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Abstract

In this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the prob-
ability density space equipped with L2-Wasserstein metric tensor, via the Wong—Zakai
approximation. We begin our investigation by showing that the stochastic Euler—Lagrange
equation, regardless it is deduced from either the variational principle or particle dynamics,
can be interpreted as the stochastic kinetic Hamiltonian flows in Wasserstein manifold. We
further propose a novel variational formulation to derive more general stochastic Wasser-
stein Hamiltonian flows, and demonstrate that this new formulation is applicable to various
systems including the stochastic Schrodinger equation, Schrodinger equation with random
dispersion, and Schrodinger bridge problem with common noise.
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1 Introduction

The density space equipped with L2-Wasserstein metric forms an infinite dimensional Rie-
mannain manifold, often called Wasserstein manifold or density manifold in literature (see
e.g. [40]). It plays an important role in optimal transport theory [54]. Many well-known
equations, such as Schrodinger equation, Schrodinger bridge problem and Vlasov equation,
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can be written as Hamiltonian systems on the density manifold. In this sense, they can be
considered as members of the so-called Wasserstein Hamiltonian flows ([4, 14, 15, 17, 20,
29, 54]).

The study of Wasserstein Hamiltonian flow can be traced back to Nelson’s mechanics
([47-49]), where a probabilistic interpretation of the linear Schrédinger’s equation is given.
The rigorous probabilistic contents in Quantum Physics were understood as stochastic vari-
ation boundary problems for the probability densities with given marginals (cf. [3, 16]). The
work of Bismut [7], which is closely related to the principles of stochastic optimal transport
theory, showed how the random perturbations affects the classical optimization problem in
the expectation sense for both Lagrangian and Hamiltonian formalism. Motivated by the
ideas of Schrodinger [51] and Bernstein [6], the connection between the Nelson’s approach
and hydrodynamics on the Wasserstein space was first discovered by [45]. For more contents
on the stochastic optimal transport problem, we refer to [46]. By using Madelung transfor-
mation, it is known that a polar representation reveals the Hamiltonian structure of classical
Schrodinger equations. We refer to [36] for a more comprehensive review on the geometric
hydrodynamics and its relationship with the optimal transport theory. Another framework
of second-order differential geometry to derive stochastic Lagarangian and Hamiltonian
mechanics and to establish their related Hamilton—Jacobi—Bellman equations are presented
in [33]. Recently, it is shown in [15] that the kinetic Hamiltonian flows in density space
are probability transition equations of classical Hamiltonian ordinary differential equations
(ODEs). In other words, this reveals that the density of a Hamiltonian flow in sample space
is a Hamiltonian flow on density manifold.

In the existing works on Wasserstein Hamiltonian flows, random perturbations of common
noise type (see e.g. [21, 22]) to the Lagrangian functional are not considered in the continuous
space. Consequently, the theory is neither directly applicable to the Wasserstein Hamiltonian
flows subjected to random perturbations, nor to the systems whose parameters are not given
deterministically. The main goal of this article is developing a theory to cover these scenarios
in which the stochasticity is presented. More precisely, we mainly focus on the stochastic
perturbation of the Wasserstein Hamiltonian flow,

1)
dpoy = — 7 (py, S;)dt,
Pt 55, 0(or, St)

8
ds; = —r%(l)n Sy)dt,
Ot

with a Hamiltonian .74 on the density manifold and %, % being the variational derivatives,
which is proposed by only imposing randomness on the initial position in the phase space [15].
This is different from the Hamiltonian flows considered in [4], where the authors construct
the solutions of the ODEs in the measure space of even dimensional phase variables equipped
with the Wasserstein metric. More precisely, the Hamiltonian functional in [4] is defined on
the Wasserstein manifold 42, (RM ), which contains densities of joint distributions of both
position and momentum variables, while the system in the current study is mainly defined
on the density manifold for the position variable only.

To study the stochastic variational principle on density manifold, we may confront sev-
eral challenges. First and the foremost, the Wasserstein Hamiltonian flow studied in [15]
is induced based on the principle that the density of a Hamiltonian flow in sample space
is a Wasserstein Hamiltonian flow in density manifold. This principle may no long hold if
the Hamiltonian flow in sample space is perturbed by random noise. Second, the stochastic
variational framework must be carefully designed in order to induce stochastic dynamics
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that possess Hamiltonian structures on Wasserstein manifold. As indicated in [15, 43], the
Christoffel symbol in Wasserstein space plays an important role in the typical kinetic Hamil-
tonian dynamics since it induces a certain velocity-momentum transformation that allows
us to transfer between the second order Euler—Lagrange equations and the Hamiltonian sys-
tem in density manifold. However, for the noise perturbed Wasserstein Hamiltonian flows,
it is complicated and difficult to introduce such tools for transforming the Euler—Lagrange
equations into Hamiltonian dynamics in general.

To overcome the difficulties, we begin our study by investigating the classical Lagrangian
functional perturbed by the Wong—Zakai approximation (see e.g. [52, 57]) on the phase space,
and show that its critical point gives the stochastic Hamiltonian flow driven by the Wong—
Zakai approximation. With the help of the equivalence of the particle stochastic ODE system
and the macro density formulation, in Sect. 3 we prove that the stochastic Hamiltonian flow
driven by the Wong—Zakai approximation coincides with the critical point of a stochastic
variational principle (see e.g. [55]). In particular, Proposition 3.3 presents the convergence
result of the Wong—Zakai approximation to the stochastic Wasserstein Hamiltonian system in
Stratonovich sense. However, in general stochastic case, it is still hard to use the Christoffel
symbols to derive the stochastic Hamiltonian dynamics.

Furthermore, based on the cotangent bundles of density manifold, we propose a general
variational principle to derive a large class of stochastic Hamiltonian equations on density
manifold via Wong—Zakai approximation, such as stochastic nonlinear Schrédinger equa-
tion (see, e.g., [, 26, 38, 53]), nonlinear Schrodinger equation with white noise dispersion
(see, e.g., [1, 2]), and the mean-field game system with common noise (see, e.g., [9, 10,
30]). We would like to mention that although the Wong—Zakai approximation of stochastic
differential equations has been studied for many years (see, e.g., [8, 52, 56, 57]), few results
are known for the convergence on the density manifold. In this work, we also provide some
new convergence results of Wong—Zakai approximation for the continuity equation induced
by stochastic Hamiltonian system and the stochastic Schrodinger equation on density space
under suitable assumptions.

Another main message that we would like to convey in this paper is that the stochastic
Hamiltonian flow on phase space, when viewed through the lens of conditional probability,
induces the stochastic Wasserstein Hamiltonian flow on density manifold, and it is hard to
observe those stochastic Hamiltonian structures in the density manifold without the help of
conditional probability (see Sect. 3).

The organization of this article is as follows. In Sect. 2, we review the formulation and
derivation of Hamiltonian ordinary differential equations (ODEs), and use the Wong—Zakai
approximation of the Lagrangian functional to connect the classic and stochastic variational
principles on phase space. In Sect. 3, we study the macro behaviors of stochastic Hamiltonian
ODE and its Wong—Zakai approximation, including the stochastic Euler-Lagrange equation
on density space, Vlasov equation, as well as the generalized stochastic Wasserstein Hamil-
tonian flow. Several examples are demonstrated in Sect. 4. Throughout this paper, we denote
C and c as positive constants which may differ from line to line.

2 Stochastic Hamiltonian ODEs

In this section, we briefly review the classical and stochastic Hamiltonian flows on a finite
dimensional Riemannian manifold.

@ Springer



Journal of Dynamics and Differential Equations

The classical Hamiltonian flow on a smooth d-dimensional Riemannian manifold (.#, g)
with g being the metric tensor of .#, is derived by the variational problem

T

I(xg,x7) = inf {/ Lo(x, x)dt : x(0) = x¢, x(T) = xr} .
@x@)rero, 11 LJo

Here the Lagrangian Ly is a functional (also called Lagrange action functional) defined on

the tangent bundle of .Z . Its critical point induces the Euler-Lagrange equation

d 4 Lo(x,x) = d Lo(x, %)

7 di o(x, x 7y Lo, ).
When Lo(x,x) = %)&Tg(x))é — f(x) with a smooth potential functional f on .#, the
Euler-Lagrange equation can be rewritten as a Hamiltonian system,

. -1 . I+
x=gx)" p, pP=-3p dig” (x)p —dy f(x)

Here T denotes the transpose, p = g(x)x and the Hamiltonian is

1
Ho(x, p) = QpTg”(x)p + f(x).

However, the Lagrange action functional Ly(x, X) may not be homogeneous or it can by
impacted by random perturbations in some problems, which is the reason to introduce
stochastic Hamiltonian flows.

Let us start with the case that L (x, x) is composed by the deterministic Lagrange functional
Lo(x, x) and a random perturbation na(x)ég (t). Here &5 can be chosen as a piecewise con-
tinuous differentiable function which obeys certain distribution law in a complete probability
space (£2, IF, IP) with a filtration {IF; };>0, o (-) is a potential function and n € R characterizes
the noise intensity. In this paper, &;s is taken as a Wong-Zakai approximation (see e.g. [57])
of the standard Brownian motion B(¢) such that é,g is a real function. When § — 0, &5(¢) is
convergent to B(¢) in pathwise sense or strong sense [57]. For fixed w € £2, since &5(¢) is a
stochastic process on (£2, IF, P) with piecewise continuous trajectory, the value of the action
functional fOT Lo(x,x) —no (x)é(; (t)dt is finite for any given x(0) = xo, x(T) = x7.

Throughout this paper, we assume that the initial position x¢ of the particle system is a
Fo-measurable random variable with the density pg. Let F,, # > 0 be the completion of the
filtration generated by the standard Brownian motion. For convenience, we also suppose that
Xo is independent of B (I)J t > 0. To satisfies the above assumptions, we let (2, F,P) =
(2p, {F,}t>0, Pp) x (ﬁ I, IP), where B (-) is the Brownian motion on §2p and x( is a random
variable on 2 independent of 2. Denote E the expectation with respect to (£2, P) and Eg
the conditional probability with respect to (.Q ]P’)

Newton’s law can be used to derive the Euler—Lagrange equation or the Hamiltonian sys-
tem in the stochastic case. In order to find out the critical point of fOT Lo(x, X)—no (x)és(t)dr,
we calculate its Gateaux derivative (see, e.g., [31]). Setx. (t) = x(¢) +€h(t), h(0) = h(T) =
0, the Newton’s law indicates the critical point satisfies

d o

0 0 0 .
E?L(x X) = —L(x X) = aLO(XaX) - ﬂaa(x)‘?ét,

which is equivalent to the integral equation

] . d . | ) 9
Py L(x(), x()) — = L(x(0), x(0)) = / ——Lo(x, x)ds — n/ ——o(x)dés;.
X ax 0 0x 0 0x
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One can also introduce the Legendre transformation p = g(x)x,, and get

. _ ) 1 _ .
E =207 p, p=—5p dg” (0P = dif(0) = ndxo (0. 2.1)
Since it can be rewritten as
. 0 d . . 0 0 .
x = —Ho(x, p)+ —Hi(x, p)§s, p=——Ho(x, p) — —Hi(x, p)é,
ap ap ax ax

where H(x, p) = o(x), the equations form a stochastic Hamiltonian system.

Remark 2.1 When ; is a constant, the Hamilton’s principle gives a Hamiltonian system with
a homogenous perturbation. Otherwise, for a fixed w, the Hamilton’s principle leads to a
Hamiltonian system with an inhomogenous perturbation.

2.1 Wong-Zakai Approximationin.#Z = RY

In this part, we show that the limit of the Wong-Zakai approximation (2.1) is a stochastic
Hamiltonain system.

Lemma2.1 Let # = RY and T > 0, g be the identity matrix lyxq. Assume that f,o €
‘5172 (M), &s is the linear interpolation of B(t) with width § and that xo, po is Fo-apdated.
Then (2.1) on [0, T] is convergent to

dx = p, dp = —d, f(x) —ndyo(x) odB(t), a.s., (2.2)
where o denotes the stochastic integral in the Stratonovich sense.

Proof The condition of o, f ensures the global existence of a unique strong solution for (2.1)
and (2.2) by using standard Picard iterations. Then one can follow the classical arguments
(see e.g. [52]) to show that the solution of (2.1) is convergent to that of (2.2) and that the
right hand side of (2.1) is convergent to that of (2.2). O

The following lemma relaxes the classical conditions on the convergence of Wong—Zakai
approximation whose proof is presented in Appendix. We call that g is equivalent to I;x4
if g € €°RY; RY) is symmetric satisfying Aljxaq > g(x) >= Algxq for some constant
0 < X < A. In the following, we will use the standard notation for the matrix product, that
is, g(x) - (y,2) = yTg(x)z and g(x) - y = g(x)y.

Lemma22 Let.#/ =R T >0, g be equivalent to 15 4. Assume that f,o € (53(///), &s
is the linear interpolation of B(t) with the width §, that xo, po are Fo-apdated and possess
any finite g-moment, ¢ € N, and that

Ho(x, p) = colp| + c1lx|, for large enough |x|. | p|
IV ppHo(x, p) - (Vo (x), Vio ()] + 0|V, Ho(x, p) - (p, Vo (x))]

1
+ 0|V ppHo(x, p) - (Vo (x), —Qpdeg”(x)p — Ve f(0))]

+1VpxHo(x, p) - (Vxo, g (x) p)|
+n|VpHo(x, p) - Viro ()¢~ (x)p| < C1 + 1 Ho(x, p). 2.3)

Then the solution of (2.1) on [0, T] is convergent in probability to the solution of

1
dx =g ' (x)p, dp = —Epdeg”(x)p —dy f(x) — ndyo (x) 0 dB(1). 2.4)
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Denote the solution of (2.1) by 3, xp, po) p (., x0, po)). According to Lemma 2.2, by
studying the equation of —xs (t, x0, po) and z%x 3(t, xo, Do), one could obtain the following
convergence result.

31’0

Corollary 2.1 Under the condition of Lemma 2.2, let f, o € (@”g (A). Then for any € > 0, it
holds that

d
lim IP’( sup ‘—x (t, x0, po) — —x(t, xo, po)‘
§—0 t€[0,T] Bx

d d

+ sup |[—x(t, x0. po) — 7X(I,XO,P0)‘ > 6) =0.
te0.71'9P0 dpo

Remark 2.2 One may impose more additional conditions on the coefficients f, o to obtain

the strong convergence order % of the Wong—Zakai approximation, that is,

IE[ sup |x° (1) — x(t)|f’] + IE[ sup xS (t) — x(t)|p] < cs%.
t€[0,T] 1€[0,T]
The convergence in probability yields that there exists a pathwise convergent subsequence.
In this sense, the limit equation of (2.1) is (2.4) on [0, T']. When the growth condition (2.3)
fails, one could also obtain the convergence in probability of (x?, p®) before the stopping
time Tr A TR, (see Appendix for the definition of 7z and g, ). One could also choose different
type of Wong—Zakai approximation of the Wiener process and obtain similar results (see,

e.g., [57]).

2.2 Wong-Zakai Approximation on a Differential Manifold .7

Assume that .# C R is a d-dimensional differential manifold of class €%, @ € Nt U oo
without boundary. Given a ¥“-diffeomorphism ¢ : W — V C .# from an open subset W of
R to an open set V of ., the inverse ¢~ : V — W is called a chart or coordinate system
on .# . The coordinate components are denoted by @, &5, ..., &4, d € NT. The tangent
bundle of ./ is denoted by I .# = {(x,y) € R x RF|x € ., y € Jy(A)}. Moreover,
dim 9, () = d. The canonical projection is denoted by 7w : T4 — A .

In the following, we start from the deterministic Hamiltonian system

X =p,

p=—dc f(x),
where the vector field (p, —d f(x)) € J,p) T A for all (x, p) € T .#. We show how
the random force can be added to the system so that (¥, p) € R¥ x RF is still tangent to
T M at (x, p). As a physical interpretation, this tangent condition represents the constrain
of the motion equations and is to ensure that the physical motion is living in .7.# by the
Kamke property of the maximal solutions (see e.g. [28, Chapter 3]). Consider .# which is
regularly defined as the zero level set of a €> map F from R* to R¥~¢. Then we have that
the tangent space to ./ at x is 7 Fy.# = {p € RK|F'(x)p = 0}, and T.# = {(x, p) €
R* x R¥|F(x) = 0, F/(x)p = 0}. We can also obtain

TTM ={(x, p. %, PIF(x) =0, F'(x)p =0, F'(x)i = 0, F"(x) (¥, p) + F'(x) p = 0}.
Therefore, if the added random force satisfies,

F'(x)p = —=F"(x)(x, p) = ¥ (x; p, %), % € T (M), 2.5
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we have (X, p) € T(x p)(T.#). Following [28], we denote a smooth mapping ¥ from the
vectorbundle {(x; u, v) € REx(REXRY)|x € A, u,v € T (M)} toRF4 Given any vector
z € R¥=4 denote by Az € (Ker F'(x))* = (Z.#)* the unique solution of F/(x)p = z.
Hence, the solution of (2.5) satisfies

p=ulx;p,x)+w,

where u(x; p,x) = Ay (x; p,x) € (T ( M)+ and w € Ty (#). We observe that to
ensure (X, p) € Jx p(TA), it suffices to take u, w € F; () and define (X, p) =
(u, u(x; p, u) + w). In Eq. (2.1) with the driving noise being —dyo (x)é5, using the above
condition, we can verify that it satisfies that (x, p) € (x ;) (.7 .#). Similarly, a second order
differential equation with random force satisfies

¥=plx;x, %)+ 20, x, %),

where %, : T M > (x,%) — B(t,x,%) € Rfisa tangent vector field on .#. A typical
example is that # = —ax + a(t, x) with the frictional force —ax and applied random
force a(t, x) = —dxa(x)é‘(g (). When % = 0, the above equation is inertial and is so-called
geodesic equation on .2, which plays an important role in the optimal transport theory (see
e.g. [13, 17, 29, 54]).

Lemma 2.3 Suppose that 4 is a d-dimensional compact smooth differential manifold. Let
g =1 f, o be smooth functions on #, &s be the linear interpolation of B(t) with width §,
and that xg, py are Fo-adapted and possess any finite g-moment, g € NT. Then (x°, p®) is
convergent in probability to the solution (x, p) of (2.4).

Proof The existence and uniqueness of (x, p) can be found in [32]. The global existence of
(x%, p®) could be also obtained by the fact that g = I, f and o are globally Lipschitz and
that the growth condition (2.3) holds. We only need to show the convergence of (x®, p®) in
probability to (x, p). Since .7 .# is 2d-dimensional manifold which could be embedding to
R2* | we can extend the vector field V (x, p) = (p, —dx f(x) — ndyo(x)) to a vector field
V(~, -y on R And thus the equations of (x, p) and (x8, p‘s) can be viewed as the equations
on R%. The global existence of (x, p) and (x%, p?), together with Lemma 2.2, yield the
convergence in probability of (x?, p®). O

Remark 2.3 The above result relies on the particular structure of g = I and the growth

condition (2.3). If this condition (2.3) fails, the explosion time e(xf, p‘s) of (x?, p‘s) may

depend on 8. And the convergence in probability may only hold before e(x, p) A én% e(x?, p%).
>

When applying different type of Wong—Zakai approximations, the different type of stochastic
ODEs could be derived (see e.g. [34]).

To end this section, we give a special example of stochastic Hamiltonian flows which
concentrates on a submanifold with conserved quantities.

Example 2.1 Let.# = R?, g and g be metrics equivalent to 7, 4. Define an action functional
with random perturbation in dual coordinates,

T T
—/0 (p, x) —Ho(x7p))dt+/0 Hi(x, p)dé&s(1),

where Ho(x, p) = 3p ¢~ ()p + f(x), Hi(x, p) = n3p g~ (x)p +no (x) with smooth
potentials f and o. Then the critical points under the constrain x(0) = xo, x(T) = xr
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satisfies the stochastic Hamiltonian flows

. dHy 0 H, .
X0 = ——=(x, p) + — (%, pO)és,
ap ap
. JdHy 0H, .
pP=——— (% p®) — —— (%, p®)és.
ap ap

The solution (x%, p%) and its limit (x, p) lie on the manifold {Ho(x,p) =
Ho(xo, po), Hi(x, p) = Hi(xo, po)} when the Hamiltonians satisfies that {Hy, H;} = 0
with {-, -} being the Possion bracket. Similar to Lemma 2.2, it can be shown that %, p%)
converges globally to (x, p) in probability if Hy or H; satisfies the growth condition (2.3).

3 Stochastic Wasserstein Hamiltonian Flow

In this section, we study the behaviors of the inhomogenous Hamiltonian system (2.1)
and stochastic Hamiltonian system (2.4) on the density manifold. To illustrate the strat-
egy, let us focus on the case that (.#, g) equals (T4, 1) or (R4, ). Given the filtered
complete probability space (£2, F, (F;);>0,P), recall that £s(¢) is the piecewisely linear
Wong—Zakai approximation of a standard Brownian motion. For a fixed @ € 2, we denote
% := inf{r € (0, T]|x,‘S is not a smooth diffeomorphism on .#}, pf = v(t, xf) is the vector
field depending on the position and time. Here we view the momentum p as the function v
depending on both time and space. Eq. (2.1) becomes

d
—xf =v(, x,‘s),

dt
Lo, 38 = —V £ (x) — 190 (D)Es 1)
S V) = p nVo (x/)Es(t).

Differentiating v(z, xl‘S (x0)) before 78 leads to

s s d 5 s s B
drv(t, x; (x0)) + Vu(z, x; (x0)) - 5= 0rv(t, x;7 (x0)) + Vu(t, x; (x0)) - v(F, x; (x0))
= =V f(x] (x0)) = nVo (x] (x0))&s (7).
Taking xg = (xf")*1 (x), we obtain the following conservation law with random perturbation,

u(t, x) 4 Vu(t, x) - v(t, x) = =V f(x) — nVo (x)é5(1). (3.1
Taking any test function ¥ in C*°(.#), it holds that

d d
d—Eﬁ[l//(x,B(xo))] - —/ Y (x)p(t, x)dx =/ Vi (x2 (x)) - v(t, x2 (x)) po (x)dx
t dt ) 4 V4
=/ Vi (x) - v(t, x)pr(x)dx,
M

which implies that for wp € 2p, py = xl‘S #p0, i.e., p; equals the distribution generated by
the push-forward map x;(-) on pg, satisfies the continuity equation,

dp(t,x)+ V- (p@, x)v(, x)) =0. (3.2)
Introducing the pseudo inverse (—A p)? (see e.g. [15]) of the operator

Ap() ===V (pV()) (3.3)
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for a positive density p, we denote S; = (—A p,)Ta, pr. When there exists a potential S such
that v = VS, the conservation law with random influence (3.1) and the continuity equation

(3.2) induce a Hamiltonian system in density manifold before 7°,

)
0rpr = — (o1, St) ==V - (0/VS),
§S;

) ) .
0S8y = ——%(pr, St) — — 4 (pr, Sp)és(t) + C(2)
3pr 80

1 8 § .

= —|VSIP = —F (o) — —nZ(p)s(t) + C (o), (34)
2 Sp: 8p

where C (¢) is an arbitrary stochastic process on (§2p, Pp) independent of the spatial position

x and initial velocity v(0, -) = VS(0, -). Here the dominated average energy is

1
Hoy(p, S) == K(p, )+ 7 (p) = /%/ EIVS(X)Izp(X)dX + /% f@)px)dx,

and the perturbed average energy is
Ao 5.0 =nZ@) =1 [ awods.
Taking § — 0, the limit system becomes a stochastic Hamiltonian system,

1)
dp; = — 7 (ps, Sp)dt,
Pt 55, 001, St)

) $
dS; = ——H(ps, S1) — —— Hi(pr, S)*d§ + C(t)dt, (3.5)
3p; 3p:

where £ is the limit process of & in the pathwise sense. We would like to remark that
the solution of (3.5) may be not [F;-measurable in general, for example when x( is not
independent of B(r). We refer to [50, section 3.3] for more discussions on the anticipating
stochastic differential equations. We also would like to remark that the Stratonovich integral
is nature in the study of stochastic Hamiltonian system due to the presence of the chain rule
[21-23]. In our particular case, since £5(t) is a piecewisely linear Wong-Zakai approximation
of B(t) and x¢ is independent of B(¢), the limit of (3.1), (3.2) is the following system in
Stratonovich sense,

dpr = =V - (p, x)v(t, x))dt,
dv(t,x) + Vou(t, x) - v(t, x)dt = =V f(x)dt —nVo(x)odB;. 3.6)

We would like to emphasize that the above analysis indicates a principle for deriving the
stochastic Hamiltonian system on Wasserstein manifold: The conditional probability density
of stochastic Hamiltonian flow in phase space is a stochastic Hamiltonian flow in density
manifold almost surely. In the following we always assume that the initial distribution p (0, -)
of xo and the initial velocity v(0, -) are smooth and bounded.

Proposition 3.1 Suppose that .# is a d-dimensional compact smooth differential submanifold
and T > 0. Let g =1, v(0, -) be a smooth vector field, f, o be smooth functions on M, &s
be the linear interpolation of B(t) with width §, and that xq, po are Fo-adapted and possess
any finite q-moment, ¢ € NT. Then there exists a stopping time Tt such that there exists a
subsequence of (p°, v®) which converges in probability to the solution (p, v) of (3.6) before
T.
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Proof Applying Lemma 2.3, we have that (xf, v(t, x,‘s)) is convergent to (x;, v(¢, x;)) in
[0, T'], a.s., up to a subsequence. Define the stopping time v = inf{t € (0, T']| x; is not
smooth diffeomorphism on .#}. For convenience, let us take a subsequence such that for
almost w € 2, (xf, v(t,x,‘;)) converges to (x;, v(t, x;)) and &xf(xo) convergences to
%x, (x0). Before t(w), there exists « > 0 such that det(%x[l (x0)) > «. The pathwise
convergence of x? implies that for any € > 0 there exists 89 = 8(e, ) > 0 such that when
5 < do, det(%(xf)_l(xo)) > a — € > 0. Notice that the density function ,0‘S (t,y) of xt‘S
satisfies 0% (¢, y) = | det(Vx? (y))[p(0, x3()). Since p (0, -) is smooth for any fixed w and the
pathwise convergence of x® holds, it follows that p® (¢, y) converges to the density function
of x;, which is p(t, y) = | det(Vx;(¥))|p(0, x;(y)). Similarly, the pathwise convergence of
v, xf (y) tov(t, x;(y)), together with invertibility of xt‘S and x;, implies the convergence of
v, x) to vz, x). Consequently, the solution of (p‘g, v?) is convergent to (p, v) in pathwise
sense up to a subsequence. O

3.1 Vlasov Equation

We would like to present the connections and differences between the classic Vlasov equation
and stochastic Wasserstein Hamiltonian flow in this part. For simplicity, let us consider the
case that .27 = R?. We fix & € £2, and consider (2.1). Taking differential on Eq[¢ (x?, p?)]
where ¢ is a sufficient smooth test function, we get

%Eg[d)(xf, p)1=Eq [wuf, pf)%xf + V0 (x), p?)%pf}
=Eo [Vad (7, p)pi + V(i PV f ]) = nVio (x))és)]
Denoting the initial joint probability density function by Fy(x, p), it holds that
4
dt Jrax

- /R oo (Ve0GE DD} + V00 (el D=V f (6] = aVao D)) Pt prdedp

y (. p2)Fo(x, p)dxdp

Thus the joint distribution on £2, Ft‘s = (x,‘s, pf)#Fo, satisfies
d s
¢(x, p)—F/(x, p)dxdp
Rd xRd dt
= [ (T00 P+ Va5, P 0 i phdxdp
R4 x R4

+EalV,9 (7, p)(—=nV:0 (D) 0) .

Notice that the solution process xf is IF, , -measurable when t € (#, fx11], tx = k&t and
[F;, -measurable when ¢ = #, and x; is [F;-measurable. By applying the chain rule, we have
that for ¢t € (#, tx+1],

t
/0 EalV,(xd, pD)(=nVso (2)és(s) |ds

[ 5 8 By £
=> f Eo[Vpé(x?, ps)<—nvxa(xx))ss(s)]ds
j=0"%

@ Springer



Journal of Dynamics and Differential Equations

t
+ / EolVpd (. p)(—nVao (D)és(s) ds
Tk

_Z/ EolVp(xd . pl)(—nVao (x] DM]K’S

tj+1 ) )
/ P¢(xs’ps)(_rlvxa(xs))
tj

B,.. — B,

- qus(x;‘j, p;‘jx—nvxa(x;‘j»)b]ds
Btk:l
ds

8
! § 8 ) Bfk+l_
+ [ EalVpd(xp. pi) (=150 () ="
Tk

t
+ / Eol(Vys (2, (Va0 ()
Tk

B — B
Vb (xh P (=1 Va0 (X)) = Jas

Then repeating similar arguments in the proof of Lemma 2.2, we have that
t
| Bat9p06l phnvioxinés Jas
t
= /0 Eg[vm(xﬁm,p?tla(;)(—nvxa(xﬁm))sa(z)]ds

t 1 .
+ /O 5E9[<App¢(xm,pma)(—nvxo—(xﬁ,ha»(—nvxo(xf,ba))(ss(r))z]ds
+0(8"),
where 8 € (0, %). Taking § — 0 yield that the second order Vlasov equation

oF(t,x,p)=—V,-| F(t,x, p)— + V- | Ft,x, p)—
ap ax

A ey (M 2
= s X, ‘N —— -
2 5rp Pr\ ox " Tox

This implies that when we consider the joint distribution on £2, the density function satisfies
the second order Vlasov equation. However, when we consider the conditional probability
on £2 instead of £2, the conditional joint probability of Wong—Zakai approximation satisfies
the following first order Vlasov equation,

9 H, 9 H
B,F‘S(t,x,p)=—VX- F‘S(t,)c,p)—O +Vp- F‘S(t,)c,p)—O
ap ax
0H \ .
+Vp- (Fa(ﬁxs P)i) &s.
ax
Its limit equation becomes

dHy dHy
dF(t,x, p) = — F(t, x, p)— dt+V, F(t,x,p)a— dt
ap X

Hi
+V,- (F(t,x, p)—) odB;.
0x

@ Springer



Journal of Dynamics and Differential Equations

3.2 Stochastic Euler-Lagrange Equation in Density Space

In this section, we consider the kinetic Wasserstein Hamiltonian flow with random perturba-
tion, i.e., the second order stochastic Euler-Lagrange equation from the Lagrange functional
on density manifold. Let .2 = (T¢,T). The density space Z(.#) is defined by

P(M) = [pdvol‘/ﬂp €EEC(A), p > 0,/ pdvol 4, = 1] .
M

Its interior of &2 (.#) is denoted by &, (.#). The tangent space at p € Z,(.#) is defined by
Ty Po(M) = {K € %"O(t///)lf kdvol 4 = 0} .
M

Define the quotient space of smooth functions .# (#)/R = {[®]|® € €°°(#)}, where
[@] = {® + c|c € R}. Then one could identify the element in .7 (.#)/R as the tangent
vector in T, 2, (.#) by using the map O : F(A)/R — T, Po(M), Op = =V - (pVP).
The boundaryless condition of .# and the property of elliptical operator ensures that @ is
one to one and linear [15]. This implies that % (.Z)/R = Z]* Py (M), where ,7/)* Do (M)
is the cotangent space of Z,(.#). The L2-Wasserstein metric on density manifold gw :
TP (M) x Ty P (M) — Ris defined by

gw (K1, k2) = / (VO, V&) pdvol 4 = / K1(=Ap) kadvol 4,

where k| = O¢,, ko = Og,, and (—Ap)T is the pseudo inverse operator of —A,. In the
deterministic case, it is known that the critical point of

1 1 1
“W2(% ply = inf {/ff a,adldt}
7 (0", 0") p,e;?{lgw/) ], 2gw( 1 01, o )dvol g

satisfies the geodesic equation in cotangent bundle on density manifold (see e.g. [18]), that
is,

0rpr ==V - (0 VP,),
1
¥ = —5|V@t|2+ct,

where @, = (—A p,)TB, pr, C; is independent of x € .. The above geodesic equation in
primal coordinates is the Euler—Lagrange equation,

0

$ 1)
t L(p1, 0 01) = —L(pr, 0rp1) + Cy,
88[,0; 8:0[

where .2 (p;, 8p) = 38w (31, 0 py).
Next, we consider the Lagrangian in density manifold with random perturbation,

1 .
ZL(p1, 01 01) = ng(atpt, 001) — F(pr) — X(pr)és(t),

and its variational problem /s (°, pT) = inf{fOT L(ps, 3 pe)dt]po = p°, pr = pT}. Recall
Pr
that by (3.3), we have that

Ap () ==V (0t V()), Adp, () ==V -3 V()).
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Theorem 3.1 The Euler Lagrangian equation of the variational problem I5(p°, pT) satisfies
Ot pr + T'w (001, 0 o) = —gradw F (o) — gmdwz(pt)és, 3.7

where grady F(o) = =V - (0V - F (o)), Tw@ipe, o) = Ao (=Ap) 000 +
% Ap V(=4 Y p;|?. Furthermore, Eq. (3.7) can be formulated as the following Hamiltonian
system

0pr +V - (0, V®;) =0,

1 )
0B+ LIV = = (o) — S (p0)és. (3.8)
2 3ps 0

where @; = (—A,, Y8, p; up to a spatially constant stochastic process shift.
Proof Consider a smooth perturbation €/, satisfying f o mdvol gy = 0,1t € [0,T] and

ho = hr = 0. Applying Taylor expansion with respect € and integration by parts, using
ho = hr = 0 and the fact that ./ is compact, we get

T
/ L(pr + €hy, 0 pr + €0;hy)dt
0

T T $
=/ f(pz,azpz)dﬂre/ / (*iﬂ(pnamz) f(pz,azpz))
0 o Ju \ép: 53[:
- hydvol 4 dt 4 o(e€).

Similar to the proof of [15, Theorem 1], direct calculations lead to

L(pr, br) = 9 ((—Ap) 8 1)

)
aa, pr
= (=Ap) 0 pr — (= Ap) (= 20,0 (= Ap) 011,

1 s 8
73(,01, fr) = —*VI( A )3r/0z| ~ 3 F (o) — — Z(p1)Es (1),
01 8pr

which, together with the property f  ludvol =0, yields (3.7) up to a spatially-constant
stochastic process shift by multiplying A, on both sides. By introducing the Legendre
transformation @, = (—Ap,)Tap,, we obtain Eq. (3.8) from Eq. (3.7). ]

Note that the formulation Iy for 0, p is called as the Christoffel symbol in density manifold
[15]. The dual coordinate @; = (—A p,)TB, pr is obtained via the Legendre transformation,
which is the key to derive the kinetic Hamiltonian formulation. However, it is still hard to use
the Christoffel symbol and Lagrangian functional to derive general stochastic Wasserstein

Hamiltonian systems.

Proposition 3.2 The Euler—Lagrange equation of the variational problem I(0°, pT),

T 1 T
I(po,pT)=/0 <§gw(3rpz,8tpr)—ﬁ(pz))dt—/o X (pr) odB(t)

satisfies

Ot pr + T'w (001, 0 pr) = —gradw F (o) — gradw X (p;) o d By, (3.9)
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where p; is F;-measurable. Furthermore, Eq. (3.9) can be formulated as the following
Hamiltonian system

00t +V - (0:VPr) =0,

1 ) )
P+ IV, |* = ——F(p) — — Z(p1) 0dBy, (3.10)
2 Ly 80

where @; = (—A,, Y8, p; up to a spatially constant stochastic process shift.

Proof Consider a smooth perturbation €A, satisfying f y hdvol g = 0,1t € [0,T] and
hg = hr = 0. Denote 4 (p¢, 0;p1) = %gw (001, 0:pr) — F (pr). Recall the equivalence
of stochastic integrals between It6 sense and Stratonovich sense (see e.g. [37]), i.e., for
M(t) = [y X(s) o dW(s), it holds that M(r) = [y X(s)dW(s) + 3(M(")),. Here X(s) is
F;-measurable such that the quadratic variation process (M (-))s is well-defined for s > 0. By
our assumption that 9,0, € J,, (), there exists some &P, such that &, = (—A p,)TE), Ot
This yields that [ X (o) 0 dB(1) = [§ £(p)dB () and that [ [ , 52 % (p,) - hdvol 4 o
dB(t) = f(; f// B%E(p,) - hydvol 7 d B(t) since their quadratic variation processes are 0.
As a consequence, we have that

T 1 T
/ ng(arpt +ehy, 0 o1 +€hy) — F(or + €hy)dt — / X (pr +€hy)d B,
0 0

T T
- / Loor, don)dt + / S(p)dB,
0 0

T 8 8
+ 6/ / <7$0(pt, 0:0r) — 0 Lo(pr, atpt)) - hydvol 4 dt
o J. \Sp: 89, pr

T
)
+ef / — X (o) - hydvol y d By + o(e).
o J.ur Spr

Similar to the proof of Theorem 3.1, we obtain (3.9) and its equivalent Hamiltonian system
(3.10). O

3.3 Generalized Stochastic Wasserstein—~Hamiltonian Flow

In the last section, we show that the density of a Hamiltonian ODE with random perturbation
satisfies the stochastic Wasserstein Hamiltonian flow. In this section, We derived the general
stochastic Wasserstein Hamiltonian flow via the random perturbation in the dual coordinates
in density space. It provides a more general framework that can derive a large class of stochas-
tic Wasserstein Hamiltonian flows which can not be obtained from the classic dynamics with
perturbations.

Let.# = (T¢,T). We introduce the following variational problem

I5(0°, o) = inf{.L (pr, PN Ap @1 € Ty, Po( M), p(0) = p°, p(T) = T} (3.11)

whose action functional is given by the dual coordinates,
T T
S (pt, Dr) = _f (D(t), O pr) + H(pr, Pr)dt + / J (01, Pr)dEs(1).
0 0

Here (o, @) = [, 3IV®:Ppidvoly + F(p)), Hior, @) = 1 [, 51V
dvol y +1n1X(pr), & and X are smooth potential functions.
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Theorem 3.2 The critical point of the variational problem I5(0°, pT) satisfies the following
Hamiltonian system

dpr + V- (o VD) + 1V - (0, VP)Es =0,

1 1 . ) ) .
9Dy + IV * + 1= |V, 12 = ——F () — n—Z(p)&s, (3.12)
2 2 80; 3o

where (1 + .";-'5 )P, = (—Apt)T3t pr up to a spatially constant stochastic process shift.

Proof Consider the perturbations on p and @. Following the arguments in the proof of
Proposition 3.2, the critical point satisfies that

S (pr + €8ps, Py + €5P;)

T T
— (o ) — € / (D (1), 3y5p0)dt — € / (5(1). dypi)di
0 0
L) 5
+e | — o, P)Spr + —— o (pr, PSP, dt
o 8o 8,
L 5
+ 6/ — 0 (pr, P1)pr + —— 1 (ps, P;)6P:dEs(t) + 0(€)
0 00 3,
T T
— S By + € / (0, (1), Spr)dt — € / (5(1). d,p1)di
0 0
Tl )
+e€ — (o1, D1), 8pt ) +\ —— (o1, Pr), 6D, ) dt
0 \dp 8,

rrs 8
+ 5/ < — (o1, Py), 50t> + <7e%pl(pt’ D,), 8(Dt>d§5(1‘) + o(e).
0 \4p: 3P,

Taking ¢ — 0, we obtain that
8 8 .
orpr = —H(pr, P — (s, @ t
1 Ot 50, 0(pr, Pr) + 5o, 0 (o1, @r)és(1)

3 8 .
0Py = —— (o1, D) — —H0(pr, Pr)Es (1),
301 31
which leads to (3.12). ]

Similarly, consider the action functional

T T
S (o, D) = —/ (D(t), odp) + (01, Pr)dt + / O (pr, Pr) odBy
0 0

over the F;-adapted feasible set, we obtain the following result.

Theorem 3.3 The critical point of the variational problem I(p°, pT) defined by
1%, p") = inf((pr, @1)1p(0) = p°, p(T) = pT})

satisfies the following Hamiltonian system

0pr + V- (0 V®P) + 1V - (0,VP)odB; =0,

1 1 1) 1)
9 Pr + IV, > + 0= |V, > 0dB, = ——F(0r) — n—2(py) 0 d By (3.13)
2 2 8o: 3o

up to a spatially constant stochastic process shift on @;.
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Next, we show that the continuity equation and the velocity equation generated by @,

001 +V - (prv) +1V - (ptvt)éB =0,

. ) 3 .
0 v + Vv + Vo - vigs = =V—F(p) —n—VIZ(p1)&s (3.14)
S0 01

is convergent to the corresponding system driven by the Brownian motion.

Proposition 3.3 Assume that v(0,-), p(0,-) is Fo-measurable and smooth, F(p;) =
[y fpidvol y and X(p;) = [, opidvol 4 with f, o € C;(//{). Let p%, v® be the solution
of (3.14), and p, v be the solution of

01 + V- (ovr) + 1V - (prv) odB, =0,

) 8
8,1), + Vv, -V + T]V'Ut el dBt = _ng(/)z) — HVQE(IOI) o dBt (315)
1 t

Then there exists a stopping time T > 0 such that for any § > 0,

lim P( sup [1p? — prlzsocn) + 100 — vilrsocn)] > €) = 0.
=0 4ef0,7)

Proof Since .# is compact, f,o € C 2 (), similar to the proofs of Lemma 2.2 and Lemma
2.3, we can obtain the global well-posedness of the particle ODE systems

dX; = v(t, X,)dt + nv(t, X;) o dB;,
dv(t, X;) = =V f(X))dt — n¥Vo (X;) 0 d By,

and

dX? =%, X3)dt + nu(t, X2)dés,
dve(t, X%) = =V f(X%)dt — nVo (X°)dE;.

Following the arguments in the proof Proposition 3.1, we can obtain that there exists a stopping
time T > 0 such that X; is a smooth diffeomorphism before 7. Notice that the density function
0%(t, y) of X¢ satisfies p?(t, y) = |det(VX?(»))[0(0, X2 (y)). Since p(0, -) is smooth for
any fixed w and the pathwise convergence of X° holds, it follows that p® (¢, y) converges to
the density function of X, before t, whichis p (¢, y) = | det(VX,(y))|p (0, X;(y)). Similarly,
the pathwise convergence of v, X f (y)) to v(t, X;(y)), together with invertibility of X ?
and X/, implies the convergence of v3 (¢, x) to v(z, x) before T. m]

Remark 3.1 If one obtains the convergence of the Wong—Zakai approximations of the mean-
field SODEs,

dX; =v(t, X;)dt + nv(t, X;) odBy,

8
F(p(t, Xp)dt —nV ——=3(t, X;) o dBy,

dv(t, X)) = -V—
Sp(t, X1) dp(t, Xy)

then the convergence of (3.14) to (3.15) can be shown similarly before the stopping time ,
that is, the first time X, is not a smooth diffeomorphism on .# or X, escapes .# .
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4 Examples

In this section, we show that both the stochastic nonlinear Schrodinger (NLS) equation,
which models the propagation of nonlinear dispersive waves in random or inhomogenous
media in quantum physics (see e.g. [5, 23, 26, 38, 53]), and nonlinear Schrédinger equation
with random dispersion, which describes the propagation of a signal in an optical fibre with
dispersion management (see e.g. [1, 2]), are stochastic Wasserstein-Hamiltonian flows. We
also discuss that the mean-field game system with common noise (see e.g. [52, 56, 57]) is a
stochastic Wasserstein-Hamiltonian flow under suitable transformations.

4.1 Stochastic NLS Equation

The dimensionless stochastic NLS equation is given by
du = iAudt +ir f (u|P)udt + iu o dW;, 4.1)

where W; is a Q-Wiener process on the Hilbert space L?(;R) and f is a real-valued
continuous function. Since the Q-Wiener process W has the Karhunen—Loeve expansion
Wi, x) = Ziew Q%e,- (x)Bi(t) (see e.g. [24]), where {e;}icn is an orthonormal basis
of L2(#;R), and {B;}icy is a sequence of linearly independent Brownian motions on
(82,F, {F}i=0, P). We denote Ws(r,x) = > o+ Q%ei (x),Bf(t) as the piecewise linear
Wong—Zakai approximation (or other type Wong—Zakai approximation) of W and consider
the approximated NLS equation of (4.1)

ru(t, x) = iAy u(t, x) +ir f(lu(t, x)|2)u(t, X) +iu(t, ) Ws(z, x). 4.2)

We aim to prove that (4.2) is a stochastic Wasserstein Hamiltonian flow for any § > 0, and
thus its limit (4.1) is also a stochastic Wasserstein Hamiltonian flow. In the following, we
assume that f is a real-value function, W is smooth with respect to the space variable, and
(4.2) possesses a mild solution or a strong solution on [0, T'].

Denote the L2-inner product by (i, v) = % f v uvdvoly, where N is the real part of a
complex number. The variational problem on density manifold of (4.2) is

I5(0°, pT) = inf{.L (pr, PN Ap, @1 € Ty, Po( M), p(0) = p°, p(T) = pT}  (4.3)

whose action functional is given by the dual coordinates,

T T T
L (pr, Pr) = —/0 <¢(t)vatpt>dt+/0 Ho(pr, Pr)dt + Z/O (o1, D) (1).

ieNt
Here (o, @1) = [, IV®:pidvol 4 + 31(p) + F(py), Hi(pi, 1) = —Zi(p) =
—fa Q%ei,o,dvol///, F(p) = —% fa I f(s)dsdvol 4 with a smooth function f, and

1(p) = [, |V log(p)|*pdvol 4 .

In the following, we show the relationship between the the variational problem (4.3)
and nonlinear Schrodinger equation with Wong—Zakai approximation (4.2) by using the
Madelung transform [44].

Proposition 4.1 The critical point of the variational problem (4.3) satisfies the Madelung

system of (4.2) on the support of p;. Conversely, the Madelung transform of (4.2) satisfies
the critical point of (4.3) on the support of |u;|.

@ Springer



Journal of Dynamics and Differential Equations

Proof By studying the perturbation on the dual coordinates, the arguments in the proof of
Theorem 3.2 yield that the critical point of (4.3) satisfies

0rpr +2V - (0 VP;) =0,
8 8 .
0Py + VP |* = ~1/4—1(p) = - F (o) — Ws.
3p1 3o
Define a complex valued function by 7(z, x) = /p (&, x)el®®*) . One obtains the equation
of u(z, x) satisfying (4.2) on the support of p, by direct calculations.

Conversely, using the Madelung transform of the solution /p(t, 0eSEY =z, x)
where p = |u|? for (4.2). Then direct calculation leads to

o3 log(p)+iS (1 dhe 8,S>
2 p

lezlog(ﬂ)+lS 1V:0_|_ ivs +1e210g(p)+1s 1A,o+ AS—l V'O
2 p 2 p

2

+ie2 02OHS L () + W)

2
162 log(p)+iS 1 VIO
4\ p

14 1|V
_(vsR+il vs)+1ez‘°g<f’>+'5 2P s — - |22
P 2 p 2| p

)

+ie2 PEOHS G £ (p) + 8, W),
This implies that on the support or |u,], it holds that
dp=—2V-(pVS),
16 .
S =—|VSP = =—1I(p)+ Af(p) + Ws. (4.4)
4 5p
O

Based on the above result, taking spatial gradient on the potential S, we get the following
system with the conservation law

0o =—V-(pv),

0V = —va-v—Vx%%I(,o)—i-Zkaf(p)—i-ZVng, 4.5)
where v(f, x) = 2VS(t, x).

The following theorem indicates that the stochastic NLS equation is a stochastic Wasser-
stein Hamiltonian flow due to the convergence of the Wong—Zakai approximation. For
convenience, let us assume that .# = T¢ or R? and consider the case that W consists of
a finite combinations of independent Brownian motions, i.e., W(z, x) = le(v: 1 gk () Bi (1),
with g (x) € H"™ () N W5 () for some m € Nand k € N*. Here H” (.7), W5 ()
are the standard Sobolev space.

Theorem4.1 Let m € N and k € N*. Suppose that the initial value of (4.2) and (4.1)
ug € H™ is Fo-measurable and has any finite p-moment, p € NT, and that f is a real-valued
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continuous function satisfies

If Qul®u — (ool < LeR)lu—vll, llul, vl < R,
IfQuPyullg < Lp(RYA + lullgn), llulm < R,

where limg .o L f(R) = 00. The Wong—Zakai approximation (4.2) is convergent almost
surely to the stochastic NLS equation (4.1) up to a subsequence.

Proof Since the driving noise is real-valued, the skew-symmetry of the NLS equation leads
to the mass conservation laws for both (4.2) and (4.1). By the local Lipschitz property of
£ - 13)(-), one can obtain the existence of the unique mild solutions for both (4.2) and (4.1)
in ([0, T1, L?) by a standard argument in [24]. In order to study the converge in L, let us
define an approximation sequence ug ' € H', Ry — oo of the initial value ug, which can
be taken by using truncated Fourier series or spectral Galerkin method (see e.g. [19]). The
growth condition of f in H! and the uniform boundedness assumption of g lead to

B[ sup JufI35 ] = C(T. Ry, p) < 00, B sup [l I3 ] = €T Ry, 6, p) < o0,
1€[0,T] 1€[0,T]
where p > 1, limg, o0 C(T, Ry, p) = 00, limg, 00 C(T, Ry, 8, p) = 00. Meanwhile,

u,R', uf’Rl are convergent to u;, uf, a.s.in ([0, T]; L2) as Ry — oo, respectively up to a

.. . Rl R
subsequnce. The continuity estimate of u, ', u, " 5,

E[u® () = uP1 )] < €T, Ry, p)lt = 517,
B[ [lu®3(6) = uR1 3 )27 ] = (T, Ry, 8, p)(Ir = 517 + 1817,

can be obtained due to the mass conservation law and the continuity of ¢! However, to get
the convergence of (4.2), we need a priori estimate of 1 ®1-® which is independent of 8. To this
end, we study the enegry of the Wong—Zakai approximation, H (u) = f 7 %qu|2d vol 4 —

5Tulo u? f(s)dsdvol_ 4, and obtain

t
H@u® (@) = Hw®(0)) + / (Vi (s), iu® (s) VWO (s)).
0
By taking expectation, we get that

IE[ sup H(u‘s(t))]

te[0,T]

<E[HW O] +E[ sup | / (Vi ({51, i (51 VAW’ 5)

te(0,T]

t
+E| sup \ f[ | <Vu5([s]5),iu‘;([s]a)wwa(s»\]
ta

t€[0,7T]

tef

+E[ su \/ (Vi ([s1s), i (5) = (1) VAW )

tel0, T]

[
+8[ sm\/ (Vi ([s19), i ) = (1) VAW )|
[,
+E|

sop \ /0 <V(“8(S)—”5([816)),iua(s)dW‘s(s))H

t€l0,T]
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+1E sup ‘/ (VW (s) — ub([s]s)), i (s)dWS(s»H

teOT]
= E[H@ )]+ Vi + Va o+ Vs + Va + Vs + Vs,

Below we show the estimates of V; (i = 1, ..., 6). The Burkholder’s inequality and mass
conservation law lead to

T
vi <E[ /0 CCH @ ([115)) + Cllluol))ds .

Applying the Burkholder and Minkowski inequalities, and the mass conservation law, we
achieve that for T = K6,

v, =1+ sup. \ /[ (Vi ([515), iu® ([s15) VAW <s>>\ |
t l
K-1 . 5
<1+ E[ sup /(Vu‘s(tk),iu‘s(tk)VdW(s))‘]
k=0 te[titiq1] ' Itk
—1

1+C Z Z/ (Vi (1), i (tk)Vq,(x))zdt]

k=0 i=1
N

L+ C Y B[V {11 P (115) 1 g5 gl |

i=1

IA

IA

IA

N T
L+ Clu @I Y 14 1. /0 E[ Vi (1111 Jar
i=1

The definition of H leads to that there exists a constant C (||ug]||) depending on |ug| such
that

sup. | / (Vi ([s1s). iu ([S]a)VdWB(S))‘ ]
[t]s

ze[O T]
T
< 2C]uo|? Z 4 1. /O E[ H @ (1115)) |dr + Cluol).
i=1
The mild form of u®(s) — u®([s]5),
ub(s) — u®([s1s)

= (@207 — Dl ([s1s) + / AT (u® (P’ (r)dr
[s1s

s
+ / i 26 (AW (),
[

sls

together with the mass conservation law and |l — Hlem 2y < Ct% (see, e.g., [24]),
yields that

1ub (s) — u? [s1) 1| < Cllu ([s15) 1182 + L (ol + o)
+ CIIW ()5 + 8) — W(IsI)lllluoll- (4.6)
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By making use of (4.6) and the Burkholder’s inequality, we obtain

T
vs<cd +E[f0 V4’ [s5)11%ds )

W ([s1s +8) — W(Is1s) 1
b))

T
+ C(||uo||)lE[/0 Vil A1)+ ol (
FIW(Isls +6) — W([S](S)HLOO)dS:I
T
<C 1+IE/ H(u® ds|).
< Clluo (1 +E[ | - HG(sl)as )

Similar arguments yield that

t
V45€1E[ sup / ||Vu5([s]a)||2||vv([s]s+5)—W([s]ls)na*%ds]
1€[0,T] J[t]s

(||W<[s]5 +8) = W(Is1y) 3

+C(|IM0I|)]E[ sup / IV (Is1) 1 (1 + lluoll) 5

1e[0,T1Jtls
+IW(Iss +8) = W(IsIp)ll o )ds |

5C8E[ sup H(u5<[s]a>>]+c<||uo||>8.
s€[0,T]

The estimates of Vs and Vg are omitted here since they are very similar to those of V3 and
V4. We conclude that

Vi+Vo+V3+Va+Vs+ Vg

< Co[ sup HG )]+ CE f (G [115))di | + Clluol).
t€[0,T]

Thus, we obtain IE[ sup H(u‘s(t))] < C(T, Ry, |lugll) by using Gronwall’s inequality and

1€[0,T]
taking § small enough. Similarly, it holds that for any p > 1,

E[ sup Hp(u‘s(t))] < C(T, Ry, luoll, p),
t€(0,T]

B[ a2y — uR1 3 )127] < €T, R p) (It = 517 + 1817).
Next, it suffices to prove the convergence of the Wong—Zakai approximation. To this end,

we consider a stopping time t = inf{¢ € [0, T u® (0)| = R or ||u®B1([t]s)] > R}. In the
following, we omit the supindex R;. Applying the chain rule, we obtain that for r < 7,

lu(e) — u’@)1* = u(0) — u® ()|
t
2 /0 (f (u()Pus) —if (u’ ()Pud(s), u(s) —u’(s))ds

t 1 N
2f0 (u(s) =’ (), =5 D laePu(s))ds
k=1
t
+2/ (u(s) — ub(s), iu(s)dW(s) — iu® (s)dWs(s))
0

@ Springer



Journal of Dynamics and Differential Equations

t N
+f Z/ u(s) gk |*dvolyds
0 oy

¢ t N
5/0 2Lf<||u<0>||>||u<s>—us(s>||2ds+/0 (W ($), Y lgr|*u(s))ds

k=1

t t
—2/ (u(s), iu® (s)dW° (s)) —2/ W (s), iu(s)dW (s))
0 0

t t N
< /0 2L £ (lu(0) D llus) — u®(5)°ds + /0 (W ($), ) lgk|Pu(s))ds

k=1

t t
-2 fo (u(s), i’ ([s1s)d W (s)) — 2 /0 (u(s), i@’ (s) — u ([s15))dW°(s))

t

t
-2 /0 (W’ ([s1s), iu(s)dW (s)) — 2 /0 W’ (s) — u’ (s1s), iu(s)dW(s))
t
= / 2L (u () IDlu(s) — ul () |°ds + I11) + 11 + 113+ 11y + 5.
0

For the term 711, the property of Wiener process, the mass conservation law, Holder’s
and Young’s inequality, as well as the property of the martingale, yield that

[t]s
E[IIDL] < -2 /0 E[<u(s> — u([ss), iu‘S([s]s)dW“(s»]
[t]s 1
-2 / E[ (u(is1y). i’ (s1)d WP (s) | + Co?
0

[t]s s
B[ /[ iu((r1)dW (), i’ (s1)d W’ (5)) ]

sls

< C(1 + Cr)s? —2/
0

[t s
2 [E[[ [ @A - 151 - Dinrind W i (skdw )]
0 [s1s

[2] s
<2 / BEW iu([r]g)dwm,iu“([s]s)dW%))]+c<1+cR>8%.
0 [s]s

Similar to 111>, we have that E[/114] < C(1 + CR)S%.
For the terms /7173 and 1115, by taking expectation and using the property |e

1
Il ¢ @ 12y < Cr2, the continuity estimate of u and the property of martingale, we arrive at

iAr _

[¢ls 8 S $
B[115] < - /0 2E [ (u(s) = u(ls]y), i () — u’ ([s15))d W’ (5))]
[t]s 1
- /0 2K (u(ls15). 1 (5) = u (151))d W ()] + C(1 + Cp)32.

[1]s s 1
= —f 2E[<u([s]5), i ([ iu‘s([r]g)dW‘s(r)> dW‘S(s))] + C(1 +Cg)é2,
0 [s]s

R[I115] < —21}3[/0[”5”[
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Due to the independent increments of W and the property of conditional expectation, we
obtain that

[t]s s
2 /O E[( /[ iu([rl)dW (), i (1s15)d W (5)) |

sls

|

=3

-1

b’,‘

Il
o

Tk+1
E| / " W (s) — W), u (1) (W (ter) — W ()8 |ds
173

=~
(=}

=

-1

N
=2 3 B [ Y . il Jas
173 ’ l

k=0 8

%‘

i=1

[11s s N )
= /0 E| W ([s15). Y lax Pulls1s))|ds.
k=1

On the other hand, f[ttlaE[(u‘S([s]g),ZfV:l |qi|2u([s]5))]ds < (6 due to the mass

conservation law and assumption on g;.
Combining the above estimates, we obtain that

E[lu() - u’0)]1]

< /, 2Lf(R>E[||u<s) - u5<s>||2] +C( + Cr)s2
0
t N
s 12
+ [ B[, > P s

[t]s s
—2 / E[( / iu(Irls)dW (), i (is15)d W (s)) |
0 [

sls

t
< [ 2L OBl — i 6)1P]+ €1+ Cs?

; N

+ [ B0, Yt Putn]as
i=1

[ts 5 N

- /0 E[ W ([s19). Y laiPu(s]) |ds.
i=1

Applying the Gronwall’s inequality and the continuity estimate of  and u®, we get
1
Efllu(t) — u’()II*] < C(1 + Cg) expQL ¢ (|u(0)[)T)82.
It follows that
P(Ju(t) —u’ ()] > €)

€

< P(|u®1 (1) —u(@®)| > g) +P(u (1) —u (1)) > 3

€ €
+P(lu®r @) — w1y > 3I=D +P(lufr @) — ufi @) > 31>
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Taking limiton§ — 0, R, Ry — 00, using the strong convergence estimate and Chebyshev’s
inequality, we obtain

. s
gf})P(llu(t) —u’(@®) > e€)

9
< lim —C(1 + Cg) expL (gl T)87
§—0 €

+ lim P(sup [lu(s)] = R) + lim P( sup [u’(s]s)ll = R | =0.
R—00  se[0,1] R—o00 s€[0,7]

Similarly, following the above arguments, we further obtain
limE | sup [u(t) —u@®)|?|=0,
=0 | ref0,1]

which implies that

lim P | sup |u() —ul@)| > €| =0.
8=0 \ref0,7]

[m}

Remark 4.1 Similar to the stochastic Wasserstein Hamiltonian flow induced by classical
Stochastic ODEs, one may expect the particle version of the stochastic nonlinear Schrédinger
equation (4.1), that is,

dX, =v(t, X,),

16
dv(t, X) = =Vx, 5 5106 X0) £+ 209x, [ (0(0. X)) + 29, 0dW (). (47)

But we have not found a rigorous way to prove it. This will be studied in the future.

4.2 NLS Equation with Random Dispersion

The dimensionless NLS equation with random dispersion is given by
| t . 5
du =iAu—m - dt +irf(lu|”)udt, 4.8)
€ €

where m is a real-valued centered stationary random process. Under ergodic assumptions
on m, it is expected that the limiting model when € — 0 is the following stochastic NLS
equation with white noise dispersion

du = ooiAu o dB; +irf(Jul>)udt, (4.9)

where 002 = ZIOOO E[m(0)m(t)]ldt (see e.g. [25]). For simplicity, we set op = 1 in (4.9)
throughout this subsection.

To see (4.9) as a stochastic Wasserstein Hamiltonian flow, let us use (4.8) instead of
Wong—Zakai approximations. Assume that the real valued centered stationary process m(t)

is continuous and such that forany 7 > 0, ¢ — € foz m(s)ds converges in distribution to a
standard real-valued Brownian motion B in € ([0, T]) (see e.g. [25]).
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First, using Madelung transform u(t, x) = /p(t, X)etSEx) gives

log(ﬂ)—HS(; 0 p n 8tS)

1Vp 1 Ap 1 Vo1 1
1ezlog<p>+nS(2 +iVS)2+<§—+ iAS - 3 ML ))fm(—z)

P € €
_’_ieélog(p)ﬁskf(p)
2
1e210g(ﬂ)+lS<1 (V,O) _ (VS)2 + i@ . VS)
4\ p P
1Ap 11Vp2\\ 1 t
(35, +ias =35 ) em(5)
+ie 0204 £y,
We obtain that
1 t
0p=-2V. (PVS)*m (Z) ,
1 t
0§ = (—IVSI - Z?I(p)> (?2> +Af(p), (4.10)

which can be rewritten as

1 t
dhp=—V-(pv)-m (7) s
€ €

18 t
ov = (—va v — 25 1(p)> (?) + 24V, f(p).

Based on the above calculations, following the similar steps in the proof of Proposition
4.1, we conclude the following result.

Proposition 4.2 The critical point of the variational problem
1%, pT) = inf {7 (pr, ®)|Ap, B: € Tp, Po( M), p(0) = p°, p(T) = pT}  (4.11)

whose action functional is given by the dual coordinates,

T

Hp e =~ [ (001,80 dr+/ %(p,,a>,>dr+/ Ay, @) m(6 )dz
0

satisfies (4.10). Here (01, @) = =+ [, 1§ f(s)dsdvol 4 with a smooth function f,

Hi(prs @) = [ 4 IV®: 2 prdvol 4 +51(p), where 1(p) = [ , |V log(p)|*pdvol -

It has been shown in [25] that the limit of (4.10) is the NLS equation with white noise
dispersion. Therefore, (4.10) is also a stochastic Wasserstein Hamiltonian flow on density
manifold.

Remark 4.2 The above system is also expected to have a particle version. By applying the
push-forward map in Sect. 3 on £2, the particle version of (4.9) is expected to be

dXt = U(t, Xt) OdBt
16
dv(t, X;) = —VX,Egl(P(I, X1)) odB; +2AVx, f(p(t, X1)).

We plan to study the well-poseness of the above mean-field stochastic ODEs in the future.
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4.3 Schrodinger Bridge Problem (SBP) with Common Noise

In this part, we indicate that the critical point of the Schrédinger bridge problem (SBP)
with common noise may also be a stochastic Wasserstein Hamiltonian flow. The SBP with
common noise is inspired by [9, 58] for the Schrodinger Bridge type problem in stochastic
case, where the common noise is added into the classical Schrédinger Bridge type problem
[12, 42]. This problem can be formulated as a stochastic control problem on Wasserstein
manifold:

mm |:f / f|v,(x)| or(x, w) dx dt] 4.12)
{ve} t€[0,T]
. . 8,0[( ) ) . _
Subject to: — T Vo (pr(x, 0)(vr + Alx, )W (w))) = Apy. (4.13)
and po(-, @) = pg, pr(-, ®) = Pp. (4.14)

The continuity equation (4.13) can be viewed as an SDE on the Wasserstein manifold &2, (]Rd),
which reads

dX; = v(t, X))dt +~2dB(@t) + A(t, X)) dW (1).

Here B is the Brownian motion which corresponding to the diffusion effect in (4.13), and W
is another Brownian motion which is independent of B and is called the common noise.
In the following, we consider the Wong—Zakai approximation of (4.12), i.e,

min |:/ / f|v,(x)| por(x, w)dxdt]
{ve}rero,

Subject to: W + V- (o (x, w)(v; + A(x, t)é(;(t)) = Ap;.

and po(-, @) = pa, pr(-, @) = Pb, (4.15)
and show that its critical point is a stochastic Wasserstein Hamiltonian flow.

Proposition 4.3 Assume that W is d-dimensional Brownian motion, £€° is the piecewisely
linear Wong—Zakai approximation of W. Let A(-, t) € %bl (R, Pas Pb € 2, (R?) be smooth.
Then the critical point of (4.15) satisfies

5 d
hpr =32 %(pz,CDz)JrZ (o1, @) ()i (1),

d

0B, = — o, D) — 3 i1, B E)i () (4.16)
Py = 510: 0(0r, Pt & 5,0( i\Ot, Pt §)i ) .

where #5(p, ) = 3[4 IV®Ppdvol.y —31(p), #(p, @) = [, pAldy, ®dvol 4 . Here
Al denotes the i-th column of the matrix A;.

Proof By using the Lagrangian multiplier method, the critical point satisfies
. 1
O pr + V- (p(VS + Ai€5(1))) = 2401 (4.17)

1 . 1
0;S; + §|VS,|2 + VS - As(@t) = —EAS,. (4.18)
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Applying the “Hopf-Cole" transform (see e.g. [41]) &, = S; — % log(p;), we obtain
dhpi + V- (pVP) + V- (p1Aids (1)) =0,
1 . 16
0D+ S|V, |*+ VD - Aids(1) = ——1(p),
2 8 dp
which implies (4.16). ]

The above result also coincides with the generalized variational principle (3.11) with the
action functional

T T d T

S pr, @) = — /O (@), 8 i)t + /0 Hopr, @od1+ Y /0 Hi (o, P8 (1),
i=1
whose critical point is the stochastic Hamiltonian system (4.16). From the proof of Proposition
4.3, (4.16) is equivalent to the forward and backward system which contains the backward
stochastic Hamilton-Jacobi equation (4.18) and a forward stochastic Kolmogorov equation
(4.17), and plays the role of characteristics for the master equation [9]. The derivation of
(4.16) may be extended to the mean-field game systems with common noise in [9, 11] up to
an [t6-Wentzell correction term [39]. If the Wong—Zakai approximation (4.15) is convergent to
(4.12), then the critical point of (4.12) is expected to be a stochastic Wasserstein Hamiltonian
flow. This will be our future research.

5 Conclusions

In this paper, we study the stochastic Wasserstein Hamiltonian flows, including the stochastic
Euler—Lagrange equations and its Hamiltonian flows on density manifold. First, we show
that the classical Hamiltonian motions with random perturbations and random initial data
induce the stochastic Wasserstein Hamiltonian flows via Wong—Zakai approximation with
Lagrangian formalism. Then we propose a generalized variational principle to derive and
investigate the generalized stochastic Wasserstein Hamiltonian flows, including the stochastic
nonlinear Schrodinger equation, Schrodinger equation with random dispersion and stochastic
Schrodinger bridge problem. The study provides rigorous mathematical justification for the
principle that the conditional probability density of stochastic Hamiltonian flow in sample
space is stochastic Hamiltonian flow on density manifold.
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A Appendix

Proofof Lemma 2.2 The local existence of (2.4) and (2.1) is ensured thanks to the local
Lipschitz condition of f and o. To obtain a global solution, a priori bound on Hy(x, p)
is needed. Denote the solutions of (2.1) and (2.4) with same initial condition (xg, pg) by
(2, p?),8 > 0and xto , p?, respectively. Applying the chain rule to Ho(x?, p?) for (2.4) and
(2.1), we get that

t
Ho(x}, pd) = Ho(xo,po)+/0 NV, Ho(x!, pd) - Vio (x5)Es(s)dss
T

Ho(x:, pr) = Ho(xo, po) + / nvaO(xm Ps) - Vy0 (x5)d By
0

1 [°
+ E/ nzvppHO(xm ps) - (Vo (xg), Vo (xs))ds.
0

By applying growth condition (2.3) and taking expectation on the second equation, we derive
that

t
Ho(x?, pf) < (Ho(xo, po) +nC1T) exp ( /O cnlés (9)lds )

2 2

EI:HO(XH Pz)] < (E[HO(XO, po)] + %CIT) exp (/Or Cl%ds).

. B, —B
The first inequality leads to Ho(x}, p?) < oo since &(s) = —SL—% if 5 € [1, tr41]-

Furthermore, taking expectation on the first inequality, applying Fernique’s theorem (see,
e.g. [27]) for Gaussian variable and independent increments of B;, we get that

E[ Hox], pD)] = €T, n, en) @FE[ Hotxo, po)] + 1),

where [w] is the integer part of the real number w. The second inequality yield that
Ho(x;, p;) < o0, a.s, and the global existence of the strong solution of (2.4). Similarly,
for p > 2, we have that

E[H (). pD)| = €T .1, €1, p27 S (B[ B o, po)] +1)),
E[H{ (1, po)] = (T, n, e, p) (E[HY (o, po) | + 1).
Furthermore, applying the above bounded moment estimate, we obtain that for s <z,
E[lx() = x)P? + p(®) = p)I*?]| = C(T. .1, 1o, €. p o, po)lt = 517
E[x0) = X’ PP + 1p0) = p&)P?] = C(T. .1, €1 co, €, paxo, po)2 e =517

However, the above estimate of x® is too rough and exponentially depending on %. As a
consequence, we can not expect any convergence result. A delicate estimate of (x%, p?) is
needed.

Assume that ¢ € [t, tx+1], tx = k§. Then by using the expansion of (2.1), we have that

k=1 gy
Ho(x}. p?) = Ho(xo, po) — » / NV Ho(x), pY) - Vo (x2)dEs(s)
j=0""1
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t
_/ NV Ho(x!, pd) - Vio (x2)dEs(s)
Tk
k=1 ot
= Hy(xo, po) — Z/ anHo(xff, pf].) . an(xfj)dgg(s)
—~J, i

t
- / anHo(ka, pfk) . on(xfk)dgg(s)
Ik

k—1

i+ : 5 8 5
—Z/ n(/ Vo HoGl, pl) - (Vao (),
tj tj

j=0
— Vo (x2)Es(r))drés(s)
s 1
+/ VopHo(x!, p) - (Voo (x)), —E(Pf)deg_l(x)pf
1j

— Vi f(x2))drés(s)

+ f V) Ho(l, p°) - Viexo (6™ (x2) pladrés(s)
}

J

+ f Vi HoGed, p) - (Vao (eDs(s), g~ ) phdr ) ds
y

J
t s
- / 1 / VopHo(xy, pf) - (Vo (), =nVxo (65 (r)drés (s)
I I
s 1
+ / Vo HoCel, pl) - (Ve (), =5 (D) Tdeg™ (D]
179
— Vo fD))drés(s)
+ / TV, HoGe? pY) - Vo (g~ () pldrs (s)
179

N
4 [ pcHad 2 (o Do), g ) pihdr)ds
173
k—1
=: Hy(xo, po) + Z I} + Ikl ()
j=0
k—1
Y P+ 1P+ IP+ Y+ B )+ 1RO + 1P 0 + 12 0).
j=0
Making use of the growth condition (2.3), we have that

k—1
YU HIPHIP+ Y+ O+ PO+ PO+ 170
j=0

k=l i .
<y f (C1 + c1Ho(x), p)))Iés(s)|*8ds
j=0""1

il G .
+ 3 [ e e pléso)isds
j=0"1
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t t
+ f (C1 + c1Ho(x?, p2))Iés(s)|*8ds + / (C1 + c1Ho(x?, p))|Es(s)|8dss
tr Ik

t t
= /0 (Cy 4 c1Ho(x?, p2))Iés(s)1>8ds + /0 (C1 + c1Ho(x?, p2))|&s(s)I8ds.

By using the Gronwall-Bellman inequality, we obtain that

t k—1
Ho(x}, p}) < exp(/0 c1(€s ()1 + &5 (s)Ddds) (Ho(xo, po) + CT +1 Y I} + LL(1)).
j=0

For simplicity, assume that T = K §. Denote [t]s = ty = k§ if t € [tx, tr+1). The definition
of &s(s) yields that s € [¢;,#j41]

15 ()128 + |5 ()18 = ‘M

|2a+‘ B(tj+1) — B(t))l.

Define a stopping time tz = inf{t € [0, T]| fo[t]a |€s|28ds > R}. The stopping time is well-

defined since the quadratic variation process of Brownian motion is bounded in [0, T]. Then
taking ¢ < T and using Holder’s inequality, then it holds that

t
Ho(x}, p?) < exp( /1 J c1(1&()1* + 1ésds) exp(C (R + T)) (Ho (x0, po)
t
k—1
+CT+|)Y I+ L)
j=0
t 3 . 5
<exp ( f[ o Glé )l )ds) exp(C (R + T)) Ho(xo, po)
t
ro3 [1]
+exp(C(R + T)) exp ( f ¢ —|ss<s>|2ds> ‘ f
2 0

n ;plio('xﬁy]aﬁ Pﬁv]é) - Vyo (x[s]g)dB(S)’
/t
[7]

=V Ho(xly), Py - Vo (xis),)Es (s)ds| . (A1)

t 3 .
+exp(C(R+T)) eXp(/[](mEISa(S)IzdS)
t

Similarly, one could obtain a analogous estimate of (A.1) with the integral over [#;_1, ],
where #, k < K, tx < tr. By the Cauchy inequality and taking expectation on both sides
of (A.1), applying the Burkholder—Davis—Gundy inequality (see e.g, [35]) and using the
independent increments of Brownian motion, we get

E[H3(x), po)]

I
< 3E[exp( [ Gerlés(s)%ds) | exp@C(R + TE[ H3 50, o)
tr—1
t tk—1
+3exp(2C(R + T))E[exp (/ 3¢ |g',g(s)|2ds)]IEH /0

k-1
]

— 0V Ho(x{g,. Ply),) - Va0 (x153,)d B(s)
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173
+3exp2C(R + T))E[exp (f

k-1

2
X [0V Ho(_,. ph ) Vo ()]

3erlés () 2ds ) 1B () — Bt

179 .
< 3E[exp( [ Garlés(s)%ds) | exp@C (R + TE[ H3 50, o)
tk—1

+3exp2C(R + T))E[exp (/tk 3e lés (s)|2ds)]

Ix—1

Tk—1
[ fo (€1 -+ ey ol ply, ) s

3

+3exp@CR+ TVE[exp ([ 3ealdso)Ps) B00) ~ Boi-)P ]

tk—1
X E[ (€1 + et H(xh_ . )]

Applying the Fernique theorem and choosing sufficient small é such that 12¢1§ < 1, then
we have that

E[exp(/tk 3elés(o)Pds) | = €,

Tk—1

Blexp( [ 3e1lés(o)ds) Bw) - Bu-P]
tk—1

< \/E[exp (/, 6c1|s'a<s>|2ds)]\/E[|B(rk> ~ B-nl] = cs.

k—1

The above estimation gives

E[Hj (x)). p))] < 3exp(2C(R + T))CE[Hj (xo, po)]
Tke—1

+ 6exp(2C(R + T))C/ JE[(C12 + et Hy (. p?S]a))]ds
0

+6exp(2C(R + T)caE[cf +AHS L )].
Then the Grownall’s inequality yield that
E[H(x), p3)] < exp(6TCc} exp(2C(R + T)))
x (3 exp(2C (R + T))CE[HE (x0, po)] + 6C3TC exp(2C (R + T)))

Combining the above estimates with (A.1) and the Burkholder-Davis—Gundy inequality, we
conclude that

sup E[HZ(x?, p?)] < (exp(6T Cc? exp(2C(R + T))) + C)

tef0,TR)
x (3 exp(2C(R + T))CE[HE (x0, po)] + 6C3T C exp(2C(R + T)))
=: Cg.
Similarly, by choosing sufficient small §, we have that for 7 € [0, %),

E[H] (x, pP)] < Cr,p < 0.
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As a consequence, by again using (A.1), we obtain that

E[ sup  HJ (x?, pf)] < Cg,p < 00.

te[0,TR)

Next we show the convergence in probability of the solution of (2.1) to that of (2.4).
Introduce another stopping time tg, := inf{r € [0, T1||x;|[+|p:| = Ry, |x{, [+1p, | = Ri}.
Lett € [0, g A Tg,). By using the polynomial growth condition of f, o and the fact that o
is independent of p, we obtain that

X2 () — x(0)]?
t
= 1x°(0) — x(0)]* + /0 2(x%(s) —x(5), g (X (s)) PP () — g (x(5)) p(s))ds
t
< |x“(0>—x(0>|2+/0 Co(1+ [p)DUx°(s) — x> + 1P (s) — p(s)P)ds,
1P’ (1) — p)?

t
= /0 (=) Tdeg 'GP ()PP (8) + p(s) Tdeg ™ (x () p(s), p°(s) — p(s))ds

/ 2=V f(x°(8)) + Vi f(x(5)), p(s) — p(s))ds

(=)

t
t
/ 20(p°(s) — p(s), Vxo (x°(s))dEs(s) — Vyo (x(s))d By)

(=)

+

t

<G, fo A+ X2 ODAPS S + 1p© D UP°(s) — p$)I* + x°(s) — x(s)|P)ds
t

+cf/ (L+ &P + 12517 (s) — p&)P + 1x°(s) — x(s)|*)ds
0

t
— /0 20(p%(s) — p(s), Vea (x°(5))dEs (s) — Vo (x(s))d By),

where Cg and C are constants depending on f and g. To deal with the last term, we split it
as follows,

/0 2P (5) — p(s), Vo (6P (5))ds () — Voo (x(5))d By)
=21 fo (P (I51) — plIsh). Vao (P ()dEs(s) — Voo (x(s))dBy)
+21 /0 (PP() = p(s) — pPs15) + plIsly). Voo (0 ($))dEs(s) — Vo (x(5))d By)
=2 fo (P (Us1s) — plisl). Voo (P (Isl)des s]s) — Voo (x(Is]s)dBy)

t
+2n /0 (P°(Is1s) — p(Isls), (Veo (x°(5)) — Vio (x°([s15)))dEs (s)
— (Vyo (x(5)) — Vo (x([s]5)))d By)

t
2 /O () — p(s) — p*(Ls]s) + (s,

V.o (x°([s15))dEs(s) — Vo (x([s15)d By)
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t
+ 277/0 (P°(s) = p(s) = p°(Is1s) + p(Usls), (Vao (x(s) — Voo (x ([515)))dEs (5)
— (Vxo (x(s) — Vxo(x([s]s))d B)
= 11"+ 1P+ 10 + 11

Taking expectation on /1, using the property of the discrete martingale, the a prior estimates
for Hy(x;, p;) and Hy (xf , pf) and Holder’s inequality, we have that

E[l1'1=0,

t
21177 < 20 [ B[l = p(ish),
o) ¢ 6 Odrdes )]
sls
t
—2n [ B[tk - pitsh),

s

[‘] (Vexo (x(r) - (g7 8 (r) p? (r))drst)]
sls

< C(R))57.

Similar arguments lead to E[714] < C(R;)82. For the term 113, applying the continuity
estimate of x; and x;;, as well as independent increments of the Brownian motion, we get

E[/17]

. [tls  ps s
EC(R1)87+27721E[ / </ Vo (xf,)dEs (r) — / V0 (x(1,)d By,

0 [s]s [s1s
V2o (P ([s15)dés (s) — Vao (x(is1)d B )

i [t]s —
< C(RST +20°E[ fo 90 G ) P28 (51, +5) — B((s1)%ds |

)
) 2 [ts k) s —[sls 2
- 27E| [ Vo), Ve i) i (B sl +8) — Blsh) ds)

(s B §)—B

| /0 (Voo (xdy), Vo (agag)) DB F ; ([‘]5)(B(s)_3([s]5))ds]
(s B 8)—B

+2i7E| /0 (V20 i), Va0 g BT B 5y ]

[t1s
IE[|VXU(X€S]5) - an(x[s]5)|2]ds

< C(R)8? +2n2/
0
t
< C(R))s? +f C(RDE[[x? — x,[2]ds,
0

where C(R1) > 0 is monotone with R;. Combining the above estimates, we achieve that

t
E[|x*(r) — x()*] < /O Co(1 + Cr)(E[x°(s) — x(s)[*]

+Elp°(s) — p(s)I*Nds
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t
E[1p%(t) — p(1)*] s/o (Cq + C )1+ Cr)E[x°(s) — x(s)]*]

+E[Ip(s) — p(s)PDds + C(R)S?.
Then the Gronwall’s inequality implies that
E[1x* (1) — x(0) 21 + Ellp*(1) = p()[*] < exp(2(Cy + Cp)(1 + Cr)TIC(RDSZ. (A2)
By making use of (A.2) and Chebshev’s inequality, we conclude that
P(x°(t) — x()| + P (1) — x(0)] = €)
<P @) — x|+ 1p° () — x| = e} N{r <o} N{t < 8,
+P{IX° () — x| + 1p° (1) —x()] = e} N {t > r})
+PAIX° ) — x|+ 1P () — x| = e} N{r < )N {t = 18,
E[1x(0) = x P + 1p*() = x ()]
<2

€2

E[ fy e Pods|  E[lv®l+ 1p0)]+ 1 0] + 19 ()]
+

R + R

- 1 C 1+Cg
< G—Zexp(Z(Cg+Cf)(l+CR1)T)C(R1)52 +E+C Lok,
1

Here, E[lx(t)| + [p®)| + X0 + [p°OI] < C(O + Cg) is ensured by
E[ sup H()z(x;s,pf)] < Cg. Taking limit on § — 0, Ry — 00, and R — o0 leads
r€[0,7R)

to

lim P(1x* (1) = x(0)] + 1p°(0) = p(1)| > €) = 0.

8—0
Similarly, one could utilize the properties of martingale and obtain the following estimate,
for large enough g > 0,

El1x* (1) — x()9] + E[|p° (1) — p()]9] < C exp(C4(Cq + C5)(1 + Cr)T)C(R)ST .

This implies that for large enough g > 4,

E[sup sup |¥'(0) = x|+ E[sup sup 1p°(0) = p(0)l]
k<K te[tey,t] k=<K t€[tr—1.4]

K—-1

=Y B[ s WOl | +E[ s 1p°0) - pe))]
k=0  tEln-1.0] telty—1.5%]

< C,K exp(Cy(Cq + Cy)(1 4 Cr,)T)C(R;)83 !

< C,exp(Cy(Cq + Cp)(1 + Cr)T)C(R)82 2.

Combining the above estimate and applying the Chebshev’s inequality, we further obtain

limP| sup |x5(t) —x(@)| 4+ sup |p8(t) —p@)|>€)=0.
5=0 \/ef0,7] 1€[0,T]
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