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Abstract

Meiotic recombination is both a fundamental biological process required for proper chromosomal segregation during meiosis
and an important genomic parameter that shapes major features of the genomic landscape. However, despite the central
importance of this phenotype, we lack a clear understanding of the selective pressures that shape its variation in natural po-
pulations, including humans. While there is strong evidence of fitness costs of low rates of recombination, the possible fitness
costs of high rates of recombination are less defined. To determine whether a single lower fitness bound can explain the vari-
ation in recombination rates observed in human populations, we simulated the evolution of recombination rates as a sexually
dimorphic quantitative trait. Under each scenario, we statistically compared the resulting trait distribution with the observed
distribution of recombination rates from a published study of the Icelandic population. To capture the genetic architecture of
recombination rates in humans, we modeled it as a moderately complex trait with modest heritability. For our fitness func-
tion, we implemented a hyperbolic tangent curve with several flexible parameters to capture a wide range of existing hypoth-
eses. We found that costs of low rates of recombination alone are likely insufficient to explain the current variation in
recombination rates in both males and females, supporting the existence of fitness costs of high rates of recombination in
humans. With simulations using both upper and lower fitness boundaries, we describe a parameter space for the costs of
high recombination rates that produces results consistent with empirical observations.
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Significance

Meiotic recombination is an important cellular process required for proper chromosomal segregation and a fundamental
genomic parameter that shapes major features of the genomic landscape. However, despite the central importance of
this phenotype, we lack a clear understanding of the selective pressures that shape its variation in natural populations,
including humans. In our manuscript, we model recombination rates as a quantitative trait under a wide range of fitness
landscapes and test the resulting predictions using a large, published data set on recombination rates in humans. We
make new inferences about the selection pressures that shape the variation in recombination rates in humans and pro-
duce empirically testable predictions.

Introduction thereby modulating the efficacy of selection (Muller 1964;
Meiotic recombination, alongside mutation, generates and Hill and Robertson 1966). Recombination is also vital to suc-
maintains the diversity of life on Earth. Crossover events cessful reproduction in most eukaryotes. The physical bind-
increase genetic diversity among offspring by creating new ing between sister chromatids that occurs during a
combinations of alleles not present in the parental genomes, crossover event provides the tension required to pull the
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correct complement of chromatids into each pole (Roeder
1997). Errors result in aneuploid gametes that typically do
not produce fertile offspring (Hassold and Hunt 2001).

The recombination rate, the number of crossover events in
the genome per meiosis, is not evolutionarily conserved
(Stapley et al. 2017). Rapid divergence of the genome-wide
recombination rate has been repeatedly documented be-
tween dosely related species (Smukowski and Noor 2011;
Burri et al. 2015) and subspecies (Dumont et al. 2011;
Peterson and Payseur 202 1). Within populations, the recom-
bination rate can vary dramatically between sexes (Burt et al.
1991; Sardell and Kirkpatrick 2020) and between individuals
(Broman et al. 1998; Kong et al. 2010). Importantly, heritable
genetic differences between individuals underlie this vari-
ation, indicating that the recombination rate can evolve
(Fledel-Alon et al. 2011; Johnston et al. 2016; Kawakami
et al. 2019). Genome-wide association studies (GWAS) dem-
onstrate that the recombination rate is a moderately complex
guantitative trait with a modest component of additive gen-
eticvariance (Kong et al. 2008, 2014; Chowdhury et al. 2009;
Dapper and Payseur 2017). In humans, at least 13 autosomal
loci contribute to the variation in recombination rates (Kong
et al. 2014), and narrow-sense heritability (h?) is estimated
to be 0.18 and 0.30 for males and females, respectively
(Fledel-Alon et al. 2011). However, this is likely an underesti-
mate, as GWAS is limited by statistical power to find all loci
that influence a trait.

While any trait with heritable variation may evolve, selec-
tion can only act if this variation impacts fitness.
Understanding how selection acts on recombination rates
is notoriously tricky because the recombination rate may
impact fitness both directly, due to its impact on gamete
viability (Hassold and Hunt 2001), and indirectly, due to
its impact on genotypic variability among offspring
(Barton 1995a; Otto and Lenormand 2002). Theoretical
and empirical studies have identified a suite of potential se-
lective pressures that stem from the direct and indirect con-
sequences of recombination rates and can favor both
higher and lower rates (Feldman et al. 1980; Hassold and
Hunt 2001; Otto and Lenormand 2002; Halldorsson et al.
2019). While recent studies suggest that differences in re-
combination rates between populations may be adaptive
(Samuk et al. 2017, 2020; Dumont 2020; Neupane and
Xu 2020), no conclusion has been reached on which select-
ive pressures predominantly shape the observed variation.

Aneuploidy represents the most dramatic and direct fit-
ness consequence of variation in recombination rates. In
humans, this fitness cost manifests, in most cases, as the
spontaneous abortion of aneuploid embryos (Hassold and
Jacobs 1984; Hassold and Hunt 2001). The mechanistic re-
quirement of at least one crossover per chromosome,
coupled with the evolution of genome size and structure,
has been proposed to explain the broad, taxonomic pat-
terns of variation in the trait (Lynch 2006). While it is clear

that recombination rates below one crossover per chromo-
some experience strong fitness consequences, generating a
discrete lower fitness bound on the trait, the direct fitness
consequences of high rates of recombination are not well
defined. Recombination involves damaging DNA, then re-
pairing the damage using its homologous chromosome as
a template (Gray and Cohen 2016; Crickard and Greene
2018), which can lead to mutations (Arbeithuber et al.
2015; Halldorsson et al. 2019). High recombination rates
can also pose threats to genomic integrity. Certain regions
of the genome are susceptible to ectopic recombination,
which can change gene dosage and generate missense mu-
tations. Both outcomes are highly deleterious (Coop and
Przeworski 2007).

Theoretical models demonstrate that the pressure to de-
crease or increase recombination rates may also arise from
indirect selection, the pressure exerted on the recombin-
ation rate due to its impact on the evolution of other traits.
Recombination generates new combinations of alleles, al-
lowing beneficial alleles to escape an otherwise suboptimal
genetic background (Muller 1964; Hill and Robertson
1966). If a population is in a rapidly changing environment,
higher recombination rates may increase the efficacy of se-
lection on other traits (Charlesworth et al. 1993; Barton
1995a, 1995b; Kondrashov and Yampolsky 1996; Otto
and Barton 1997; Otto and Feldman 1997). On the other
hand, recombination can also break apart beneficial allele
combinations and can introduce deleterious variants into
an otherwise highly fit genetic background (Barton
1995a). Under stable environmental conditions, this fitness
cost of recombination results in selection against recombin-
ation, a concept known as the Reduction Principle (Feldman
et al. 1980, 1996; Feldman and Liberman 1986; Otto and
Lenormand 2002). The intensity and direction of selective
pressures generated by these indirect effects are deter-
mined by environmental (i.e., heterogeneity in selection)
and genetic features (i.e., sign and magnitude of epistasis)
that are difficult to accurately measure, limiting our ability
to make explicit, empirical predictions at the genome level.

Each of the selective hypotheses described above makes
predictions about the fitness landscape of variation in re-
combination rates within populations. To test these predic-
tions, we simulated the evolution of recombination rates as
a moderately heritable, quantitative trait under a broad
range of fitness landscapes. We compare the resulting dis-
tribution of trait values in our simulated populations with
the distribution of recombination rates measured in a single
human population (Halldorsson et al. 2019) to ask the fol-
lowing: 1) Is the selective pressure to ensure one crossover
per chromosome sufficient to explain the observed vari-
ation in recombination rates in a human population? 2) Is
there evidence of fitness costs to high rates of recombin-
ation? 3) If so, at what recombination rate do we predict
to observe significant fitness costs for each sex? Our
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framework also allows us to ask whether sex-specific differ-
ences in the heritability of recombination rates are suffi-
cient to explain the degree of heterochiasmy observed in
humans without assuming sex-specific fitness landscapes.
We show that in our model, selective pressures to ensure
one crossover per chromosome are insufficient to explain
the observed variation in human recombination rates. We
find that assuming additional fitness consequences of high
recombination rates is necessary to simulate populations
that are consistent with empirical data, providing evidence
for fitness costs of high rates of recombination in humans.
While we find that sex-specific differences in heritability sig-
nificantly impact the predicted evolutionary trajectories, we
also find support for the hypothesis that fitness costs of
high rates of recombination are stronger in males. From
our simulated data, we identify a discrete range at which
high rates of recombination are predicted to have negative
fitness consequences in each sex. In summary, our results
support that while the pressure to ensure one crossover
per chromosome is a component of the evolution of recom-
bination rates, it likely exists in conjunction with the pressure
that limits high rates of recombination in humans.

Results

We modeled the evolution of recombination rates as a
guantitative trait using forward-in-time simulations with a
modified version of the open-source software forgs
(Forward-in-time Simulation of Recombination, Quantitative
Traits, and Selection) (Kessner and Novembre 2014). We
compared the predicted range of trait distributions generated
under a range of fitness landscapes with an empirical data set
guantifying recombination rate variation in humans, allowing
us to distinguish between two alternative hypotheses: 1)
Fitness costs are associated only with low rates of recombin-
ation, and 2) fitness costs are incurred by individuals with re-
combination rates that are either too high or too low. Due to
the observed sexual dimorphism in recombination rates in hu-
mans, we simulated selection on male and female recombin-
ation rates completely separately. This assumption of our
model differs from the known shared architecture of recom-
bination rate variation in humans (Kong et al. 2014).
However, the strength of this approach is that it allows us
to use currently available tools to predict the consequences
of selective landscapes on male and female recombination
rates independently from one another in the absence of intra-
locus constraint or conflict. This approach allows us to test
whether the same selective hypotheses explain the variation
in recombination rates among males and females when tak-
ing sex-specific differences in heritability into account.

Modeling Selection on Recombination Rates

Fitness landscapes are functions that describe an indivi-
dual’s likelihood of reproducing (W) as a function of their

phenotype or trait value (z). To model fitness landscapes
that are consistent with existing hypotheses on the evolu-
tion of recombination rates, we added a new fitness func-
tion to forgs (Kessner and Novembre 2014) that meets
three important criteria: 1) It allows the user to apply trun-
cation selection based upon an individual's absolute trait
value (rather than their trait value relative to other indivi-
duals in the population), 2) it allows the user to set the
curvature (width) of a fitness bound such that slight devia-
tions from the center of the boundary affect fitness as grad-
ually as necessary, and 3) it allows the user to flexibly specify
both upper and lower fitness boundaries separately, allow-
ing them to be asymmetrical (fig. 1). To accommodate
these requirements, we selected the double hyperbolic tan-
gent function as our fitness function:

w
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The width of the curve (a) controls how sharply fitness
decreases as the trait value nears each bound (b) and can
be set separately for the upper and lower bounds. The in-
flection point (b) of the curve determines the center of
the fitness boundary (W(b)=0.5), and the toggle P, can
be set to zero to remove the upper fitness boundary. If
the width is near zero, slight changes in trait values near
each bound have dramatic fitness consequences and large
changes in trait values far from each bound have no fitness
consequences. As the width parameter increases, fitness
changes more gradually as trait values move away from
each bound. This fitness landscape may also be applicable
to other traits responding to stabilizing selection, allowing
our model to be used to study the evolution of these traits
(fig. 1).

Fitness Costs of Low Rates of Recombination

To determine whether the selective cost of aneuploidy is
sufficient to explain the observed variation in a human
population, we simulated the evolution of recombination
rates in males and females under a wide range of fitness
landscapes that modeled costs associated only with low
rates of recombination (b;=0-1.2, a=0.1-0.9). In every
case we examined, our simulated results predicted the evo-
lution of higher rates of recombination than observed in a
human population (fig. 2). For example, when we simu-
lated a sharp decrease in fitness when an individual’s re-
combination rate decreased below one crossover per
chromosome (b= 1, a;=0.1), our simulations predicted
an average of 4.99 crossovers per chromosome
(XO/chrg, ) (equivalent to ~2.5 breakpoints per
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Fic. 1.—We modeled the relationship between the fitness and the recombination rate using a double hyperbolic tangent curve. (A) All individuals are
equally fit, that is, no selection. (B) Individuals with recombination rates above a lower threshold (specified by the coefficients a, and by) are most fit, that is,
selection to increase recombination rates. (C) Individuals with recombination rates between an upper (b,) and lower (by) threshold (or boundary) are most fit,
that is, selection to maintain intermediate recombination rates. The width of the upper and lower boundaries is determined separately (a, and a;, respectively).

chromosome), which is 1.9 standard deviations above that
observed among human females (XO/chrg, = 3.8,
or ~ 1.9 breakpoints per chromosome ). Note that here,
and throughout this article, we are quantifying recombin-
ation rates as the number of crossover events per pair of
homologous chromosomes (XO/chr), not as the frequency
of resulting recombined chromosomes (fig. 3). Under the
same fitness landscape, our simulations predicted an aver-
age male recombination rate of 2.7 standard deviations
above that observed among human males, XO/chr,, =
3.33 (~1.7 breakpoints per chromosome) versus
XO/chrgy,, = 2.38 (~1.19 breakpoints per chromosome).
Our simulations consistently predict higher rates of recom-
bination in females than males. Interestingly, the relative in-
crease in recombination rates was larger for males than
females in this case, indicating that the fitness costs were
higher for males at the starting trait distribution.

To determine the likelihood of observing a trait distribution
similar to that observed among humans under each fitness
landscape, we made three statistical comparisons: 1) We
asked how often the mean recombination rate in our simu-
lated populations exceeded the mean recombination rate ob-
served in humans, 2) we measured the percentage overlap
(intersection) of the simulated and empirical distributions,
and 3) we found the difference in simulated means and the
empirical mean in units of standard deviations. Under most
of the parameter space investigated, we found that the
mean of the empirical data was lower than the mean of all si-
mulated populations (percentile = 0; fig. 2A and B). We did
identify a small region of the parameter space in which
more than 5% of the simulated populations had mean re-
combination rates equal to or less than that observed in the
human data set (b= 0-0.7 [females], b= 0-0.5 [males]; fig.
2A and B). However, this parameter space models scenarios
that are much more permissive of aneuploidy than current
empirical evidence supports (i.e., less than a 50% reduction
in fitness when a recombination event is happening only on
every other chromosome).

Additionally, we do not categorize these fitness land-
scapes as consistent with empirical data (tables 1 and 2) be-
cause they do not meet both of our two additional
conditions: 1) The empirical mean falls within one standard
deviation of the mean of simulated means, and 2) at least
50% of simulated distributions have at least 90% overlap
with the empirical distribution (tables 1 and 2). These stat-
istical approaches capture additional differences between
the variances in the trait distribution between the simulated
and empirical data. However, it is worth noting that the var-
iances in trait values are likely more sensitive to assumptions
of our model, such as the number of loci contributing to the
variation in recombination rates and the lack of recurrent
mutation, than the mean trait value.

To determine whether a given selective scenario predicts
the evolution of higher or lower recombination rates than
we currently observe among humans, we matched the
starting trait distribution to the empirical data set and incor-
porated observed sex differences in heritability (Vg=0.13
and 0.41, male and female, respectively) (Fledel-Alon
et al. 2011). To accomplish this, we fine-tuned the starting
allele frequency (p) and the additive allelic contribution to
the recombination rate (@) (male: p=0.4 and a= 0.15, fe-
male: p=0.38 and a =0.25) to generate starting trait dis-
tributions with means and variances that match empirical
observations. As follows, the minimum possible recombin-
ation rate is 0 XO/chr for both sexes and the maximum re-
combination rate was 6 XO/chr and 10 XO/chr for males
and females, respectively. While sex differences in the start-
ing allele frequency are not realistic with a shared genetic
architecture, it is appropriate for our goal of determining
the extent to which a given fitness landscape will exert dir-
ectional selection on the observed phenotypic distribution.

Additionally, to determine whether the assumptions we
made about our starting conditions may have also contrib-
uted to the outcomes of our simulations, we repeated our
analyses with low starting allele frequencies (p = 0.05 at all
loci) and intermediate allele frequencies (p = 0.5 at all loci).
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Fic. 2—Simulations that modeled only fitness costs to low rates of recombination poorly match the distribution of recombination rates in a human popu-
lation. (4, B) Heatmaps show the number of simulated means (out of 100) that are less than or equal to the empirical sex-spedific mean or the percentile of the
empirical mean in the distribution of simulated means for females and males, respectively. The dashed box indicates the parameter space where at least 5% of
simulations predicted mean trait values equal to or less than the empirical mean. (C, D) The mean of simulated means under each fitness landscape (para-
meterized by the position by and width a) of the lower bound) for females and males, respectively. (€, F) The mean of simulated variances under each fitness
landscape (parameterized by the position b and width a, of the lower bound) for females and males, respectively. The horizontal lines in (C)F) are the sex-

specific empirical values.

Importantly, this second case represents the maximum
starting additive genetic variance and the greatest oppor-
tunity to observe an evolutionary response to selection.
We found that our simulations predicted higher rates of re-
combination (farther away from the empirical mean) when
simulations started with higher additive genetic variance for
recombination rates in both males and females
(supplementary fig. S3, Supplementary Material online).
As we were careful to run our simulations long enough to
capture the entire response to selection, these results

suggest that additive genetic variance is a limiting factor
in the evolutionary response. Importantly, while this is a
constraint of our approach, it strengthens, rather than
weakens, our inference that recombination rates in human
populations are lower than expected due to the costs of an-
euploidy. An influx of genetic variation through mutational
processes would only result in the evolution of even higher
average recombination rates in our simulated populations.

To determine how sensitive our results are to estimates
of the heritability of recombination rates, which may not
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Fic. 3.—Schematic representation of a single crossover event. (A) A re-
combination event with exactly one crossover per pair of homologous chro-
mosomes (1 XO/chr). The black and white chromosomes denote maternal
and paternal inheritance. During recombination, one copy of each parental
chromosome crosses over with the other parental chromosome, resulting
in a hybrid (recombinant) chromosome. (B) Output of one crossover per
pair of chromosomes: equal ratios of recombined and nonrecombined ga-
metes (each rectangle is one gamete) (r=0.5).

| @

Table 1

Upper Fitness Boundaries Predicted to Produce Populations with
Distributions of Recombination Rates Consistent with Empirical
Observations in Females

Table 2

Upper Fitness Boundaries Predicted to Produce Populations with
Distributions of Recombination Rates Consistent with Empirical
Observations in Males

Starting Allele Environmental Position of the  Width of the
Frequency (p) Variance (V) Upper Upper
Bound (by) Bound (ay)
04 0.13 4.0 0.2-03
45 0.5
5.0 0.7
55 0809
04 0.2 4.0 04
0.4 0.3 None None
0.05 0.13 4.0 0.2-03
45 05
05 0.13 4.0 0.2-03
45 05

Starting Allele Environmental Position of the  Width of the
Frequency (p) Variance (Ve) Upper Upper
Bound (b,) Bound (a,)
0.38 0.41 6.5 0.1-0.3
7.0 0.3-05
75 0.6-0.8
8.0 0.7-09
0.38 03 None None
038 0.5 6.5 0.1-0.2
7.0 0.3-0.6
75 0.6
0.05 0.41 6.5 0.1-0.2
7.0 0.3-05
75 0.5-0.6
05 0.41 6.5 0.1-0.2
7.0 0.3-0.6
75 0.6

be precise or consistent across all populations, we repeated
our analyses after modifying only the contribution of envir-
onmental variances (V) to differences in recombination
rates between individuals. In females, increasing heritability
(by lowering the component of environmental variance)
lowered the expected average recombination rate in our
simulations (supplementary fig. S11, Supplementary
Material online). Conversely, decreasing heritability (by
increasing the component of environmental variance)

increased the expected average recombination rate in our
simulations, pushing it away from the empirical mean
(supplementary fig. $13, Supplementary Material online).
For example, using the same values as above (b= 1, a,=
0.1), when Vg = 0.3, our simulations predicted a mean re-
combination rate of ~4.76 XO/chr (~2.38 breakpoints
per chromosome) among females, and when Vg=0.5,
our simulations predicted a mean recombination rate of
~5.14 XO/chr (~2.57 breakpoints per chromosome)
among females. We observed the same relationship be-
tween environmental variances and predicted recombin-
ation rates in males (supplementary figs. S15 and S17,
Supplementary Material online). Thus, differences in herit-
ability likely contribute to sex differences in predicted re-
combination rates we observed in our simulations and
could drive heterochiasmy in natural populations.

However, it is also important to note that modifying the
heritability of the trait changed not only the predicted mean
but also the predicted within-population variance. In cases
where we considered a smaller component of environmen-
tal variance (supplementary fig. S11, Supplementary
Material online), the predicted trait variance was much low-
er than that observed in a human population. Likewise, in
cases where we increased Vg (supplementary figs. S12,
S15, and S17, Supplementary Material online), the pre-
dicted variation in recombination rates within populations
far exceeded the empirical observation.

Fitness Costs of High Rates of Recombination

To determine whether additional costs of high rates of
recombination could explain the distribution of recom-
bination rates observed in humans, we simulated the
evolution of recombination rates with fitness landscapes
that simultaneously modeled fitness costs of both high
and low rates of recombination. For these simulations, we
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kept the fitness costs of low rates of recombination con-
stant (bj=1, aj=0.1), consistent with the costs of aneu-
ploidy, and considered a wide range of fitness costs
associated with high rates of recombination (male: b, =
3.5-5.5 XO/chr, female: b, =6-8 XO/chr, a,=0.1-0.9).

When applying selective pressures on both high and low
recombination rates, our simulation produced results con-
sistent with empirical data for both females and males un-
der a narrow range of the parameter space (tables 1 and 2).
This parameter space is shaped by the interaction between
the position (b,) and the width (a,) of the upper fitness
bound. For example, when the upper bound centered
around lower recombination rates, narrow bound widths
result in distributions matching the empirical data (b,=
6.5, a,=0.1; females). As the bound position increases
such that higher rates of recombination are associated
with lower fitness costs, the width of the bound must
also increase to maintain similarity to the empirical distribu-
tion (b,=8.0, a, = 0.8; females) (fig. 4A and B). When the
costs of elevated recombination rates are more severe (low-
er and/or wider upper bound), the mean of simulated re-
sults falls below the empirical mean, predicting lower
rates of recombination than observed empirically.
Conversely, when the fitness costs of elevated recombin-
ation rates are less severe (higher and/or narrower upper
bound), the mean of simulated results falls above the em-
pirical mean, predicting higher rates of recombination
than observed empirically.

Our simulations predict that the costs of high rates of
recombination are less severe in females than males. For
example, when we modeled a female fitness landscape
with a moderate drop-off in fitness (a,=0.5) centered
around an average of seven crossovers per chromosome
(~4.5 breakpoints per chromosome), our simulated
results were largely consistent with empirical observations
(70% of simulations overlapping 90% or more with the
empirical data [intersection > 90% empirical distribution],
supplementary fig. S2A, Supplementary Material online;
and the empirical mean was only 0.4 standard deviations
away from the mean of simulated means, supplementary
fig. S2C, Supplementary Material online). However, when
modeling the evolution of male recombination rates under
the same fitness landscape, our simulations predict much
higher rates of recombination among males than observed
among humans. In contrast, considering a moderately
gradual drop-off in fitness (a, = 0.5) centered around an
average of 4.5 crossovers per chromosome (~2.25 break-
points per chromosome) produces results that are highly
consistent with our observations in males but predicts
much lower female recombination rates than observed.
Thus, again, differences in heritability were not sufficient
to explain the observed degree of heterochiasmy in hu-
mans, supporting sex differences in selective pressures on
recombination rates.

To determine how sensitive our results are to estimates
of the heritability of recombination rates, we repeated
our analyses, exploring a range of environmental variances
(Vp). Modifying heritability did not shift the parameter
space of the fitness landscape under which our simulated
means matched empirical observations, but the variance
shifted in the direction of the change (i.e., higher heritabil-
ity led to lower variance and vice versa) (supplementary figs.
S$11-518, Supplementary Material online). However, we
did observe that the parameter space expanded slightly
when the environmental variance decreased and, converse-
ly, slightly narrowed when the environmental variance in-
creased. In other words, if the recombination rate is more
heritable than we previously estimated, a slightly wider
range of selective pressures may explain the distribution
of recombination rates in humans.

To determine whether the starting allele frequency
shaped the outcome of our simulations, we repeated our
analyses under two different scenarios (starting allele fre-
quencies p=0.05 and p =0.5). When we simulated popu-
lations responding to both costs of high and low rates of
recombination, we found little to no change in the pre-
dicted mean and variance for both females and males
(tables 1 and 2). These results suggest that the starting al-
lele frequency did not significantly impact the outcome of
these simulations.

Discussion

These results constitute a novel use of forward-in-time si-
mulations to assess the possible selective pressures acting
on the evolution of recombination rates as a quantitative
trait in humans. Our simulations show that under the as-
sumptions of our model, the empirical distribution of re-
combination rates in the Icelandic population is lower
than we would expect, given the direct fitness costs of an-
euploidy alone. None of the simulations that modeled only
costs to low rates of recombination (lower bound) pro-
duced a parameter space consistent with empirical observa-
tions of recombination rates in humans, in either males or
females, and all predicted the evolution of substantially
higher rates of recombination than observed empirically
(tables 1 and 2, fig. 1).

There are three potential explanations for this observa-
tion. First, it is possible that the fitness costs of aneuploidy
are overestimated, especially in males. While the impact of
improper chromosomal segregation and reduced fertility in
humans is well documented (Hassold and Hunt 2001; Sun
et al. 2008; Gruhn et al. 2019; Hassold et al. 2021), me-
chanisms of crossover assurance may buffer fitness costs
of low rates of recombination (Deshong et al. 2014,
Krishnaprasad et al. 2015). Studies in mice provide evi-
dence that crossover assurance checkpoints are likely
much more stringent in males than females (Nagaoka
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variances under each fitness landscape (parameterized by the position b, and width a, of the upper bound) for females and males, respectively. The
horizontal lines in (C)HF) are the sex-specific empirical values. In all simulations represented in this figure, the lower fitness boundary was held constant

(b =1 X0/ chr, 3=0.1).

et al. 2012; Cloutier et al. 2016). However, two lines of evi-
dence suggest that crossover assurance checkpoints are un-
likely to buffer the fitness effects of low rates enough to
explain the discrepancy between the observed distribution
of recombination rates in humans and the predictions of
our model. First, a recent study of human fetal ovaries

(n = 160) observed a surprisingly high level of recombination
failure (7.3% of a total of 7,396 scored oocytes) that was
correlated with the genome-wide recombination rate
(Hassold et al. 2021). Second, our simulations suggest
that the fitness costs associated with recombination failure
must be very, very small (i.e., less than a 50% reduction in
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fitness when a recombination event is happening only on
every other chromosome, b, = 0.5) to produce populations
with mean recombination rates similar to that we observe
in humans. Taken together, it seems unlikely that crossover
assurance mechanisms are effective enough in humans to
minimize the fitness costs to the necessary degree.

An alternative possibility is that the human population is
currently experiencing selection for higher rates of recom-
bination and has not yet reached its fitness peak. Given
the strong evidence that genetic variation for recombin-
ation rates is currently segregating in human populations
(Kong et al. 2008, 2014; Chowdhury et al. 2009; Dapper
and Payseur 2017), this explanation predicts a slow but
consistent increase in average recombination rates from
generation to generation. Additionally, given the intensity
of the selective pressure, we should also expect to observe
genetic signatures of strong, persistent directional selection
on genes that modify recombination rates. It is worth not-
ing that our simulations predict the relatively rapid evolu-
tion of recombination rates (on the order of a couple
hundred thousand years), suggesting that there has been
sufficient time for human recombination rates to evolve
in response to the selective pressure exerted by aneuploidy.

A third possibility is that our results provide evidence that
selective costs of high rates of recombination exist in hu-
man populations. By including an upper fitness boundary
in our simulations, we identified fitness landscapes that
produced distributions of recombination rates very similar
to those observed in the Icelandic population, providing
further support for the existence of fitness costs of high re-
combination rates. Our approach here does not allow us to
identify the source of these costs. These selective pressures
may be due to direct consequences of meiotic recombin-
ation, such as elevated rates of chromosomal nondisjunc-
tion, or indirect consequences, such as breaking apart
beneficial alleles (Feldman et al. 1980). Alternatively, the se-
lective cost could result from pleiotropic effects on other
cellular processes rather than as a consequence of the
high crossover number itself.

Our results provide explicit, and testable, predictions of
the recombination rates above which significant fitness
costs may be incurred in humans. For example, our simula-
tions predict that fitness costs are incurred in human fe-
males when the recombination rate exceeds an average
of 6.5-8.0 crossovers per pair of homologous chromo-
somes (~3.25—-4 breakpoints per chromosome per meiosis)
and an average of 4.0-5.5 (~2.0-2.75 breakpoints per
chromosome per meiosis) in males (tables 1 and 2). We
identified this parameter space by comparing our simulated
trait distributions with the observed trait distribution
(Halldorsson et al. 2019) in terms of the mean, variance,
and degree of overlap (intersecting area of the two curves).
It is important to note that the overall shape of the distribu-
tion, as captured by the variance and overlap, is likely

sensitive to some of our modeling assumptions. In particu-
lar, the number of loci modeled (20), their additive contri-
bution, and the lack of recurrent mutation can impact
genetic variance and thus the total phenotypic variance in
a population.

Heritability had a large impact on the predictions of our
simulations. Increasing the environmental variance slightly
(compared with empirical estimates) (Fledel-Alon et al.
2011), thus decreasing heritability, narrowed the range of
fitness landscapes that produced mean trait values similar
to the empirical distribution of recombination rates in
both the male and female data sets (supplementary figs.
S14 and S16, Supplementary Material online) and elevated
the predicted trait variance in simulated populations. This
result was likely observed because decreasing heritability in-
creased the likelihood that random perturbations could
push individuals with acceptable "genetic” recombination
rates outside of the optimal range. Interestingly, when con-
sidering both the mean and the variance, simulations with
components of environmental variance similar to those es-
timates for humans—or slightly higher—produced pre-
dicted distributions most similar to empirical observations.
Thus, our results provide support to the estimates of the en-
vironmental variance of recombination rates in humans
(Fledel-Alon et al. 2011).

Consistent with the direction of heterochiasmy in hu-
mans, our simulations predict that the costs of high rates
of recombination are more severe in males than females.
Future work should explore whether this result holds out-
side humans and may help explain the variation in the dir-
ection and degree of heterochiasmy with and between
species (Burt et al. 1991; Brandvain and Coop 2012;
Cooney et al. 2021; Peterson and Payseur 2021).
Additionally, this result should be interpreted carefully in
light of two important assumptions of our model. First,
we assumed that the fitness costs of low rates of recombin-
ation are incurred equally in males and females. However,
more stringent crossover assurance checkpoints in male
meiosis may lessen the impact of errors in recombination
rates compared with females, leading us to overestimate
the fitness costs of high rates of recombination in males.
Interestingly, the existence of more robust crossover assur-
ance mechanisms in males may, itself, be evidence of more
severe costs of high rates of recombination in males. Future
models should aim to determine whether this cost is likely
to arise from mechanistic differences in male and female
meiosis (Petkov et al. 2007; Brick et al. 2018) or sex-specific
differences in indirect selection on recombination rates
(Lenormand 2003; Lenormand and Dutheil 2005; Sardell
and Kirkpatrick 2020).

Second, in our model, we simulated the evolution of
male and female recombination rates separately. While
this approach was practical and had several advantages, it
assumes that the genetic control of recombination rates is
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not shared between sexes. However, while some variants
identified in humans and other mammals are sex-specific
(Ma et al. 2015), we know that a significant proportion of
the genetic architecture of recombination is shared be-
tween sexes. Thus, selection pressures on one sex may limit
or constrain the evolution of the trait in response to selec-
tion pressures that differ in magnitude or direction in the
other sex (i.e., intralocus sexual conflict). When considering
only costs to low rates of recombination, predicted recom-
bination rates were significantly higher than empirical mea-
surements in both sexes. Thus, under this scenario, both
sexes are predicted to be experiencing strong selection
for higher rates of recombination, limiting the opportunity
for conflict between sexes. Therefore, we do not expect
bias due to genetic architecture to change our conclusion
that fitness costs of low rates of recombination alone do
not explain the distribution of this trait in human popula-
tions. When considering fitness costs to both high and
low recombination rates, conflict over a shared genetic
architecture could result in higher than optimal recombin-
ation rates in males or lower than optimal recombination
rates in females. Thus, by modeling the trait separately,
we may be overestimating the sensitivity of females to fit-
ness costs of high rates of recombination or underestimat-
ing the sensitivity of males. In other words, the sexual
dimorphism in the fitness landscape of recombination
may be more extreme than what our model predicts.

To simplify our model and make our results more tract-
able, we assumed a simple genomic architecture with 20
identical chromosomes, each with a genetic locus that con-
tributes to the average recombination rate per pair of hom-
ologous chromosomes. This approach did not explicitly
capture the variation in chromosome size that is present
in the human genome nor the variance in the crossover
number per chromosomal pair. For example, the largest
chromosomes in the human genome often have 5-6 cross-
overs, while the smallest chromosomes typically have only
1-2 and are at highest risk of lacking a crossover altogether
at low recombination rates (Hassold et al. 2021). Thus, it is
very likely that the effective rate of recombination on these
smallest chromosomes most strongly drives the cost of low
rates of recombination due to the risk of aneuploidy. As a
result, a genome-wide average of one crossover per
chromosome may not be sufficient to ensure that at least
one crossover occurs on every chromosome. In this case,
we may be overestimating the tolerance for low rates of re-
combination in our simulations and, as follows, underesti-
mating the predicted constraints on high recombination
rates.

We also did not explicitly model sex chromosomes in our
simulations. However, given that most loci influencing re-
combination rates are on autosomes (Kong et al. 2008,
2014; Chowdhury et al. 2009; Dapper and Payseur
2017), the absence of sex chromosomes should not

significantly bias our results. By excluding sex chromo-
somes, we did not explicitly model pseudoautosomal re-
gions (PAR). PAR1T and PAR2 are short segments of
homology that allow crossovers and proper disjunction of
the differentiated X and Y sex chromosomes in human
males (Rouyer et al. 1986; Freije et al. 1992; Flaquer et al.
2009). Both regions have recombination rates that are sig-
nificantly higher than the genome-wide average (i.e., the
male crossover rate in PAR1 is elevated 17-fold) (Hinch
et al. 2014). This localized elevation is likely necessary to en-
sure that at least one crossover occurs per meiosis and is not
inconsistent with the general conclusions of our simula-
tions, which focus on the potential fitness costs of
chromosome-wide increases in the number of crossovers.

To make inferences about how selection may be acting
on recombination rates in human populations, we com-
pared our simulations with empirical measurements of re-
combination rates in a human population (Halldorsson
et al. 2019), calculated by genotyping parent—offspring
pairs. Thus, the recombination rate was inferred only
from viable offspring, potentially biasing estimates by ex-
cluding aneuploid gametes. For example, no individual
was recorded with a recombination rate of less than one
crossover per chromosome for either sex. Both the female
and male data sets are normally distributed with means clo-
ser to the lower bound than their predicted upper bounds;
therefore, it is more likely that the population estimates of
recombination rates are overestimates than underesti-
mates. Additionally, because the tails of the distributions
are more likely to be affected by this imprecision than the
center, the variation in both male and female recombin-
ation rates may also be underestimated. This potential
source of bias does not impact our inference that recombin-
ation rates in humans are lower than expected due to the
fitness costs of low rates of recombination alone.
However, it does have the potential to shift our estimates
of the fitness costs of high rates of recombination.

We applied a novel quantitative modeling approach to
test predictions about the selective landscape shaping vari-
ation in recombination rates in humans. The results we pre-
sent are consistent with the hypothesis that the
recombination rate evolves in response to selective pres-
sures to both increase above a minimum threshold and de-
crease below another maximum threshold. We present
evidence suggesting that it is unlikely that the distribution
of recombination rates observed in humans arose only
from the selective pressure to increase recombination rates
above one crossover per chromosome. We further provide
a parameter space of upper bounds on recombination rates
at which fitness costs are likely to be incurred (tables 1 and
2). Our general conclusions are robust to the variation in
both the heritability of recombination rates and the allele
frequency of the contributing alleles, parameters that are
difficult to estimate in human populations. Future
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applications of this approach are likely to lead to new in-
sight by incorporating more complex genomic features
thought to be important in the evolution of recombination
rates, such as epistasis and intralocus sexual conflict. Future
studies should also aim to refine the thresholds at which
high and low recombination rates decrease fitness costs
in humans. While our model assumes that recombination
rates of less than one crossover per chromosome lead to fit-
ness costs, an average of one may still be deleterious as
many gametes (half under a normal distribution) would
lead to inviable offspring. Further, while we suggest arange
of upper fitness boundaries on recombination rates, more
investigation is needed to better understand exactly where
this boundary exists in humans and its mechanistic
foundations.

Materials and Methods

Simulations

For each simulation, we specified the shape of the fit-
ness landscape and modeled the evolution of recombin-
ation rates, tracking changes in the distribution of trait
values in the population over time. We performed 100
replicates for each parameter set and ran each simula-
tion for 10,000 generations. To allow for more accurate
comparisons with the empirical data set, we matched
the effective population size as 5,000 for all simulations,
consistent with the estimated effective population size
of Iceland (Bataillon et al. 2006). To capture the moder-
ate complexity of the genetic architecture of recombin-
ation rates in humans, we modeled 20 additive
recombination rate loci. Each locus was mapped to a dis-
tinct chromosome to simplify our analysis by preventing
the accumulation of linkage disequilibrium between
sites. At each locus, we modeled two alleles, one that
does not contribute to the recombination rate (z+0)
and another that increases the recombination rate addi-
tively (z+ @). In the simulation, each individual’s trait va-
lue (recombination rate) was determined by the additive
contribution of alleles at each locus along with environ-
mental variance (described below). The contribution of
this allele to an individual’s trait value (o) was assumed
to be equal for each locus.

Due to the significant levels of heterochiasmy and sex
differences in the underlying genetic architecture in hu-
mans (Kong et al. 2004; Fledel-Alon et al. 2011), we mod-
eled the evolution of recombination rates separately for
males and females. For each sex, we matched the heritabil-
ity and environmental variance of recombination rates to
empirical estimates in humans (males: H? = 0.18; females:
H? = 0.3) (Fledel-Alon et al. 2011). Broad-sense heritability
of mean recombination rates was estimated in human
females from sibpairs (H>= 0.3, Kong et al. 2004). We

conservatively approximated a comparable measure of
broad-sense heritability of male mean recombination
from the available estimate of narrow-sense heritability
(H?=0.14, Fledel-Alon et al. 2011). We converted esti-
mates of broad-sense heritability to environmental vari-
ance, V= Ve (1—H?), to parameterize our simulations
(males: Vp=0.13, females: Vg =0.41). The component of
environmental variance in males is lower than that of fe-
males, despite lower heritability, due to lower overall
phenotypic variance.

To determine whether a given selective scenario predicts
the evolution of higher or lower recombination rates than
we currently observe among humans, we matched the
starting trait distribution to the empirical data set. To ac-
complish this, we modified the starting allele frequency
(p) and the additive allelic contribution to the recombin-
ation rate (a) (male: p=0.4 and a=0.15, female: p=
0.38 and a=0.25).

To determine whether fitness costs associated with high
recombination rates are necessary to explain the variation
in recombination rates seen in humans today, we consid-
ered two broad categories of selective landscapes: 1) those
with fitness costs associated only with low rates of recom-
bination (lower bound; P,=0) and 2) those with fitness
costs associated with both high and low rates of recombin-
ation (double bound). For the lower bound simulations, we
varied the position (b= 0-1.2 XO/chr, by intervals of 0.1)
and width (a;= 0.1-0.6, by intervals of 0.1) of the lower fit-
ness boundary (78 total parameter combinations and 7,800
total simulations per sex). For the double bound simula-
tions, the lower boundary was held constant (b=1
XO/chr, a,=0.1), and we varied the position (male: b, =
3.5-5.5 XO/chr, female: b,=6-8 XO/chr; in intervals of
0.5) and width (a,=0.1-0.9; in intervals of 0.1) of the
upper boundary (45 total parameter combinations and
4,500 total simulations per sex). Due to computational
costs, we focused only on relevant upper bound positions
(those producing trait distributions in the vicinity of that ob-
served in humans). As a result, we explored different par-
ameter spaces for each sex.

As a control comparison, we also simulated the evolu-
tion of recombination rates without selection (fig. 14), cap-
turing the effects of genetic drift alone. These sets of
simulations were considered a null case for the purpose
of assessing the presence of directional selection. When
variation between generations of a simulation was less
than or equal to the variation in this null case, the simula-
tion was considered to no longer be responding to direc-
tional selection. When modeling the female population
with only fitness costs to low rates of recombination, the
population reached this point by 10,000 generations. We
used this 10,000-generation maximum as the number of
generations for simulations to run to avoid excessive com-
putational costs.
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Empirical Data Set

To test the predictions generated in our simulations under
various selective scenarios, we compared each simulated
trait distribution with that observed in a human population.
Halldorsson et al. (2019) measured the variation in recom-
bination rates in the Icelandic population of humans
through the sequencing of 126,407 parent—child pairs
using SNP-chip genotyping, capturing 70,086 and 56,321
maternal and paternal meiosis, respectively. Crossover po-
sitions were given by Halldorsson et al. (2019) for each
chromosome of each child and the origin of the crossover
(maternal or paternal). From here, we counted the number
of crossovers associated with each chromosome for each
mother and father, excluding the X chromosome (Y was
not measured/reported). When a crossover occurs, only
half of the resulting gametes inherit the recombined chro-
mosomes (fig. 3). To account for this, we multiplied these
rates by two to produce a distribution of the number of re-
combination events for females and males. As expected,
we found that the mean number of crossovers per chromo-
some in the male and female data sets (2.38 and 3.80, re-
spectively) was significantly different (P< 2.2e—16) using a
two-sample t-test.

Statistics

To test our hypotheses, we used a statistical framework to
determine whether the empirical distribution of recombin-
ation rates in humans is consistent with the population-
level trait distributions predicted in our simulations. For
each simulation, we recorded the mean, variance, skew-
ness, and kurtosis of the final distribution of recombination
rates (n=5,000). To determine the similarity between the
predicted and observed population-level trait distributions,
we calculated the percent overlap of the simulated and em-
pirical distributions. To do so, we compared a normal curve
with the mean and variance matching the simulated data
with a normal curve with the mean and variance corre-
sponding to the empirical data. We calculated the area of
overlap between these curves by integration using R (R
Core Team 2020) with the assumption that the area under
a normal curve is always one. The assumption of normality
was assessed using the skewness and kurtosis of each trial
because the sample sizes were too large for an informative
assessment using the Shapiro test. The skewness of every
trial was between —1 and 1, while the excess kurtosis was
between —2 and 2 in most trials (96%). High kurtosis
should not significantly impact the use of overlap between
distributions because kurtosis is heavily influenced by out-
liers, which produce almost no area under the density
curve. Further, errors due to the assumption of normality
would bias results toward less overlap, indicating a more
stringent test of similarity.

For each set of parameters, we calculated the mean and
variance for each replicate simulation (n= 100). To deter-
mine how likely a given set of parameters produced a pre-
dicted population with a similar rate of recombination to
that observed in humans, we asked what percentage of si-
mulations produced a mean trait value greater than or
equal to the empirical mean (percentile). We also deter-
mined how many standard deviations the empirical mean
was from the mean of simulated means. These are useful
statistics because they allow us to quantify similarity using
a single value, capturing both the mean and the variance.
We considered, for a given parameter set, the empirical
data to be consistent with the predictions if 1) the empirical
mean is less than one standard deviation away from the
mean of simulated means and 2) at least 50% of the simu-
lations predict trait distributions that overlap at least 90%
with the empirical distribution of recombination rates.

Heritability

Our estimates of the environmental variance associated
with recombination rates in humans are based on a pedi-
gree analysis. The data set used to generate these estimates
was reasonably large, but because each nuclear family size
is very small, the estimates may be imprecise (Fledel-Alon
et al. 2011). We modeled the evolution of recombination
rates under a range of environmental variances to account
for possible inaccuracies in the estimates used. We per-
formed the same simulations with different environmental
variances (Vg = 0.2 and 0.3 for males and Vg = 0.3, 0.5, 0.8,
and 1.0 for females) to determine how errors in current es-
timates of environmental variance might impact the direc-
tion and magnitude of the response to selective
pressures. These modifications also allow us to test the ro-
bustness of our model and determine how heritability im-
pacts our results.

Starting Allele Frequencies

Our simulations considered the starting allele frequencies
of 0.4 and 0.38 for males and females, respectively.
These values were selected because they produce a starting
population-level trait distribution that most closely
matched the empirical data. To assess the robustness of
our model to changes in starting allele frequencies, we con-
sidered two additional cases for each sex: 1) low starting
frequency of high recombination alleles (0.05) such that
the recombination rate starts out lower than empirical esti-
mates and 2) intermediate allele frequency of high recom-
bination alleles (0.5) such that the recombination rate starts
out higher than empirical estimates while holding all other
parameters constant. These additional analyses also al-
lowed us to determine whether the total additive genetic
variance for recombination rates in the simulated popula-
tions influenced the outcomes of the simulations.
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