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Abstract—This work evaluates a Continuous Wave (CW) Time-
of-Flight (ToF) camera, Stereoscopic camera, and LiDAR to
determine if they are potential candidates for point-rich on-robot
sensing in Speed and separation monitoring (SSM) applications.
These experiments characterize the static and dynamic behaviors
of the sensors while mounted on-robot. From these tests, it was
found that ToF and Stereo cameras exhibit better performance
to their more expensive LiDAR counterpart. Specifically, it was
observed that the ToF camera demonstrated better depth accu-
racy while the Stereo camera generated better 3D reconstruction
accuracy. Overall, ToF and Stereo Cameras demonstrate that
with continued innovation and integration, these sensors could
become the building blocks to point rich on-robot SSM.

Index Terms—Time-of-Flight, Stereoscopic, Motion Tracking,
Angle Dependent Reflectivity, Radius Reconstruction, Speed and
Separation Monitoring, Sensor Evaluation.

I. INTRODUCTION

Robotics has increased productivity in manufacturing for
decades. The tasks these robots initially performed were
repeatable and straightforward. However, as robotic innova-
tions in control and perception have increased, their tasks
and proximity to humans have also increased. Now, many
robotics companies are manufacturing robots that meet the
standards the International Standards Organization (ISO) set to
officially designate their robots as collaborative. The ISO/TS
15066:2016 standard outlines four collaborative approaches:
safety-rated monitored stop, hand guiding, speed and separa-
tion monitoring, and Power and Force Limiting (PFL) [11].
Of these four approaches, companies like Kuka, Universal
Robotics, and ABB use PFL. This ISO standard approach
requires the companies to build torque and current sensing
into their robots to detect when the manipulator robot has

This material is based upon work supported by the National Science
Foundation under Award No. DGE-2125362. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

unintentionally struck an obstacle or human. The impact force
limits are illustrated in [11], but the robot settings must be
adjusted for each specific use case [21]. In the event of a
collision, the robot moves into a safety-rated monitored stop.
In this state, the robot is still powered on but disabled. This is
different from an emergency stop because it does not require
a complete robot restart to escape this state. This standard ap-
proach has been developed and integrated into many industrial-
grade robots like the UR-10 [24] and LBR iiwa 7 R800 [12].
Though PFL is currently integrated into many off-the-shelf
industrial robots, there has also been extensive research into
Speed and separation monitoring (SSM). [1], [3], [9], [13],
[14], [22]. This ISO rated approach requires the robot to know
the distance and velocity between the robot and the human
in the collaborative workspace at all times. If the separation
distance becomes too small or the velocity becomes too fast,
the robot enters a safety-rated monitor stop. The distinct
differences between PFL and SSM are the implementation
requirements and the effects on human interaction. In SSM,
the robot or the workspace must be outfitted with a perception
system to monitor the speed and separation between the robot
and the human. In contrast, the PFL cobots must monitor their
joint states for torque and current spikes. The key benefit
of SSM is that a well-calibrated and integrated perception
system significantly reduces human impacts from occurring
[13]. PFL is a reactive collaboration approach concerning
collision, whereas SSM is a preventative one [14]. This paper
will focus on the characterization of point rich 3-D perception
sensors to determine if their performance is a good fit for SSM.
The remainder of the paper consist of the following sections:
Literature Survey, Selected Sensors, Design of Experiments,
Results and Discussion, Conclusion, and Future Work.
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II. LITERATURE SURVEY

Within the field of SSM research, there are extensive
evaluations of sensing methodologies such as ultrasonic, In-
frared, Stereoscopic camera, Time-of-Flight (ToF), LiDAR,
and Radar [4], [6], [23]. Additionally, the research generally
focuses on how the sensors are integrated into the collaborative
workspace. Sensor integration approaches fall into on-robot
and off-robot sensing [14]. Off-robot sensing focuses on plac-
ing the perception system around the external environment,
looking into the collaborative workspace. On-robot sensing
utilizes sensors mounted directly to the robot looking out at
the collaborative workspace. In [14], off-robot sensing uses
point-rich sensors like 3-D ToF Cameras, Stereo Cameras, and
LiDARs to capture extensive data on the entire collaborative
workspace. Conversely, on-robot sensing is beneficial in highly
occluded settings. It is generally performed using lower res-
olution perception methods like ultrasonic, infra-red, and 1-D
ToF Sensors [8], [15]. These distinctions for on-robot sensing
were based on the limitations of data-rich sensors, as they
were too bulky, consumed too much energy, and required too
much computational power. However, in recent years, sensor
companies like Intel and Microsoft have begun to develop 3-D
perception sensors with lower power and smaller form factors
for integration into industrial and automation applications.
Furthermore, the rise of embedded Linux Processors like the
’NVIDIA Jetson Platform,” ’Raspberry PI,” and NXP ’i.MX 8’
have brought higher processing capabilities to the application
endpoint. The overlap between computation and perception
has made it feasible to mount Stereo Cameras, LiDARs, and
ToF Cameras on robots to achieve point-rich on-robot sensing.
These advancements create potential for on-robot sensing with
high-resolution returns from the environment. Additionally,
these sensors have more expansive field of view (FOV)
capabilities, increasing their perception coverage. Increased
coverage could lower the chances of occlusions and collisions
in the collaborative workspace. Lowering the probability of
collision incidences increases the quality of life of the workers
who interact with the robots in these work-spaces. As industry
and researchers begin to integrate these perception sensors
on robots, it is essential to understand the trade-offs between
different perception modalities in the SSM application. The
robot path, the sensor angle on the robot, and even the type of
materials found in the environment can all impact the behavior
of these sensors [7]. This paper focuses on characterizing the
performance of the Intel Realsense D435i stereoscopic camera
[10], Azure Kinect DK 3-D ToF Depth Camera [17], and
the Ouster OS0-32 LiDAR [20] when mounted on the tool
center point (TCP) of a moving robot. The characterization of
these sensors will help determine the considerations necessary
for building the next generation of on-robot SSM perception
systems. It is crucial to align the performance of the chosen
sensor node to the particular SSM application to increase the
safety of workers in the collaborative workspace.

III. SELECTED SENSORS

A. Stereoscopic Camera

The D435i is one of the many stereo cameras in the Intel
Realsense family. This version contains one 2MP RGB camera
with two depth cameras that generate an 87° horizontal by
58° vertical FOV [10]. The D435i has a maximum output
resolution of 1280x720, a maximum frame rate of 90 FPS,
a clamined sub 2% accuracy error at 2 meters, and a mini-
mum target distance of 280mm at maximum resolution. The
operating range for this sensor is 0.3 to 3 meters. These
characteristics make the D435i suitable for SSM, as the
sensor can accommodate a 3-meter workspace with adequate
spatial resolution at a quick refresh rate. It is important to
note that trade-offs were made in testing to optimize these
characteristics for the SSM experiments performed in this
paper, as shown in I. For instance, it was found that best
balance between resolution and frame rate in the experiments
was 640x480 at 60 FPS.

B. Continuous Wave Time-of-Flight Camera

The Azure Kinect DK (AKDK) is an evaluation platform
that combines a 12 MP RGB Camera and 1 MP CW ToF Depth
camera into a single platform. This sensor has a 120x120
FOV, 1024x1024 resolution, and a systematic error of less
than 11mm plus 0.1% of distance without multipath [17].
The published operating range for this sensor is 0.5 to 3.86
meters in unbinned mode and 0.25 to 2.88mm in binned mode.
In order to maintain real-time operating performance, the
AKDK was tested at 15 FPS in 512x512 binned mode for the
experiments in this paper. 30 FPS and higher resolutions were
found to inconsistently drop frames which is not acceptable
in a safety critical application.

C. 360° Spinning LiDAR

The Ouster OS0-32 LiDAR is a production-grade near-range
LiDAR with a 90° vertical field of view, 32 channels of vertical
resolution, and 2048 pixels of horizontal resolution. It only
weighs 500g and has a 0.25 to 35m sensing range. The OSO
states a +/- 10mm precision with a 10Hz or 20Hz rotation rate
[20]. For the experiments in this paper, the OS0O was run at 20
Hz rotation, 32 vertical channels, and 1024 horizontal pixels,
as seen in Table L.

mounts.
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D. Motion Capture Ground Truth

The ground truth used for the experiments performed in this
work was gathered from an OptiTrack motion capture system.
The motion capture system uses twelve Flex 13 OptiTrack
cameras to generate a workspace that tracks retro-reflective
markers on rigid bodies in the workspace [18]. The system
can track these targets with sub-millimeter error at 120 FPS.
Additionally, the number of cameras in the system limits
the opportunity for occlusions in the workspace. The system
only needs 3 of the 12 cameras to locate the position and
orientation of any rigid body target in the workspace. The
motion capture measured translation and orientations of each
rigid body. These poses were used to define the error measured
by each experimental depth sensor.

TABLE I: Sensor Parameters as used in Experiments

Sensor Sensor Types
Parameters Intel D435i | Microsoft AKDK QOuster 0S0
Sensing Modality Stereo ToF LiDAR
Resolution 640x480 512x512 1024x32
FOV (°) 87x58 120x120 360x90
FPS 60 15 20
Range (m) 0.3 -3.0 0.25 - 2.88 0.25 - 35
Spec’d Error <2% at2m | <Ilmm + 0.1% Scm
Weight (g) 75 440 500
Size (mm) 90x25x25 103x39x126 87dx742h
Cost ($) 334.00 359.10 6,000.00

IV. DESIGN OF EXPERIMENTS

The experiments in this paper cover distances and motions
commonly performed by manipulator robots in a collaborative
workspace. Static and dynamic motion tests were performed
on all three experimental depth sensors with stationary targets
and then compared with the ground truth target locations pro-
vided by the OptiTrack system. A Universal Robotics UR-10
Robot was used as the on-robot sensing platform to manipulate
the sensors through the different paths and positions in testing.

A. Calibration

Before experimentation, a ’eye-on-base’ calibration was
performed using the ’easy_handeye’ calibration package [16].
This calibration involved placing a rigid body target on the
end effector and capturing a variety poses to create a frame
transformation from the motion capture frame to the robot
frame. This process was executed once before any experimen-
tal sensor calibration was done. Once the robot motion capture
calibration was performed, the experimental depth sensor was
mounted to the end effector for extrinsic calibration. Extrinsic
calibration for the D435i and AKDK used the ’easy_handeye’
calibration package [16] to generate the frame transformation
matrix between the camera and robot frames. The process used
the RGB camera in the sensor module to take pictures of a
2D checkerboard target on the floor. The robot was moved
to different positions and orientations for each capture. The
pictures of the checkerboard and the poses of the robot in
the different configurations were fed into the ’easy_handeye’

calibration package to then generate the camera to robot frame
transformation. With this transformation, the transform tree
could be constructed from RGB camera frame to depth camera
frame, through all the robot joints, to the motion capture
system. Full system calibration was required to prevent the
error between experimental depth camera measurements and
the ground truth location of targets determined by the motion
capture setup. Since the LiDAR was lacking an RGB camera,
a separate method was used to determine its pose within the
workspace. The laser cut LiDAR mount was outfitted with
retro-reflective dots to identify the LiDAR as a rigid body in
the OptiTrack motion capture software (Motive) [19]. Once
the rigid body was created, the center of the rigid body, also
known as the pivot point, was adjusted in Motive to match
up with the optical center of the LiDAR. Once the rigid body
was calibrated to the LiDAR, no eye-in-hand calibration was
needed as the LiDAR rigid body position and orientation could
be used directly from the motion capture system.

B. Flat Board Tests

First, the sensors went through flat board characterization
tests to determine their performance for different target dis-
tances and velocities. The static flat test consisted of the UR-10
mounted sensor moving in 100mm increments from 1100mm
above a foam board on the ground down to 200mm above the
foam board. The foam board was chosen due to its smooth and
even surface with a medium level of reflectivity. The ground
truth location of the foam board was measured by placing three
retro-reflective markers on the board and defining them as a
rigid body in Motive. This position and orientation were saved
as a static transformation and published into ROS along with
the existing motion capture origin, robot, and camera frames
as illustrated in Fig. 2a. Each static shot was an average of the
captured frames from the sensor for one second. This approach
allowed the FPS of each sensor to make an impact on the
measurement at each static location. The D435i benefited most
from this parameter, as seen in Table I, due to its 60 Hz frame
rate. The robot rested at each position for 4 seconds to ensure
that the arm was stable before taking the captures. The data
collected in the static flat tests were 1-D distances based on the
average of a centered region of interest (Rol) on each sensor.
This Rol was 5x5 pixels for the Realsense and AKDK and
5x1 pixels for the OSO LiDAR. The data extracted from these
captures were accuracy error 4, measured concerning ground
truth, and the standard deviation o of the measurements across
the 1-second recording at each static position.

Next, the sensor was tested across the same distance range
with a linear dynamic motion. This test consisted of moving
from 1100mm to 300mm towards and away from the foam
board. These movements were done at constant velocities of
250mm/s and 500mm/s. The data captured in this experiment
were collected at the 700mm point in the motion to guarantee
the robot was traveling at a constant velocity. The measured
depth, mean accuracy error y , and standard deviation o, were
captured at this point for +250mm/s, -250mm/s, +500mm/s,
and -500mm/s.
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(b)

(©) @

Fig. 2: (2a) AKDK static flat floor recording example. (2b) Experiment setup for static and dynamic data recordings. (2c)
Capture from static sphere recording setup. (2d) Capture from static edge precision setup. (2e) Robot setup for ADR testing.

C. Static Sphere Radius Reconstruction Accuracy

As seen in Fig. 2b, the static and dynamic tests were then
conducted again but with a 243mm diameter sphere instead of
a flat foam board. This target was chosen because it closely
resembles a human head, which is a common obstacle in
collaborative work-spaces. For these sphere tests, an OptiTrack
rigid body target was rested on top of the sphere to deter-
mine its XYZ location for the motion capture system. The
sphere was then aligned directly underneath the experimental
camera on the robot TCP such that the axis of motion was
normal to the floor and centered at the top of the sphere.
Once this transform was captured, the marker was removed.
Fig. 2b is an example capture taken in RViz during D435i
testing. The point clouds collected during the sphere tests were
used to perform 3-D reconstruction characterization of the
experimental sensors. The 3D metrics used in this paper were
based on the radius reconstruction accuracy (RRA) used in
[7]. RRA compares the point cloud constructed sphere radius
with a ground truth radius based on the known dimensions
of the target. The radius measurement is obtained from the
point cloud by averaging the Euclidean distance of each point
registered on the surface of the sphere to the center of the
sphere, which is known via the motion capture system. Points
with a depth of 0 or NaN were ignored, and captures were
only accepted if >50% of all possible points were registered
on the surface of the sphere. For both the static and dynamic
sphere tests, data was collected over 1 second and averaged.
The reported metrics for the experiment were average error (i,
and standard deviation o, of these measurements.

D. Edge Precision

Following the sphere tests, edge precision tests were per-
formed following an extension of the procedure outlined in
[7]. The robot path setup for this test was similar to the static
test illustrated previously. In this case, the target was the edge
of a matte-gray corrugated plastic board. The board edge was
aligned to the center of the sensor FOV and normal to the
robot path. Edge alignment was done to maintain the board
edge in the center of the shot at each measured distance.
This experiment averaged captures over one second at a static
position. The variation in this test compared with [7] was that
captures were taken at multiple depths in 100mm steps from
1100mm to 300mm. An ideal line was drawn through the field

of view at each captured frame as previously done in [7].
The measured board edge was then compared to the ideal line
per pixel separation from that line as seen in Fig. 2d. These
pixel offsets were collected and binned into a histogram profile
for each 100mm distance. These histograms represented the
pixel-wise error variance to the edge of the target. This edge
performance characteristic is essential to understand for SSM
applications because edge performance indicates the noisiness
of the edges in a scene. Noise at transitions, edges, and
objects can impact the ability to perform segmentation on that
data [5]. The edge precision test was performed dynamically
as well. The data capture was done at the 700mm point to
ensure constant velocity was achieved. These tests were done
at +250mm/s, -250mm/s, +500mm/s, and -500mm/s.

E. Angle Dependent Reflectivity

Following edge precision, the sensors were put through
Angle Dependent Reflectivity (ADR) tests as demonstrated
in Fig. 2e. These tests were based on the procedure outlined
in [7] but on a variation of materials. The depth sensors
captured a flat target from 0° to 45° in 5° increments across
different material types. Zero degrees in this test was defined
as when the sensor was normal to the target. In this SSM-
focused application the material types chosen were based on
materials that humans may wear in the workspace. These
materials included black and gray suit material, fleece, denim,
black polyester, flannel, and the foam board as a control
material. It was important to test all of these materials, as
the perception system chosen for an SSM application should
maintain performance regardless of human attire. For this
paper the experiments were conducted across the listed angles
and materials at a radial distance of 700mm. At each angle, a
plane was fit to a cropped region of the point cloud. A plane
fit was necessary to isolate performance due to reflectivity
from systematic depth error. The distance to the plane was
then calculated for each point in the point cloud. The number
of points that fall within the o of the specific sensor to the
plane were considered valid. ADR is the percentage of these
valid points out of the total number of possible points in the
cropped region, based on the sensor resolution. A crop region
matching 1/3 by 1/3 of the D534i FOV, or 29x19 degrees, was
used across all three sensors to ensure measured points landed
within the boundaries of the fabric targets. Additionally, the o
threshold used for each sensor was determined by averaging
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Fig. 3: (3a) Linear path towards the target. (3b) Linear path across the target. (3c) Radial path across the target. (3d) Radial

path toward the target.

the performance across all fabrics at 0°. Although, due to the
extremely high precision of ToF, its o was rounded up to Imm
to account for slight wrinkles in the fabric.

F. Dynamic Path Tests

The final sensor tests performed were mock collaborative
motions illustrated in Fig. 3. In order to maintain the sensor
as the dependent variable in these experiments, the targets
used were the same spheres used in the static and dynamic
sphere tests. Target placement was designed such that one
sphere appeared in the visible path for each motion. The
four paths characterized in this experiment were: the linear
movement at a target at 250mm/s, linear movement across a
target at 250mm/s, radial movement across a target at 60°/s,
and radial movement at a target at 60°/s. These were four
general movements that could create a human-robot collision.
Each target location was designed to stress the limits of the
depth sensor to exercise how quickly and accurately the sphere
appeared in the frame during each motion. As in the prior tests,
depth 1 and o were the key 1-D metrics tracked along the four
paths. RRA p and o were the 3-D metrics tracked along the
paths.

V. RESULTS AND DISCUSSION
A. Flat Board Tests

Flat static depth tests revealed that the AKDK generated the
best performance with regards to o and p across a majority of
the testing range as seen in Fig. 4. What was common across
all three sensors was that o decreased as the target distance
decreased. The dynamic flat tests in Fig. 5 illustrate a clear
impact on the o of all three sensors. The o for each sensor
in the 500mm/s tests was double that of the 250mm/s tests.
There was no clear highest performer from a o standpoint in
the dynamic tests. The boxes in the box style plots consist of
a u center-line and height of +/-30. The x-axis represents bins
of the tested distances.

B. Static Sphere Radius Reconstruction Accuracy

The stereo camera exhibited the best performance in this
testing section. Even though the D435i was not the front runner
in the static and dynamic flat depth tests, the D435i generated
visibly cleaner point clouds during sphere testing. The ToF
camera and LiDAR exhibited noticeable deformation in their
point clouds. This visual observation is empirically reflected
in Fig. 6.
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Fig. 4: Static flat depth results from 1100mm to 300mm.
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Fig. 5: Dynamic flat depth results at +/-250mm/s and +/-
500mm/s.
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Fig. 6: Static sphere RRA results from 1100mm to 300mm.
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Fig. 7: ADR Results for the D435i, AKDK, and OSO sensors respectively. The

C. Edge Precision

The AKDK and LiDAR performed equally well in this
testing section, as seen in Fig. 8. Both of these sensors had
much tighter distributions than the D435i. Though the AKDK
distribution was tighter than the LiDAR spread, the LiDAR
had more zero error points than the AKDK distribution.
The dynamic edge results demonstrated similar behavior to
dynamic flat depth for the ToF and Stereo Cameras. The
250mm/s distributions contained more zero-pixel error to edge
points than the 500mm/s tests. The LiDAR had almost the
same number of zero-pixel error points. However, it is essential
to note that the LiDAR point resolution along the edge was
significantly less than the point resolution of the other sensors.
The lack of resolution may explain why the velocity does not
impact the LiDAR data as much in this test. The order of
performance according to normalized sums for each sensor in
the dynamic edge test was the AKDK, the LiDAR, and the
D435i per Fig. 9.

0.6
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0.5 ] Ouster 0s0
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N I o IIH

0.0 = il l_l:Lj

-4 -3 -2 -1 0 1 2 3 4

Deviation from ground truth (pixels)

Fig. 8: Pixel spread for each sensor in static edge precision
testing

D. Angle Dependent Reflectivity

From a sensitivity standpoint, these tests demonstrated that
TCP orientation and the target material impacted sensor per-
formance. For all three sensors, the ADR percentage decreased
as the angle of incidence increased. All three sensors had
noticeably lower ADR scores for black polyester. The AKDK
and OSO express lower ADR results for denim, flannel, and
black polyester at the largest angle whereas the D435i clearly

Angle (7)

25 30 35 40 45 o 5 0 15 20 25 30 35 40 45
Angle (%)

o threshold is listed in each plot legend

0.7
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Fig. 9: Pixel spread for each sensor in dynamic edge precision
testing

struggled most with black polyester throughout all tested
angles. It is important to note that the ADR threshold chosen
significantly impacted the scores across distances. Figure 7
shows the ADR performance using a threshold base on the
average o over all materials for each sensor.

E. Dynamic Path Tests

The first motion in the dynamic path tests was linear
movement at a target. This path was the dynamic version of
the static sphere depth and RRA experiments. Figure 10 shows
that the D435i, AKDK and OSO exhibited slightly raised p

errors with similar trends to static depth shots. The RRA
100
754 =]
=
— 50+
E ol = B By 9= g w8 8 | B
— 254 E
=]
T o
¥ o - |-
=25 - = -
I 2 |B I Realsense D435i
~50 + I Azure Kinect
Quster 0S0

75 T
1100

T T T T T
1000 900 800 700 600

Distance (mm)

500 400 300

Fig. 10: Depth data for linear move towards the target

results in Fig. 11 show slightly degraded performance for the
AKDK and the LiDAR. In contrast, the D435i presented a
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Fig. 11: RRA data for linear move towards the target

significant increase in RRA ¢ error and x did not converge to
0 error as seen in the static experiment.

In path two, the target passes by the FOV linearly. In the
case of LiDAR, the target is seen through the entire path,
whereas the AKDK and D435i start and end with the foam
sphere out of view. The Z distance is fixed in these tests, and
the sensor travels along the x-axis. In Fig. 12, the captured
frames were evenly distributed between when the sphere
entered and exited the FOV of the sensors. In this test, the
w error for each sensor was visibly parabolic with the LIDAR
exhibiting the highest error of 95mm in its second sample.
The D435i, however, only generated a maximum depth p error
magnitude of 52mm. For RRA seen in Fig. 13, the D435i also
demonstrated the least radius error compared to ground truth,
and the LiDAR again exhibited the most error.
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Fig. 12: Depth data for linear move across the target
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Fig. 13: RRA data for linear move across the target

The third motion was another sensor sweep across the target.
In this motion, however, the robot took a radial path where
the closest point to the target was set to be 300mm from the
sphere surface. The particular trend of note in Fig. 14 is that

the sensor behaviors in this radial motion created very similar
error patterns to that of the linear motion. As seen in Fig. 15,
the D435i exhibited the least RRA o and p error while the
0S0 produced the most. The final motion consisted of a radial
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Fig. 14: Depth data for radial move across the target
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Fig. 15: RRA data for radial move across the target

move at the target. This motion generated the most depth and
RRA error of the four paths for the ToF and stereo cameras.
The samples in Fig. 16 were evenly distributed from full target
entry until the target was entirely in the center of the frame.
The depth error for the AKDK and LiDAR started close to
zero and then increased to 40mm and 72mm, respectively. The
D435i started near -100mm error and rose to less than 1mm
of error. All three sensors ended their p values very close to
the final frames of motion path one, which lines up from a
repeatability standpoint because both path 1 and 4 ended their
paths with the foam sphere centered in the frame at 300mm
away from the sensor mounted on the robot.
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Fig. 16: Depth data for radial move towards the target
VI. CONCLUSION

This evaluation examined the performance of the D435i
Realsense Camera, the AKDK ToF Camera, and the OS0-32
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Fig. 17: RRA data for radial move towards the target

Lidar when exposed to robot paths and target types commonly
seen in speed and separation monitoring applications. The data
collected in these tests showed that the D435i has decent
accuracy for the price when compared with the ToF and
LiDAR sensors. Additionally, it was observed that the ToF
camera exhibited the best flat depth ;1 and o of the three
sensors while the D435i generated the best RRA p and o.
Though the AKDK is physically the largest module, the actual
depth camera inside the AKDK is comparable in size to the
D435i Realsense module. For cost, performance, and size, the
ToF and Stereo cameras are promising sensing nodes for a
point-rich SSM on industrial robots.

VII. FUTURE WORK

The D435i and AKDK performed well enough to pursue
multi-sensor on-robot sensing modules. However, from an on-
robot feasibility standpoint, using multiple Kinects on the TCP
would significantly reduce the load capacity of the robot.
Therefore, future CW ToF testing should be done using a
smaller and lighter-weight module. The EVAL-ADTF3175 is a
one-megapixel CW ToF depth camera module made by Analog
Devices [2]. This sensor is smaller, has a comparable FOV to
the D435i, and only requires a USB 3.1 compatible cable.
Future tests should examine how well multiple sensors could
work together. Multi-sensor integration could be crucial for
combating occlusion caused by the robot seeing itself and
general structures in the collaborative work environment. The
performance of these point-rich on-robot perception systems
will be compared with the existing on-robot 1-D ToF sensor
rings described in [13].
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