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Abstract
In this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the prob-
ability density space equipped with L2-Wasserstein metric tensor, via the Wong–Zakai
approximation. We begin our investigation by showing that the stochastic Euler–Lagrange
equation, regardless it is deduced from either the variational principle or particle dynamics,
can be interpreted as the stochastic kinetic Hamiltonian flows in Wasserstein manifold. We
further propose a novel variational formulation to derive more general stochastic Wasser-
stein Hamiltonian flows, and demonstrate that this new formulation is applicable to various
systems including the stochastic Schrödinger equation, Schrödinger equation with random
dispersion, and Schrödinger bridge problem with common noise.
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1 Introduction

The density space equipped with L2-Wasserstein metric forms an infinite dimensional Rie-
mannain manifold, often called Wasserstein manifold or density manifold in literature (see
e.g. [40]). It plays an important role in optimal transport theory [54]. Many well-known
equations, such as Schrödinger equation, Schrödinger bridge problem and Vlasov equation,
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can be written as Hamiltonian systems on the density manifold. In this sense, they can be
considered as members of the so-called Wasserstein Hamiltonian flows ([4, 14, 15, 17, 20,
29, 54]).

The study of Wasserstein Hamiltonian flow can be traced back to Nelson’s mechanics
([47–49]), where a probabilistic interpretation of the linear Schrödinger’s equation is given.
The rigorous probabilistic contents in Quantum Physics were understood as stochastic vari-
ation boundary problems for the probability densities with given marginals (cf. [3, 16]). The
work of Bismut [7], which is closely related to the principles of stochastic optimal transport
theory, showed how the random perturbations affects the classical optimization problem in
the expectation sense for both Lagrangian and Hamiltonian formalism. Motivated by the
ideas of Schrödinger [51] and Bernstein [6], the connection between the Nelson’s approach
and hydrodynamics on theWasserstein space was first discovered by [45]. For more contents
on the stochastic optimal transport problem, we refer to [46]. By using Madelung transfor-
mation, it is known that a polar representation reveals the Hamiltonian structure of classical
Schrödinger equations. We refer to [36] for a more comprehensive review on the geometric
hydrodynamics and its relationship with the optimal transport theory. Another framework
of second-order differential geometry to derive stochastic Lagarangian and Hamiltonian
mechanics and to establish their related Hamilton–Jacobi–Bellman equations are presented
in [33]. Recently, it is shown in [15] that the kinetic Hamiltonian flows in density space
are probability transition equations of classical Hamiltonian ordinary differential equations
(ODEs). In other words, this reveals that the density of a Hamiltonian flow in sample space
is a Hamiltonian flow on density manifold.

In the existingworks onWasserstein Hamiltonian flows, random perturbations of common
noise type (see e.g. [21, 22]) to the Lagrangian functional are not considered in the continuous
space. Consequently, the theory is neither directly applicable to theWasserstein Hamiltonian
flows subjected to random perturbations, nor to the systems whose parameters are not given
deterministically. The main goal of this article is developing a theory to cover these scenarios
in which the stochasticity is presented. More precisely, we mainly focus on the stochastic
perturbation of the Wasserstein Hamiltonian flow,

dρt = δ

δSt
H0(ρt , St )dt,

dSt = − δ

δρt
H0(ρt , St )dt,

with a HamiltonianH0 on the density manifold and δ
δS , δ

δρ
being the variational derivatives,

which is proposed by only imposing randomness on the initial position in the phase space [15].
This is different from the Hamiltonian flows considered in [4], where the authors construct
the solutions of the ODEs in the measure space of even dimensional phase variables equipped
with the Wasserstein metric. More precisely, the Hamiltonian functional in [4] is defined on
the Wasserstein manifold P2(R

2d), which contains densities of joint distributions of both
position and momentum variables, while the system in the current study is mainly defined
on the density manifold for the position variable only.

To study the stochastic variational principle on density manifold, we may confront sev-
eral challenges. First and the foremost, the Wasserstein Hamiltonian flow studied in [15]
is induced based on the principle that the density of a Hamiltonian flow in sample space
is a Wasserstein Hamiltonian flow in density manifold. This principle may no long hold if
the Hamiltonian flow in sample space is perturbed by random noise. Second, the stochastic
variational framework must be carefully designed in order to induce stochastic dynamics

123



Journal of Dynamics and Differential Equations

that possess Hamiltonian structures on Wasserstein manifold. As indicated in [15, 43], the
Christoffel symbol in Wasserstein space plays an important role in the typical kinetic Hamil-
tonian dynamics since it induces a certain velocity-momentum transformation that allows
us to transfer between the second order Euler–Lagrange equations and the Hamiltonian sys-
tem in density manifold. However, for the noise perturbed Wasserstein Hamiltonian flows,
it is complicated and difficult to introduce such tools for transforming the Euler–Lagrange
equations into Hamiltonian dynamics in general.

To overcome the difficulties, we begin our study by investigating the classical Lagrangian
functional perturbed by theWong–Zakai approximation (see e.g. [52, 57]) on the phase space,
and show that its critical point gives the stochastic Hamiltonian flow driven by the Wong–
Zakai approximation. With the help of the equivalence of the particle stochastic ODE system
and the macro density formulation, in Sect. 3 we prove that the stochastic Hamiltonian flow
driven by the Wong–Zakai approximation coincides with the critical point of a stochastic
variational principle (see e.g. [55]). In particular, Proposition 3.3 presents the convergence
result of theWong–Zakai approximation to the stochasticWasserstein Hamiltonian system in
Stratonovich sense. However, in general stochastic case, it is still hard to use the Christoffel
symbols to derive the stochastic Hamiltonian dynamics.

Furthermore, based on the cotangent bundles of density manifold, we propose a general
variational principle to derive a large class of stochastic Hamiltonian equations on density
manifold via Wong–Zakai approximation, such as stochastic nonlinear Schrödinger equa-
tion (see, e.g., [5, 26, 38, 53]), nonlinear Schrödinger equation with white noise dispersion
(see, e.g., [1, 2]), and the mean-field game system with common noise (see, e.g., [9, 10,
30]). We would like to mention that although the Wong–Zakai approximation of stochastic
differential equations has been studied for many years (see, e.g., [8, 52, 56, 57]), few results
are known for the convergence on the density manifold. In this work, we also provide some
new convergence results of Wong–Zakai approximation for the continuity equation induced
by stochastic Hamiltonian system and the stochastic Schrödinger equation on density space
under suitable assumptions.

Another main message that we would like to convey in this paper is that the stochastic
Hamiltonian flow on phase space, when viewed through the lens of conditional probability,
induces the stochastic Wasserstein Hamiltonian flow on density manifold, and it is hard to
observe those stochastic Hamiltonian structures in the density manifold without the help of
conditional probability (see Sect. 3).

The organization of this article is as follows. In Sect. 2, we review the formulation and
derivation of Hamiltonian ordinary differential equations (ODEs), and use the Wong–Zakai
approximation of the Lagrangian functional to connect the classic and stochastic variational
principles on phase space. In Sect. 3, we study the macro behaviors of stochastic Hamiltonian
ODE and its Wong–Zakai approximation, including the stochastic Euler–Lagrange equation
on density space, Vlasov equation, as well as the generalized stochastic Wasserstein Hamil-
tonian flow. Several examples are demonstrated in Sect. 4. Throughout this paper, we denote
C and c as positive constants which may differ from line to line.

2 Stochastic Hamiltonian ODEs

In this section, we briefly review the classical and stochastic Hamiltonian flows on a finite
dimensional Riemannian manifold.

123



Journal of Dynamics and Differential Equations

The classical Hamiltonian flow on a smooth d-dimensional Riemannian manifold (M , g)
with g being the metric tensor of M , is derived by the variational problem

I (x0, xT ) = inf
(x(t))t∈[0,T ]

{∫ T

0
L0(x, ẋ)dt : x(0) = x0, x(T ) = xT

}
.

Here the Lagrangian L0 is a functional (also called Lagrange action functional) defined on
the tangent bundle of M . Its critical point induces the Euler-Lagrange equation

d

dt

d

dẋ
L0(x, ẋ) = d

dx
L0(x, ẋ).

When L0(x, ẋ) = 1
2 ẋ

�g(x)ẋ − f (x) with a smooth potential functional f on M , the
Euler-Lagrange equation can be rewritten as a Hamiltonian system,

ẋ = g(x)−1 p, ṗ = −1

2
p�dx g−1(x)p − dx f (x)

Here � denotes the transpose, p = g(x)ẋ and the Hamiltonian is

H0(x, p) = 1

2
p�g−1(x)p + f (x).

However, the Lagrange action functional L0(x, ẋ) may not be homogeneous or it can by
impacted by random perturbations in some problems, which is the reason to introduce
stochastic Hamiltonian flows.

Let us startwith the case that L(x, ẋ) is composed by the deterministic Lagrange functional
L0(x, ẋ) and a random perturbation ησ(x)ξ̇δ(t). Here ξδ can be chosen as a piecewise con-
tinuous differentiable function which obeys certain distribution law in a complete probability
space (Ω,F,P) with a filtration {Ft }t≥0, σ(·) is a potential function and η ∈ R characterizes
the noise intensity. In this paper, ξδ is taken as a Wong-Zakai approximation (see e.g. [57])
of the standard Brownian motion B(t) such that ξ̇δ is a real function. When δ → 0, ξδ(t) is
convergent to B(t) in pathwise sense or strong sense [57]. For fixed ω ∈ Ω, since ξδ(t) is a
stochastic process on (Ω,F,P) with piecewise continuous trajectory, the value of the action
functional

∫ T
0 L0(x, ẋ) − ησ(x)ξ̇δ(t)dt is finite for any given x(0) = x0, x(T ) = xT .

Throughout this paper, we assume that the initial position x0 of the particle system is a
F0-measurable random variable with the density ρ0. Let Ft , t ≥ 0 be the completion of the
filtration generated by the standard Brownian motion. For convenience, we also suppose that
x0 is independent of B(t), t ≥ 0. To satisfies the above assumptions, we let (Ω,F,P) =
(ΩB , {Ft }t≥0,PB)×(Ω̃, F̃, P̃), where B(·) is the Brownianmotion onΩB and x0 is a random
variable on Ω̃ independent of ΩB . Denote E the expectation with respect to (Ω,P) and EΩ̃

the conditional probability with respect to (Ω̃, P̃).

Newton’s law can be used to derive the Euler–Lagrange equation or the Hamiltonian sys-
tem in the stochastic case. In order to find out the critical point of

∫ T
0 L0(x, ẋ)−ησ(x)ξ̇δ(t)dt,

we calculate its Gâteaux derivative (see, e.g., [31]). Set xε(t) = x(t)+εh(t), h(0) = h(T ) =
0, the Newton’s law indicates the critical point satisfies

d

dt

∂

∂ ẋ
L(x, ẋ) = ∂

∂x
L(x, ẋ) = ∂

∂x
L0(x, ẋ) − η

∂

∂x
σ(x)ξ̇δt ,

which is equivalent to the integral equation

∂

∂ ẋ
L(x(t), ẋ(t)) − ∂

∂ ẋ
L(x(0), ẋ(0)) =

∫ t

0

∂

∂x
L0(x, ẋ)ds − η

∫ t

0

∂

∂x
σ(x)dξδt .
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One can also introduce the Legendre transformation p = g(x)ẋ,, and get

ẋ = g(x)−1 p, ṗ = −1

2
p�dx g−1(x)p − dx f (x) − ηdxσ(x)ξ̇δ. (2.1)

Since it can be rewritten as

ẋ = ∂

∂ p
H0(x, p) + ∂

∂ p
H1(x, p)ξ̇δ, ṗ = − ∂

∂x
H0(x, p) − ∂

∂x
H1(x, p)ξ̇δ,

where H1(x, p) = σ(x), the equations form a stochastic Hamiltonian system.

Remark 2.1 When ξ̇δ is a constant, the Hamilton’s principle gives a Hamiltonian system with
a homogenous perturbation. Otherwise, for a fixed ω, the Hamilton’s principle leads to a
Hamiltonian system with an inhomogenous perturbation.

2.1 Wong–Zakai Approximation inM = R
d

In this part, we show that the limit of the Wong-Zakai approximation (2.1) is a stochastic
Hamiltonain system.

Lemma 2.1 Let M = R
d and T > 0, g be the identity matrix Id×d . Assume that f , σ ∈

C 2
b (M ), ξδ is the linear interpolation of B(t) with width δ and that x0, p0 is F0-apdated.

Then (2.1) on [0, T ] is convergent to
dx = p, dp = −dx f (x) − ηdxσ(x) ◦ dB(t), a.s., (2.2)

where ◦ denotes the stochastic integral in the Stratonovich sense.

Proof The condition of σ, f ensures the global existence of a unique strong solution for (2.1)
and (2.2) by using standard Picard iterations. Then one can follow the classical arguments
(see e.g. [52]) to show that the solution of (2.1) is convergent to that of (2.2) and that the
right hand side of (2.1) is convergent to that of (2.2). ��

The following lemma relaxes the classical conditions on the convergence of Wong–Zakai
approximation whose proof is presented in Appendix. We call that g is equivalent to Id×d

if g ∈ C∞
b (Rd ;Rd) is symmetric satisfying ΛId×d 
 g(x) 
 λId×d for some constant

0 < λ ≤ Λ. In the following, we will use the standard notation for the matrix product, that
is, g(x) · (y, z) = y�g(x)z and g(x) · y = g(x)y.

Lemma 2.2 Let M = R
d , T > 0, g be equivalent to Id×d . Assume that f , σ ∈ C 2

p (M ), ξδ

is the linear interpolation of B(t) with the width δ, that x0, p0 are F0-apdated and possess
any finite q-moment, q ∈ N

+, and that

H0(x, p) ≥ c0|p| + c1|x |, for large enough |x |, |p|
η2|∇ppH0(x, p) · (∇xσ(x),∇xσ(x))| + η|∇ppH0(x, p) · (p,∇xσ(x))|
+ η|∇ppH0(x, p) · (∇xσ(x),−1

2
p�dx g−1(x)p − ∇x f (x))|

+ η|∇px H0(x, p) · (∇xσ, g−1(x)p)|
+ η|∇pH0(x, p) · ∇xxσ(x)g−1(x)p| ≤ C1 + c1H0(x, p). (2.3)

Then the solution of (2.1) on [0, T ] is convergent in probability to the solution of

dx = g−1(x)p, dp = −1

2
p�dx g−1(x)p − dx f (x) − ηdxσ(x) ◦ dB(t). (2.4)
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Denote the solution of (2.1) by (xδ(·, x0, p0), pδ(·, x0, p0)).According to Lemma 2.2, by
studying the equation of ∂

∂x0
xδ(t, x0, p0) and ∂

∂ p0
xδ(t, x0, p0), one could obtain the following

convergence result.

Corollary 2.1 Under the condition of Lemma 2.2, let f , σ ∈ C 3
p (M ). Then for any ε > 0, it

holds that

lim
δ→0

P

(
sup

t∈[0,T ]

∣∣∣ ∂

∂x0
xδ(t, x0, p0) − ∂

∂x0
x(t, x0, p0)

∣∣∣
+ sup

t∈[0,T ]

∣∣∣ ∂

∂ p0
xδ(t, x0, p0) − ∂

∂ p0
x(t, x0, p0)

∣∣∣ ≥ ε
)

= 0.

Remark 2.2 One may impose more additional conditions on the coefficients f , σ to obtain
the strong convergence order 1

2 of the Wong–Zakai approximation, that is,

E

[
sup

t∈[0,T ]
|xδ(t) − x(t)|p

]
+ E

[
sup

t∈[0,T ]
|xδ(t) − x(t)|p

]
≤ Cδ

p
2 .

The convergence in probability yields that there exists a pathwise convergent subsequence.
In this sense, the limit equation of (2.1) is (2.4) on [0, T ]. When the growth condition (2.3)
fails, one could also obtain the convergence in probability of (xδ, pδ) before the stopping
time τR∧τR1 (see Appendix for the definition of τR and τR1 ). One could also choose different
type of Wong–Zakai approximation of the Wiener process and obtain similar results (see,
e.g., [57]).

2.2 Wong–Zakai Approximation on a Differential ManifoldM

Assume that M ⊂ R
k is a d-dimensional differential manifold of class C α, α ∈ N

+ ∪ ∞
without boundary. Given aC α-diffeomorphism φ : W → V ⊂ M from an open subsetW of
R
d to an open set V ofM , the inverse φ−1 : V → W is called a chart or coordinate system

on M . The coordinate components are denoted by Φ1, Φ2, . . . , Φd , d ∈ N
+. The tangent

bundle of M is denoted by T M := {(x, y) ∈ R
k × R

k |x ∈ M , y ∈ Tx (M )}. Moreover,
dimTx (M ) = d. The canonical projection is denoted by π : T M → M .

In the following, we start from the deterministic Hamiltonian system

ẋ = p,

ṗ = −dx f (x),

where the vector field (p,−dx f (x)) ∈ T(x,p)T M for all (x, p) ∈ T M . We show how
the random force can be added to the system so that (ẋ, ṗ) ∈ R

k × R
k is still tangent to

T M at (x, p). As a physical interpretation, this tangent condition represents the constrain
of the motion equations and is to ensure that the physical motion is living in T M by the
Kamke property of the maximal solutions (see e.g. [28, Chapter 3]). Consider M which is
regularly defined as the zero level set of a C∞ map F from R

k to R
k−d . Then we have that

the tangent space to M at x is T TxM := {p ∈ R
k |F ′(x)p = 0}, and TM = {(x, p) ∈

R
k × R

k |F(x) = 0, F ′(x)p = 0}. We can also obtain

T T M = {(x, p, ẋ, ṗ)|F(x) = 0, F ′(x)p = 0, F ′(x)ẋ = 0, F ′′(x)(ẋ, p) + F ′(x) ṗ = 0}.
Therefore, if the added random force satisfies,

F ′(x) ṗ = −F ′′(x)(ẋ, p) = ψ(x; p, ẋ), ẋ ∈ Tx (M ), (2.5)

123



Journal of Dynamics and Differential Equations

we have (ẋ, ṗ) ∈ T(x,p)(TM ). Following [28], we denote a smooth mapping ψ from the
vector bundle {(x; u, v) ∈ R

k×(Rk×R
k)|x ∈ M , u, v ∈ Tx (M )} toRk−d . Given any vector

z ∈ R
k−d , denote by Az ∈ (Ker F ′(x))⊥ = (TxM )⊥ the unique solution of F ′(x) ṗ = z.

Hence, the solution of (2.5) satisfies

ṗ = μ(x; p, ẋ) + w,

where μ(x; p, ẋ) = Aψ(x; p, ẋ) ∈ (Tx (M ))⊥ and w ∈ Tx (M ). We observe that to
ensure (ẋ, ṗ) ∈ T(x,p)(T M ), it suffices to take u, w ∈ Tx (M ) and define (ẋ, ṗ) =
(u, μ(x; p, u) + w). In Eq. (2.1) with the driving noise being −dxσ(x)ξ̇δ, using the above
condition, we can verify that it satisfies that (ẋ, ṗ) ∈ T(x,p)(T M ). Similarly, a second order
differential equation with random force satisfies

ẍ = μ(x; ẋ, ẋ) + R(t, x, ẋ),

where Rt : T M � (x, ẋ) �→ R(t, x, ẋ) ∈ R
k is a tangent vector field on M . A typical

example is that R = −αẋ + a(t, x) with the frictional force −αẋ and applied random
force a(t, x) = −dxσ(x)ξ̇δ(t). When R = 0, the above equation is inertial and is so-called
geodesic equation on M , which plays an important role in the optimal transport theory (see
e.g. [13, 17, 29, 54]).

Lemma 2.3 Suppose that M is a d-dimensional compact smooth differential manifold. Let
g = I, f , σ be smooth functions on M , ξδ be the linear interpolation of B(t) with width δ,
and that x0, p0 are F0-adapted and possess any finite q-moment, q ∈ N

+. Then (xδ, pδ) is
convergent in probability to the solution (x, p) of (2.4).

Proof The existence and uniqueness of (x, p) can be found in [32]. The global existence of
(xδ, pδ) could be also obtained by the fact that g = I, f and σ are globally Lipschitz and
that the growth condition (2.3) holds. We only need to show the convergence of (xδ, pδ) in
probability to (x, p). Since T M is 2d-dimensional manifold which could be embedding to
R
2k, we can extend the vector field V (x, p) := (p,−dx f (x) − ηdxσ(x)) to a vector field

Ṽ (·, ·) on R2k . And thus the equations of (x, p) and (xδ, pδ) can be viewed as the equations
on R

2k . The global existence of (x, p) and (xδ, pδ), together with Lemma 2.2, yield the
convergence in probability of (xδ, pδ). ��
Remark 2.3 The above result relies on the particular structure of g = I and the growth
condition (2.3). If this condition (2.3) fails, the explosion time e(xδ, pδ) of (xδ, pδ) may
depend on δ. And the convergence in probabilitymay only hold before e(x, p)∧ inf

δ>0
e(xδ, pδ).

When applying different type ofWong–Zakai approximations, the different type of stochastic
ODEs could be derived (see e.g. [34]).

To end this section, we give a special example of stochastic Hamiltonian flows which
concentrates on a submanifold with conserved quantities.

Example 2.1 LetM = R
d , g and g̃ bemetrics equivalent to Id×d .Define an action functional

with random perturbation in dual coordinates,

−
∫ T

0
(〈p, ẋ〉 − H0(x, p))dt +

∫ T

0
H1(x, p)dξδ(t),

where H0(x, p) = 1
2 p

�g−1(x)p+ f (x), H1(x, p) = η 1
2 p

�g̃−1(x)p+ ησ(x) with smooth
potentials f and σ . Then the critical points under the constrain x(0) = x0, x(T ) = xT
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satisfies the stochastic Hamiltonian flows

ẋδ = ∂H0

∂ p
(x, p) + ∂H1

∂ p
(xδ, pδ)ξ̇δ,

ṗδ = −∂H0

∂ p
(xδ, pδ) − ∂H1

∂ p
(xδ, pδ)ξ̇δ.

The solution (xδ, pδ) and its limit (x, p) lie on the manifold {H0(x, p) =
H0(x0, p0), H1(x, p) = H1(x0, p0)} when the Hamiltonians satisfies that {H0, H1} = 0
with {·, ·} being the Possion bracket. Similar to Lemma 2.2, it can be shown that (xδ, pδ)

converges globally to (x, p) in probability if H0 or H1 satisfies the growth condition (2.3).

3 Stochastic Wasserstein Hamiltonian Flow

In this section, we study the behaviors of the inhomogenous Hamiltonian system (2.1)
and stochastic Hamiltonian system (2.4) on the density manifold. To illustrate the strat-
egy, let us focus on the case that (M , g) equals (Td , I) or (Rd , I). Given the filtered
complete probability space (Ω,F, (Ft )t≥0,P), recall that ξδ(t) is the piecewisely linear
Wong–Zakai approximation of a standard Brownian motion. For a fixed ω̃ ∈ Ω̃ , we denote
τ δ := inf{t ∈ (0, T ]|xδ

t is not a smooth diffeomorphism on M }, pδ
t = v(t, xδ

t ) is the vector
field depending on the position and time. Here we view the momentum p as the function v

depending on both time and space. Eq. (2.1) becomes

d

dt
xδ
t = v(t, xδ

t ),

d

dt
v(t, xδ

t ) = −∇ f (xδ
t ) − η∇σ(xδ

t )ξ̇δ(t).

Differentiating v(t, xδ
t (x0)) before τ δ leads to

∂tv(t, xδ
t (x0)) + ∇v(t, xδ

t (x0)) · d

dt
xδ
t = ∂tv(t, xδ

t (x0)) + ∇v(t, xδ
t (x0)) · v(t, xδ

t (x0))

= −∇ f (xδ
t (x0)) − η∇σ(xδ

t (x0))ξ̇δ(t).

Taking x0 = (xδ
t )

−1(x), we obtain the following conservation law with random perturbation,

∂tv(t, x) + ∇v(t, x) · v(t, x) = −∇ f (x) − η∇σ(x)ξ̇δ(t). (3.1)

Taking any test function ψ in C∞(M ), it holds that

d

dt
EΩ̃ [ψ(xδ

t (x0))] = d

dt

∫
M

ψ(x)ρ(t, x)dx =
∫
M

∇ψ(xδ
t (x)) · v(t, xδ

t (x))ρ0(x)dx

=
∫
M

∇ψ(x) · v(t, x)ρt (x)dx,

which implies that for ωB ∈ ΩB , ρt = xδ
t #ρ0, i.e., ρt equals the distribution generated by

the push-forward map xt (·) on ρ0, satisfies the continuity equation,

∂tρ(t, x) + ∇ · (ρ(t, x)v(t, x)) = 0. (3.2)

Introducing the pseudo inverse (−Δρ)† (see e.g. [15]) of the operator

Δρ(·) := −∇ · (ρ∇(·)) (3.3)
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for a positive density ρ, we denote St = (−Δρt )
†∂tρt . When there exists a potential S such

that v = ∇S, the conservation law with random influence (3.1) and the continuity equation
(3.2) induce a Hamiltonian system in density manifold before τ δ ,

∂tρt = δ

δSt
H0(ρt , St ) = −∇ · (ρt∇St ),

∂t St = − δ

δρt
H0(ρt , St ) − δ

δρt
H1(ρt , St )ξ̇δ(t) + C(t)

= −1

2
|∇St |2 − δ

δρt
F (ρt ) − δ

δρt
ηΣ(ρt )ξ̇δ(t) + C(t), (3.4)

whereC(t) is an arbitrary stochastic process on (ΩB ,PB) independent of the spatial position
x and initial velocity v(0, ·) = ∇S(0, ·). Here the dominated average energy is

H0(ρ, S) := K (ρ, S) + F (ρ) =
∫
M

1

2
|∇S(x)|2ρ(x)dx +

∫
M

f (x)ρ(x)dx,

and the perturbed average energy is

H1(ρ, S, t) = ηΣ(ρt ) = η

∫
M

σ(x)ρ(x)dx .

Taking δ → 0, the limit system becomes a stochastic Hamiltonian system,

dρt = δ

δSt
H0(ρt , St )dt,

dSt = − δ

δρt
H0(ρt , St ) − δ

δρt
H1(ρt , St )�dξ + C(t)dt, (3.5)

where ξ is the limit process of ξδ in the pathwise sense. We would like to remark that
the solution of (3.5) may be not Ft -measurable in general, for example when x0 is not
independent of B(t). We refer to [50, section 3.3] for more discussions on the anticipating
stochastic differential equations. We also would like to remark that the Stratonovich integral
is nature in the study of stochastic Hamiltonian system due to the presence of the chain rule
[21–23]. In our particular case, since ξδ(t) is a piecewisely linearWong-Zakai approximation
of B(t) and x0 is independent of B(t), the limit of (3.1), (3.2) is the following system in
Stratonovich sense,

dρt = −∇ · (ρ(t, x)v(t, x))dt,

dv(t, x) + ∇v(t, x) · v(t, x)dt = −∇ f (x)dt − η∇σ(x) ◦ dBt . (3.6)

We would like to emphasize that the above analysis indicates a principle for deriving the
stochastic Hamiltonian system onWasserstein manifold: The conditional probability density
of stochastic Hamiltonian flow in phase space is a stochastic Hamiltonian flow in density
manifold almost surely. In the following we always assume that the initial distribution ρ(0, ·)
of x0 and the initial velocity v(0, ·) are smooth and bounded.

Proposition 3.1 Suppose thatM is a d-dimensional compact smooth differential submanifold
and T > 0. Let g = I, v(0, ·) be a smooth vector field, f , σ be smooth functions on M , ξδ

be the linear interpolation of B(t) with width δ, and that x0, p0 are F0-adapted and possess
any finite q-moment, q ∈ N

+. Then there exists a stopping time τ such that there exists a
subsequence of (ρδ, vδ) which converges in probability to the solution (ρ, v) of (3.6) before
τ.
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Proof Applying Lemma 2.3, we have that (xδ
t , v(t, xδ

t )) is convergent to (xt , v(t, xt )) in
[0, T ], a.s., up to a subsequence. Define the stopping time τ = inf{t ∈ (0, T ]| xt is not
smooth diffeomorphism on M }. For convenience, let us take a subsequence such that for
almost ω ∈ Ω, (xδ

t , v(t, xδ
t )) converges to (xt , v(t, xt )) and ∂

∂x0
xδ
t (x0) convergences to

∂
∂x0

xt (x0). Before τ(ω), there exists α > 0 such that det( ∂
∂x0

x−1
t (x0)) > α. The pathwise

convergence of xδ implies that for any ε > 0 there exists δ0 = δ(ε, ω) > 0 such that when
δ ≤ δ0, det( ∂

∂x0
(xδ

t )
−1(x0)) > α − ε > 0. Notice that the density function ρδ(t, y) of xδ

t

satisfiesρδ(t, y) = | det(∇xδ
t (y))|ρ(0, xδ

t (y)).Sinceρ(0, ·) is smooth for any fixedω and the
pathwise convergence of xδ holds, it follows that ρδ(t, y) converges to the density function
of xt , which is ρ(t, y) = | det(∇xt (y))|ρ(0, xt (y)). Similarly, the pathwise convergence of
vδ(t, xδ

t (y)) to v(t, xt (y)), together with invertibility of xδ
t and xt , implies the convergence of

vδ(t, x) to v(t, x). Consequently, the solution of (ρδ, vδ) is convergent to (ρ, v) in pathwise
sense up to a subsequence. ��

3.1 Vlasov Equation

Wewould like to present the connections and differences between the classic Vlasov equation
and stochastic Wasserstein Hamiltonian flow in this part. For simplicity, let us consider the
case thatM = R

d . We fix ω̃ ∈ Ω̃ , and consider (2.1). Taking differential on EΩ [φ(xδ
t , p

δ
t )]

where φ is a sufficient smooth test function, we get

d

dt
EΩ [φ(xδ

t , p
δ
t )] = EΩ

[
∇xφ(xδ

t , p
δ
t )

d

dt
xδ
t + ∇pφ(xδ

t , p
δ
t )

d

dt
pδ
t

]

= EΩ

[∇xφ(xδ
t , p

δ
t )pt + ∇pφ(xt , pt )(−∇x f (x

δ
t ) − η∇xσ(xδ

t )ξ̇δ)
]
.

Denoting the initial joint probability density function by F0(x, p), it holds that

d

dt

∫
Rd×Rd

φ(xδ
t , p

δ
t )F0(x, p)dxdp

=
∫
Rd×Rd

(
∇xφ(xδ

t , p
δ
t )p

δ
t + ∇pφ(xδ

t , p
δ
t )(−∇x f (x

δ
t ) − η∇xσ(xδ

t )ξ̇δ)
)
F0(x, p)dxdp

Thus the joint distribution on Ω , Fδ
t = (xδ

t , p
δ
t )

#F0, satisfies∫
Rd×Rd

φ(x, p)
d

dt
Fδ
t (x, p)dxdp

=
∫
Rd×Rd

(
∇xφ(x, p)p + ∇pφ(x, p)(−∇x f (x)

)
Ft (x, p)dxdp

+ EΩ [∇pφ(xδ
t , p

δ
t )(−η∇xσ(xδ

t ))ξ̇δ(t)
]
.

Notice that the solution process xδ
t is Ftk+1 -measurable when t ∈ (tk, tk+1], tk = kδt and

Ftk -measurable when t = tk , and xt is Ft -measurable. By applying the chain rule, we have
that for t ∈ (tk, tk+1],∫ t

0
EΩ [∇pφ(xδ

s , p
δ
s )(−η∇xσ(xδ

s ))ξ̇δ(s)
]
ds

=
k−1∑
j=0

∫ t j+1

t j
EΩ [∇pφ(xδ

s , p
δ
s )(−η∇xσ(xδ

s ))ξ̇δ(s)
]
ds

123



Journal of Dynamics and Differential Equations

+
∫ t

tk
EΩ [∇pφ(xδ

s , p
δ
s )(−η∇xσ(xδ

s ))ξ̇δ(s)
]
ds

=
k−1∑
j=0

∫ t j+1

t j
EΩ [∇pφ(xδ

t j , p
δ
t j )(−η∇xσ(xδ

t j ))
Bt j+1 − Bt j

δ

]
ds

+
k−1∑
j=0

∫ t j+1

t j
EΩ

[(
∇pφ(xδ

s , p
δ
s )(−η∇xσ(xs))

− ∇pφ(xδ
t j , p

δ
t j )(−η∇xσ(xδ

t j ))
) Bt j+1 − Bt j

δ

]
ds

+
∫ t

tk
EΩ [∇pφ(xδ

tk , p
δ
tk )(−η∇xσ(xδ

tk ))
Btk+1 − Btk

δ

]
ds

+
∫ t

tk
EΩ [

(
∇pφ(xδ

s , p
δ
s )(−η∇xσ(xδ

s ))

− ∇pφ(xδ
tk , p

δ
tk )(−η∇xσ(X δ

s ))
) Btk+1 − Btk

δ

]
ds

Then repeating similar arguments in the proof of Lemma 2.2, we have that∫ t

0
EΩ [∇pφ(xδ

t , p
δ
t )(−η∇xσ(X δ

t ))ξ̇δ(t)
]
ds

=
∫ t

0
EΩ [∇pφ(xδ[t]δδ, p

δ[t]δδ)(−η∇xσ(xδ[t]δδ))ξ̇δ(t)
]
ds

+
∫ t

0

1

2
EΩ [(Δppφ(X δ[t]δδ, p[t]δδ)(−η∇xσ(xδ[t]δδ))(−η∇xσ(xδ[t]δδ))(ξ̇δ(t))

2
]
ds

+ o(δβ),

where β ∈ (0, 1
2 ). Taking δ → 0 yield that the second order Vlasov equation

∂t F(t, x, p) = −∇x ·
(
F(t, x, p)

∂H0

∂ p

)
+ ∇p ·

(
F(t, x, p)

∂H0

∂x

)

+ 1

2
ΔppF(t, x, p) ·

(
∂H1

∂x
,
∂H1

∂x

)
.

This implies that when we consider the joint distribution on Ω , the density function satisfies
the second order Vlasov equation. However, when we consider the conditional probability
on Ω̃ instead of Ω, the conditional joint probability of Wong–Zakai approximation satisfies
the following first order Vlasov equation,

∂t F
δ(t, x, p) = −∇x ·

(
Fδ(t, x, p)

∂H0

∂ p

)
+ ∇p ·

(
Fδ(t, x, p)

∂H0

∂x

)

+ ∇p ·
(
Fδ(t, x, p)

∂H1

∂x

)
ξ̇δ .

Its limit equation becomes

dF(t, x, p) = −∇x ·
(
F(t, x, p)

∂H0

∂ p

)
dt + ∇p ·

(
F(t, x, p)

∂H0

∂x

)
dt

+ ∇p ·
(
F(t, x, p)

∂H1

∂x

)
◦ dBt .
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3.2 Stochastic Euler–Lagrange Equation in Density Space

In this section, we consider the kinetic Wasserstein Hamiltonian flow with random perturba-
tion, i.e., the second order stochastic Euler-Lagrange equation from the Lagrange functional
on density manifold. Let M = (Td , I). The density space P(M ) is defined by

P(M ) =
{
ρdvolM |ρ ∈ C∞(M ), ρ ≥ 0,

∫
M

ρdvolM = 1

}
.

Its interior ofP(M ) is denoted byPo(M ). The tangent space at ρ ∈ Po(M ) is defined by

TρPo(M ) =
{
κ ∈ C∞(M )|

∫
M

κdvolM = 0

}
.

Define the quotient space of smooth functions F (M )/R = {[Φ]|Φ ∈ C∞(M )}, where
[Φ] = {Φ + c|c ∈ R}. Then one could identify the element in F (M )/R as the tangent
vector in TρPo(M ) by using the map Θ : F (M )/R → TρPo(M ), ΘΦ = −∇ · (ρ∇Φ).

The boundaryless condition of M and the property of elliptical operator ensures that Θ is
one to one and linear [15]. This implies that F (M )/R ∼= T ∗

ρ Po(M ), where T ∗
ρ Po(M )

is the cotangent space of Po(M ). The L2-Wasserstein metric on density manifold gW :
TρP(M ) × TρP(M ) → R is defined by

gW (κ1, κ2) =
∫
M

〈∇Φ1,∇Φ2〉ρdvolM =
∫
M

κ1(−Δρ)†κ2dvolM ,

where κ1 = ΘΦ1 , κ2 = ΘΦ2 , and (−Δρ)† is the pseudo inverse operator of −Δρ. In the
deterministic case, it is known that the critical point of

1

2
W 2(ρ0, ρ1) := inf

ρt∈P o(M )

{ ∫ 1

0

∫
M

1

2
gW (∂tρt , ∂ρt )dvolM dt

}

satisfies the geodesic equation in cotangent bundle on density manifold (see e.g. [18]), that
is,

∂tρt = −∇ · (ρt∇Φt ),

∂tΦt = −1

2
|∇Φt |2 + Ct ,

where Φt = (−Δρt )
†∂tρt , Ct is independent of x ∈ M . The above geodesic equation in

primal coordinates is the Euler–Lagrange equation,

∂t
δ

δ∂tρt
L (ρt , ∂tρt ) = δ

δρt
L (ρt , ∂tρt ) + Ct ,

where L (ρt , ∂tρt ) = 1
2 gW (∂tρt , ∂tρt ).

Next, we consider the Lagrangian in density manifold with random perturbation,

L (ρt , ∂tρt ) = 1

2
gW (∂tρt , ∂tρt ) − F (ρt ) − Σ(ρt )ξ̇δ(t),

and its variational problem Iδ(ρ0, ρT ) = inf
ρt

{∫ T0 L (ρt , ∂tρt )dt |ρ0 = ρ0, ρT = ρT }. Recall
that by (3.3), we have that

Δρt (·) = −∇ · (ρt∇(·)), Δ∂tρt (·) = −∇ · (∂tρt∇(·)).
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Theorem 3.1 The Euler Lagrangian equation of the variational problem Iδ(ρ0, ρT ) satisfies

∂t tρt + ΓW (∂tρt , ∂tρt ) = −gradWF (ρt ) − gradWΣ(ρt )ξ̇δ, (3.7)

where gradWF (ρt ) = −∇ · (ρt∇ δ
δρt

F (ρt )), ΓW (∂tρt , ∂tρt ) = Δ∂tρt (−Δρt )
†∂tρt +

1
2Δρt |∇(−Δρt )

†ρt |2.Furthermore, Eq. (3.7) can be formulated as the followingHamiltonian
system

∂tρt + ∇ · (ρt∇Φt ) = 0,

∂tΦt + 1

2
|∇Φt |2 = − δ

δρt
F (ρt ) − δ

δρt
Σ(ρt )ξ̇δ, (3.8)

where Φt = (−Δρt )
†∂tρt up to a spatially constant stochastic process shift.

Proof Consider a smooth perturbation εht satisfying
∫
M htdvolM = 0, t ∈ [0, T ] and

h0 = hT = 0. Applying Taylor expansion with respect ε and integration by parts, using
h0 = hT = 0 and the fact that M is compact, we get

∫ T

0
L (ρt + εht , ∂tρt + ε∂t ht )dt

=
∫ T

0
L (ρt , ∂tρt )dt + ε

∫ T

0

∫
M

(
δ

δρt
L (ρt , ∂tρt ) − ∂t

δ

δ∂tρt
L (ρt , ∂tρt )

)

· htdvolM dt + o(ε).

Similar to the proof of [15, Theorem 1], direct calculations lead to

∂t
δ

δ∂tρt
L (ρt , ρ̇t ) = ∂t ((−Δρt )

†∂tρt )

= (−Δρt )
†∂t tρt − (−Δρt )

†(−Δ∂tρt )(−Δρt )
†∂tρt ,

δ

δρt
L (ρt , ρ̇t ) = −1

2
∇|(−Δ†

ρt
)∂tρt |2 − δ

δρt
F (ρt ) − δ

δρt
Σ(ρt )ξ̇δ(t),

which, together with the property
∫
M htdvolM = 0, yields (3.7) up to a spatially-constant

stochastic process shift by multiplying Δρt on both sides. By introducing the Legendre
transformation Φt = (−Δρt )

†∂ρt , we obtain Eq. (3.8) from Eq. (3.7). ��

Note that the formulationΓW for ∂tρ is called as theChristoffel symbol in densitymanifold
[15]. The dual coordinate Φt = (−Δρt )

†∂tρt is obtained via the Legendre transformation,
which is the key to derive the kinetic Hamiltonian formulation. However, it is still hard to use
the Christoffel symbol and Lagrangian functional to derive general stochastic Wasserstein
Hamiltonian systems.

Proposition 3.2 The Euler–Lagrange equation of the variational problem I (ρ0, ρT ),

I (ρ0, ρT ) =
∫ T

0

(
1

2
gW (∂tρt , ∂tρt ) − F (ρt )

)
dt −

∫ T

0
Σ(ρt ) ◦ dB(t)

satisfies

∂t tρt + ΓW (∂tρt , ∂tρt ) = −gradWF (ρt ) − gradWΣ(ρt ) ◦ dBt , (3.9)
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where ρt is Ft -measurable. Furthermore, Eq. (3.9) can be formulated as the following
Hamiltonian system

∂tρt + ∇ · (ρt∇Φt ) = 0,

∂tΦt + 1

2
|∇Φt |2 = − δ

δρt
F (ρt ) − δ

δρt
Σ(ρt ) ◦ dBt , (3.10)

where Φt = (−Δρt )
†∂tρt up to a spatially constant stochastic process shift.

Proof Consider a smooth perturbation εht satisfying
∫
M htdvolM = 0, t ∈ [0, T ] and

h0 = hT = 0. Denote L0(ρt , ∂tρt ) = 1
2 gW (∂tρt , ∂tρt ) − F (ρt ). Recall the equivalence

of stochastic integrals between Itô sense and Stratonovich sense (see e.g. [37]), i.e., for
M(t) = ∫ t

0 X(s) ◦ dW (s), it holds that M(t) = ∫ t
0 X(s)dW (s) + 1

2 〈M(·)〉t . Here X(s) is
Ft -measurable such that the quadratic variation process 〈M(·)〉s is well-defined for s ≥ 0.By
our assumption that ∂tρt ∈ TρtP(M ), there exists some Φt such that Φt = (−Δρt )

†∂tρt .
This yields that

∫ t
0 Σ(ρt ) ◦ dB(t) = ∫ t0 Σ(ρt )dB(t) and that

∫ t
0

∫
M

δ
δρt

Σ(ρt ) · htdvolM ◦
dB(t) = ∫ t

0

∫
M

δ
δρt

Σ(ρt ) · htdvolM dB(t) since their quadratic variation processes are 0.
As a consequence, we have that

∫ T

0

1

2
gW (∂tρt + εht , ∂tρt + εht ) − F (ρt + εht )dt −

∫ T

0
Σ(ρt + εht )dBt

=
∫ T

0
L0(ρt , ∂tρt )dt +

∫ T

0
Σ(ρt )dBt

+ ε

∫ T

0

∫
M

(
δ

δρt
L0(ρt , ∂tρt ) − ∂t

δ

δ∂tρt
L0(ρt , ∂tρt )

)
· htdvolM dt

+ ε

∫ T

0

∫
M

δ

δρt
Σ(ρt ) · htdvolM dBt + o(ε).

Similar to the proof of Theorem 3.1, we obtain (3.9) and its equivalent Hamiltonian system
(3.10). ��

3.3 Generalized StochasticWasserstein–Hamiltonian Flow

In the last section, we show that the density of a Hamiltonian ODE with random perturbation
satisfies the stochastic Wasserstein Hamiltonian flow. In this section, We derived the general
stochastic Wasserstein Hamiltonian flow via the random perturbation in the dual coordinates
in density space. It provides amore general framework that can derive a large class of stochas-
tic Wasserstein Hamiltonian flows which can not be obtained from the classic dynamics with
perturbations.

Let M = (Td , I). We introduce the following variational problem

Iδ(ρ
0, ρT ) = inf{S (ρt , Φt )|Δρt Φt ∈ TρtPo(M ), ρ(0) = ρ0, ρ(T ) = ρT } (3.11)

whose action functional is given by the dual coordinates,

S (ρt , Φt ) = −
∫ T

0
〈Φ(t), ∂tρt 〉 + H0(ρt , Φt )dt +

∫ T

0
H1(ρt , Φt )dξδ(t).

Here H0(ρt , Φt ) = ∫
M

1
2 |∇Φt |2ρt dvolM + F (ρt ), H1(ρt , Φt ) = η

∫
M

1
2 |∇Φt |2ρt

dvolM + ηΣ(ρt ), F and Σ are smooth potential functions.
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Theorem 3.2 The critical point of the variational problem Iδ(ρ0, ρT ) satisfies the following
Hamiltonian system

∂tρt + ∇ · (ρt∇Φt ) + η∇ · (ρt∇Φt )ξ̇δ = 0,

∂tΦt + 1

2
|∇Φt |2 + η

1

2
|∇Φt |2ξ̇δ = − δ

δρt
F (ρt ) − η

δ

δρt
Σ(ρt )ξ̇δ, (3.12)

where (1 + ξ̇δ(t))Φt = (−Δρt )
†∂tρt up to a spatially constant stochastic process shift.

Proof Consider the perturbations on ρ and Φ. Following the arguments in the proof of
Proposition 3.2, the critical point satisfies that

S (ρt + εδρt , Φt + εδΦt )

= S (ρt , Φt ) − ε

∫ T

0
〈Φ(t), ∂tδρt 〉dt − ε

∫ T

0
〈δΦ(t), ∂tρt 〉dt

+ ε

∫ T

0

δ

δρt
H0(ρt , Φt )δρt + δ

δΦt
H0(ρt , Φt )δΦt dt

+ ε

∫ T

0

δ

δρt
H1(ρt , Φt )δρt + δ

δΦt
H1(ρt , Φt )δΦt dξδ(t) + o(ε)

= S (ρt , Φt ) + ε

∫ T

0
〈∂tΦ(t), δρt 〉dt − ε

∫ T

0
〈δΦ(t), ∂tρt 〉dt

+ ε

∫ T

0

〈
δ

δρt
H0(ρt , Φt ), δρt

〉
+
〈

δ

δΦt
H0(ρt , Φt ), δΦt

〉
dt

+ ε

∫ T

0

〈
δ

δρt
H1(ρt , Φt ), δρt

〉
+
〈

δ

δΦt
H1(ρt , Φt ), δΦt

〉
dξδ(t) + o(ε).

Taking ε → 0, we obtain that

∂tρt = δ

δΦt
H0(ρt , Φt ) + δ

δΦt
H0(ρt , Φt )ξ̇δ(t)

∂tΦt = − δ

δρt
H0(ρt , Φt ) − δ

δρt
H0(ρt , Φt )ξ̇δ(t),

which leads to (3.12). ��
Similarly, consider the action functional

S̃ (ρt , Φt ) = −
∫ T

0
〈Φ(t), ◦dρt 〉 + H0(ρt , Φt )dt +

∫ T

0
H1(ρt , Φt ) ◦ dBt

over the Ft -adapted feasible set, we obtain the following result.

Theorem 3.3 The critical point of the variational problem I (ρ0, ρT ) defined by

I (ρ0, ρT ) = inf{S̃ (ρt , Φt )|ρ(0) = ρ0, ρ(T ) = ρT }
satisfies the following Hamiltonian system

∂tρt + ∇ · (ρt∇Φt ) + η∇ · (ρt∇Φt ) ◦ dBt = 0,

∂tΦt + 1

2
|∇Φt |2 + η

1

2
|∇Φt |2 ◦ dBt = − δ

δρt
F (ρt ) − η

δ

δρt
Σ(ρt ) ◦ dBt (3.13)

up to a spatially constant stochastic process shift on Φt .
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Next, we show that the continuity equation and the velocity equation generated by Φ,

∂tρt + ∇ · (ρtvt ) + η∇ · (ρtvt )ξ̇δ = 0,

∂tvt + ∇vt · vt + η∇vt · vt ξ̇δ = −∇ δ

δρt
F (ρt ) − η

δ

δρt
∇Σ(ρt )ξ̇δ (3.14)

is convergent to the corresponding system driven by the Brownian motion.

Proposition 3.3 Assume that v(0, ·), ρ(0, ·) is F0-measurable and smooth, F (ρt ) =∫
M f ρt dvolM andΣ(ρt ) = ∫M σρt dvolM with f , σ ∈ C3

p(M ). Let ρδ, vδ be the solution
of (3.14), and ρ, v be the solution of

∂tρt + ∇ · (ρtvt ) + η∇ · (ρtvt ) ◦ dBt = 0,

∂tvt + ∇vt · vt + η∇vt · vt ◦ dBt = −∇ δ

δρt
F (ρt ) − η∇ δ

δρt
Σ(ρt ) ◦ dBt . (3.15)

Then there exists a stopping time τ > 0 such that for any δ > 0,

lim
δ→0

P( sup
t∈[0,τ )

[|ρδ
t − ρt |L∞(M ) + |vδ

t − vt |L∞(M )] > ε) = 0.

Proof SinceM is compact, f , σ ∈ C3
p(M ), similar to the proofs of Lemma 2.2 and Lemma

2.3, we can obtain the global well-posedness of the particle ODE systems

dXt = v(t, Xt )dt + ηv(t, Xt ) ◦ dBt ,

dv(t, Xt ) = −∇ f (Xt )dt − η∇σ(Xt ) ◦ dBt ,

and

dX δ
t = vδ(t, X δ

t )dt + ηv(t, X δ
t )dξδ,

dvδ(t, X δ
t ) = −∇ f (X δ

t )dt − η∇σ(X δ
t )dξδ.

Following the arguments in the proofProposition3.1,we canobtain that there exists a stopping
time τ > 0 such that Xt is a smooth diffeomorphism before τ . Notice that the density function
ρδ(t, y) of X δ

t satisfies ρδ(t, y) = | det(∇X δ
t (y))|ρ(0, X δ

t (y)). Since ρ(0, ·) is smooth for
any fixed ω and the pathwise convergence of X δ holds, it follows that ρδ(t, y) converges to
the density function of Xt before τ , which is ρ(t, y) = | det(∇Xt (y))|ρ(0, Xt (y)). Similarly,
the pathwise convergence of vδ(t, X δ

t (y)) to v(t, Xt (y)), together with invertibility of X δ
t

and Xt , implies the convergence of vδ(t, x) to v(t, x) before τ. ��

Remark 3.1 If one obtains the convergence of the Wong–Zakai approximations of the mean-
field SODEs,

dXt = v(t, Xt )dt + ηv(t, Xt ) ◦ dBt ,

dv(t, Xt ) = −∇ δ

δρ(t, Xt )
F (ρ(t, Xt ))dt − η∇ δ

δρ(t, Xt )
Σ(t, Xt ) ◦ dBt ,

then the convergence of (3.14) to (3.15) can be shown similarly before the stopping time τ ,
that is, the first time Xt is not a smooth diffeomorphism on M or Xt escapes M .
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4 Examples

In this section, we show that both the stochastic nonlinear Schrödinger (NLS) equation,
which models the propagation of nonlinear dispersive waves in random or inhomogenous
media in quantum physics (see e.g. [5, 23, 26, 38, 53]), and nonlinear Schrödinger equation
with random dispersion, which describes the propagation of a signal in an optical fibre with
dispersion management (see e.g. [1, 2]), are stochastic Wasserstein-Hamiltonian flows. We
also discuss that the mean-field game system with common noise (see e.g. [52, 56, 57]) is a
stochastic Wasserstein-Hamiltonian flow under suitable transformations.

4.1 Stochastic NLS Equation

The dimensionless stochastic NLS equation is given by

du = iΔudt + iλ f (|u|2)udt + iu ◦ dWt , (4.1)

where Wt is a Q-Wiener process on the Hilbert space L2(M ;R) and f is a real-valued
continuous function. Since the Q-Wiener process W has the Karhunen–Loève expansion

W (t, x) = ∑
i∈N+ Q

1
2 ei (x)βi (t) (see e.g. [24]), where {ei }i∈N is an orthonormal basis

of L2(M ;R), and {βi }i∈N is a sequence of linearly independent Brownian motions on

(Ω,F, {Ft }t≥0,P). We denote Wδ(t, x) = ∑
i∈N+ Q

1
2 ei (x)βδ

i (t) as the piecewise linear
Wong–Zakai approximation (or other type Wong–Zakai approximation) of W and consider
the approximated NLS equation of (4.1)

∂t u(t, x) = iΔxxu(t, x) + iλ f (|u(t, x)|2)u(t, x) + iu(t, x)Ẇδ(t, x). (4.2)

We aim to prove that (4.2) is a stochastic Wasserstein Hamiltonian flow for any δ > 0, and
thus its limit (4.1) is also a stochastic Wasserstein Hamiltonian flow. In the following, we
assume that f is a real-value function, W is smooth with respect to the space variable, and
(4.2) possesses a mild solution or a strong solution on [0, T ].

Denote the L2-inner product by 〈u, v〉 = � ∫M ūvdvolM , where � is the real part of a
complex number. The variational problem on density manifold of (4.2) is

Iδ(ρ
0, ρT ) = inf{S (ρt , Φt )|Δρt Φt ∈ TρtPo(M ), ρ(0) = ρ0, ρ(T ) = ρT } (4.3)

whose action functional is given by the dual coordinates,

S (ρt , Φt ) = −
∫ T

0
〈Φ(t), ∂tρt 〉dt +

∫ T

0
H0(ρt , Φt )dt +

∑
i∈N+

∫ T

0
Hi (ρt , Φt )dβδ

i (t).

Here H0(ρt , Φt ) = ∫
M |∇Φt |2ρt dvolM + 1

4 I (ρ) + F (ρt ), Hi (ρt , Φt ) = −Σi (ρt ) =
− ∫M Q

1
2 eiρt dvolM , F (ρ) = − λ

2

∫
M

∫ ρ

0 f (s)dsdvolM with a smooth function f , and
I (ρ) = ∫M |∇ log(ρ)|2ρdvolM .

In the following, we show the relationship between the the variational problem (4.3)
and nonlinear Schrödinger equation with Wong–Zakai approximation (4.2) by using the
Madelung transform [44].

Proposition 4.1 The critical point of the variational problem (4.3) satisfies the Madelung
system of (4.2) on the support of ρt . Conversely, the Madelung transform of (4.2) satisfies
the critical point of (4.3) on the support of |ut |.

123



Journal of Dynamics and Differential Equations

Proof By studying the perturbation on the dual coordinates, the arguments in the proof of
Theorem 3.2 yield that the critical point of (4.3) satisfies

∂tρt + 2∇ · (ρt∇Φt ) = 0,

∂tΦt + |∇Φt |2 = −1/4
δ

δρt
I (ρt ) − δ

δρt
F (ρt ) − Ẇδ.

Define a complex valued function by û(t, x) = √
ρ(t, x)eiΦ(t,x). One obtains the equation

of û(t, x) satisfying (4.2) on the support of ρt by direct calculations.
Conversely, using the Madelung transform of the solution

√
ρ(t, x)eiS(t,x) = u(t, x)

where ρ = |u|2 for (4.2). Then direct calculation leads to

e
1
2 log(ρ)+iS

(
1

2

∂tρ

ρ
+ i∂t S

)

= ie
1
2 log(ρ)+iS

(
1

2

∇ρ

ρ
+ i∇S

)2
+ ie

1
2 log(ρ)+iS

(
1

2

Δρ

ρ
+ iΔS − 1

2

∣∣∣∣∇ρ

ρ

∣∣∣∣
2
)

+ ie
1
2 log(ρ)+iS(λ f (ρ) + Ẇδ)

= ie
1
2 log(ρ)+iS

(
1

4

(∇ρ

ρ

)2

−(∇S)2 + i
∇ρ

ρ
· ∇S

)
+ ie

1
2 log(ρ)+iS

(
1

2

Δρ

ρ
+ iΔS − 1

2

∣∣∣∣∇ρ

ρ

∣∣∣∣
2
)

+ ie
1
2 log(ρ)+iS(λ f (ρ) + ∂tWδ).

This implies that on the support or |ut |, it holds that
∂tρ = −2∇ · (ρ∇S),

∂t S = −|∇S|2 − 1

4

δ

δρ
I (ρ) + λ f (ρ) + Ẇδ. (4.4)

��
Based on the above result, taking spatial gradient on the potential S, we get the following

system with the conservation law

∂tρ = −∇ · (ρv),

∂tv = −∇xv · v − ∇x
1

2

δ

δρ
I (ρ) + 2λ∇x f (ρ) + 2∇x Ẇδ, (4.5)

where v(t, x) = 2∇S(t, x).
The following theorem indicates that the stochastic NLS equation is a stochastic Wasser-

stein Hamiltonian flow due to the convergence of the Wong–Zakai approximation. For
convenience, let us assume that M = T

d or Rd and consider the case that W consists of
a finite combinations of independent Brownian motions, i.e., W (t, x) = ∑N

k=1 qk(x)βk(t),
with qk(x) ∈ H

m(M )∩Wk,∞(M ) for some m ∈ N and k ∈ N
+. HereHm(M ),Wk,∞(M )

are the standard Sobolev space.

Theorem 4.1 Let m ∈ N and k ∈ N
+. Suppose that the initial value of (4.2) and (4.1)

u0 ∈ H
m is F0-measurable and has any finite p-moment, p ∈ N

+, and that f is a real-valued

123



Journal of Dynamics and Differential Equations

continuous function satisfies

‖ f (|u|2)u − f (|v|2)v‖ ≤ L f (R)‖u − v‖, ‖u‖, ‖v‖ ≤ R,

‖ f (|u|2)u‖H1 ≤ L f (R)(1 + ‖u‖H1), ‖u‖H1 ≤ R,

where limR→∞ L f (R) = ∞. The Wong–Zakai approximation (4.2) is convergent almost
surely to the stochastic NLS equation (4.1) up to a subsequence.

Proof Since the driving noise is real-valued, the skew-symmetry of the NLS equation leads
to the mass conservation laws for both (4.2) and (4.1). By the local Lipschitz property of
f (| · |2)(·), one can obtain the existence of the unique mild solutions for both (4.2) and (4.1)
in C ([0, T ], L2) by a standard argument in [24]. In order to study the converge in L2, let us
define an approximation sequence uR1

0 ∈ H
1, R1 → ∞ of the initial value u0, which can

be taken by using truncated Fourier series or spectral Galerkin method (see e.g. [19]). The
growth condition of f in H

1 and the uniform boundedness assumption of qk lead to

E

[
sup

t∈[0,T ]
‖uR1

t ‖2p
H1

]
≤ C(T , R1, p) < ∞,E

[
sup

t∈[0,T ]
‖uδ,R1

t ‖2p
H1

]
≤ C(T , R1, δ, p) < ∞,

where p ≥ 1, limR1→∞ C(T , R1, p) = ∞, limR1→∞ C(T , R1, δ, p) = ∞. Meanwhile,
uR1
t , uδ,R1

t are convergent to ut , uδ
t , a.s. in C ([0, T ]; L2) as R1 → ∞, respectively up to a

subsequnce. The continuity estimate of uR1
t , uR1,δ

t ,

E

[
‖uR1(t) − uR1(s)‖2p

]
≤ C(T , R1, p)|t − s|p,

E

[
‖uR1,δ(t) − uR1,δ(s)‖2p

]
≤ C(T , R1, δ, p)(|t − s|p + |δ|p),

can be obtained due to the mass conservation law and the continuity of eiΔt . However, to get
the convergence of (4.2), we need a priori estimate of uR1,δ which is independent of δ. To this
end, we study the enegry of the Wong–Zakai approximation, H(u) = ∫M 1

2 |∇u|2dvolM −
λ
2

∫
M

∫ |u|2
0 f (s)dsdvolM , and obtain

H(uδ(t)) = H(uδ(0)) +
∫ t

0
〈∇uδ(s), iuδ(s)∇dW δ(s)〉.

By taking expectation, we get that

E

[
sup

t∈[0,T ]
H(uδ(t))

]

≤ E

[
H(uδ(0))

]
+ E

[
sup

t∈[0,T ]

∣∣∣
∫ [t]δ

0
〈∇uδ([s]δ), iuδ([s]δ)∇dW δ(s)〉

∣∣∣]

+ E

[
sup

t∈[0,T ]

∣∣∣
∫ t

[t]δ
〈∇uδ([s]δ), iuδ([s]δ)∇dW δ(s)〉

∣∣∣]

+ E

[
sup

t∈[0,T ]

∣∣∣
∫ [t]δ

0
〈∇uδ([s]δ), i(uδ(s) − uδ([s]δ))∇dW δ(s)〉

∣∣∣]

+ E

[
sup

t∈[0,T ]

∣∣∣
∫ t

[t]δ
〈∇uδ([s]δ), i(uδ(s) − uδ([s]δ))∇dW δ(s)〉

∣∣∣]

+ E

[
sup

t∈[0,T ]

∣∣∣
∫ [t]δ

0
〈∇(uδ(s) − uδ([s]δ)), iuδ(s)dW δ(s)〉

∣∣∣]
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+ E

[
sup

t∈[0,T ]

∣∣∣
∫ t

[t]δ
〈∇(uδ(s) − uδ([s]δ)), iuδ(s)dW δ(s)〉

∣∣∣]

= E

[
H(uδ(0))

]
+ V1 + V2 + V3 + V4 + V5 + V6.

Below we show the estimates of Vi (i = 1, . . . , 6). The Burkholder’s inequality and mass
conservation law lead to

V1 ≤ E

[ ∫ T

0
C(H(uδ([t]δ)) + C(‖u0‖))ds

]
.

Applying the Burkholder and Minkowski inequalities, and the mass conservation law, we
achieve that for T = K δ,

V2 ≤ 1 + E

[
sup

t∈[0,T ]

∣∣∣
∫ t

[t]δ
〈∇uδ([s]δ), iuδ([s]δ)∇dW δ(s)〉

∣∣∣2]

≤ 1 +
K−1∑
k=0

E

[
sup

t∈[tk ,tk+1]

∣∣∣
∫ t

tk
〈∇uδ(tk), iuδ(tk)∇dW (s)〉

∣∣∣2]

≤ 1 + C
K−1∑
k=0

E

[ N∑
i=1

∫ tk+1

tk
〈∇uδ(tk), iuδ(tk)∇qi (x)〉2dt

]

≤ 1 + C
N∑
i=1

E

[
‖∇uδ([t]δ)‖2‖uδ([t]δ)‖2‖qi‖2W 1,∞dt

]

≤ 1 + C‖u(0)‖2
N∑
i=1

‖qi‖2W 1,∞

∫ T

0
E

[
‖∇uδ([t]δ)‖2

]
dt .

The definition of H leads to that there exists a constant C(‖u0‖) depending on ‖u0‖ such
that

E

[
sup

t∈[0,T ]

∣∣∣
∫ t

[t]δ
〈∇uδ([s]δ), iuδ([s]δ)∇dW δ(s)〉

∣∣∣2]

≤ 2C‖u0‖2
N∑
i=1

‖qi‖2W 1,∞

∫ T

0
E

[
H(uδ([t]δ))

]
dt + C(‖u0‖).

The mild form of uδ(s) − uδ([s]δ),
uδ(s) − uδ([s]δ)

= (eiΔ(s−[s]δ) − I )uδ([s]δ) +
∫ s

[s]δ
eiΔ(s−r)iλ f (|uδ(r)|2)uδ(r)dr

+
∫ s

[s]δ
ieiΔ(s−r)uδ(r)dW δ(r),

together with the mass conservation law and ‖eiΔt − I‖L (H1,L2) ≤ Ct
1
2 (see, e.g., [24]),

yields that

‖uδ(s) − uδ([s]δ)‖ ≤ C‖uδ([s]δ)‖H1δ
1
2 + L f (‖u0‖)(1 + ‖u0‖)δ

+ C‖W ([s]δ + δ) − W ([s]δ)‖‖u0‖. (4.6)
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By making use of (4.6) and the Burkholder’s inequality, we obtain

V3 ≤ C(1 + E

[ ∫ T

0
‖∇uδ([s]δ)‖2ds

]
)

+ C(‖u0‖)E
[ ∫ T

0
‖∇uδ([s]δ)‖(1 + ‖u0‖)

(‖W ([s]δ + δ) − W ([s]δ)‖2L∞
δ

+ ‖W ([s]δ + δ) − W ([s]δ)‖L∞
)
ds
]

≤ C(‖u0‖)
(
1 + E

[ ∫ T

0
H(uδ([s]δ))ds

])
.

Similar arguments yield that

V4 ≤ CE

[
sup

t∈[0,T ]

∫ t

[t]δ
‖∇uδ([s]δ)‖2‖W ([s]δ + δ) − W ([s]δ)‖δ− 1

2 ds
]

+ C(‖u0‖)E
[

sup
t∈[0,T ]

∫ t

[t]δ
‖∇uδ([s]δ)‖(1 + ‖u0‖)

(‖W ([s]δ + δ) − W ([s]δ)‖2L∞
δ

+ ‖W ([s]δ + δ) − W ([s]δ)‖L∞
)
ds
]

≤ CδE
[

sup
s∈[0,T ]

H(uδ([s]δ))
]

+ C(‖u0‖)δ.

The estimates of V5 and V6 are omitted here since they are very similar to those of V3 and
V4. We conclude that

V1 + V2 + V3 + V4 + V5 + V6

≤ CδE
[

sup
t∈[0,T ]

H(uδ(t))
]

+ CE

[ ∫ T

0
(H(uδ([t]δ))dt

]
+ C(‖u0‖).

Thus, we obtain E
[

sup
t∈[0,T ]

H(uδ(t))
]

≤ C(T , R1, ‖u0‖) by using Gronwall’s inequality and
taking δ small enough. Similarly, it holds that for any p ≥ 1,

E

[
sup

t∈[0,T ]
H p(uδ(t))

]
≤ C(T , R1, ‖u0‖, p),

E

[
‖uR1,δ(t) − uR1,δ(s)‖2p

]
≤ C(T , R1, p)(|t − s|p + |δ|p).

Next, it suffices to prove the convergence of the Wong–Zakai approximation. To this end,
we consider a stopping time τ = inf{t ∈ [0, T ]|‖uR1(t)‖ ≥ R or ‖uδ,R1([t]δ)‖ ≥ R}. In the
following, we omit the supindex R1. Applying the chain rule, we obtain that for t ≤ τ,

‖u(t) − uδ(t)‖2 = ‖u(0) − uδ(0)‖2

+ 2
∫ t

0
〈i f (|u(s)|2)u(s) − i f (|uδ(s)|2)uδ(s), u(s) − uδ(s)〉ds

+ 2
∫ t

0
〈u(s) − uδ(s),−1

2

N∑
k=1

|qk |2u(s)〉ds

+ 2
∫ t

0
〈u(s) − uδ(s), iu(s)dW (s) − iuδ(s)dWδ(s)〉
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+
∫ t

0

N∑
k=1

∫
M

|u(s)|2|qk |2dvolMds

≤
∫ t

0
2L f (‖u(0)‖)‖u(s) − uδ(s)‖2ds +

∫ t

0
〈uδ(s),

N∑
k=1

|qk |2u(s)〉ds

− 2
∫ t

0
〈u(s), iuδ(s)dW δ(s)〉 − 2

∫ t

0
〈uδ(s), iu(s)dW (s)〉

≤
∫ t

0
2L f (‖u(0)‖)‖u(s) − uδ(s)‖2ds +

∫ t

0
〈uδ(s),

N∑
k=1

|qk |2u(s)〉ds

− 2
∫ t

0
〈u(s), iuδ([s]δ)dW δ(s)〉 − 2

∫ t

0
〈u(s), i(uδ(s) − uδ([s]δ))dW δ(s)〉

− 2
∫ t

0
〈uδ([s]δ), iu(s)dW (s)〉 − 2

∫ t

0
〈uδ(s) − uδ([s]δ), iu(s)dW (s)〉

=:
∫ t

0
2L f (‖u(0)‖)‖u(s) − uδ(s)‖2ds + I I I1 + I I I2 + I I I3 + I I I4 + I I I5.

For the term I I I2, the property of Wiener process, the mass conservation law, Hölder’s
and Young’s inequality, as well as the property of the martingale, yield that

E[I I I2] ≤ −2
∫ [t]δ

0
E

[
〈u(s) − u([s]δ), iuδ([s]δ)dW δ(s)〉

]

− 2
∫ [t]δ

0
E

[
〈u([s]δ), iuδ([s]δ)dW δ(s)〉

]
+ Cδ

1
2

≤ C(1 + CR)δ
1
2 − 2

∫ [t]δ

0
E

[
〈
∫ s

[s]δ
iu([r ]δ))dW (r), iuδ([s]δ)dW δ(s)〉

]

− 2
∫ [t]δ

0
E

[〈 ∫ s

[s]δ
(exp(iΔ(r − [s]δ)) − I )iu([r ]δ))dW (r), iuδ([s]δ)dW δ(s)

〉]

≤ −2
∫ [t]δ

0
E

[
〈
∫ s

[s]δ
iu([r ]δ)dW (r), iuδ([s]δ)dW δ(s)〉

]
+ C(1 + CR)δ

1
2 .

Similar to I I I2, we have that E[I I I4] ≤ C(1 + CR)δ
1
2 .

For the terms I I I3 and I I I5, by taking expectation and using the property ‖eiΔt −
I‖L (H1,L2) ≤ Ct

1
2 , the continuity estimate of u and the property of martingale, we arrive at

E

[
I I I3

]
≤ −

∫ [t]δ

0
2E
[
〈u(s) − u([s]δ), i(uδ(s) − uδ([s]δ))dW δ(s)〉

]

−
∫ [t]δ

0
2E
[
〈u([s]δ), i(uδ(s) − uδ([s]δ))dW δ(s)〉

]
+ C(1 + CR)δ

1
2 .

= −
∫ [t]δ

0
2E
[
〈u([s]δ), i

(∫ s

[s]δ
iuδ([r ]δ)dW δ(r)

)
dW δ(s)〉

]
+ C(1 + CR)δ

1
2 ,

E[I I I5] ≤ −2E
[ ∫ [t]δ

0

〈 ∫ s

[s]δ
iuδ([r ]δ)dW δ(r), iu([s]δ)dW (s)

〉]
+ C(1 + CR)δ

1
2 .

123



Journal of Dynamics and Differential Equations

Due to the independent increments of W and the property of conditional expectation, we
obtain that

2
∫ [t]δ

0
E

[
〈
∫ s

[s]δ
iu([r ]δ))dW (r), iuδ([s]δ)dW δ(s)〉

]

= 2

[t]δ
δ

−1∑
k=0

E

[ ∫ tk+1

tk
〈u(tk)(W (s) − W (tk)), u

δ(tk)(W (tk+1) − W (tk))〉δ−1
]
ds

= 2

[t]δ
δ

−1∑
k=0

E

[ ∫ tk+1

tk

s − tk
δ

N∑
i=1

〈u(tk), u
δ(tk)|qi |2〉

]
ds

=
∫ [t]δ

0
E

[
〈uδ([s]δ),

N∑
k=1

|qk |2u([s]δ)〉
]
ds.

On the other hand,
∫ t
[t]δ E

[
〈uδ([s]δ),∑N

i=1 |qi |2u([s]δ)〉
]
ds ≤ Cδ due to the mass

conservation law and assumption on qi .
Combining the above estimates, we obtain that

E

[
‖u(t) − uδ(t)‖2

]

≤
∫ t

0
2L f (R)E

[
‖u(s) − uδ(s)‖2

]
+ C(1 + CR)δ

1
2

+
∫ t

0
E

[〈
uδ(s),

N∑
i=1

|qi |2u(s)
〉]
ds

− 2
∫ [t]δ

0
E

[〈 ∫ s

[s]δ
iu([r ]δ))dW (r), iuδ([s]δ)dW δ(s)

〉]

≤
∫ t

0
2L f (‖u(0)‖)E

[
‖u(s) − uδ(s)‖2

]
+ C(1 + CR)δ

1
2

+
∫ t

0
E

[
〈uδ(s),

N∑
i=1

|qi |2u(s)〉
]
ds

−
∫ [t]δ

0
E

[
〈uδ([s]δ),

N∑
i=1

|qi |2u([s]δ)〉
]
ds.

Applying the Gronwall’s inequality and the continuity estimate of u and uδ , we get

E[‖u(t) − uδ(t)‖2] ≤ C(1 + CR) exp(2L f (‖u(0)‖)T )δ
1
2 .

It follows that

P(‖u(t) − uδ(t)‖ > ε)

≤ P(‖uR1(t) − u(t)‖ >
ε

3
) + P(‖uR1,δ(t) − uδ(t)‖ >

ε

3
)

+ P(‖uR1(t) − uR1,δ(t)‖ >
ε

3
, t ≤ τ) + P(‖uR1(t) − uR1,δ(t)‖ >

ε

3
, t > τ).
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Taking limit on δ → 0, R, R1 → ∞, using the strong convergence estimate and Chebyshev’s
inequality, we obtain

lim
δ→0

P(‖u(t) − uδ(t)‖ > ε)

≤ lim
δ→0

9

ε2
C(1 + CR) exp(2L f (‖u0‖)T )δ

1
2

+ lim
R→∞P( sup

s∈[0,t]
‖u(s)‖ ≥ R) + lim

R→∞P

(
sup

s∈[0,t]
‖uδ([s]δ)‖ ≥ R

)
= 0.

Similarly, following the above arguments, we further obtain

lim
δ→0

E

[
sup

t∈[0,T ]
‖u(t) − uδ(t)‖2

]
= 0,

which implies that

lim
δ→0

P

(
sup

t∈[0,T ]
‖u(t) − uδ(t)‖ > ε

)
= 0.

��
Remark 4.1 Similar to the stochastic Wasserstein Hamiltonian flow induced by classical
Stochastic ODEs, onemay expect the particle version of the stochastic nonlinear Schrödinger
equation (4.1), that is,

dXt = v(t, Xt ),

dv(t, Xt ) = −∇Xt

1

2

δ

δρ
I (ρ(t, Xt )) + 2λ∇Xt f (ρ(t, Xt )) + 2∇Xt ◦ dW (t). (4.7)

But we have not found a rigorous way to prove it. This will be studied in the future.

4.2 NLS Equation with RandomDispersion

The dimensionless NLS equation with random dispersion is given by

du = iΔu
1

ε
m

(
t

ε2

)
dt + iλ f (|u|2)udt, (4.8)

where m is a real-valued centered stationary random process. Under ergodic assumptions
on m, it is expected that the limiting model when ε → 0 is the following stochastic NLS
equation with white noise dispersion

du = σ0iΔu ◦ dBt + iλ f (|u|2)udt, (4.9)

where σ 2
0 = 2

∫∞
0 E[m(0)m(t)]dt (see e.g. [25]). For simplicity, we set σ0 = 1 in (4.9)

throughout this subsection.
To see (4.9) as a stochastic Wasserstein Hamiltonian flow, let us use (4.8) instead of

Wong–Zakai approximations. Assume that the real valued centered stationary process m(t)

is continuous and such that for any T > 0, t �→ ε
∫ t

ε2

0 m(s)ds converges in distribution to a
standard real-valued Brownian motion B in C ([0, T ]) (see e.g. [25]).
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First, using Madelung transform u(t, x) = √
ρ(t, x)eiS(t,x) gives

e
1
2 log(ρ)+iS

(1
2

∂tρ

ρ
+ i∂t S

)

= ie
1
2 log(ρ)+iS

(1
2

∇ρ

ρ
+ i∇S)2 +

(1
2

Δρ

ρ
+ iΔS − 1

2

∣∣∣∇ρ

ρ

∣∣∣2))1
ε
m
( t

ε2

)

+ ie
1
2 log(ρ)+iSλ f (ρ)

= ie
1
2 log(ρ)+iS

(1
4

(∇ρ

ρ

)2 − (∇S)2 + i
∇ρ

ρ
· ∇S

)

+
(1
2

Δρ

ρ
+ iΔS − 1

2

∣∣∣∇ρ

ρ

∣∣∣2))1
ε
m
( t

ε2

)

+ ie
1
2 log(ρ)+iSλ f (ρ).

We obtain that

∂tρ = −2∇ · (ρ∇S)
1

ε
m

(
t

ε2

)
,

∂t S =
(

−|∇S|2 − 1

4

δ

δρ
I (ρ)

)
1

ε
m

(
t

ε2

)
+ λ f (ρ), (4.10)

which can be rewritten as

∂tρ = −∇ · (ρv)
1

ε
m

(
t

ε2

)
,

∂tv =
(

−∇xv · v − ∇x
1

2

δ

δρ
I (ρ)

)
1

ε
m

(
t

ε2

)
+ 2λ∇x f (ρ).

Based on the above calculations, following the similar steps in the proof of Proposition
4.1, we conclude the following result.

Proposition 4.2 The critical point of the variational problem

Iε(ρ
0, ρT ) = inf{S (ρt , Φt )|Δρt Φt ∈ TρtPo(M ), ρ(0) = ρ0, ρ(T ) = ρT } (4.11)

whose action functional is given by the dual coordinates,

S (ρt , Φt ) = −
∫ T

0
〈Φ(t), ∂tρt 〉dt +

∫ T

0
H0(ρt , Φt )dt +

∫ T

0
H1(ρt , Φt )

1

ε
m

(
t

ε2

)
dt,

satisfies (4.10). Here H0(ρt , Φt ) = −λ
∫
M

∫ ρ

0 f (s)dsdvolM with a smooth function f ,
H1(ρt , Φt ) = ∫M |∇Φt |2ρt dvolM + 1

4 I (ρ), where I (ρ) = ∫M |∇ log(ρ)|2ρdvolM .

It has been shown in [25] that the limit of (4.10) is the NLS equation with white noise
dispersion. Therefore, (4.10) is also a stochastic Wasserstein Hamiltonian flow on density
manifold.

Remark 4.2 The above system is also expected to have a particle version. By applying the
push-forward map in Sect. 3 on Ω̃ , the particle version of (4.9) is expected to be

dXt = v(t, Xt ) ◦ dBt

dv(t, Xt ) = −∇Xt

1

2

δ

δρ
I (ρ(t, Xt )) ◦ dBt + 2λ∇Xt f (ρ(t, Xt )).

We plan to study the well-poseness of the above mean-field stochastic ODEs in the future.
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4.3 Schrödinger Bridge Problem (SBP) with Common Noise

In this part, we indicate that the critical point of the Schrödinger bridge problem (SBP)
with common noise may also be a stochastic Wasserstein Hamiltonian flow. The SBP with
common noise is inspired by [9, 58] for the Schrödinger Bridge type problem in stochastic
case, where the common noise is added into the classical Schrödinger Bridge type problem
[12, 42]. This problem can be formulated as a stochastic control problem on Wasserstein
manifold:

min{vt }t∈[0,T ]

[∫ T

0

∫
Rd

1

2
|vt (x)|2ρt (x, ω) dx dt

]
(4.12)

Subject to:
∂ρt (x, ω)

∂t
+ ∇ · (ρt (x, ω)(vt + A(x, t)Ẇt (ω))) = Δρt . (4.13)

and ρ0(·, ω) = ρa, ρT (·, ω) = ρb. (4.14)

The continuity equation (4.13) canbeviewed as anSDEon theWassersteinmanifoldP2(R
d),

which reads

dXt = v(t, Xt )dt + √
2dB(t) + A(t, Xt )dW (t).

Here B is the Brownian motion which corresponding to the diffusion effect in (4.13), andW
is another Brownian motion which is independent of B and is called the common noise.

In the following, we consider the Wong–Zakai approximation of (4.12), i.e,

min{vt }t∈[0,T ]

[∫ T

0

∫
Rd

1

2
|vt (x)|2ρt (x, ω) dx dt

]

Subject to:
∂ρt (x, ω)

∂t
+ ∇ · (ρt (x, ω)(vt + A(x, t)ξ̇δ(t)) = Δρt .

and ρ0(·, ω) = ρa, ρT (·, ω) = ρb, (4.15)

and show that its critical point is a stochastic Wasserstein Hamiltonian flow.

Proposition 4.3 Assume that W is d-dimensional Brownian motion, ξδ is the piecewisely
linearWong–Zakai approximation of W . Let A(·, t) ∈ C 1

b (Rd), ρa, ρb ∈ Po(R
d) be smooth.

Then the critical point of (4.15) satisfies

∂tρt = δ

δΦ
H0(ρt , Φt ) +

d∑
i=1

δ

δΦ
Hi (ρt , Φt )(ξ̇δ)i (t),

∂tΦt = − δ

δρ
H0(ρt , Φt ) −

d∑
i=1

δ

δρ
Hi (ρt , Φt )(ξ̇δ)i (t), (4.16)

whereH0(ρ,Φ) = 1
2

∫
M |∇Φ|2ρdvolM − 1

8 I (ρ),Hi (ρ,Φ) = ∫M ρAi
t∂xi ΦdvolM .Here

Ai
t denotes the i-th column of the matrix At .

Proof By using the Lagrangian multiplier method, the critical point satisfies

∂tρt + ∇ · (ρ(∇St + At ξ̇δ(t))) = 1

2
Δρt , (4.17)

∂t St + 1

2
|∇St |2 + ∇St · At ξ̇δ(t) = −1

2
ΔSt . (4.18)

123



Journal of Dynamics and Differential Equations

Applying the “Hopf-Cole" transform (see e.g. [41]) Φt = St − 1
2 log(ρt ), we obtain

∂tρt + ∇ · (ρt∇Φt ) + ∇ · (ρt At ξ̇δ(t)) = 0,

∂tΦt + 1

2
|∇Φt |2 + ∇Φ · At ξ̇δ(t) = 1

8

δ

δρ
I (ρ),

which implies (4.16). ��
The above result also coincides with the generalized variational principle (3.11) with the

action functional

S (ρt , Φt ) = −
∫ T

0
〈Φ(t), ∂tρt 〉dt +

∫ T

0
H0(ρt , Φt )dt +

d∑
i=1

∫ T

0
Hi (ρt , Φt )dξδ(t),

whose critical point is the stochasticHamiltonian system (4.16). From theproof ofProposition
4.3, (4.16) is equivalent to the forward and backward system which contains the backward
stochastic Hamilton-Jacobi equation (4.18) and a forward stochastic Kolmogorov equation
(4.17), and plays the role of characteristics for the master equation [9]. The derivation of
(4.16) may be extended to the mean-field game systems with common noise in [9, 11] up to
an Itô-Wentzell correction term [39]. If theWong–Zakai approximation (4.15) is convergent to
(4.12), then the critical point of (4.12) is expected to be a stochasticWasserstein Hamiltonian
flow. This will be our future research.

5 Conclusions

In this paper, we study the stochasticWasserstein Hamiltonian flows, including the stochastic
Euler–Lagrange equations and its Hamiltonian flows on density manifold. First, we show
that the classical Hamiltonian motions with random perturbations and random initial data
induce the stochastic Wasserstein Hamiltonian flows via Wong–Zakai approximation with
Lagrangian formalism. Then we propose a generalized variational principle to derive and
investigate the generalized stochasticWassersteinHamiltonian flows, including the stochastic
nonlinear Schrödinger equation, Schrödinger equationwith randomdispersion and stochastic
Schrödinger bridge problem. The study provides rigorous mathematical justification for the
principle that the conditional probability density of stochastic Hamiltonian flow in sample
space is stochastic Hamiltonian flow on density manifold.
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A Appendix

Proof of Lemma 2.2 The local existence of (2.4) and (2.1) is ensured thanks to the local
Lipschitz condition of f and σ . To obtain a global solution, a priori bound on H0(x, p)
is needed. Denote the solutions of (2.1) and (2.4) with same initial condition (x0, p0) by
(xδ

t , p
δ
t ), δ > 0 and x0t , p

0
t , respectively. Applying the chain rule to H0(xδ

t , p
δ
t ) for (2.4) and

(2.1), we get that

H0(x
δ
t , p

δ
t ) = H0(x0, p0) +

∫ t

0
η∇pH0(x

δ
s , p

δ
s ) · ∇xσ(xs)ξ̇δ(s)ds

H0(xt , pt ) = H0(x0, p0) +
∫ τ

0
η∇pH0(xs, ps) · ∇xσ(xs)dBs

+ 1

2

∫ τ

0
η2∇ppH0(xs, ps) · (∇xσ(xs),∇σ(xs))ds.

By applying growth condition (2.3) and taking expectation on the second equation, we derive
that

H0(x
δ
t , p

δ
t ) ≤ (H0(x0, p0) + ηC1T ) exp

( ∫ t

0
c1η|ξ̇δ(s)|ds

)
,

E

[
H0(xt , pt )

]
≤
(
E

[
H0(x0, p0)

]
+ η2

2
C1T

)
exp
( ∫ τ

0
c1

η2

2
ds
)
.

The first inequality leads to H0(xδ
t , p

δ
t ) < ∞ since ξ̇δ(s) = Btk+1−Btk

δ
, if s ∈ [tk, tk+1].

Furthermore, taking expectation on the first inequality, applying Fernique’s theorem (see,
e.g. [27]) for Gaussian variable and independent increments of Bt , we get that

E

[
H0(x

δ
t , p

δ
t )
]

≤ C(T , η, c1)(2
[ t
δ
](E
[
H0(x0, p0)

]
+ 1),

where [w] is the integer part of the real number w. The second inequality yield that
H0(xt , pt ) < ∞, a.s, and the global existence of the strong solution of (2.4). Similarly,
for p ≥ 2, we have that

E

[
H p
0 (xδ

t , p
δ
t )
]

≤ C(T , η, c1,C1, p)2
p[ t

δ
](
E

[
H p
0 (x0, p0)

]
+ 1
)
,

E

[
H p
0 (xt , pt )

]
≤ C(T , η, c1, p)

(
E

[
H p
0 (x0, p0)

]
+ 1
)
.

Furthermore, applying the above bounded moment estimate, we obtain that for s ≤ t ,

E

[
|x(t) − x(s)|2p + |p(t) − p(s)|2p

]
≤ C(T , η, c1,C1, c0,C1, p, x0, p0)|t − s|p

E

[
|xδ(t) − xδ(s)|2p + |p(t) − p(s)|2p

]
≤ C(T , η, c1,C1, c0,C1, p, x0, p0)2

[ t
δ
]|t − s|p.

However, the above estimate of xδ is too rough and exponentially depending on 1
δ
. As a

consequence, we can not expect any convergence result. A delicate estimate of (xδ, pδ) is
needed.

Assume that t ∈ [tk, tk+1], tk = kδ. Then by using the expansion of (2.1), we have that

H0(x
δ
t , p

δ
t ) = H0(x0, p0) −

k−1∑
j=0

∫ t j+1

t j
η∇pH0(x

δ
s , p

δ
s ) · ∇xσ(xδ

s )dξδ(s)
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−
∫ t

tk
η∇pH0(x

δ
s , p

δ
s ) · ∇xσ(xδ

s )dξδ(s)

= H0(x0, p0) −
k−1∑
j=0

∫ t j+1

t j
η∇pH0(x

δ
t j , p

δ
t j ) · ∇xσ(xδ

t j )dξδ(s)

−
∫ t

tk
η∇pH0(x

δ
tk , p

δ
tk ) · ∇xσ(xδ

tk )dξδ(s)

−
k−1∑
j=0

∫ t j+1

t j
η
( ∫ s

t j
∇ppH0(x

δ
r , p

δ
r ) · (∇xσ(xδ

r ),

− η∇xσ(xδ
r )ξ̇δ(r))dr ξ̇δ(s)

+
∫ s

t j
∇ppH0(x

δ
r , p

δ
r ) · (∇xσ(xδ

r ),−
1

2
(pδ

r )
�dx g−1(x)pδ

r

− ∇x f (x
δ
s ))dr ξ̇δ(s)

+
∫ s

t j
∇pH0(x

δ
r , p

δ
r ) · ∇xxσ(xδ

r )g
−1(xδ

r )p
δ
r dr ξ̇δ(s)

+
∫ s

t j
∇px H0(x

δ
r , p

δ) · (∇xσ(xδ
r )ξ̇δ(s), g

−1(xδ
r )p

δ
r )dr

)
ds

−
∫ t

tk
η
( ∫ s

tk
∇ppH0(x

δ
r , p

δ
r ) · (∇xσ(xδ

r ),−η∇xσ(xδ
r )ξ̇δ(r))dr ξ̇δ(s)

+
∫ s

tk
∇ppH0(x

δ
r , p

δ
r ) · (∇xσ(xδ

r ),−
1

2
(pδ

r )
�dx g−1(xδ

r )p
δ
r

− ∇x f (x
δ
s ))dr ξ̇δ(s)

+
∫ s

tk
∇pH0(x

δ
r , p

δ
r ) · ∇xxσ(xδ

r )g
−1(xδr )pδ

r dr ξ̇δ(s)

+
∫ s

tk
∇px H0(x

δ
r , p

δ) · (∇xσ(xδ
r )ξ̇δ(s)), g

−1(xδ
r )p

δ
r )dr

)
ds

=: H0(x0, p0) +
k−1∑
j=0

I 1j + I 1k (t)

+
k−1∑
j=0

(I 21j + I 22j + I 23j + I 24j ) + I 21k (t) + I 22k (t) + I 23k (t) + I 24k (t).

Making use of the growth condition (2.3), we have that

k−1∑
j=0

(I 21j + I 22j + I 23j + I 24j ) + I 21k (t) + I 22k (t) + I 23k (t) + I 24k (t)

≤
k−1∑
j=0

∫ t j+1

t j
(C1 + c1H0(x

δ
s , p

δ
s ))|ξ̇δ(s)|2δds

+
k−1∑
j=0

∫ t j+1

t j
(C1 + c1H0(x

δ
s , p

δ
s ))|ξ̇δ(s)|δds
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+
∫ t

tk
(C1 + c1H0(x

δ
s , p

δ
s ))|ξ̇δ(s)|2δds +

∫ t

tk
(C1 + c1H0(x

δ
s , p

δ
s ))|ξ̇δ(s)|δds

=
∫ t

0
(C1 + c1H0(x

δ
s , p

δ
s ))|ξ̇δ(s)|2δds +

∫ t

0
(C1 + c1H0(x

δ
s , p

δ
s ))|ξ̇δ(s)|δds.

By using the Gronwall–Bellman inequality, we obtain that

H0(x
δ
t , p

δ
t ) ≤ exp(

∫ t

0
c1(|ξ̇δ(s)|2 + |ξ̇δ(s)|)δds)(H0(x0, p0) + CT + |

k−1∑
j=0

I 1j + I 1k (t)|).

For simplicity, assume that T = K δ. Denote [t]δ = tk = kδ if t ∈ [tk, tk+1). The definition
of ξδ(s) yields that s ∈ [t j , t j+1]

|ξ̇δ(s)|2δ + |ξ̇δ(s)|δ =
∣∣∣∣ B(t j+1) − B(t j )

δ
|2δ+

∣∣∣∣ B(t j+1) − B(t j )|.

Define a stopping time τR = inf{t ∈ [0, T ]| ∫ [t]δ
0 |ξ̇δ|2δds ≥ R}. The stopping time is well-

defined since the quadratic variation process of Brownian motion is bounded in [0, T ]. Then
taking t ≤ τR and using Hölder’s inequality, then it holds that

H0(x
δ
t , p

δ
t ) ≤ exp(

∫ t

[t]
c1(|ξ̇δ(s)|2 + |ξ̇δ|ds) exp(C(R + T ))(H0(x0, p0)

+ CT + |
k−1∑
j=0

I 1j + I 1k (t)|)

≤ exp

(∫ t

[t]
c1(

3

2
|ξ̇δ(s)|2)ds

)
exp(C(R + T ))H0(x0, p0)

+ exp(C(R + T )) exp

(∫ t

[t]
c1

3

2
|ξ̇δ(s)|2ds

) ∣∣∣∣
∫ [t]

0

−η∇pH0(x
δ[s]δ , p

δ[s]δ ) · ∇xσ(x[s]δ )dB(s)
∣∣

+ exp(C(R + T )) exp(
∫ t

[t]
(c1

3

2
|ξ̇δ(s)|2ds)

∣∣∣∣
∫ t

[t]
−η∇pH0(x

δ[s]δ , p
δ[s]δ ) · ∇xσ(x[s]δ )ξ̇δ(s)ds

∣∣ . (A.1)

Similarly, one could obtain a analogous estimate of (A.1) with the integral over [tk−1, tk],
where tk , k ≤ K , tK ≤ τR . By the Cauchy inequality and taking expectation on both sides
of (A.1), applying the Burkholder–Davis–Gundy inequality (see e.g, [35]) and using the
independent increments of Brownian motion, we get

E[H2
0 (xδ

tk , p
δ
tk )]

≤ 3E
[
exp(

∫ tk

tk−1

(3c1|ξ̇δ(s)|2ds)
]
exp(2C(R + T ))E

[
H2
0 (x0, p0)

]

+ 3 exp(2C(R + T ))E
[
exp
( ∫ tk

tk−1

3c1|ξ̇δ(s)|2ds
)]

E

[∣∣∣
∫ tk−1

0

− η∇pH0(x
δ[s]δ , p

δ[s]δ ) · ∇xσ(x[s]δ )dB(s)
∣∣∣2]
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+ 3 exp(2C(R + T ))E
[
exp
( ∫ tk

tk−1

3c1|ξ̇δ(s)|2ds
)
|B(tk) − B(tk−1)|2

× ∣∣η∇pH0(x
δ
tk−1

, pδ
tk−1

) · ∇xσ(xtk−1)
∣∣2]

≤ 3E
[
exp(

∫ tk

tk−1

(3c1|ξ̇δ(s)|2ds)
]
exp(2C(R + T ))E

[
H2
0 (x0, p0)

]

+ 3 exp(2C(R + T ))E
[
exp
( ∫ tk

tk−1

3c1|ξ̇δ(s)|2ds
)]

E

[ ∫ tk−1

0
(C1 + c1H0(x

δ[s]δ , p
δ[s]δ ))

2ds
]

+ 3 exp(2C(R + T ))E
[
exp
( ∫ tk

tk−1

3c1|ξ̇δ(s)|2ds
)
|B(tk) − B(tk−1)|2

]

× E

[
(C1 + c1H

2
0 (xδ

tk−1
, pδ

tk−1
))
]
.

Applying the Fernique theorem and choosing sufficient small δ such that 12c1δ < 1, then
we have that

E

[
exp
( ∫ tk

tk−1

3c1|ξ̇δ(s)|2ds
)]

≤ C,

E

[
exp(

∫ tk

tk−1

3c1|ξ̇δ(s)|2ds
)
|B(tk) − B(tk−1)|2

]

≤
√
E

[
exp
( ∫ tk

tk−1

6c1|ξ̇δ(s)|2ds
)]√

E

[
|B(tk) − B(tk−1)|4

]
≤ Cδ.

The above estimation gives

E[H2
0 (xδ

tk , p
δ
tk )] ≤ 3 exp(2C(R + T ))CE[H2

0 (x0, p0)]
+ 6 exp(2C(R + T ))C

∫ tk−1

0
E

[
(C2

1 + c21H
2
0 (xδ[s]δ , p

δ[s]δ ))
]
ds

+ 6 exp(2C(R + T )CδE
[
C2
1 + c21H

2
0 (xδ

tk−1
, pδ

tk−1
)
]
.

Then the Grownall’s inequality yield that

E[H2
0 (xδ

tk , p
δ
tk )] ≤ exp(6TCc21 exp(2C(R + T )))

×
(
3 exp(2C(R + T ))CE[H2

0 (x0, p0)] + 6C2
1TC exp(2C(R + T ))

)

Combining the above estimates with (A.1) and the Burkholder–Davis–Gundy inequality, we
conclude that

sup
t∈[0,τ R)

E[H2
0 (xδ

t , p
δ
t )] ≤ (exp(6TCc21 exp(2C(R + T ))) + C)

×
(
3 exp(2C(R + T ))CE[H2

0 (x0, p0)] + 6C2
1TC exp(2C(R + T ))

)

=: CR .

Similarly, by choosing sufficient small δ, we have that for t ∈ [0, τ R),

E[H p
0 (xδ

t , p
δ
t )] ≤ CR,p < ∞.
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As a consequence, by again using (A.1), we obtain that

E

[
sup

t∈[0,τ R)

H p
0 (xδ

t , p
δ
t )
]

≤ CR,p < ∞.

Next we show the convergence in probability of the solution of (2.1) to that of (2.4).
Introduce another stopping time τR1 := inf{t ∈ [0, T ]||xt |+|pt | ≥ R1, |xδ[t]δ |+|pδ[t]δ | ≥ R1}.
Let t ∈ [0, τR ∧ τR1). By using the polynomial growth condition of f , σ and the fact that σ
is independent of p, we obtain that

|xδ(t) − x(t)|2

= |xδ(0) − x(0)|2 +
∫ t

0
2〈xδ(s) − x(s), g−1(xδ(s))pδ(s) − g−1(x(s))p(s)〉ds

≤ |xδ(0) − x(0)|2 +
∫ t

0
Cg(1 + |p(s)|)(|xδ(s) − x(s)|2 + |pδ(s) − p(s)|2)ds,

|pδ(t) − p(t)|2

=
∫ t

0
〈−(pδ(s))�dx g−1(xδ(s))pδ(s) + p(s)�dx g−1(x(s))p(s), pδ(s) − p(s)〉ds

+
∫ t

0
2〈−∇x f (x

δ(s)) + ∇x f (x(s)), p
δ(s) − p(s)〉ds

−
∫ t

0
2η〈pδ(s) − p(s),∇xσ(xδ(s))dξδ(s) − ∇xσ(x(s))dBt 〉

≤ Cg

∫ t

0
(1 + |xδ(s)|)(|pδ(s)|2 + |p(s)|2)(|pδ(s) − p(s)|2 + |xδ(s) − x(s)|2)ds

+ C f

∫ t

0
(1 + |x(s)|p f + |xδ|p f )(|pδ(s) − p(s)|2 + |xδ(s) − x(s)|2)ds

−
∫ t

0
2η〈pδ(s) − p(s),∇xσ(xδ(s))dξδ(s) − ∇xσ(x(s))dBs〉,

where Cg and C f are constants depending on f and g. To deal with the last term, we split it
as follows,∫ t

0
2η〈pδ(s) − p(s),∇xσ(xδ(s))dξδ(s) − ∇xσ(x(s))dBs〉

= 2η
∫ t

0
〈pδ([s]δ) − p([s]δ),∇xσ(xδ(s))dξδ(s) − ∇xσ(x(s))dBs〉

+ 2η
∫ t

0
〈pδ(s) − p(s) − pδ([s]δ) + p([s]δ),∇xσ(xδ(s))dξδ(s) − ∇xσ(x(s))dBs〉

= 2η
∫ t

0
〈pδ([s]δ) − p([s]δ),∇xσ(xδ([s]δ))dξδ([s]δ) − ∇xσ(x([s]δ))dBs〉

+ 2η
∫ t

0
〈pδ([s]δ) − p([s]δ), (∇xσ(xδ(s)) − ∇xσ(xδ([s]δ)))dξδ(s)

− (∇xσ(x(s)) − ∇xσ(x([s]δ)))dBs〉
+ 2η

∫ t

0
〈pδ(s) − p(s) − pδ([s]δ) + p([s]δ),

∇xσ(xδ([s]δ))dξδ(s) − ∇xσ(x([s]δ)dBs〉
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+ 2η
∫ t

0
〈pδ(s) − p(s) − pδ([s]δ) + p([s]δ), (∇xσ(xδ(s) − ∇xσ(xδ([s]δ)))dξδ(s)

− (∇xσ(x(s) − ∇xσ(x([s]δ))dBs〉
=: I I 1 + I I 2 + I I 3 + I I 4.

Taking expectation on I I 1, using the property of the discrete martingale, the a prior estimates
for H0(xt , pt ) and H0(xδ

t , p
δ
t ) and Hölder’s inequality, we have that

E[I I 1] = 0,

E[I I 2] ≤ 2η
∫ t

0
E

[
〈pδ([s]δ) − p([s]δ),

∫ s

[s]δ
(∇xxσ(xδ(r)) · (g−1(xδ(r))pδ(r))drdξδ(s)〉

]

− 2η
∫ t

0
E

[
〈pδ([s]δ) − p([s]δ),

∫ s

[s]δ
(∇xxσ(x(r)) · (g−1(xδ(r)pδ(r))drdBs〉

]

≤ C(R1)δ
1
2 .

Similar arguments lead to E[I I 4] ≤ C(R1)δ
1
2 . For the term I I 3, applying the continuity

estimate of xt and xδ
t , as well as independent increments of the Brownian motion, we get

E[I I 3]

≤ C(R1)δ
1
2 + 2η2E

[ ∫ [t]δ

0
〈
∫ s

[s]δ
∇xσ(xδ[r ]δ )dξδ(r) −

∫ s

[s]δ
∇xσ(x[r ]δ )dBr ,

∇xσ(xδ([s]δ))dξδ(s) − ∇xσ(x([s]δ)dBs〉
]

≤ C(R1)δ
1
2 + 2η2E

[ ∫ [t]δ

0
|∇xσ(xδ[s]δ )|2

s − [s]δ
δ2

(B([s]δ + δ) − B([s]δ))2ds
]

− 2η2E
[ ∫ [t]δ

0
〈∇xσ(xδ[s]δ ),∇xσ(x[s]δ )〉

s − [s]δ
δ2

(B([s]δ + δ) − B([s]δ))2ds
]

− 2η2E
[ ∫ [t]δ

0
〈∇xσ(xδ[s]δ ),∇xσ(x[s]δ )〉

B([s]δ + δ) − B([s]δ)
δ

(B(s) − B([s]δ))ds
]

+ 2η2E
[ ∫ [t]δ

0
〈∇xσ(x[s]δ ),∇xσ(x[s]δ )〉

B([s]δ + δ) − B([s]δ)
δ

(B(s) − B([s]δ))ds
]

≤ C(R1)δ
1
2 + 2η2

∫ [t]δ

0
E

[
|∇xσ(xδ[s]δ ) − ∇xσ(x[s]δ )|2

]
ds

≤ C(R1)δ
1
2 +

∫ t

0
C(R1)E

[
|xδ

s − xs |2
]
ds,

where C(R1) > 0 is monotone with R1. Combining the above estimates, we achieve that

E[|xδ(t) − x(t)|2] ≤
∫ t

0
Cg(1 + CR1)(E[|xδ(s) − x(s)|2]

+ E[|pδ(s) − p(s)|2])ds
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E[|pδ(t) − p(t)|2] ≤
∫ t

0
(Cg + C f )(1 + CR1)(E[|xδ(s) − x(s)|2]

+ E[|pδ(s) − p(s)|2])ds + C(R1)δ
1
2 .

Then the Gronwall’s inequality implies that

E[|xδ(t) − x(t)|2] + E[|pδ(t) − p(t)|2] ≤ exp(2(Cg + C f )(1 + CR1)T )C(R1)δ
1
2 . (A.2)

By making use of (A.2) and Chebshev’s inequality, we conclude that

P(|xδ(t) − x(t)| + |pδ(t) − x(t)| ≥ ε)

≤ P({|xδ(t) − x(t)| + |pδ(t) − x(t)| ≥ ε} ∩ {t < τR} ∩ {t < τR1})
+ P({|xδ(t) − x(t)| + |pδ(t) − x(t)| ≥ ε} ∩ {t ≥ τR})
+ P({|xδ(t) − x(t)| + |pδ(t) − x(t)| ≥ ε} ∩ {t < τR} ∩ {t ≥ τR1})

≤ 2
E

[
|xδ(t) − x(t)|2 + |pδ(t) − x(t)|2

]
ε2

+
E

[ ∫ t
0 |ξ̇δ(s)|2δds

]
R

+
E

[
|x(t)| + |p(t)| + |xδ(t)| + |pδ(t)|

]
R1

≤ 2

ε2
exp(2(Cg + C f )(1 + CR1)T )C(R1)δ

1
2 + C

R
+ C

1 + CR

R1
.

Here, E[|x(t)| + |p(t)| + |xδ(t)| + |pδ(t)|] < C(1 + CR) is ensured by
E[ sup

t∈[0,τ R)

H2
0 (xδ

t , p
δ
t )] ≤ CR . Taking limit on δ → 0, R1 → ∞, and R → ∞ leads

to

lim
δ→0

P(|xδ(t) − x(t)| + |pδ(t) − p(t)| > ε) = 0.

Similarly, one could utilize the properties of martingale and obtain the following estimate,
for large enough q > 0,

E[|xδ(t) − x(t)|q ] + E[|pδ(t) − p(t)|q ] ≤ Cq exp(Cq(Cg + C f )(1 + CR1)T )C(R1)δ
q
2 −1.

This implies that for large enough q > 4,

E

[
sup
k≤K

sup
t∈[tk−1,tk ]

|xδ(t) − x(t)|q
]

+ E

[
sup
k≤K

sup
t∈[tk−1,tk ]

|pδ(t) − p(t)|q
]

≤
K−1∑
k=0

E

[
sup

t∈[tk−1,tk ]
|xδ(t) − x(t)|q

]
+ E

[
sup

t∈[tk−1,tk ]
|pδ(t) − p(t)|q

]

≤ CqK exp(Cq(Cg + C f )(1 + CR1)T )C(R1)δ
q
2 −1

≤ Cq exp(Cq(Cg + C f )(1 + CR1)T )C(R1)δ
q
2 −2.

Combining the above estimate and applying the Chebshev’s inequality, we further obtain

lim
δ→0

P

(
sup

t∈[0,T ]
|xδ(t) − x(t)| + sup

t∈[0,T ]
|pδ(t) − p(t)| > ε

)
= 0.

��
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