to our designing and
enacting this new task. We highlight how Paoletti et al.’s (2023) framework allowed us to both
analyze a student’s reasoning at a fine-grained level and to design a task to support the student’s
progress towards EGST. We show how this new task provided evidence supporting our
conjectured models of Kennedy’s mathematics and provided her opportunities to further develop
her graphing meanings.

3.1.2. Retrospective analysis

We conducted retrospective analysis after the teaching experiment. During retrospective
analysis, we reflected on our preliminary models created throughout the teaching experiment
(Steffe & Thompson, 2000). This analysis involved first rewatching the videos to identify
instances that provided insights into Kennedy’s meanings and reasoning. We transcribed her
spoken words, integrating notes about her gestures and computer activity into the transcripts.
Keeping our ongoing analysis efforts and the entire data corpus in mind, we then performed
conceptual analysis (Thompson, 2008) to generate and test models of Kennedy’s meanings and
reasoning such that the models provided viable explanations of her activity.

During retrospective analysis, we used Paoletti et al.’s (2023) framework to characterize
Kennedy’s developing meanings towards EGST. We analyzed the data at the utterance level,
highlighting moments in which we inferred Kennedy reasoned about quantities in a situation
(M.S.) or quantities in a graphical representation (M.R.). We also noted when Kennedy provided
contraindications (Hardison, 2018; Liang & Moore, 2020) of engaging in such reasoning (~M.S.
or ~M.R.). Further, we identified instances in which she bridged situational and graphical

meanings (M.S.<»M.R.) or when she provided contraindications to bridging such meanings



(~M.S.—-M.R.). We leveraged this analysis to organize an account that addresses our research
question, which we share presently.

3.1.3. Research Question

In this report, we address the research question: How can we use Paoletti et al.'s (2023)
framework to (a) analyze a student's developing EGST, (b) diagnose complexities in a student's
developing EGST, and (c) design tasks that provide opportunities to resolve such complexities?
3.2 Growing Triangle Task

Each task in Table 1 was presented as a series of prompts with associated dynamic
applets through which students could watch and/or control the changing of quantities. Before we
designed the Four Shapes Task, Kennedy engaged in the Growing Triangle Task?. Intending to
provide a context for the growing shape, we presented students with a dynamic scenario in which
two teachers (Mr. K and Mrs. B) were walking away from a podium while holding a rope which
creates a triangular area where hypothetical students could stand for a presentation (see Figure 4
for several screenshots). Throughout the task, we asked Kennedy to identify and coordinate Mr.
K’s distance from the podium (i.e., the horizontal base length) and the area of the shape formed
(i.e., engage in M.S.). In this scenario, as Mr. K’s distance increases, the total area of the shape
increases and the AoC of area increases.
Figure 4

Several screenshots of Mr. K. walking away from the podium?®

4 The entire activity Kennedy engaged in can be found here: https:/tinyurl.com/3djz8cp9.
5 We note we hid Mrs. B’s name on the top point of the triangle in Figure 4 after the first screen to minimize the
students using Mrs. B’s distance from the podium (or location) in their activity.



https://tinyurl.com/3djz8cp9

Mr. K

v Rodium

Our report focuses on Kennedy’s activity with two prompts in the Growing Triangle Task
that we designed to support her in bridging situational and graphical meanings about two
quantities (i.e., intending to promote M.S.1<>M.R.1). Prompt 1 (Figure 5) presented Kennedy
with three dynamic magnitude bars (blue, orange, and purple) alongside the growing shape. For
each increase of Mr. K’s distance from the podium of 10 feet, each magnitude bar (hereafter bar)
increased while leaving a dot at the prior endpoints of each bar. The blue, orange, and purple
bars grew by equal, increasing, and decreasing amounts, respectively, which is reflected in the
difference in spacing of the dots along each bar. Similar to the Which One Task (Liang & Moore,
2021), the text in Prompt 1 asked Kennedy to select bars that could represent situational
quantities (in this case, Mr. K’s distance from the podium [blue bar] and the shape’s area [orange
bar]). Also similar to Liang and Moore’s (2021) task, we included a bar that did not represent
any situational quantity (purple bar). We conjectured that this bar could support Kennedy in
differentiating between various types of change in a bar and related quantity.

Figure 5
A screenshot of Prompt 1, which asks students to connect situational quantities to magnitude bar

representations.



Using Segments to Represent Quantities

It can be useful to imagine a changing quantity as
being represented by the length of a line segment.

Use the blue button to show the teachers and line
segments moving.

Which growing line segment do you think might

represent Mr. K's total distance from the
podium?

Blue segment
Orange segment

Purple segment

Which growing line segment do you think might
represent the total area roped off?

Blue segment
Orange segment

Purple segment

Through Prompt 2 we hoped to support Kennedy in bridging her reasoning about two
quantities in the situation to represent the two quantities graphically (i.e., intending to promote
M.S.2<>M.R.2 and potentially M.S.3<>M.R.3). The screen presented Kennedy with a blank
coordinate plane and axes labeled with each focal quantity. The text prompted Kennedy to
represent a point in the coordinate system and indicate the direction in which the point would
move as the quantities varied.

In the results, we describe how Kennedy’s responses to these two prompts and
subsequent tasks led us to design a new task, the Four Shapes Task, to support her in more
explicitly considering how to represent a growing area with a corresponding growing magnitude
bar length (M.S.1<->M.R.1). We also highlight how this new task supported Kennedy in
reasoning about points as representing the simultaneity of the magnitudes of two changing bars
on axes (M.R.3) and working towards EGST (M.E.O).

4. Results



In this section, we describe how we used Paoletti et al.’s (2022) framework to (a) analyze
a student's developing EGST, (b) diagnose complexities in the student's developing EGST, and
(c) design tasks that provide the student opportunities to resolve such complexities. Although we
use a particular student’s activity throughout the results, we intend for our presentation to
support readers in understanding how to use the framework in their own research, teaching, and
curriculum design.

In the results, we first present Kennedy’s activity as she addressed the Growing Triangle
Task. We analyze her reasoning and diagnose complexities in her developing EGST. In
particular, she provided us with contraindications that she was bridging her situational and
graphical meanings in ways consistent with our intentions (~M.S.<»M.R.). We then describe the
Four Shapes Task, which we designed to potentially support her in resolving these complexities
by providing her opportunities to conceive of varying bars as representing a shape’s changing
area (M.S.—~M.R.). We provide evidence of Kennedy bridging situational and graphical
meanings as she considered how the bars’ magnitudes could represent different growing areas.
We conclude by highlighting a shift in Kennedy’s meanings for graphing.
4.1 Indications of constructing situational quantities (M.S.) with contraindications of
representing quantities with graphical objects (~M.R.): Results from Sessions 4-7

In this section, we highlight how we used Paoletti et al.’s (2023) framework to analyze
Kennedy’s graphing meanings and to diagnose a complexity in her meanings. Across Sessions 4-
7, Kennedy provided evidence of constructing several situational quantities in-the-moment
(M.S.). However, at times, the precise quantity Kennedy reasoned with was ambiguous to us as
researchers (and potentially to herself as well). Therefore, she provided contraindications of

conceiving of bar lengths as representing the triangle’s area (~M.R.); without such meanings,



Kennedy’s primary action for graphing points in the plane required moving “over-then-up”
(Frank, 2016). We exemplify these claims in the sections that follow.
4.1.1 Indications of constructing situational quantities (M.S.) and contraindications
of representing quantities with graphical objects (~M.R.) in Session 4
At the beginning of Session 4, the TR introduced the Growing Triangle Task.
Immediately, Kennedy described that both Mr. K.’s distance from the podium and area were
increasing quantities in the situation. Given that one class fit within the small triangle formed
when Mr. K walked 10 feet (seen in Figure 6, left), Kennedy drew four triangles (Figure 6, right)
to conclude that after Mr. K walked 20 feet, four classes could fit within the resulting area.
Additionally, when prompted by a screen to describe “For each jump, how is the added area
changing?” and given three options (the amount of change of area is [increasing, decreasing,
staying constant] with each jump) Kennedy argued,
I feel like the amount that he’s jumping is um, increasing for each jump. Because as you
can see for each jump [points to yellow triangle in Figure 5], it gets like bigger. Like the
rectangles or whatever [pointing sequentially from the white trapezoid to the red
trapezoid in Figure 5] gets bigger as he jumps.
Using Paoletti et al.’s (2023) framework, we infer that, in-the-moment, Kennedy had constructed
each of Mr. K’s distance and area of the triangle (measured in number of classes) as changing
quantities in the situation (M.S.1). Further, she conceived that the area increased by an increasing
AoC for equal changes in base length (M.S.2 at the stage of directional covariation).
Figure 6

Kennedy’s drawing representing four classes fitting in the triangle’s area.



However, when we tasked Kennedy with choosing a bar that represented each quantity,
she provided a contraindication of bridging her situational meanings to this representation in
ways consistent with our intentions (~M.S.1<->M.R.1). Initially, Kennedy guessed the blue bar
(growing by equal amounts) and purple bar (growing by less) represented Mr. K’s distance from
the podium and total area roped off, respectively. She justified her answer by focusing on the
timing of the changes of these bars (i.e., she argued that changes to the length of the purple bar
and jumps in the area occurred simultaneously). In response to this, the TR asked Kennedy to
observe the orange bar and she noted that all three bars changed simultaneously. On the next
slide, only showing the bars, Kennedy correctly described that the blue bar grew by equal
amounts, the orange bar grew by larger amounts, and the purple bar grew by smaller amounts
(M.R.1 with the magnitude bars’ lengths as quantities). However, when given a chance to revise
her choices for which bar represented which situational quantity, she maintained her original
choices, indicating the purple bar, which she described as increasing by a decreasing amount,
represented the triangle’s area, which she described as increasing by an increasing amount.
Hence, we take this as a contraindication of her bridging her meaning for the situational quantity
and graphical representation (~M.S.1-M.R.1).

4.1.2 Kennedy’s bridging of situational and graphical meanings but at times in ways

unintended by the researcher (M.S.—~M.R.) in Session 4



Over the next five minutes, the TR asked Kennedy questions to shift their discussion
from the timing of the changes to how the bars could represent situational quantities. He asked
Kennedy to re-describe how the number of classes that fit in the roped-off triangular area
changed as the triangle’s base length grew by 10-foot increments. In the moment, Kennedy
accurately determined total area values (measured in number of classes) at specific values of Mr.
K’s distance (M.S.2). She first identified that if Mr. K.’s distance was 10 feet, then for the
consecutive changes his distance would be 20, 30, 40, and 50 feet. The TR then discussed the
blue bar (changing by equal amounts). He indicated that prior to moving, the blue bar
represented 0. After hitting play, Kennedy watched the blue bar increase five times, with her
verbally saying, “10, 20, 30, 40, 50.” In the moment, the TR inferred that Kennedy understood
the blue bar represented Mr. K’s distance from the podium (M.S.1<-M.R.1).

The TR then turned the conversation with Kennedy to the growing area. He asked
Kennedy to again describe how the yellow and white areas in Figure 5 together had a measure of
4 classes. When prompted, Kennedy indicated that 5 classes would fit in the pink area, meaning
that 9 classes would fit in the combined areas of the yellow, white, and pink shapes (M.S.1).
Connecting this reasoning to the bars, Kennedy provided indications of bridging her meaning for
increasing areas to the bars in a way unexpected by the TR (but unnoticed in the moment).
Immediately after Kennedy concluded the area of the yellow, white, and pink areas combined
was 9, the TR asked her which bar would represent the relationship. Kennedy indicated the
orange bar (which increased by increasing amounts) represented area, giving the following
justification:

This starts off as one [pointing to yellow triangle] so then this is small [motioning over

the first interval in the orange bar, highlighted in red Figure 7a]. And then this adds up



to like four [motioning over the yellow and white areas] then this gets bigger [motioning
over the second interval in the orange bar]. Then all together it adds up as nine
[motioning over yellow, white, and pink areas] so then this gets bigger [motions over the
third interval in the orange bar, highlighted in red Figure 7b].
Based on her activity here and later, we identify a complexity (from our perspective) in
Kennedy’s bridging of her situational and graphical meanings. Kennedy correctly indicated the
orange bar reflected the increasing by more relationship she described for the triangle’s area.
However, Kennedy’s reasoning focused on each consecutive interval in the orange bar as
representing a new total area rather than an AoC of area. She understood the first orange interval
to represent an area of 1 class (i.e., Figure 7a), the second interval to represent an area of 4
classes, and the third interval to represent an area of 9 classes (i.e., Figure 7b). Across her
activity, Kennedy described the two changing quantities (Mr. K.’s distance and triangle’s area) in
terms of numeric values (M.S.2), and we infer that she bridged her situational and graphical
meanings to describe a magnitude bar that represented each quantity (M.S.2<+M.R.2). However,
her rationale for selecting the orange bar relied on using intervals of the bar to represent different
total areas, which was inconsistent with researcher intentions.
Figure 7
A representation of Kennedy’s bridging situational total area to a(n unintended) graphical

representation of total area when Mr. K has moved (a) 10 feet and (b) 30 feet.
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4.1.3 Kennedy’s graphing activity providing contraindications of bridging

situational and graphing meanings (~M.S.~M.R.) at the end of Session 4

In the interactions above from Prompt 1 in Session 4, Kennedy provided evidence of
reasoning about two quantities both situationally and representationally, albeit in ways
unintended by the TR. However, immediately after this in Session 4, she provided
contraindications of conceiving of a point as multiplicative object. A follow-up screen, Prompt 2,
asked Kennedy to draw an arrow to show how a point representing Mr. K’s distance and the area
would move. Kennedy first drew three arrows going toward the right on the horizontal axis and
three arrows up the vertical axis (Figure 8). We infer Kennedy was showing directional changes
in both quantities (M.S.2<>M.R.2 at the stage of directional covariation). To explore how
Kennedy would reason about the movement of a point representing the two quantities, the TR
then drew a point on the screen (shown in Figure 8) and asked how this point would move. As a
contraindication of simultaneously considering the two changing quantities in the graph
(~M.R.3), Kennedy said the point will go “over [to the right] and then straight up.” When asked
to represent her thinking, Kennedy drew the horizontal line from the point then vertical line from
the end of her horizontal line shown in the graph in Figure 8. We take this activity as an

indication she was reasoning sequentially, rather than simultaneously about the changes in the



bars (and possibly the quantities). Hence, the point did not represent the lengths of
simultaneously changing bars on the axes (~M.R.3). Further, if Kennedy was reasoning about the
quantities sequentially, she would also be providing a contraindication of having an operative
image of covariation of the two quantities (~M.S.3).

Figure 8

The graph Kennedy constructed when asked to represent both quantities changing.

Across Session 4, we note a complexity in Kennedy’s graphing activity. Namely,
Kennedy initially focused on the timing of the bar movements rather than on the quantities that
bars could represent. Kennedy eventually made arguments regarding increasing changes in area
and increasing changes in the orange bar’s length but did so in ways inconsistent with our
intentions. Further, her activity with the bars did not support her point-plotting activity as she
focused mainly on directional changes and over-and-up activity.

4.1.4 Further contraindications of bridging situational and graphing meanings

(~M.S.<+M.R.) in Sessions 6-7

Across Sessions 6-7, Kennedy addressed the Growing Trapezoid Task (see Figure 9). We
intended to provide additional opportunities for Kennedy to bridge her situational and graphical

meanings in ways compatible with Paoletti et al.’s (2023) framework. However, and consistent



with her activity in Session 4, Kennedy often experienced complexities as we asked her to
connect a growing shape’s area with the magnitude bar representation of area (~M.S.1<>M.R.1).
Further, and also consistent with her activity in Session 4, Kennedy consistently relied on an
‘over-and-up’ strategy for marking points in a graph. We conjectured her ‘over-and-up’ activity
was at least partially explainable by her complexities bridging M.S.1 and M.R.1; if Kennedy did
not understand how a bar on the vertical axis represented area, it would not be possible for her to
understand a point as a multiplicative object that represented an amount of area and base length
simultaneously.

Reflecting on these two issues with Paoletti et al.’s (2023) framework in mind, we
conjectured that having additional opportunities to represent total area with bars would support
Kennedy in constructing area as a quantity and bridging her meanings for area with the bar
representation (M.S.1<->M.R.1). Of note regarding our design decisions for the new task for
Session 8: In Session 6, Kennedy described each bar are relating to some situational quantity
when initially asked which bar represented which quantity (Figure 9). For instance, Kennedy
correctly connected the blue bar to Mr. K’s distance from the podium and the purple bar to the
total area. However, she also described that the orange bar represented the distance along the top
of the trapezoid (measured from the post). Although the TR did not ask Kennedy to describe her
reasoning for the orange bar, we infer she wanted each bar to represent a situational quantity; we
have observed similar reasoning by other middle school students in other tasks. Hence, when
designing the Four Shapes Task, we opted to focus strictly on one quantity (area) using four
distinct growing areas resulting in the same shape and four different bars. As such, we hoped for
Kennedy to focus on the non-numeric intensity of change represented by both the different areas

and bars (Johnson, 2012).



Figure 9

Two screenshots of the Growing Trapezoid Task.
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4.2 The Four Shapes Task and shifts in Kennedy’s graphing meanings: Session 8
Throughout Sessions 4-7, we had constructed and tested models of Kennedy’s
mathematics that supported us in diagnosing complexities we observed in her graphing activity.
Given our goal to support her developing more sophisticated graphing meanings, we worked to
design a task that provided her opportunities to resolve such complexities. Reflecting on
Kennedy’s meanings in relation to the Paoletti et al. (2023) framework, we designed the four-
part Four Shapes Task’ with the goal of supporting her bridging situational and graphical
meanings. In Part 1, we provided Kennedy with four different growing shapes that all result in
the same final triangle. To encourage her bridging situational meanings for growing areas with
graphical representation of areas (i.e., intending to support M.S.1<-M.R.1), we asked her to
determine which growing bar corresponded to each shape’s changing area (Figure 10). We
conjectured that supporting Kennedy to focus on one quantity (area) without dummy segments
across a set of several similar growing objects could provide her with an opportunity to consider

ways distinct bars could represent different growing areas. Further, as Kennedy was still in the

® The Four Shapes Task that Kennedy engaged with can be found here: https://tinyurl.com/ypppr9t9



process of developing stable meanings for how a quantity can be represented via a bar, we
conjectured that the removal of dummy segments could be productive in minimizing attempts to
make sense of each bar (including dummy bars) in terms of some situational quantity.

Figure 10

(a)-(b) Two screenshots of the Four Shapes Task screen with the shapes and magnitude bars and
(c) a screenshot showing five equal changes of base length and the corresponding changes in

area for all four shapes.
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In Part 2, we asked Kennedy to consider how the quantities of area and base length could
be represented with magnitude bars along axes for each of Shapes 1-4 (intending to support
M.S.2-M.R.2). This occurred over several screens in which we removed supports as she
progressed through each shape: For Shape 1, we provided the segments along the axes (Figure
12); for Shape 2, Kennedy had to space points along the vertical axis (Figure 13); for Shape 3,
Kennedy had to space points along both axes (Figure 14a-b); for Shape 4, Kennedy had to draw
all points along each axis (Figure 14c).

Part 3 had a similar structure to Part 2, but we prompted Kennedy to consider points in
the plane corresponding to the endpoints of the magnitude bars on each axis (intending to

support M.R.3 and possibly M.S.3<»M.R.3; see Figure 15). Finally, Part 4 involved tracing



graphs that represented the relationship between area and base length for each shape (intending
to support M.E.O and beyond). In the sections that follow, we provide more detail on Kennedy’s
activity addressing Parts 1-3 and show how our design was productive in supporting Kennedy’s
progression towards EGST.

4.2.1 Four Shapes Task - Part 1: Kennedy’s activity with magnitude bars

After observing the applet play in Part 1, Kennedy compared the speed at which the
different areas filled the shape non-numerically. She noted that Triangles 2 and 4 grew slower
than Triangles 1 and 3. While watching the animation a second time, Kennedy noted that
Triangle 4 grew the slowest, followed by Triangle 2, then Triangle 3. She confirmed this as she
dragged the slider for her third viewing of the growing shapes. Overall, Kennedy provided
evidence that she conceived of a growing area for each shape as she used her perceived speed of
growth to compare the different growing areas (M.S.1). Such reasoning is compatible with
reasoning about the non-numeric intensity of change of area (Johnson, 2012).

The next slide showed the four shapes growing with equal changes in base length and
four bars (see Figure 10c for outlines of the five AoC of area and corresponding changes in bar
lengths). Each bar (A)-(D) corresponded to exactly one of the total areas of the shapes (Triangle
1, bar D; Triangle 2, bar B; Triangle 3, bar C; Triangle 4, bar A). During this extended
interaction, Kennedy experienced a shift in her meanings for the bar lengths as representing area
(M.S.1M.R.1) that persisted throughout the remainder of the teaching experiment.

With the applet paused after the first increase in base length (Figure 10a), the TR
explained that each bar (which he and Kennedy referred to as “segments”) represented a different
shape’s growing total area. He then advanced the animation and paused it after the third increase

in base length (Figure 10b; note that the AoCs of area were not outlined). In less than 10



seconds, Kennedy correctly matched each bar to its corresponding shape. She indicated she was
attending to:

the length of this [motioning over the bars], the length of the segments and the length of

the purple whatever [waving her hand over the 4 shapes], the jumps...yeah like the

jumps: The shaded-in parts [motioning the mouse over the purple area in Triangle 1].
We infer that after viewing four different bar lengths, Kennedy connected these lengths to the
four growing shapes’ areas (“shaded-in parts”; M.S.1<>M.R.1).

As additional evidence of Kennedy’s bridging activity, immediately after the above
interaction, the TR had Kennedy go to the next slide, observe the animation, and hit the “Show
additional colors” button, resulting in the screen shown in Figure 11. After briefly recapping

which bar Kennedy had said represented each growing shape’s area, the following interaction

ensued:
TR: And how are you deciding that?
Kennedy: Like how this is small, medium, big I guess [motioning over yellow, blue, and

pink areas in Triangle 4 in Figure 11 as she says each size]. And then
[moving mouse to Triangle 2] small, medium, bigger [motioning over yellow,
blue, and pink areas in Triangle 2 as she says each size]. So then this is
small, medium, big I guess [motioning over the consecutive intervals of bar
A]. And then this is small, medium, and then bigger [ motioning over the
consecutive intervals of bar B].

Immediately after this, Kennedy continued to use similar reasoning as she described how she

matched the other two segments with growing shape’s area (e.g., arguing the pink area in

Triangle 1 is “medium” compared to the pink area in Triangle 3 which is “small”).



Throughout this interaction, Kennedy provided numerous instances in which she
explicitly connected the AoC of area of each shape to the bar representation. Kennedy repeatedly
described the relative AoC of area (e.g., “small”, “medium”, “big”, or “bigger”) and then
described how the corresponding bar showed a similar AoC of length. Hence, we infer Kennedy
was explicitly connecting the quantity of area to the bar representation (M.S.1<-M.R.1) in ways
compatible with our intentions (unlike her activity pictured in Figure 7). Further, we highlight
that the task design provided her repeated opportunities to engage in such reasoning as she
connected each bar to a unique area.

Figure 11
A screenshot showing the growing shapes after the third increase in base length along with the

corresponding magnitude bars.
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Related to the design of this task and our prior use of dummy bars, we note that
immediately after the interaction above, the TR asked, “Is this more helpful than some of the
ones we were showing before?” Kennedy responded, “Yeah, I think... ‘cause with the other one

it was just one and we had to figure out which one was corresponded to that specific one.” We



infer that Kennedy was conveying that in the prior tasks we were asking her about one quantity
and tasking her to match which of three magnitude bars represented that quantity (i.e., “just one
[quantity] and we had to figure out which one [bar] was corresponded to that specific one
[quantity].”). Hence, Kennedy specifically mentioned the affordance of not having dummy bars
in this task.

4.2.2 Four Shapes Task - Part 2: Kennedy’s activity with quantities represented on
axes

Over the next several minutes, Kennedy observed additional screens like the one in
Figure 11 but which also included the last two jumps in different colors as well as corresponding
colors on each bar. However, when moving to the graphical representations, Kennedy’s
meanings for bars did not translate to her graphing activity, which is consistent with Sessions 4-
7. Instead, when first observing an animation showing a graph, which we intended to represent
the base length and total area of Triangle 1 (Figure 12), Kennedy conjectured the bar on the
vertical axis was a length in the situation. This provided a contraindication of her bridging her
meanings for the shape’s total area and the representation of total area via a bar
(~M.S.1+->M.R.1) in this new task.
Figure 12
A screenshot of the first slide showing bars on axes in the Four Shapes Task.
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In the moment, the TR conjectured numeric quantitative reasoning could support

Kennedy in connecting her prior bridging of the bars and quantities on the prior slide to her

activity in a coordinate system (intending to support M.S.1<»M.R.1). He asked Kennedy to

consider specific numeric values of total area and base length in this case. He paused the applet

after the first and second increases in base length, describing that the area after each of those 5-

unit base length increases was 9 and 16 units respectively. He asked Kennedy what the area

would be if the base length increased by 5 more units and the corresponding area increased by 5

units. She quickly responded the new area would be 21 and the corresponding base would be 15

units long. After this, the TR had Kennedy finish the animation to create the full shape and

asked:

TR:

Kennedy:

TR:

Kennedy:

So one thing I want you to notice is that these points seem to get closer and
closer each time [motioning over the points on the vertical axis].

Yes

Why is that?

‘cause the colors, they start getting smaller and smaller [she clicks “Show
additional colors” showing an image like Figure 11]. Like with the colors it
starts to get big, small. So it starts off big then gets small, small, smaller, until
it's at the smallest [motioning over consecutive areas in the triangle] ... And
then here it starts off big, bigger, small, smaller, until it's at its smallest

[motioning over consecutive magnitude bar intervals].

Here, we see evidence Kennedy is beginning to conceive of the bar on the vertical axis as

representing total area in ways consistent with researcher intentions (M.S.1<>M.R.1). Further,

we note that although Kennedy initially used numbers for area in her reasoning, she shifted to



non-numeric reasoning as she connected the areas of the consecutive AoC in the shape to the
changes in the bar length. Indicative of a shift in Kennedy’s meanings, she consistently described
the bar on the vertical axis as representing a shape’s growing area after this interaction.

To highlight this shift in Kennedy’s meanings and the non-numeric nature of her
reasoning about area, we draw on data from the next screen. In this applet, the TR described the
new graph, intended to be “broken” as all the points for Triangle 2’s area were grouped near the
top of the vertical axis (Figure 13a shows this applet at the outset of her activity). The TR asked
Kennedy to move the points to match the growing area in Triangle 2. Kennedy turned on the
additional colors (shown in Figure 13b). She then spaced the points as shown describing the
intervals she created as “small,” “bigger,” “bigger,” “a little...smaller,” and “then smaller.” The
following conversation ensued:

Figure 13

(a) The starting applet and (b) Kennedy’s correct spacing of total area points for Triangle 2.

(a) (b)
TR: Cool. So explain to me how you did that.
Kennedy: So, I did it because. How I did it was, I looked at the colors, then how here

[points to the yellow area] the first jump, it starts off small, so put {inaudible}
to small to start [pointing to Total Area Pause I point]. And then this one

[pointing to the teal area] is medium so I did it [pointing to Total Area Pause



2 point] little bit bigger, then this one [gestures to the Total Area Pause 3
point, then to the pink area, then back to Total Area Pause 3 point] 1 did
bigger.

lafter a brief aside, Kennedy continues to talk about how she spaced the points on the
vertical axis].

Kennedy: And then I made this space [motioning over the space between third and

fourth Total Area Pause points] because the area here [motioning over the

gray areal.
TR: The gray?
Kennedy: Yeah, the gray is smaller [motioning from the space between Total Area

Pause 3 and 4 points then to the gray area in the triangle]. So yeah and then I

made this one smaller [motions over the interval between Total Area Pause

points 4 and 5] because here, red is smaller [pointing to the red areal.
Throughout this activity, Kennedy provides clear and sustained evidence that she consistently
bridged her meanings for how AoC of area (represented via different colors) in the situation
would be represented by AoC in the bar’s magnitude (represented via the space between the
“Total Area Pause #” points) along the vertical axis (M.S.1<>M.R.1).

We note two nuances relative to Kennedy’s reasoning above in relation to the design of
the screen. First, we are unsure the extent to which Kennedy was simultaneously attending to
changes in base length as she bridged her situational and graphical meanings for area; if she was
also attending to base length, we would infer she was reasoning about covarying quantities in the
situation and graph (M.S.2<>M.R.2 at the AoC stage). Second, the extent to which Kennedy was

explicitly reasoning about each consecutive non-numeric area as an AoC of area whose



accumulation built a total area is vague. This vagueness is due to her using the static screen
shown in Figure 13b when describing the connections she made across the situation and the
graph. It is possible she was reasoning about each colored area as its own ‘total’ area with the
jumps in the segment representing these independent total areas. Regardless, she provided
evidence that she understood each change (or “space”) in the bar’s magnitude corresponding to a
change in (or particular total) area (e.g., understanding the length between Total Area Pause
points 4 and 5 as representing only the pink area). This contrasts with her activity in Figure 7
where she conceived of each change in the bar representing the shape’s total area (e.g.,
hypothetically conceiving the length between Total Area Pause points 1 and 2 as representing the
yellow and blue areas together).

After developing meanings for representing total area with a bar along the vertical axis,
Kennedy provided clear evidence that she could coordinate both the total area and base length
bars simultaneously while connecting the bars to situational quantities (M.S.2<>M.R.2) in the
next few screens. In one screen, Kennedy was tasked with spacing points along both the vertical
and horizontal axes for Triangle 4 (Figure 14a). Kennedy immediately moved the base length
points along the horizontal axis as shown in Figure 14b. When asked why she placed the points
like this, she responded, “because like right here [gesturing over the base length in the triangle]
you can see the jumps are equal.” (M.S.1+>M.R.1 with respect to base length). She then placed
the points along the vertical axis as shown in Figure 14b. When asked what she was trying to
represent with her spacing, she indicated “the jumps...how they start off small then get bigger,”
indicating that she intended for each consecutive interval to increase (M.S.1<>M.R.1 with
respect to area; collectively reflecting M.S.2<-M.R.2 at the AoC stage). On the next screen,

Kennedy independently plotted points on each axis while providing explicit attention to



representing two situational quantities via bars along two axes (Figure 14c). Hence, Kennedy
was bridging her situational meanings for covarying quantities to graphical representations of
these quantities (M.S.2<>M.R.2). Further, based on the ease with which she addressed both
tasks, we conjecture such reasoning was part of her stable meanings for graphs.

Figure 14

(a) The starting applet, (b) Kennedy’s spacing of total area points for Triangle 4, and (c) a

screenshot of the points Kennedy drew on the axes to represent the quantities for Triangle 3.
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4.2.3 Four Shapes Task — Part 3: Points as multiplicative objects.

The next four screens had the same functionality as those in Figures 12, 13a, and 14a, but
with prompts asking about points in the coordinate plane corresponding to the endpoints of the
bars on each axis. For the applet like Figure 12 but with an added point in the coordinate plane,

the TR described how the point’s location was dictated by the endpoints of each bar on the axes.



The TR then tasked Kennedy to address the next applet (Figure 15a), which had the same prompt
as Figure 13a but with additional points in the graph visible. Kennedy initially addressed this
task without noticing the new points, moving the endpoints of the bars on the vertical axis like
she did in Figure 13b. The TR then prompted Kennedy to look at the points in space as she
dragged the endpoints on the vertical axis. Kennedy began to drag the third point on the vertical
axis up and down, noticing, “Oh the point! It’s moving.” We infer that the task design did not
support Kennedy in spontaneously noticing the movement of the points in Figure 15a, but once
prompted she was able to identify the connection between the points and endpoints of the bars on
the vertical axis.

The TR then presented Kennedy with an applet like the one in Figure 14a but with added
points in the coordinate plane. Kennedy first adjusted the points on the vertical axis, then the
points on the horizontal axis. As she dragged the points on the horizontal axis the TR asked, “As
you’re dragging those, do you notice what’s happening to the points [in the coordinate plane]?”
Kennedy responded, “Oh, they’re moving. Hmm.” In both cases, Kennedy did not spontaneously
attend to the location of the points in space, but, when prompted, observed that the points’
locations were dictated by the bar lengths on each axis. Such activity again provided Kennedy
opportunities to develop in-the-moment meanings for points as multiplicative objects (M.R.3).
Figure 15

A screenshot of the applet (a) before and (b) after Kennedy adjusted the points.
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Kennedy’s activity addressing the last screen provided some evidence she was
developing stable meanings for points as representing multiplicative objects (M.R.3). The screen
showed Triangle 3 with the points she plotted on the axes in Figure 14c. When the TR asked
Kennedy to plot points representing both quantities, she marked the points shown in Figure 16.
Describing how she plotted the first point, Kennedy motioned up from the point on the horizontal
axis (shown in (1) in Figure 16) and over-to-the-right from the point on the vertical axis (shown
in (2) in Figure 16), indicating she intended the first point to align with the two segments on the
axes. Although the session ran out of time before the TR had further opportunity to probe
Kennedy’s thinking, we note each point in Figure 16 aligned relatively closely with the points
she had marked on the horizontal and vertical axes (M.R.3).

Figure 16

A screenshot of Kennedy’s points with annotations of her motions.
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4.4 Triangle/Rectangle Task: Additional Evidence of Kennedy’s Stable Meanings for Points

as Multiplicative Objects

During Session 10, Kennedy addressed the Triangle/Rectangle Task, which entailed two
growing shapes (a triangle and rectangle) with equal varying base lengths but different areas.
The rectangle grew in one dimension (its width increasing and height remaining constant) while
the triangle grew in the same way as Triangle 4 in the Four Shapes Task. Kennedy provided
initial evidence of the growing stability of her meanings for points as multiplicative objects
representing quantities as she addressed this task (M.S.3<>M.R.3). In particular, she described
the total area of the growing rectangle and triangle to be quantities that varied as each shape’s
base length increased (M.S.2 at the stage of directional covariation). Further, she provided
additional characterizations of the AoC of area for each shape (i.e., the triangle’s area increased
by increasing amounts, while the rectangle’s area increased by a constant amount; M.S.2 at the
AoC stage).

She attended to the situational quantities as she plotted points on the horizontal and
vertical axes to represent the quantities’ magnitudes. For example, when plotting points to

represent the area and base length for the triangle, Kennedy plotted the points on the axes shown



in Figure 17a, indicating the points on the vertical axis should get “bigger and bigger” and the
points on the horizontal axis would be equally spaced. Kennedy described the spacing of her
points in terms of the area and base length of the growing triangle (M.S.2<-M.R.2 at the AoC
stage). Similarly, Kennedy plotted the points on the axes shown in Figure 17b to show how the
base length and area of the rectangle each increased by equal amounts (M.S.2<>M.R.2 at the
AoC stage).

Figure 17

Screenshots of Kennedy’s work plotting points (a) on axes representing the area and base length
of the growing triangle, (b) in the coordinate plane and on axes representing the area and base
length of the growing rectangle with annotations showing her movement, and (c) adding points

to her graph in (a) to represent the area and base length of the triangle simultaneously.

area

(a) (b) (c)

When asked to plot points in the coordinate plane, Kennedy provided clear evidence of
understanding points as multiplicative objects (M.R.3). She first drew the points seen in Figure
17b by moving along the horizontal axis to each consecutive point, then moving up. Although
this activity is similar to her over-and-up motions from Sessions 4-7, when asked to describe

how she located her points, she explicitly described attending to the endpoints of the bars on



each axis. For example, when asked how she plotted the top-right-most point, she immediately
pointed to the highest point on the vertical axis then moved to the right to the point (indicated by
(1) in Figure 17b), saying, “so I went over,” then continued her motions by moving to the right-
most point on the horizontal axis and moving up to the point (indicated by (2) in Figure 17b;
M.R.3). Similarly, when returning to the triangle situation and asked to plot points, Kennedy’s
activity was consistent with understanding points as multiplicative objects (Figure 17c¢).

We note that Kennedy’s activity plotting points in space did not include specific
references to quantities, so we are unable to make claims about whether Kennedy bridged her
situational meanings and achieved M.E.O (the prerequisite for EGST). Regardless, we note
substantial progress towards EGST across Session 8 and 10.

7. Discussion

In this report, we used Paoletti et al.’s (2023) framework to (a) analyze a student's
developing EGST, (b) diagnose complexities in a student's developing EGST, and (c) design
tasks that provide opportunities to resolve such complexities. We discuss how we used the
framework to achieve (a)-(c) in the paragraphs that follow.

We provided numerous descriptions of the way Paoletti et al.’s (2023) framework
allowed us to analyze Kennedy’s progression toward EGST. In Kennedy’s early activity in
Session 4, she provided evidence that she could describe quantities changing in situations (M.S.)
and in magnitude bar representations (M.R.) independently (e.g., indicating the area increased by
increasing amounts, describing how each of the three magnitude bars grew). As the teaching
experiment progressed, we were able to capture ways Kennedy’s meanings developed to bridge
her situational and graphical meanings. Particularly, she conceived of bars as representing

covarying situational quantities’ magnitudes (M.S.2<>M.R.2) and conceived of points as



multiplicative objects representing two situational quantities’ magnitudes simultaneously
(M.S.3-M.R.3).

We also showed one way that nuance can be added to the framework when analyzing a
student’s developing EGST. In particular, we highlighted two different ways students can reason
about covarying quantities situationally (M.S.2) and graphically (M.R.2) by differentiating
Kennedy’s reasoning with respect to directional and amounts of change reasoning (Carlson et al.,
2002). Although this distinction was implicit in the eighth-grade students’ reasoning in Paoletti
et al. (2023), in this report we provided ways to make this distinction explicit for future
researchers and teachers.

With respect to diagnosing complexities in a student’s developing graphing meanings, in
analyzing Kennedy’s activity with the Paoletti et al. (2023) framework in mind, we identified
both anticipated and unanticipated complexities Kennedy experienced. For example, we were not
surprised that bridging her meanings for quantities in the situation (M.S.) with her meanings for
varying magnitude bars (M.R.) was non-trivial (i.e., instances of ~M.S.<->M.R.). This finding
emphasizes the importance of providing students repeated opportunities to consider magnitude
bars as disembedded representations of situational quantities’ amounts (Lee et al., 2020).

Kennedy’s activity around Figure 7 is an example of an unexpected complexity from our
perspective. Whereas prior research (Paoletti, 2015; Paoletti et al., 2019; Moore & Carlson,
2012) has highlighted how students’ conceptions of situational quantities can be different than
researcher intentions, Kennedy’s activity exhibits how a student’s meanings for graphical
representations of quantities can also differ from researcher intentions. In the moment, the TR
did not notice Kennedy’s novel way of using the intervals in magnitude bars to represent

multiple total areas. He believed she was bridging her situational and graphical meanings in



ways compatible with his intentions. It was only during retrospective analysis, as we identified
indications and contraindications of reasoning aligned with Paoletti et al.’s (2023) framework,
that we noticed such nuances in her meanings for graphical representations. We conjecture other
students may experience similar complexities as they attempt to bridge their situational and
graphical meanings, and we argue that analysis applying this framework can facilitate future
inquiry around this topic.

Paoletti et al.’s (2023) framework also proved productive in providing us with insights
into how to support Kennedy in resolving complexities in her graphing activity, notably with
respect to task design. By explicitly distinguishing situational and graphical quantitative
reasoning, the framework supported us as we designed the Four Shapes Task, which provided
Kennedy with important opportunities to consider how to use the length of a magnitude bar to
represent a (non-length) quantity (i.e., area). Other researchers have suggested initially providing
students with “tasks involving ‘simpler’ attributes, such as height and distance” (Johnson et al.,
2017, p. 863) as such quantities are likely easier for students to conceptualize with a magnitude
bar. However, Kennedy’s activity highlights how providing a sixth-grade student repeated and
deliberate opportunities to consider how to represent non-length quantities via magnitude bars
can be productive for students as they develop meanings for graphs as representing various types
of quantities. In particular, the Four Shapes Task supported Kennedy as she disembedded area
from the four shapes, projected these areas onto magnitude bars, and maintained a simultaneous
awareness of the area within the situation (Lee & Hardison, 2016; Lee et al., 2020; Paoletti et al.,
2023).

Moreover, as called for in Paoletti et al.’s (2023) framework, our results emphasize the

importance of designing tasks in ways that might provide repeated opportunities for students to



engage in situational and graphical reasoning to support them in developing stable meanings
related to EGST. In addition to providing Kennedy with repeated prompts to bridge her
meanings for area with segment lengths, the task also provided her multiple occasions across
four different shapes to consider how quantities can be represented along axes (M.R.2) and how
a point simultaneously represents two magnitude bars’ lengths (M.R.3). We conjecture that this
feature of the task design, motivated by the framework, supported shifts in Kennedy’s meanings
as she developed stable meanings for representing quantities in a coordinate system.

8. Implications, Limitations, Areas for Future Research, and Concluding Remarks

In this section, we first describe implications, limitations, and areas for future research
relevant to students’ meanings for graphs, including their numeric and non-numeric quantitative
reasoning and differences in Kennedy’s progress compared to students’ in Paoletti et al. (2023).
We then provide implications for task design, including connections Kennedy’s activity has for
the tasks presented, the use of dummy segments, and Desmos activities more generally. We close
with remarks relevant to middle-school students’ developing graphing meanings more generally.
8.1 Implications, limitations, and areas for future research: Students’ graphing meanings
The current paper adds to the research highlighting how numeric quantitative reasoning

can be productive for students’ quantitative reasoning (Johnson, 2012; Moore et al., 2019;
Paoletti & Vishnubhotla, 2022). Numeric quantitative reasoning was productive for Kennedy as
she made sense of both area and AoC of area situationally (i.e., Figure 6). Further, we conjecture
this reasoning was critical to her shifts in meanings when first interpreting the points in Figure
12. However, after experiencing this shift, Kennedy was able to reason non-numerically about
the intensity of change of area (Johnson, 2012) as she described changing areas and

representations of changing areas without specific values. Hence, we conjecture sixth-grade



students’ numeric quantitative reasoning can support their eventual non-numeric reasoning, with
the latter being the essence of quantitative reasoning (Smith & Thompson, 2008). We call for
additional research exploring the ways students’ numeric quantitative reasoning can form a
foundation for their non-numeric reasoning, how to intentionally support and develop both types
of reasoning, and to explore the interplay between these types of reasoning for students’
quantitative and covariational reasoning more generally.

Also relevant to Kennedy’s progression toward EGST, we note Kennedy experienced
more and different complexities than the students reported on in Paoletti et al. (2023). We
conjecture differences in the students’ prior mathematical experience (i.e., currently taking sixth-
grade math versus already having finished high school geometry) may largely explain this. We
call for researchers to develop theory and empirical findings that describe the prerequisite
meanings needed for students to develop the meanings described in Paoletti et al.’s (2023)
framework. Such theory and empirical results could support the design of activities that provide
sixth-grade students opportunities to develop such prerequisite meanings thereby minimizing the
number of complexities students may encounter as they develop EGST.

A limitation of our study is that the teaching experiment ended before we were able to
obtain evidence that Kennedy developed all the meanings necessary for EGST. However, the
framework provides indications on how to design tasks that could have supported such
meanings. If we had more time with Kennedy, we would have designed a task that provided her
additional opportunities to bridge M.S.3 and M.R.3 intending to provide her opportunities to
develop stable meanings for points as representing two covarying quantities. Such a task may
involve asking her to describe how a dynamic point in a graph shows changes in two situational

quantities in some new context. We call for future research that explores the productivity of



framework-informed tasks to investigate other students’ development of EGST that extends
beyond what was explored in this report.
8.2 Implications, limitations, and areas for future research: Task design

Although we designed the Four Shapes Task with the framework in mind, Kennedy’s
activity addressing the task provided some areas for improvement of the task itself. First, we note
that in her activity around Figure 15, Kennedy did not explicitly attend to the points in space
until prompted to by the TR; without prompting, she may not have noticed these points or how
they behaved as she moved the points on the axes. We conjecture revising the task to ensure
Kennedy’s attention was drawn to the points in space rather than the points on axes may have
better supported her in developing meanings for points as multiplicative objects (M.R.3) and in
bridging her meanings for points and situational quantities (M.S.3<>M.R.3). We would revise
the task so that Kennedy needed to drag the points in the coordinate plane to accomplish the
familiar goal of creating appropriate spacing for the points along the axes. This suggestion also
points to a potentially more general digital task design principle: To direct students’ attention to
theoretically salient aspects of a representation by making it interactable. We call for future
research exploring this specific possibility as well as investigating this more general principle in
other tasks and settings.

A second implication of Kennedy’s activity relates to the use of dummy magnitude bars.
Although other researchers using similar tasks have used dummy bars (e.g., Liang & Moore,
2021; Paoletti et al., 2021; Stevens et al., 2017; Stevens 2023), we have worked with numerous
middle school students who, like Kennedy, have tried to ascribe some situational meaning to the
dummy bars (e.g., guessing a meaning for the orange segment in Figure 9). We conjecture an

affordance of the Four Shapes Task was that each segment represented a unique but related



situational quantity (i.e., the growing area of different shapes). Kennedy’s own reflection
suggested not using dummy bars was an affordance of the Four Shapes Task compared with the
Growing Triangle Task (Four Shapes had*“just one [quantity] and we had to figure out which one
[magnitude bar] was corresponded to that specific one [quantity]”). This conjecture is a
researchable question. Researchers may be interested in exploring how students at different age
levels respond to tasks designed with and without dummy bars. We conjecture for younger
students, dummy bars may impede their bridging situational quantities with magnitude bars as
they attempt to make sense of each bar in terms of some situational quantity. With older students,
using dummy bars may support their becoming reflectively aware of how graphs represent
quantities (e.g., Liang & Moore, 2020). We call for additional research exploring these (and
other) possibilities.

Finally, we note that, although tasks designed in the Desmos platform provided numerous
affordances, especially with their potential for whole-class instruction, they also led to some
limitations in our inquiry. Given the need to pre-structure tasks in this environment, the TR had
fewer opportunities to spontaneously explore Kennedy’s reasoning in-the-moment than in a less
structured environment. For example, Kennedy may have been able to reason about area and
base length increasing in a continuous fashion (as seen in Figure 10a-b) in the graphing slides
without the introduction of the discretely changing areas (as seen in Figure 11). Kennedy may
have also spontaneously considered such discrete changes on her own. In both cases, the Desmos
activity had discretely changing areas pre-programmed into the activity and this limited our
ability to explore such possibilities. However, such a limitation is inherent in achieving our goal
of supporting students’ reasoning toward EGST while designing tasks that could be easily used

by teachers in whole-class settings. Additionally, across our project we found that the Desmos



environment provided a number of affordances for digital task design that supports students’
developing graphing meanings (e.g., allowing us to provide linked situational and graphical
representations easily). We call for future research that attends to the affordances of the digital
environment for students’ development of EGST.
8.3 Concluding Remarks

In this paper, we described how Paoletti et al.’s (2023) framework was useful for our
analyzing a student’s graphing meanings, diagnosing complexities in her reasoning, and
designing a task that provided her opportunities to resolve these complexities. Collectively, the
aforementioned areas for future research could extend the current work by providing additional
uses of the framework proposed by Paoletti et al. (2023) for researchers, teachers, and
curriculum designers trying to support or make sense of student’s graphing meanings. Such
research, in conjunction with this report, would add to the growing body of literature exploring
ways to promote students’ productive development of graphing meanings to avoid the well-
documented difficulties students typically experience with graph construction and interpretation
(e.g., Glazer, 2011; Thompson et al., 2017). We conjecture this work can lead to tasks that
support students’ developing initial meanings for graphs which they can leverage in constructing
and interpreting graphs in ways that are useful for learning in STEM fields and for engagement
as informed citizens (e.g., Gantt et al., 2023b; Glazer, 2011; Potgieter et al., 2008).
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