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Abstract

This research investigated human performance in response to task demands that may be used to convey information about
the human to an artificial agent. We performed an experiment with a dynamic time-sharing task to investigate participants
development of temporal awareness of the task event unfolding in time. Temporal awareness as an extension, or a special
case, of situation awareness, may provide for useful measures of covert mental models applicable to numerous tasks and for
input to human-aware Al agents. Temporal awareness measures may be used to classify human performance into the control
modes in the contextual control model (COCOM): scrambled, opportunistic, tactical, and strategic. Twenty-one participants
participated in a withinsubjects experiment with an abstract task of resetting four independent timers within their respective
windows of opportunity. The results show that temporal measures of task performance are sensitive to changes in task
disruptions and difficulty and therefore have promise for human-aware Al.
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Introduction (HAT) (O’Neill, McNeese, Barron, & Schelble, 2022).
Finally, they should account for a wide variety of cognitive

Human-aware artificial intelligence (AI) refers to autono- styles, strategies, and individual differences in humans
mous systems that can effectively interact, collaborate, and (Feigh, 2011)

team with humans for a variety of tasks (Kambhampati,
2020). Human-robot collaboration is a primary area for
development of human-aware robots (Kumar, Arora, &
Sahin, 2019; Singh & Heard, 2022), but to make any kind of
Al-driven automation truly human-aware, there must be a
way for the automated agents to sense various aspects of

Ubiquitous and multiple-dynamic (Reason, 1990) inter-
actions between two fundamentally different agents,
humans as analog beings (Norman, 1998) and digital com-
puters, each relying on imperfect and different but interac-
tively and dynamically shaped models of each other, present
. ; additional research problems (Begerowski, Hedrick,
human behavior and performance to adapt accordingly and Waldherr, Mears, & Shuffler, 2023: O°Neill, Flathmann,
to offer a truly collaborative experience to the human. Human McNeese, & Salas, 2023 O;Neill ;:t al., 20’22; Stowers,

.sensing has a long history, spanning .the dead man’s switches Brady, MacLellan, Wohleber, & Salas, 2021). Al is trained
in electric streetcars and subway trains from the last century by experience with human interactions, but these interac-

t(? increasingly sop histicateq driy er moniforing systems in tions are also influenced by the human experience with the
highly automated autOmOblleS in the present day (He,Cht Al agent. Al systems model humans as biological neural
ctal, 201,9)' However, it may be argueq that human sensing nets being trained by the systems themselves (Christian,
resear.ch 15 la.ggmg behind accelieratmg deve.lopment. of 2020). Models and methods to enable the integration of
machine learning (ML) and Al-driven automation applica- humans and technologies in ways that optimally utilize

t}ons. in all areas of l}fe, notlonly in human—robot collabora- their key strengths are needed as well (Hagenow et al.,
tion in industrial settings or in self-driving cars.

Several criteria may be developed for human sensing sys-
tems. They should be unobtrusive so as not to interfere with
the human task performance in any way. They should not 'Rochester Institute of Technology, Rochester, NY, USA
rely on wearable instrumentation requiring lengthy set-up or .

tricting h ti in task f Th hould Corresponding Author:
restric 1.ng uman mf’ tons .m ask periormance. . ey. shou Esa M. Rantanen, Rochester Institute of Technology, |8 Lomb Memorial
be applicable to a wide variety of human-automation interac- Dr, Rochester, NY 14623-5603, USA.
tions (HAI) (Kaber, 2018) or human-autonomy teaming Email: esa.rantanen@rit.edu



https://journals.sagepub.com/home/pro
mailto:esa.rantanen@rit.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F21695067231192635&domain=pdf&date_stamp=2023-10-25

1818

Proceedings of the Human Factors and Ergonomics Society Annual Meeting 67(1)

2021a, 2021b; Pearce, Mutlu, Shah, & Radwin, 2018;
Schoen, Henrichs, Strohkirch, & Mutlu, 2020).

In this paper we describe an experimental paradigm to
investigate human performance and behavioral indices in
dynamic tasks. Our research is based on two theoretical
frameworks, situation awareness (SA) (Endsley, 1988) and
the contectual control model (COCOM) (Hollnagel, 1993).

Temporal Awareness

Dynamic systems refer to environments where one must
keep track of and respond to multiple changing variables.
Successful control of dynamic systems implies that the users
have a “mental model” of the system, allowing the user to
predict system behavior and the consequences of their inputs
to it. Time is an integral dimension of these dynamic sys-
tems, and is an inherent component and constraint in nearly
every human activity. Having good awareness of events
unfolding in time, or good temporal awareness, is crucial in
creating an effective mental models of dynamic systems.

Situation awareness (SA) represents a specific, dynamic,
aspect of mental models. The nearly universally accepted
definition of SA by Endsley (1988) involves three levels: (1)
perception of the elements in the environment, (2) compre-
hension of their meaning, and (3) their projection into the
future. Endsley (2000) also made a distinction between men-
tal models as representative of static knowledge about a sys-
tem, whereas SA embodies a situation model, which is an
extraction of time- and event-specific information from the
underlying mental model. As a theoretical construct, SA has
proved to be somewhat elusive, defying attempts to postulate
plausible mechanisms behind it, and even its quantification
in various settings. Time as a variable common to systems’
dynamics and human performance may be used as means to
quantify SA.

Temporal awareness as an extension, or a special case of
SA, may provide for useful measures of covert mental mod-
els applicable to numerous tasks. Appropriate task prioritiza-
tion is a key performance metric in many tasks. Task
prioritization further depends on accurate estimation of three
temporal task parameters: (1) the time when the task becomes
“available”, or the time when a window of opportunity (WO)
to perform it opens, (2) the latest time by which the task must
be completed, or the closing of the WO, and (3) the time
required to perform the task (Rantanen, 2009).

Contextual Control Model

The COCOM model developed by Hollnagel (1993, 1998)
identified several parameters that may yield useful and prac-
tical measures of operator performance. This model distin-
guishes four control modes: scrambled, opportunistic,
tactical, and strategic. In the scrambled mode, human perfor-
mance is haphazard and unpredictable, without planning,
and can be best described as a state of momentary panic,

representing a complete loss of SA. The opportunistic mode
is only slightly better in terms of performance or SA; the
operator merely responds to the most salient events (e.g.,
alarms) but is not able to plan actions or predict their con-
sequences. The tactical control mode involves planning and
the operator is in control of the situation or the system,
implying a moderately good SA. Finally, in strategic con-
trol mode the operator is in complete control of the task,
able to consider the global context, and exhibiting good SA.
Human performance in the first two modes may be charac-
terized as reactive and in the latter two modes as proactive.
Reactive and proactive behavior may be distinguishable in
the timing of actions, offering a potential means for perfor-
mance measurement.

The Experimental Paradigm

The experimental task in this research is an abstract time-
sharing task, originally developed by Rantanen (Levinthal
& Rantanen, 2004; Rantanen & Levinthal, 2005) to study
workload in dynamic task settings and used in other
research since (Kulomiki, Oksama, Rantanen, & Hyoni,
2022). The task is performance-dependent; speed and accu-
racy of performance in one trial affect the onset of subse-
quent trials. In this way, the task mimics the dynamic nature
of real-world scenarios. The measures derived from partici-
pant responses to the task demands have been shown to be
sensitive to time pressure, measured as the ratio of time
required to perform a task to time available to do so
(Levinthal & Rantanen, 2004) and applicable to other tasks
as well (Rantanen, 2009; Rantanen & Levinthal, 2005). The
current study was the first in a planned series of experi-
ments to further develop and test human measures in a vari-
ety of tasks that could be used as input in human-aware Al
and adaptive automation applications.

From a task timeline, several measures of temporal
awareness may be derived, such as the proper prioritiza-
tion of tasks and the “timeliness” of performance. In par-
ticular, it may be possible to measure the elapsed time
from opening of a window of opportunity on individual
tasks to an observable action on that task; good temporal
awareness is manifested in timely performance on tasks, or
consistently short “time to first action” from the opening
of the window. Degradation of temporal awareness in turn
is manifested in increasing variability in attending to tasks
and late performance (completion of tasks after closing of
the window of opportunity).

Purpose of the Research and Hypotheses

The purpose of this study was to investigate potential
measures for creating representations of human temporal
awareness that may provide useful feedback to human-
autonomy teaming systems. The following hypotheses
were developed:
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HI In an “easy” condition, participants should learn the
regular pattern, or sequence, of several substasks, having
good performance indicated by little variation in perform-
ing the tasks relative to their respective WOs.

H2 As the condition changes (surprising the participants)
and the (hypothetically) learned subtask performance pat-
tern is disrupted, the participants’ performance should
become poor, indicated by increased variability in per-
forming the subtasks relative to their respective WOs.

H3 The participants will learn the new pattern in time,
again exhibiting little variation in performing the subtasks
relative to their respective WOs.

Method

Participants

Twenty-one students recruited from an undergraduate psy-
chology course volunteered to participate in exchange for
course credit. This research was approved by the Office of
Human Subject Research at the Rochester Institute of
Technology, and all participants gave their informed consent
to participate. The participants were 18 to 21 years of age (M
= 18.8 years); 11 self-identified as female, 8 as male, and 2
as non-binary. The participants had different ethnicities
including Hispanic, White, Black, and Asian. All participants
had the highest completed education of high school or equiv-
alent. Twenty participants were native English speakers; one
participant was deaf, and one hard of hearing. All but six
participants were avid players of video games.

Apparatus

A software program, developed on PsychoPy and Python3,
simulated a time-sharing task. A computer screen was
divided into four panes, which were masked. To unmask a
pane and reveal a subtask in it, the participant had to move a
cursor to that pane. Once the cursor was moved to another
pane, the previous pane was again masked and a different
subtask revealed in the pane where the cursor was. The sub-
tasks consisted of progress bars, which were to be reset by
typing a 4-digit code within their respective WOs, indicated
on the bars. Moreover, when the WO opened the bar turned
green and When the WO closed without reset code entered
the bar turned red. The participants’ task was to monitor the
status of four independent progress bars and reset them
within their respective WOs (i.e., before the WO closed; a
bar could, and should, be reset late, or after closing the WO).
Figure 1 shows the experimental task.

Independent Variables

We designed two different experimental conditions. The first
three minutes in the task were considered “easy”, with a

Window opens at: 20%
Enter 3822

38

Figure |. Participant’s view of a pane where the WO has
opened at 20%. The progress bar is currently at 26%, and the
participant has typed in “38” of the 4-digit reset code. Three
other progress bars are independently moving in the masked
panes.

relatively leisurely pace at which the bars were to be reset to
allow participants develop a good temporal awareness of the
subtasks (bar resets) to be performed. After three minutes the
bar speed was increased and the sequence in which the bars
were to be reset was changed for the second half, or another
3 minutes, of the experiment, surprising the participants.
Re-learning a new sequence of subtasks and the overall faster
pace would make re-acquiring temporal awareness difficult,
hypothetically reflected in observable performance. Specific
task parameters are presented in Table 1.

Dependent Variables

The experimental program recorded several time-stamped
events and the participants’ actions. We also tracked the
mouse position and keyboard events by the program. Table 2
shows the raw measures, and Table 3 shows the key events.

From these data we derived the time to first action (TFA)
within each pane, calculated from the length of time between
the opening of the WO to when the user typed in the first
digit in the reset code. This was the primary performance
metric representing the timeliness of performance in the four
subtasks.

Experimental Design

This was a within-subject design. We divided the duration of
the experiment into six 1-minute time epochs, the first three
representing the “Easy” condition and the last three repre-
senting the “Hard” condition. We wanted to examine learn-
ing of the task during the first half of the experiment and the
effect of quickening the overall task pace and disruption of
learned patterns on task performance.
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Table 1. Subtask Parameters to Create Two Experimental Conditions, “Easy” and “Hard”.

Settings Cond. Pane | Pane 2 Pane 3 Pane 4
Bar Duration Easy 25s 45s 30s 55s
Hard 20s 30s I5s 20s
Window Opening Easy 50% 50% 60% 20%
Hard 40% 45% 40% 60%
Window Duration Easy 12.5s 22.5s 12s 44s
Hard 12s 16.5s 9s 8s
Bar Speed Easy 4.00%/s 2.22%ls 3.33%/s 1.82%ls
Hard 5.00%/s 3.33%/s 6.67%ls 5.00%/s

Table 2. Raw Data Output and descriptions.

Measurable Description

The current X and Y coordinates of the
cursor on the screen, between -1.000 and
1.000

For each pane, the current position of
the progress bar, recorded as a number
between 0.00 and 100.00

For each pane, the current keystrokes that
have been entered

Which pane the cursor is currently in

Which pane the event occurred in

Mouse position

Bar progress

Pane keystrokes

Mouse-in-pane
Event-in-pane

Table 3. Key Events that triggered recording a timestamp.

Event Definition

| .Switch Panel Cursor switched into a different pane

2 Key Stroke User typed in a single keystroke
3.WO-Open The WO opened within an individual pane
4.WO-Close The WO closed within an individual pane

5. Pane reset User entered the correct input, the progress
bar goes back to 0, and a new question is

assigned

Procedure

The researchers briefly introduced the study to the partici-
pants. First, participants completed a demographic informa-
tion survey, followed by the researchers explaining the task
and how to interact with the program. Participants read,
agreed, and signed the consent form and started the experi-
ment when ready. The experiment lasted a total of 6 minutes.
After the experiment program was finished, researchers con-
ducted a brief one-on-one interview with participants to
identify what changes they noticed, their strategies to handle
the task, and how they evaluated their own performance.

Results

Each minute within the six-minute experimental trial was
split up into 1-minute “epochs”, with the “Easy” condition

being divided into epochs 1-3, and the “Hard” condition into
epochs 4-6. For each epoch, the TFA values were not nor-
mally distributed, as is common with timing data, and as
shown in Figure 2. Log transformations worked well to nor-
malize the data. Figure 3 shows the mean and 95% confi-
dence interval for TFA for each of the six epochs
(backtransformed from the log scale), and Table 4 lists the
values of all descriptive statistics on both the log and back-
transformed scales.

Within the “Easy” condition of the experiment, the mean
log TFA decreased from 3.22 to 2.44 to 2.34, and the stan-
dard deviation of log TFA also decreased from 1.08 to 0.99 to
0.88. Within the “Hard” condition, the mean log TFA
increased from 1.24 to 1.31 from epochs 4 to 5, and then in
epoch 6 decreased to 1.26. The standard deviation of log TFA
decreased from 0.80 to 0.78 to 0.73.

Between the “Easy” and “Hard” conditions, from epochs
3 to 4, the mean log TFA increased by 0.49, from 0.85 to
1.24. The standard deviation of the log TFA decreased from
0.88 to 0.80. A two-sample Wilcoxon rank test (Mann-
Whitney U test) was performed to compare the two condi-
tions (epochs 1-3 vs epochs 4-6), and produced a p-value of
less than 0.0001.

These trends support our hypotheses. Within the first
three minutes (epochs) and in the “Easy” condition, partici-
pants clearly learned the task and improved in their perfor-
mance, resetting the bars soon after opening the WO
(decreasing mean log TFA) and exhibiting increasing consis-
tency in their performance (decreasing standard deviation of
log TFA). Interruption of this good performance by increas-
ing the task pace and dis-rupting the learned reset pattern
resulted in poorer performance in epoch 4 (lower mean log
TFA), but decreased variability (decrease in standard devia-
tion of log TFA). Although the performance appears to have
been stabilized in epochs 5 and 6, it never reached the same
low level achieved in epoch 3 within the remaining experi-
mental duration.

Discussion

Within the “Easy” condition, the decrease in mean log TFA
and the decrease in standard deviation of log TFA provides
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Histogram of Time to First Action (TFA) per epoch
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Figure 2. Histograms showing distributions of participants’ time to first action (in seconds), separated by epoch. The first three
epochs represent each minute under the easy condition, and the last three represent each minute under the difficult condition. Log

transformations worked well to normalize data for all epochs.

Mean and 95% CI of Time to First Action
(backtransformed from log scale)

Time to First Action (s)
—o—i
—o—

2 4 6
1-min Epoch

Figure 3. Mean and 95% ClI (backtransformed from log scale)
for time to first action (TFA) (in seconds), for each of the six
epochs.

evidence to support our H1 hypothesis that participants will
improve their performance condition as they spend time get-
ting used to the pattern. Within the “Hard” condition, it is
interesting that there does not seem to be much of a signifi-
cant decline in mean log TFA or a decrease in the standard

Table 4. Summary Statistics For TFA For Each Epoch. Log mean
and log standard deviation are on the log scale, mean and 95% CI
have been backtransformed from that scale.

Epoch N log mean log stdev = mean 95% CI

| 237 1.17 1.08 322 [2.81, 3.70]
2 222 0.89 0.99 2.44 [2.12, 2.79]
3 148 0.85 0.88 2.34 [2.04, 2.68]
4 326 1.24 0.80 3.46 [3.20, 3.74]
5 287 1.31 0.78 3.71 [3.36, 4.09]
6 215 1.26 0.73 3.53 [3.20, 3.89]

deviation of mean log TFA. We had originally hypothesized
(H3) that, as participants learned the new pattern, they would
display a similar trend of a decreasing mean log TFA and
decreasing standard deviation of log TFA. Our findings do
not support that hypothesis.

Between the “Easy” and “Hard” conditions, there was a
jump in TFA, suggesting that the change in conditions did
impact performance. A Mann-Whitney U-test showed a sig-
nificant difference between the two conditions (p < 0.0001).
We hypothesized (H2) that, as the condition changes, the
reset pattern is disrupted, and variability in the participants’
performance would increase. The first part of our hypothesis
is supported, but the variability decreased, so the second part
of the hypothesis was not supported.
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There could be several explanations for why there is not
much of a declining trend in the “Hard” condition, or why
the TFA for epoch 4 is slightly lower than the TFA in epochs
5 and 6: Perhaps three minutes is not enough time for the
participants to fully learn the new pattern, or perhaps in
epoch 4 participants were able to take a”break” while all of
the panes simultaneously reset, and thus had more downtime
before responding to the WO openings.

In any case, our results show that temporal measures of
task performance are sensitive to changes in task disruptions
and difficulty. There are certainly many more temporal mea-
sures to be derived from the raw data output our experimen-
tal paradigm can provide, offering a more complete view to
the development and changes in human temporal awareness
in dynamic tasks, and potentially providing input to human-
aware Al agents for their adaptation to human performance.

Limitations

Due to the homogeneity of our participant population, this
experiment should be repeated with a larger, more heteroge-
nous sample. The program output of raw data was also not
conducive for derivation of human performance variables.
Therefore, development of standard of data output from
human-automation interactions for reliable and real-time cal-
culation of valid human performance measures is a critical
task for further experiments.

Future Research

This pilot study showed the feasibility of our experimental
paradigm to study human performance in a dynamic task
through data unintrusively derived from the task perfor-
mance. Our experimental program will allow for many addi-
tional measures to be recorded, including mouse positions,
pane switching before the WO opens (system monitoring),
and other timed actions relative to the task. Additionally,
there is a good amount of flexibility we have in defining our
experimental conditions. Having a longer period per experi-
mental conditions may help us identify trends more clearly
and would allow us to have a better view of when someone
settles into a pattern. It also could be interesting to incorpo-
rate “breaks” into the experiment to measure participants’
situation awareness in different ways, for example, by
SAGAT (Endsley, 1988), or to incorporate SPAM (Durso &
Dattel, 2004) into the task.

The next steps in this research program will develop an
array of measures to be derived from both humans (behav-
ioral, psychophysiological, and subjective) and the system
(temporal and cognitive demands of the tasks), and use of
machine learning for data fusion (system and human mea-
sures) and in classification of human performance into the
COCOM modes (scrambled, opportunistic, tactical, and stra-
tegic). We will also research the transparency of the ML
algorithms and robustness of the COCOM classifications

across diverse user populations and task demands for their
suitability for human-aware Al.
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