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Abstract—Solving the transmission-constrained unit commit-
ment (TC-UC) problem efficiently for high-quality solutions is
one of the biggest challenges faced by independent system oper-
ators today. One way to achieve this is by removing superfluous
network constraints from the problem. Several approaches have
been used to identify such constraints. However, these methods
are either too conservative or fail to maintain solution feasibility.
In this paper, a deep learning-based approach is developed
to identify the subset of transmission lines that can be safely
removed from the TC-UC problem. The idea is to capture the
temporal relationship between past line loading levels, nodal
demands, and future line loading levels to identify superfluous
network constraints. To achieve this, a novel regression-based
classification approach is developed, where the regression model
is used to predict line loading levels, and different thresholds
are applied to classify transmission line capacity constraints as
necessary or not for the TC-UC problem. The major advantage
of this approach is that once trained, the model can be used
under different classification thresholds. Numerical results show
that the proposed approach significantly improves computational
efficiency without compromising the solution quality.

Index Terms—Transmission-constrained unit commitment,
constraint screening, deep learning, LSTM

I. INTRODUCTION

Independent system operators (ISOs) solve day-ahead TC-

UC problems to determine on/off statuses and power gen-

eration levels for each unit to meet the system demand at

the minimum cost [1]. The unit commitment decisions are

modeled with binary variables (on (1) or off (0)) and dispatch

decisions with continuous variables (generation level), making

the TC-UC problem a Mixed Binary Linear Programming

(MBLP) problem. The TC-UC problem consists of unit-level

constraints such as generation capacity limits, ramping limits,

etc., and system-level constraints such as system demand,

transmission capacity limits (network constraints), etc. It has

been demonstrated that the TC-UC problem is an NP-hard

problem even for a single time period [2]. One approach sug-

gested in the literature to reduce the complexity of the TC-UC

problem is to filter out superfluous network constraints [3]–

[9]. Many network constraints are either redundant (unloaded
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lines) or inactive (uncongested lines) and they can be safely

removed to reduce the complexity of the TC-UC problem.

However, removing too many constraints would result in

infeasible solutions; whereas, removing too few constraints

may not improve computational performance.

Different transmission line screening approaches are dis-

cussed in Section II. Traditional approaches often include net-

work reduction [3], constraint generation [4] and optimization-

based methods [5], [6]. While these methods maintain the fea-

sibility of the TC-UC problem, they often fail to provide sig-

nificant improvements in computational performance as they

remove constraints conservatively. More recently, machine

learning-based approaches have been used for transmission

line screening [7]–[9]. While these methods provide significant

improvements in computational performance, they might cause

infeasibility in the TC-UC solution as they might remove

critical constraints. In addition, the transmission line loading

for future time intervals depends on nodal demand and line

loading in previous time intervals. Such temporal relationships

cannot be captured by the previously used machine learning-

based approaches, which could be a reason for infeasibility.

Recurrent Neural Networks (RNNs), which are special types

of Artificial Neural Networks (ANNs) designed to work with

temporal data offer a promising way to capture such non-linear

temporal relationships. A simple RNN structure, however,

suffers from difficulties like the vanishing and exploding gra-

dient problems [10]. The Long Short Term Memory (LSTM),

an advanced RNN architecture, overcomes the drawbacks of

simple RNNs by choosing to only remember the most relevant

information and performs better [11].

In this paper, a deep learning-based approach is developed to

identify superfluous transmission line constraints from histor-

ical data on nodal demands and line loading levels to improve

the computational performance of the TC-UC problem. In

Section III, a simplified TC-UC formulation is presented. In

Section IV, a novel regression-based classification approach is

developed, where the regression model with LSTM layers is

used to predict line loading levels and then different thresholds

are applied to classify transmission line capacity constraints

with the help of a rule-based system. The major advantage of

this approach is that once trained, the model can be used under

different classification thresholds. In Section V, the results of

training and testing the model are presented along with the

results of transmission line screening on a modified IEEE RTS-

96 system.
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II. LITERATURE REVIEW

This section reviews existing studies on transmission line

screening and regression-based classification approaches.

A. Transmission line screening methods

Existing transmission line screening approaches can be

divided into two categories, traditional and machine learning-

based approaches. The traditional approaches focus on main-

taining the feasibility of the TC-UC solution while finding

the subset of transmission lines to be removed. The network

reduction method shows how the size of the network can be

reduced by studying the topology of the network and removing

unnecessary lines and nodes [3]. The constraint generation

approach iteratively adds network constraints based on neces-

sary and sufficient conditions that maintain solution feasibility

[4]. In some other approaches, the inactive constraints are

identified by maximizing/minimizing the flow through a given

line to determine if the line gets congested [5], [6]. These

traditional approaches are often not as fast as machine leaning-

based approaches.

The recent emergence of machine learning algorithms has

encouraged researchers to adopt data-driven approaches to-

ward transmission line screening. A data-driven method based

on the K-nearest neighbors algorithm is used to determine if a

line should be classified as congested or not for a previously

unseen time interval [7]. This study shows a significant reduc-

tion in prepossessing as well as solving times. However, for

highly congested and large networks, this method could give

inaccurate solutions. Some recent approaches used neural net-

works to identify active constraint sets [8], [9]. These two ap-

proaches improved computational efficiency significantly, but

they cannot guarantee correct predictions, requiring additional

steps to prevent infeasible solutions. These machine learning-

based approaches are faster than traditional approaches, but

cannot guarantee feasible TC-UC solutions.

B. Regression-based classification and deep learning

Machine learning can be used for both classification and

regression. Classification models usually predict labels for

ordinal data while regression models are used to predict

continuous data. For transmission line screening, both clas-

sification [7], [8] and regression [9] models have been used in

the literature. If the classification of a line capacity constraint

as necessary or not is based on a threshold applied to the line

loading levels, the line loading levels can be predicted using

a regression model and a rule-based classifier can be applied.

Such models tend to learn more information as well as have

the versatility of being trained once and then being used to

classify based on different rules and thresholds [12].

Deep learning algorithms are emerging as promising ap-

proaches to learning non-linear relationships in power sys-

tem problems [13], [14]. When input and output data have

temporal relationships, RNNs are a suitable solution. RNNs

remember information across time intervals using feedback

loops, which connect past and current information. However,

simple RNN structures offer little to no control over what

information is remembered. Furthermore, simple RNNs suffer

from vanishing and exploding gradient problems when back-

propagating errors over time [10]. These drawbacks are over-

come by advanced RNN structures called LSTMs, which are

designed to offer control over memory and remember only

the most relevant information while preventing gradients from

vanishing or exploding [11].

III. TC-UC FORMULATION

This section describes the TC-UC formulation. For unit g
at node n, at each time t, major decision variables include

unit on/off status xn,gn,t (binary) and generation level pn,gn,t
(continuous). Since the focus of the paper is to identify the

subset of transmission lines that can be removed without

impacting solution feasibility, the standard TC-UC formulation

presented in [15] is simplified as follows without considering

inter-temporal constraints and commitment costs following the

existing work [7]:

Min
pn,gn,t,xn,gn,t

∑
t

∑
n

∑
gn

Cgnpn,gn,t (1)

s.t.
∑

n

∑
gn

pn,gn,t =
∑

n
PD
n,t ∀t (2)

xn,gn,tP
min
n,gn ≤ pn,gn,t ≤ xn,gn,tP

max
n,gn ∀n, gn, t

(3)

− fmax
l ≤ fl,t ≤ fmax

l ∀l, t (4)

fl,t =
∑

n
αl,n

(∑
gn

pn,gn,t − PD
n,t

)
∀l, t (5)

The objective function (1) minimizes the total generation

cost. System balance condition (2) ensures that the total

generation equals the total demand for every time period.

Generation capacity limits (3) require that if a unit is online, its

generation level pn,gn,t should be within its minimum Pmin
n,gn

and maximum Pmax
n,gn . The transmission line capacity limits

(4) ensure that the DC power flow fl,t of line l cannot exceed

the line’s capacity limit fmax
l . The DC power flow fl,t is

expressed in (5) as the linear combinations of nodal injections

from all nodes weighted by generation shift factor αl,n. For

simplicity, it is assumed that nodal demands are known with

certainty and system configuration does not change.

IV. METHODOLOGY

In this section, a deep learning-based approach developed

for network constraint screening is discussed.

A. Input and output

Similar to electricity demand depending on historical data,

the amount of power flowing through a transmission line at

a given time interval depends on the line loading and nodal

demands in the previous intervals. To understand this temporal

dependence three input-output configurations are considered:

1) X-Ŷ: Input: Past nodal demands X; Output: Future line

loading levels Ŷ;

2) Y-Ŷ: Input: Past line loading levels Y; Output: Future

line loading levels Ŷ;
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3) X,Y-Ŷ: Input: Past nodal demands and line loading levels

X,Y; Output: Future line loading levels Ŷ.

The output Ŷ from the LSTM-based model is used to

identify the subset of transmission line capacity constraints

required to solve the TC-UC problem without infeasibility

occurring for any hour of the day. Therefore, the subset of

required constraints changes for every hour of the day. This

requires the line capacity constraints for every line l to be

classified as necessary (label - 1) or not necessary (label -

0) for every time interval t. The line loading level f̃ l,t is

expressed as a ratio of the absolute value of the line flow

fl,t to the maximum capacity of the line fmax
l as shown in

(6) below,

f̃ l,t =
|fl,t|
fmax
l

. (6)

If f̃ l,t is below a certain threshold, the line constraint is

classified as rejected (0), and above it is retained (1). Nodal

demands are normalized using z-score method.

B. LSTM-based model architecture
Since the input-output data is continuous, a regression based

LSTM model is used to predict the line loading and then

threshold-based labeling is done for classification. The LSTM-

based model developed in this study consists of an input layer

(I/P), an output layer (O/P), LSTM and fully connected (FC)

layers, as shown in Fig. 1. To capture the temporal relationship

between input and output, the LSTM-based model looks back

at a certain number of days D to predict Ŷ for next day’s

TC-UC problem. So the I/P time-step = D*24hours. The I/P

size also depends on input-output configuration. Whereas, the

O/P size only depends on the number of lines L, O/P neurons

= L*24 (e.g., for L = 120, O/P neurons = 2880). A sliding

window that shifts by an hour at a time is used to generate the

input-output pairs. The model parameters like the number of

layers, number of neurons per layer, and activation functions

are tuned for best results as shown in Fig. 1. The hyper-

parameters such as learning rate, batch size, number of epochs,

etc., are discussed in V-B.

Fig. 1: Deep learning-based model for transmission line

screening

The next step is to use a rule-based classifier to apply a

threshold to the output from the regression model. The trans-

mission line constraints whose f̃ l,t is below the threshold are

removed (class - 0) and above the threshold are retained (class

- 1). This regression-based classification approach allows the

model to be trained once and then be used to explore different

classification thresholds. Mean square error (MSE) is the loss

function used for training the model. Classification accuracy

is used to evaluate the performance of each input-output

configuration. The best-performing configuration is chosen for

transmission line screening, referred to as the regression-based

classification model (RCM). Different classification thresholds

are then explored to achieve a better computational perfor-

mance on the TC-UC problem while ensuring solution feasibil-

ity. In case line constraints are violated for any time intervals

for certain classification thresholds, the violated constraints are

iteratively added to TC-UC problem following the standard

constraint generation (CG) procedure [4].

C. Methods for comparison

The performance of RCM is compared with other methods

to evaluate its effectiveness. The baseline results are based

on the network with all transmission line capacity constraints

called full network (FN). Other methods include single-bus

network (SBN), historical analysis (HS) and perfect prediction

method (PP). These are similar to the comparative methods

used in [7]. SBN ignores all network constraints and assumes

a single-bus. HS retains constraints for lines that have ever

been congested in the historical data and ignores the rest.

PP assumes perfect forecast of transmission lines likely to

get congested for any given hour and hence only retains the

constraints corresponding to those lines.

V. TESTING AND RESULTS

In this section, the results of transmission line screening are

presented and discussed. The testing system and historical data

are described in Subsection A. Then the results of training and

testing the LSTM-based model are explained in Subsection

B. The results of transmission line screening for the TC-UC

problem are discussed in Subsection C.

A. Testing system and data

A modified IEEE RTS-96 system consisting of 96 gener-

ators, 73 nodes, and 120 transmission lines is used in this

study [16], [17]. Historical nodal demands PD
n,t for 360 days,

previously used in [7] and available at [18], are used to train

the deep learning model. The simplified TC-UC problem is

solved for 360 days to generate f̃ l,t. Then the historical data

is split into training and testing data sets. The 360 days are

first divided into four quarters of 90 days each (Q1 − Q4).

Then for each quarter, 80% data (72 days) is used for training

and 20% data (18 days) is used for testing. In total, 288

days are used for training and 72 days for testing. The aim

of this train-test data split is to ensure that the LSTM-based

model learns the seasonal variations in PD
n,t and f̃ l,t over the

year. All experiments are performed using IBM ILOG CPLEX

Optimization Studio V 12.10.0.0 on a PC with 2.30 GHz

Intel(R) Core (TM) i7- 10510U CPU and 16 GB RAM. The
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stop-gap (the relative difference between the objectives of the

optimal relaxed solution and the current integer solution) is

set to 1e− 6.

B. Training and testing results of the LSTM-based model

The results of training and testing the LSTM-based model

are discussed for the three input-output configurations. To

capture the weekly variations in PD
n,t and f̃ l,t, a look-back

period of 8 days (D) is used, resulting in I/P time-step = 192

(8*24). Therefore, the LSTM-based model uses historical data

from previous 8 days (e.g., Sunday of last week to Sunday of

this week) to predict the output of the 9th day (e.g., Monday

of this week). The input-output configuration determines rest

of the I/P size as follows, (1) X-Ŷ → 73 ∗ 192, (2) Y-Ŷ →
120 ∗ 192, and (3) X,Y-Ŷ → (73 + 120) ∗ 192. The O/P size

= 120 ∗ 24 is same for every configuration. The best hyper-

parameters are a learning rate of 0.0001, and a batch size of

200 trained for 100 epochs. The optimizer used for training is

Adam. The average training time for any configuration is 9.7

hours.

The MSE loss obtained from training and testing the three

different input-output configurations is shown in Table I. It

can be seen that the configuration X,Y-Ŷ gives the least MSE

for training and testing.

TABLE I: THE LOSS OBTAINED FROM TRAINING THE

THREE DIFFERENT INPUT-OUTPUT CONFIGURATIONS

Input-Output
Configuration

Training
MSE

Testing
MSE

X-Ŷ 0.002995 0.005962

Y-Ŷ 0.001647 0.003302

XY-Ŷ 0.001515 0.003259

After training the regression models, the classification is

done based on different thresholds (0.1-0.9). The threshold-

based classification accuracy for unseen test data is shown in

Table II. It can be seen that the configuration XY-Ŷ gives the

highest accuracy for every threshold. The results in Tables I

TABLE II: THRESHOLD-BASED CLASSIFICATION

ACCURACY (%) FOR TEST DATA WITH DIFFERENT

INPUT-OUTPUT CONFIGURATIONS

Threshold Accuracy
X to Ŷ

Accuracy
Y to Ŷ

Accuracy
XY to Ŷ

0.1 93.254 94.698 95.103
0.2 93.603 95.120 95.252
0.3 93.687 95.209 95.298
0.4 94.175 95.772 95.933
0.5 94.771 96.137 96.230
0.6 95.029 96.339 96.389
0.7 95.680 96.676 96.795
0.8 97.668 98.220 98.289
0.9 98.883 99.193 99.195

and II show that the XY-Ŷ input-output configuration performs

best with the least mean square error and highest classification

accuracy. Hence, its output is chosen for transmission line

screening.

C. Results of transmission line screening for TC-UC

The predictions made for different classification thresholds

are tested on the modified IEEE RTS-96 system using unseen

testing data from each quarter (Q1−Q4). To explore the impact

of screening on computational efficiency, the TC-UC problem

is solved for the entire quarter (18 days = 432 hours) following

the testing procedure in [7], resulting in 51,840 network

constraints (120 constraints ∗ 432 hours) for each quarter. FN

is used as a benchmark to compare the performance of RCM

and other methods using the following metrics:

• Percentage Network Constraints Removed (%NCR):

Ratio of the number of constraints removed (NCR)

to the total number of constraints (NC), %NCR =
NCR/NC ∗ 100;

• Solving Time (T , seconds): Time required to solve the

simplified TC-UC problem;

• Percentage reduction in solving time (ΔT ): Solving time

of TRCM relative to the solving time of TFN , ΔT =
(TFN − TRCM )/TFN ∗ 100;

• Cost (C, $): The total dispatch cost for the simplified

TC-UC problem;

• Percentage error in cost (ΔC): Cost of CRCM relative to

the cost of CFN , ΔC = (CFN − CRCM )/CFN ∗ 100;

• Number of Violations (V ): Number line constraint viola-

tions in the TC-UC solution;

• Percentage Violations (%V ): Ratio of the number of line

constraint violations to the total number of line con-

straints (NC) in the TC-UC problem, %V = V/NC∗100.

Table III shows the testing results of each quarter (Q) where

RCM with different classification thresholds (Th) is compared

with other methods. Since FN retains all network constraints, it

guarantees a feasible solution but requires a high solving time.

Whereas SBN removes all constraints, resulting in over 90%

reduction in solving time, but leads to significant constraint

violations. PP only retains constraints corresponding to lines

that are known to be congested, it significantly reduces solving

time but gives infeasible solutions. By removing constraints

for lines that were never congested historically, HS reduces

solving time considerably. However, it results in violations

for Q1. Typically, HS performs well only for small networks

with predictable line flows. RCM performs well with no

infeasibility for thresholds between 0.3 and 0.6 and Th = 0.6

gives the best computational performance where the solving

time is reduced by up to 59% by removing 74-75% transmis-

sion line capacity constraints. However, for higher thresholds

(0.7-0.8), infeasibility occurs due to few network constraint

violations, which can be resolved by iteratively adding the

violated constraints back to TC-UC using CG. Given that the

0.6 threshold offers a significant reduction in solving time,

there is no need to remove constraints under higher thresholds.

Hence, even without the use of CG, RCM offers significant

improvement in computational efficiency. For all thresholds,

under all quarters, the low value ΔC implies that the solution

quality obtained by RCM is very close to that of FN. These

results show that the RCM offers a significant reduction in
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solving time without causing infeasibility while maintaining

high solution quality.

TABLE III: RESULTS OF TRANSMISSION LINE SCREENING:

COMPARING METHODS

Q Method Th NCR
(%)

T
(sec)

ΔT
(%)

C
($)

ΔC
(%*10−4) V V

(%)
Q1 FN NA 0 127 NA 31,412,161 NA 0 0

SBN NA 100 7 94.49 31,359,980 1661 643 1.25
HS NA 95 37 70.87 31,411,640 17 42 0.09
PP NA 99.32 7 94.49 31,403,339 281 359 0.7

RCM 0.3 47.06 89 29.92 31,411,791 12 0 0
RCM 0.4 57.59 78 38.58 31,411,886 9 0 0
RCM 0.5 67.67 75 40.94 31,412,099 2 0 0
RCM 0.6 76.33 59 53.54 31,412,211 -2 0 0
RCM 0.7 87.28 45 64.57 31,411,208 30 4 0.01

RCM+CG 0.7 87.28 44 65.35 31,412,346 -6 0 0
RCM 0.8 94.41 45 64.57 31,411,628 17 18 0.03

RCM+CG 0.8 94.41 44 65.35 31,411,988 5 0 0
Q2 FN NA 0 127 NA 37,597,178 NA 0 0

SBN NA 100 8 93.71 37,552,842 1180 622 1.2
HS NA 94.17 35 72.45 37,597,537 -10 0 0
PP NA 99.14 9 92.92 37,579,851 461 385 0.75

RCM 0.3 46.56 72 43.31 37,597,210 -1 0 0
RCM 0.4 57.62 61 51.97 37,596,978 5 0 0
RCM 0.5 67.5 56 55.91 37,597,044 4 0 0
RCM 0.6 76.26 52 59.06 37,597,589 -11 0 0
RCM 0.7 87.4 40 68.50 37,596,787 10 11 0.02

RCM+CG 0.7 87.4 36 71.65 37,597,596 -11 0 0
RCM 0.8 94.18 38 70.08 37,597,088 2 37 0.07

RCM+CG 0.8 94.18 37 70.87 37,597,438 -7 0 0
Q3 FN NA 0 83 NA 34,536,211 NA 0 0

SBN NA 100 8 90.37 34,485,626 1465 647 1.25
HS NA 94.17 34 59.04 34,535,810 12 0 0
PP NA 99.73 6 92.78 34,487,369 1415 634 1.23

RCM 0.3 46.46 57 31.33 34,536,646 -13 0 0
RCM 0.4 56.63 49 40.96 34,535,981 7 0 0
RCM 0.5 66.7 49 40.96 34,535,910 9 0 0
RCM 0.6 75.72 47 43.37 34,535,890 9 0 0
RCM 0.7 86.79 39 53.01 34,535,821 11 12 0.02

RCM+CG 0.7 86.79 37 55.42 34,536,026 5 0 0
RCM 0.8 93.83 41 50.60 34,535,819 11 29 0.06

RCM+CG 0.8 93.83 33 60.24 34,535,977 7 0 0
Q4 FN NA 0 124 NA 39,857,395 NA 0 0

SBN NA 100 7 94.36 39,821,810 893 658 1.27
HS NA 92.5 38 69.36 39,857,302 3 0 0
PP NA 99.7 7 94.36 39,828,969 714 580 1.12

RCM 0.3 46.37 99 20.16 39,857,681 -7 0 0
RCM 0.4 57.05 93 25.00 39,857,821 -11 0 0
RCM 0.5 67.44 83 33.06 39,857,806 -10 0 0
RCM 0.6 76.39 78 37.10 39,856,804 15 0 0
RCM 0.7 87.5 71 42.74 39,856,653 19 3 0.01

RCM+CG 0.7 87.5 67 45.97 39,856,628 19 0 0
RCM 0.8 94.06 69 44.35 39,856,979 10 9 0.02

RCM+CG 0.8 94.06 63 49.19 39,856,947 11 0 0

VI. CONCLUSION

Improving the computational efficiency of the TC-UC prob-

lems while maintaining solution feasibility is of great impor-

tance for ISOs. Removing superfluous network constraints is

a potential way of achieving this goal. In this paper, a deep

learning-based constraint screening method is developed. To

identify superfluous network constraints for the TC-UC prob-

lem, the idea is to capture the temporal relationship between

past line loading levels, nodal demands, and future line loading

levels. To achieve this, a novel regression-based classification

approach is developed, where the regression model with LSTM

layers is used to predict line loading levels and then different

thresholds are applied to classify transmission line capacity

constraints as necessary or not for the TC-UC problem. The

major advantage of this approach is that once trained, the

model can be used under different classification thresholds.

Historical nodal demands and line loading levels are used for

training and testing. Results of transmission line screening on

the TC-UC problem show a significant reduction in solving

time without compromising solution quality, demonstrating

that the approach is promising. In the future, TC-UC problem

with inter-temporal constraints will be considered along with

large-scale networks to further demonstrate the performance

of our approach.
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