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Deep Learning-Based Transmission Line Screening
for Unit Commitment

Farhan Hyder

Abstract—Solving the transmission-constrained unit commit-
ment (TC-UC) problem efficiently for high-quality solutions is
one of the biggest challenges faced by independent system oper-
ators today. One way to achieve this is by removing superfluous
network constraints from the problem. Several approaches have
been used to identify such constraints. However, these methods
are either too conservative or fail to maintain solution feasibility.
In this paper, a deep learning-based approach is developed
to identify the subset of transmission lines that can be safely
removed from the TC-UC problem. The idea is to capture the
temporal relationship between past line loading levels, nodal
demands, and future line loading levels to identify superfluous
network constraints. To achieve this, a novel regression-based
classification approach is developed, where the regression model
is used to predict line loading levels, and different thresholds
are applied to classify transmission line capacity constraints as
necessary or not for the TC-UC problem. The major advantage
of this approach is that once trained, the model can be used
under different classification thresholds. Numerical results show
that the proposed approach significantly improves computational
efficiency without compromising the solution quality.

Index Terms—Transmission-constrained unit commitment,
constraint screening, deep learning, LSTM

I. INTRODUCTION

Independent system operators (ISOs) solve day-ahead TC-
UC problems to determine on/off statuses and power gen-
eration levels for each unit to meet the system demand at
the minimum cost [1]. The unit commitment decisions are
modeled with binary variables (on (1) or off (0)) and dispatch
decisions with continuous variables (generation level), making
the TC-UC problem a Mixed Binary Linear Programming
(MBLP) problem. The TC-UC problem consists of unit-level
constraints such as generation capacity limits, ramping limits,
etc., and system-level constraints such as system demand,
transmission capacity limits (network constraints), etc. It has
been demonstrated that the TC-UC problem is an NP-hard
problem even for a single time period [2]. One approach sug-
gested in the literature to reduce the complexity of the TC-UC
problem is to filter out superfluous network constraints [3]—
[9]. Many network constraints are either redundant (unloaded

Farhan Hyder and Bing Yan are with the Department of Electrical and
Microelectronics Engineering, Rochester Institute of Technology, Rochester,
NY, 14623, USA (email: fh6772@rit.edu; bxyeee@rit.edu). Sriparvathi Shaji
Bhattathiri and Michael E. Kuhl are with the Department of Industrial
and Systems Engineering, Rochester Institute of Technology, Rochester, NY,
14623, USA (email: ssb6096 @rit.edu; mekeie @rit.edu). This material is based
upon work supported by the National Science Foundation under Award ECCS-
1810108 and DGE-2125362. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

978-1-6654-6441-3/23/$31.00 ©2023 IEEE

Sriparvathi Shaji Bhattathiri

Bing Yan Michael E. Kuhl

lines) or inactive (uncongested lines) and they can be safely
removed to reduce the complexity of the TC-UC problem.
However, removing too many constraints would result in
infeasible solutions; whereas, removing too few constraints
may not improve computational performance.

Different transmission line screening approaches are dis-
cussed in Section II. Traditional approaches often include net-
work reduction [3], constraint generation [4] and optimization-
based methods [5], [6]. While these methods maintain the fea-
sibility of the TC-UC problem, they often fail to provide sig-
nificant improvements in computational performance as they
remove constraints conservatively. More recently, machine
learning-based approaches have been used for transmission
line screening [7]-[9]. While these methods provide significant
improvements in computational performance, they might cause
infeasibility in the TC-UC solution as they might remove
critical constraints. In addition, the transmission line loading
for future time intervals depends on nodal demand and line
loading in previous time intervals. Such temporal relationships
cannot be captured by the previously used machine learning-
based approaches, which could be a reason for infeasibility.
Recurrent Neural Networks (RNNs), which are special types
of Artificial Neural Networks (ANNs) designed to work with
temporal data offer a promising way to capture such non-linear
temporal relationships. A simple RNN structure, however,
suffers from difficulties like the vanishing and exploding gra-
dient problems [10]. The Long Short Term Memory (LSTM),
an advanced RNN architecture, overcomes the drawbacks of
simple RNNs by choosing to only remember the most relevant
information and performs better [11].

In this paper, a deep learning-based approach is developed to
identify superfluous transmission line constraints from histor-
ical data on nodal demands and line loading levels to improve
the computational performance of the TC-UC problem. In
Section III, a simplified TC-UC formulation is presented. In
Section IV, a novel regression-based classification approach is
developed, where the regression model with LSTM layers is
used to predict line loading levels and then different thresholds
are applied to classify transmission line capacity constraints
with the help of a rule-based system. The major advantage of
this approach is that once trained, the model can be used under
different classification thresholds. In Section V, the results of
training and testing the model are presented along with the
results of transmission line screening on a modified IEEE RTS-
96 system.
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II. LITERATURE REVIEW

This section reviews existing studies on transmission line
screening and regression-based classification approaches.

A. Transmission line screening methods

Existing transmission line screening approaches can be
divided into two categories, traditional and machine learning-
based approaches. The traditional approaches focus on main-
taining the feasibility of the TC-UC solution while finding
the subset of transmission lines to be removed. The network
reduction method shows how the size of the network can be
reduced by studying the topology of the network and removing
unnecessary lines and nodes [3]. The constraint generation
approach iteratively adds network constraints based on neces-
sary and sufficient conditions that maintain solution feasibility
[4]. In some other approaches, the inactive constraints are
identified by maximizing/minimizing the flow through a given
line to determine if the line gets congested [5], [6]. These
traditional approaches are often not as fast as machine leaning-
based approaches.

The recent emergence of machine learning algorithms has
encouraged researchers to adopt data-driven approaches to-
ward transmission line screening. A data-driven method based
on the K-nearest neighbors algorithm is used to determine if a
line should be classified as congested or not for a previously
unseen time interval [7]. This study shows a significant reduc-
tion in prepossessing as well as solving times. However, for
highly congested and large networks, this method could give
inaccurate solutions. Some recent approaches used neural net-
works to identify active constraint sets [8], [9]. These two ap-
proaches improved computational efficiency significantly, but
they cannot guarantee correct predictions, requiring additional
steps to prevent infeasible solutions. These machine learning-
based approaches are faster than traditional approaches, but
cannot guarantee feasible TC-UC solutions.

B. Regression-based classification and deep learning

Machine learning can be used for both classification and
regression. Classification models usually predict labels for
ordinal data while regression models are used to predict
continuous data. For transmission line screening, both clas-
sification [7], [8] and regression [9] models have been used in
the literature. If the classification of a line capacity constraint
as necessary or not is based on a threshold applied to the line
loading levels, the line loading levels can be predicted using
a regression model and a rule-based classifier can be applied.
Such models tend to learn more information as well as have
the versatility of being trained once and then being used to
classify based on different rules and thresholds [12].

Deep learning algorithms are emerging as promising ap-
proaches to learning non-linear relationships in power sys-
tem problems [13], [14]. When input and output data have
temporal relationships, RNNs are a suitable solution. RNNs
remember information across time intervals using feedback
loops, which connect past and current information. However,
simple RNN structures offer little to no control over what
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information is remembered. Furthermore, simple RNNs suffer
from vanishing and exploding gradient problems when back-
propagating errors over time [10]. These drawbacks are over-
come by advanced RNN structures called LSTMs, which are
designed to offer control over memory and remember only
the most relevant information while preventing gradients from
vanishing or exploding [11].

III. TC-UC FORMULATION

This section describes the TC-UC formulation. For unit ¢
at node n, at each time t, major decision variables include
unit on/off status x,, 4, ; (binary) and generation level p,, 4. ¢
(continuous). Since the focus of the paper is to identify the
subset of transmission lines that can be removed without
impacting solution feasibility, the standard TC-UC formulation
presented in [15] is simplified as follows without considering
inter-temporal constraints and commitment costs following the

Min

existing work [7]:
LoMin RS >, Cobras (1)
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The objective function (1) minimizes the total generation
cost. System balance condition (2) ensures that the total
generation equals the total demand for every time period.
Generation capacity limits (3) require that if a unit is online, its
generation level p,, 4 ; should be within its minimum P,‘ln;]“
and maximum P;"¢*. The transmission line capacity limits
(4) ensure that the DC power flow f; + of line [ cannot exceed
the line’s capacity limit f;"**. The DC power flow f;; is
expressed in (5) as the linear combinations of nodal injections
from all nodes weighted by generation shift factor ¢ ,. For
simplicity, it is assumed that nodal demands are known with
certainty and system configuration does not change.

IV. METHODOLOGY

In this section, a deep learning-based approach developed
for network constraint screening is discussed.

A. Input and output

Similar to electricity demand depending on historical data,
the amount of power flowing through a transmission line at
a given time interval depends on the line loading and nodal
demands in the previous intervals. To understand this temporal
dependence three input-output configurations are considered:

1) X-Y: Input: Past nodal demands X; Output: Future line

loading levels Y:
2) Y-Y: Input: Past line loading levels Y; Output: Future
line loading levels Y;
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3) X,Y-Y: Input: Past nodal demands and line loading levels
X,Y; Output: Future line loading levels Y.

The output Y from the LSTM-based model is used to
identify the subset of transmission line capacity constraints
required to solve the TC-UC problem without infeasibility
occurring for any hour of the day. Therefore, the subset of
required constraints changes for every hour of the day. This
requires the line capacity constraints for every line [ to be
classified as necessary (label - 1) or not necessary (label -
0) for every time interval £. The line loading level f~l,t is
expressed as a ratio of the absolute value of the line flow
f1,¢ to the maximum capacity of the line f;"* as shown in
(6) below,

P Ll
fre = -

If f“ is below a certain threshold, the line constraint is
classified as rejected (0), and above it is retained (1). Nodal
demands are normalized using z-score method.

B. LSTM-based model architecture

Since the input-output data is continuous, a regression based
LSTM model is used to predict the line loading and then
threshold-based labeling is done for classification. The LSTM-
based model developed in this study consists of an input layer
(I/P), an output layer (O/P), LSTM and fully connected (FC)
layers, as shown in Fig. 1. To capture the temporal relationship
between input and output, the LSTM-based model looks back
at a certain number of days D to predict Y for next day’s
TC-UC problem. So the I/P time-step = D*24hours. The I/P
size also depends on input-output configuration. Whereas, the
O/P size only depends on the number of lines L, O/P neurons
= L*24 (e.g., for L = 120, O/P neurons = 2880). A sliding
window that shifts by an hour at a time is used to generate the
input-output pairs. The model parameters like the number of
layers, number of neurons per layer, and activation functions
are tuned for best results as shown in Fig. 1. The hyper-
parameters such as learning rate, batch size, number of epochs,
etc., are discussed in V-B.

(6)

3000
3000 : 2880
Neurons NCLchi(])ll’lb Neurons
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curons
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e orp
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\ o/p
FC-1 BC2 Layer
Fig. 1: Deep learning-based model for transmission line
screening

The next step is to use a rule-based classifier to apply a
threshold to the output from the regression model. The trans-
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mission line constraints whose f 1.+ 18 below the threshold are
removed (class - 0) and above the threshold are retained (class
- 1). This regression-based classification approach allows the
model to be trained once and then be used to explore different
classification thresholds. Mean square error (MSE) is the loss
function used for training the model. Classification accuracy
is used to evaluate the performance of each input-output
configuration. The best-performing configuration is chosen for
transmission line screening, referred to as the regression-based
classification model (RCM). Different classification thresholds
are then explored to achieve a better computational perfor-
mance on the TC-UC problem while ensuring solution feasibil-
ity. In case line constraints are violated for any time intervals
for certain classification thresholds, the violated constraints are
iteratively added to TC-UC problem following the standard
constraint generation (CG) procedure [4].

C. Methods for comparison

The performance of RCM is compared with other methods
to evaluate its effectiveness. The baseline results are based
on the network with all transmission line capacity constraints
called full network (FN). Other methods include single-bus
network (SBN), historical analysis (HS) and perfect prediction
method (PP). These are similar to the comparative methods
used in [7]. SBN ignores all network constraints and assumes
a single-bus. HS retains constraints for lines that have ever
been congested in the historical data and ignores the rest.
PP assumes perfect forecast of transmission lines likely to
get congested for any given hour and hence only retains the
constraints corresponding to those lines.

V. TESTING AND RESULTS

In this section, the results of transmission line screening are
presented and discussed. The testing system and historical data
are described in Subsection A. Then the results of training and
testing the LSTM-based model are explained in Subsection
B. The results of transmission line screening for the TC-UC
problem are discussed in Subsection C.

A. Testing system and data

A modified IEEE RTS-96 system consisting of 96 gener-
ators, 73 nodes, and 120 transmission lines is used in this
study [16], [17]. Historical nodal demands PT?t for 360 days,
previously used in [7] and available at [18], are used to train
the deep learning model. The simplified TC-UC problem is
solved for 360 days to generate f;,. Then the historical data
is split into training and testing data sets. The 360 days are
first divided into four quarters of 90 days each (Q1 — Q).
Then for each quarter, 80% data (72 days) is used for training
and 20% data (18 days) is used for testing. In total, 288
days are used for training and 72 days for testing. The aim
of this train-test data split is to ensure that the LSTM-based
model learns the seasonal variations in P,ft and f 1,+ over the
year. All experiments are performed using IBM ILOG CPLEX
Optimization Studio V 12.10.0.0 on a PC with 2.30 GHz
Intel(R) Core (TM) i7- 10510U CPU and 16 GB RAM. The
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stop-gap (the relative difference between the objectives of the
optimal relaxed solution and the current integer solution) is
set to le — 6.

B. Training and testing results of the LSTM-based model

The results of training and testing the LSTM-based model
are discussed for the three input-output configurations. To
capture the weekly variations in Pr]?,t and f;, a look-back
period of 8 days (D) is used, resulting in I/P time-step = 192
(8*24). Therefore, the LSTM-based model uses historical data
from previous 8§ days (e.g., Sunday of last week to Sunday of
this week) to predict the output of the 9*" day (e.g., Monday
of this week). The input-output configuration determines rest
of the I/P size as follows, (1) X-Y — 73 % 192, (2) Y-¥Y —
120 * 192, and (3) X,¥-¥ — (73 + 120) % 192. The O/P size
= 120 % 24 is same for every configuration. The best hyper-
parameters are a learning rate of 0.0001, and a batch size of
200 trained for 100 epochs. The optimizer used for training is
Adam. The average training time for any configuration is 9.7
hours.

The MSE loss obtained from training and testing the three
different input-output configurations is shown in Table I. It
can be seen that the configuration X,Y-¥ gives the least MSE
for training and testing.

TABLE I: THE LOSS OBTAINED FROM TRAINING THE
THREE DIFFERENT INPUT-OUTPUT CONFIGURATIONS

Input-Output  Training Testing
Configuration = MSE MSE
X-Y 0.002995  0.005962
Y-y 0.001647  0.003302
XYY 0.001515  0.003259

After training the regression models, the classification is
done based on different thresholds (0.1-0.9). The threshold-
based classification accuracy for unseen test data is shown in
Table II. It can be seen that the configuration XY-¥ gives the
highest accuracy for every threshold. The results in Tables I

TABLE II: THRESHOLD-BASED CLASSIFICATION
ACCURACY (%) FOR TEST DATA WITH DIFFERENT
INPUT-OUTPUT CONFIGURATIONS

Accuracy Accuracy Accuracy
Threshold v 0¥ " Yo¥? XYtV
0.1 93.254 94.698 95.103
0.2 93.603 95.120 95.252
0.3 93.687 95.209 95.298
0.4 94.175 95.772 95.933
0.5 94.771 96.137 96.230
0.6 95.029 96.339 96.389
0.7 95.680 96.676 96.795
0.8 97.668 98.220 98.289
0.9 98.883 99.193 99.195

and II show that the XY-¥ input-output configuration performs
best with the least mean square error and highest classification
accuracy. Hence, its output is chosen for transmission line
screening.
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C. Results of transmission line screening for TC-UC

The predictions made for different classification thresholds
are tested on the modified IEEE RTS-96 system using unseen
testing data from each quarter (1 —@Q)4). To explore the impact
of screening on computational efficiency, the TC-UC problem
is solved for the entire quarter (18 days = 432 hours) following
the testing procedure in [7], resulting in 51,840 network
constraints (120 constraints * 432 hours) for each quarter. FN
is used as a benchmark to compare the performance of RCM
and other methods using the following metrics:

o Percentage Network Constraints Removed (%NCR):
Ratio of the number of constraints removed (NCR)
to the total number of constraints (NC), WNCR =
NCR/NC x100;

o Solving Time (7', seconds): Time required to solve the
simplified TC-UC problem;

o Percentage reduction in solving time (AT): Solving time
of Trop relative to the solving time of Try, AT =
(TN —Trem)/Trn * 100;

e Cost (C, $): The total dispatch cost for the simplified
TC-UC problem;

o Percentage error in cost (AC): Cost of C'rcpy relative to
the cost of Cry, AC = (Cpy — Cron)/Cry * 1005

e Number of Violations (V'): Number line constraint viola-
tions in the TC-UC solution;

o Percentage Violations (%V): Ratio of the number of line
constraint violations to the total number of line con-
straints (NC) in the TC-UC problem, %V = V/NC'%100.

Table III shows the testing results of each quarter (Q) where
RCM with different classification thresholds (77) is compared
with other methods. Since FN retains all network constraints, it
guarantees a feasible solution but requires a high solving time.
Whereas SBN removes all constraints, resulting in over 90%
reduction in solving time, but leads to significant constraint
violations. PP only retains constraints corresponding to lines
that are known to be congested, it significantly reduces solving
time but gives infeasible solutions. By removing constraints
for lines that were never congested historically, HS reduces
solving time considerably. However, it results in violations
for Q1. Typically, HS performs well only for small networks
with predictable line flows. RCM performs well with no
infeasibility for thresholds between 0.3 and 0.6 and T'h = 0.6
gives the best computational performance where the solving
time is reduced by up to 59% by removing 74-75% transmis-
sion line capacity constraints. However, for higher thresholds
(0.7-0.8), infeasibility occurs due to few network constraint
violations, which can be resolved by iteratively adding the
violated constraints back to TC-UC using CG. Given that the
0.6 threshold offers a significant reduction in solving time,
there is no need to remove constraints under higher thresholds.
Hence, even without the use of CG, RCM offers significant
improvement in computational efficiency. For all thresholds,
under all quarters, the low value AC' implies that the solution
quality obtained by RCM is very close to that of FN. These
results show that the RCM offers a significant reduction in
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solving time without causing infeasibility while maintaining
high solution quality.

TABLE III: RESULTS OF TRANSMISSION LINE SCREENING:

COMPARING METHODS
NCR T AT C AC A%
Q Method Th ) o) %) ) (%*10Y ¥ (%)
Q1 FN NA 0 127 NA 31.412,161 NA 0 0
SBN NA 100 7 1661 643 1.25

94.49 31,359,980

HS NA 95 37 70.87 31,411,640 17 42 0.09
PP NA 9932 7 94.49 31,403,339 281 359 0.7
RCM 0.3 47.06 89 29.92 31,411,791 12 0 0
RCM 04 57.59 78 38.58 31,411,886 9 0 0
RCM 0.5 67.67 75 40.94 31,412,099 2 0o 0
RCM 0.6 7633 59 53.54 31,412,211 -2 0 0
RCM 0.7 87.28 45 64.57 31,411,208 30 4 0.01
RCM+CG 0.7 87.28 44 65.35 31,412,346 -6 0 0
RCM 0.8 9441 45 64.57 31,411,628 17 18 0.03
RCM+CG 0.8 94.41 44 65.35 31,411,988 5 0
Q2 FN NA 0 127 NA 37,597,178 NA 0

SBN NA 100 8
HS NA 94.17 35
PP NA 99.14 9
RCM 0.3 46.56 72
RCM 04 57.62 61

93.71 37,552,842 1180
72.45 37,597,537 -10
92.92 37,579,851 461
43.31 37,597,210 -1
51.97 37,596,978 5

[N

(98]
(e NeNoNo] o Nell b el N
W (3]
S -
[\)

coocoococoo~ouolocoscooovoivolooocaoococooLo!
W

RCM 05 67.5 56 5591 37,597,044 4
RCM 0.6 76.26 52 59.06 37,597,589 -11
RCM 0.7 874 40 68.50 37,596,787 10 11 0.02
RCM+CG 0.7 87.4 36 71.65 37,597,596 -11 0
RCM 0.8 94.18 38 70.08 37,597,088 2 37 0.07
RCM+CG 0.8 94.18 37 70.87 37,597,438 -7 0
Q3 FN NA 0 83 NA 34,536,211 NA 0
SBN NA 100 8 90.37 34,485,626 1465 647 1.25
HS NA 94.17 34 59.04 34,535,810 12 0
PP NA 99.73 6 92.78 34,487,369 1415 634 1.23

RCM 0.3 4646 57
RCM 0.4 56.63 49
RCM 0.5 66.7 49
RCM 0.6 75.72 47
RCM 0.7 86.79 39
RCM+CG 0.7 86.79 37
RCM 0.8 93.83 41

31.33 34,536,646 -13
40.96 34,535,981 7
40.96 34,535,910 9
43.37 34,535,890 9
53.01 34,535,821 11
55.42 34,536,026 5
50.60 34,535,819 11

NS} —
Bogoocoo
=)
]

(=]
=

RCM+CG 0.8 93.83 33 60.24 34,535,977 7 0
Q4 FN NA 0 124 NA 39,857,395 NA 0
SBN NA 100 7 94.36 39,821,810 893 658 1.27
HS NA 925 38 69.36 39,857,302 3 0
PP NA 99.7 7 94.36 39,828,969 714 580 1.12
RCM 0.3 4637 99 20.16 39,857,681 -7 0
RCM 0.4 57.05 93 25.00 39,857,821 -11 0
RCM 0.5 67.44 83 33.06 39,857,806 -10 0
RCM 0.6 7639 78 37.10 39,856,804 15 0
RCM 0.7 875 71 42.74 39,856,653 19 3 001
RCM+CG 0.7 87.5 67 45.97 39,856,628 19 0
RCM 0.8 94.06 69 44.35 39,856,979 10 9 0.02
RCM+CG 0.8 94.06 63 49.19 39,856,947 11 0

VI. CONCLUSION

Improving the computational efficiency of the TC-UC prob-
lems while maintaining solution feasibility is of great impor-
tance for ISOs. Removing superfluous network constraints is
a potential way of achieving this goal. In this paper, a deep
learning-based constraint screening method is developed. To
identify superfluous network constraints for the TC-UC prob-
lem, the idea is to capture the temporal relationship between
past line loading levels, nodal demands, and future line loading
levels. To achieve this, a novel regression-based classification
approach is developed, where the regression model with LSTM
layers is used to predict line loading levels and then different
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thresholds are applied to classify transmission line capacity
constraints as necessary or not for the TC-UC problem. The
major advantage of this approach is that once trained, the
model can be used under different classification thresholds.
Historical nodal demands and line loading levels are used for
training and testing. Results of transmission line screening on
the TC-UC problem show a significant reduction in solving
time without compromising solution quality, demonstrating
that the approach is promising. In the future, TC-UC problem
with inter-temporal constraints will be considered along with
large-scale networks to further demonstrate the performance
of our approach.
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