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Abstract—Modern developers rely on container-orchestration
frameworks like Kubernetes to deploy and manage hybrid work-
loads that span the edge and cloud. When network conditions be-
tween the edge and cloud change unexpectedly, a workload must
adapt its internal behavior. Unfortunately, container-orchestration
frameworks do not offer an easy way to express, deploy, and
manage adaptation strategies. As a result, fine-tuning or mod-
ifying a workload’s adaptive behavior can require modifying
containers built from large, complex codebases that may be
maintained by separate development teams. This paper presents
BumbleBee, a lightweight extension for container-orchestration
frameworks that separates the concerns of application logic
and adaptation logic. BumbleBee provides a simple in-network
programming abstraction for making decisions about network
data using application semantics. Experiments with a BumbleBee
prototype show that edge ML-workloads can adapt to network
variability and survive disconnections, edge stream-processing
workloads can improve benchmark results between 37.8% and
23x, and HLS video-streaming can reduce stalled playback by
77%.

I. INTRODUCTION

Hybrid workloads that span edges and clouds are on the

rise [24], [49]. Container technologies like Docker [51] and

orchestration platforms like Kubernetes [31] are crucial to

hybrid workloads because they provide a uniform compute and

control plane. Orchestrators can launch tasks to satisfy bursts

of new requests, kill tasks when utilization drops, and load-

balance traffic. However, even perfect orchestration cannot

ensure good performance and reliability in the face of highly

variable network conditions.

This limitation is acute for hybrid workloads because,

unlike within a single cluster, network conditions between the

edge and cloud can change unexpectedly [13], [55], [77] and

partitions are not uncommon [1], [4], [6], [26], [27], [52].

When network conditions degrade it is crucial for workloads

to adapt their internal behavior in response. For example,

a machine-learning (ML) workload may switch to an edge

inference model with lower accuracy to compensate for higher

network latency, and a stream-processing workload may ag-

gregate more aggressively to compensate for a drop in network

bandwidth. In these cases and many others, application-aware
adaptation [54] is the key to maintaining acceptable quality

when network conditions degrade.

Unfortunately, applying application-aware adaptation to or-

chestrated workloads is onerous. At the orchestration level,

tools like Azure Arc [5], Google Anthos [25], AWS Hybrid

Cloud [3], and KubeEdge [40] provide a centralized control

plane for hybrid workloads, but they do not support adapta-

tion. At the application level, adaptation strategies are often

tightly coupled with other functionality in a single container,

such as a video-processing container that implements adaptive

bitrate logic and video transcoding. As a result, fine-tuning or

modifying a workload’s adaptive behavior can require changes

to a large codebase that is often maintained by a separate

development team. At the network-transport level application-

oblivious responses to variable network conditions, such as

TCP congestion control, provide fair bandwidth allocation, but

only the application knows how to change its internal behavior

as conditions change.

To fill this gap, we present a lightweight in-network process-

ing facility for application-aware adaptation called BumbleBee.

BumbleBee provides a clean separation of concerns between

workloads’ adaptation and business logic. Workloads’ core

functionality remain in their original unmodified containers,

and BumbleBee adaptation scripts execute in sidecar prox-

ies. BumbleBee benefits a variety of hybrid workloads: ML

applications can gracefully switch between high- and low-

fidelity inference, stream-processing applications can meet

between 37.8% and 23x more deadlines, and video-streaming

applications can reduce stalling by 77%.

The main technical challenge that BumbleBee addresses is

balancing expressiveness and modularity. Embedding adap-

tation within an application container allows arbitrary ex-

pressiveness but provides poor modularity since business and

adaptation logic are trapped in the same component. At the

other end of the spectrum, P4 [9] can be applied to unmodified

workloads but provides a very limited programming model.

Envoy sidecar [74] filters are more expressive than P4, but

they cannot perform stateful adaptations such as redirecting

or transforming messages based on how long they have been

delayed.

BumbleBee allows developers to write concise scripts, of-

ten only tens of lines of code, that can programmatically

drop, redirect, reorder, and transform network data. Heavy-

weight computations, such as video transcoding, can be asyn-

chronously offloaded, and BumbleBee handles reintegrating

these modified payloads into a workload’s message queue.

Because scripts execute within a user-level sidecar proxy,

BumbleBee can adapt workloads without modifying existing

containers.

This small incremental change to an existing mechanism

allows application-aware adaptation to benefit from the separa-

tion of concerns already provided by the container ecosystem.

Applications need not take on the task of network monitoring,

and adaptation strategies can be updated and repurposed

without inspecting complex source code or deploying new

containers. BumbleBee’s approach also allows placement of

adaptive mechanisms closer to the point at which change

occurs in the network, improving agility over more end-to-

end approaches.
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Fig. 1: Envoy sidecars interpose on a pod’s network commu-

nication.

This paper makes the following contributions:

• We identify four common patterns applications use to

adapt to network variability.

• We design and implement a single in-network abstrac-

tion to implement all of these patterns, informed by

application needs.

• Experiments with our prototype show that edge work-

loads benefit from BumbleBee: (1) ML applications

can utilize cloud resources when available and operate

without interruption when disconnected, (2) BumbleBee

increases the number of deadlines met between 37.8%

and 23x on the Yahoo! stream-processing benchmark, (3)

BumbleBee reduces stalled playback by 77% during HLS

video streaming under real-world network conditions, and

(4) BumbleBee adds less than 10% overhead to the 99th

percentile request latency compared to a baseline sidecar.

The rest of the paper is organized as follows. Section II

describes background information. Section III describes the

BumbleBee design. Section IV presents an evaluation of our

BumbleBee prototype. Section V describes related work. And

Section VI presents our conclusions.

II. BACKGROUND

Applications are increasingly written in a containerized
framework [8], [51], [61] as a collection of communicating mi-
croservices [53]. These frameworks provide many advantages:

a strict decomposition of tasks, a consistent deployment model

allowing in-place updates, declarative capture and preservation

of system dependencies, and lightweight resource isolation and

monitoring. Such ecosystems explicitly provide for separa-
tion of concerns through architectural decisions. Application

writers need not be concerned with task creation, monitoring,

placement, or scaling, relying instead on container orchestra-
tion frameworks [31], [71]. Likewise, they need not actively

manage the communication between emplaced tasks. Instead, a

service mesh [44], [60] provides reliable, fault-tolerant, load-

balanced communication across complex topologies of task

deployment. This section describes these frameworks, with an

eye to BumbleBee’s integration with them.

Containers: Docker [51] is a container-based virtualization

platform that provides process-level performance and security

isolation; such platforms have become the standard unit to

manage and deploy software in the cloud. Container images

include all of the user-level state required to launch an appli-

cation, including binaries, support libraries, and configuration.

Each container typically implements a single component mi-

croservice of the overall application, providing an API to the

other constituent components.

Container Orchestration: Kubernetes [31] automates deploy-

ment, scaling, and management of distributed, containerized

applications. The unit of deployment in Kubernetes is a pod.

A pod is a set of containers that run under the same oper-

ating system kernel and share the same underlying physical

resources, such as cores and disks. Because containers within

a pod share a machine they can communicate cheaply via local

storage or intra-kernel messaging.

Developers write configuration manifests describing how

Kubernetes should deploy an application on a set of physical

or virtual machines, e.g., which container images to use,

how containers are grouped into pods, and which ports each

pod needs. The manifest also describes runtime goals for an

application, such as pod replication factors, load balancing

among replicas, and an auto-scaling policy.

Service Mesh: Service meshes [44] manage inter-pod commu-

nications within Kubernetes. They provide service discovery,

peer health monitoring, routing, load balancing, authentication,

and authorization. This is done via the sidecar pattern [10],

in which a user-level network proxy called Envoy [39] is

transparently interposed between each pod and its connection

to the rest of the system; applications are oblivious to the

sidecar and its mechanisms. Each Envoy instance is populated

with iptable rules to route incoming and outgoing packets

through the sidecar, as shown in Figure 1. This architec-

ture makes the Envoy sidecar an ideal place to implement

application-aware adaptation. It allows application writers to

focus only on the needs of adaptation as data traverses the

network, without having to integrate it with the application’s

behavior as prior systems did [23], [54]. We use the Istio [60]

implementation in our prototype.

An Envoy sidecar has a pool of worker threads, mapped

to the underlying threads exposed to this container. Work-

ers block on ingress/egress sockets, and are invoked on a

per-message basis. On invocation, the Envoy worker passes

the message through one or more application-specific filters.

Filters are small, stateless code snippets that operate on

individual messages. Filters have full access to a message and

can perform simple operations, such as redirection, dropping,

and payload transformation. Developers commonly use Envoy

filters for monitoring and traffic shaping, such as collecting

telemetry, load-balancing, and performing A/B testing. Envoy

supports filters at several layers of the network stack.

III. DESIGN AND IMPLEMENTATION

In designing BumbleBee, we kept three goals in mind.

First, we followed the container ecosystem’s core principle of

separation of concerns, isolating the application’s logic from

adaptation decisions. The existing infrastructure of orchestra-

tion frameworks and service meshes made this particularly
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Fig. 2: Kubernetes deployment of a distributed application

with BumbleBee enabled.

attractive. Second, we kept interfaces as narrow as possible.

There were places where BumbleBee needs some additional

information or functionality, but those were chosen only reluc-

tantly. Third, we erred on the side of simple and inexpensive
in designing the interface exposed by BumbleBee whenever

possible.

BumbleBee’s overall architecture is illustrated in Figure 2.

Authors define applications through a YAML manifest that

describes the set of application container images and their

corresponding configurations. When deployed, the Istio service

mesh co-locates an Envoy sidecar proxy with each Kubernetes

pod; this sidecar is interposed on all traffic to and from the pod.

Applications supply BumbleBee adaptation logic as simple

Lua scripts [35], deployed in the sidecars as Envoy filters [60].

Cilium [16] and eBPF [73] provide functionality similar to

Envoy filters and could be used for an alternative BumbleBee

implementation. All elements in a container ecosystem can be

updated in place; thus these scripts can be changed on the fly

without stopping or re-deploying the overall application.

To determine how best to frame the abstractions provided

by BumbleBee, we surveyed a variety of existing adaptive

systems in various domains:

• Video streaming: live or on-demand videos are streamed

from a server to a client. When bandwidth is constrained,

parties involved transform streams to lower video resolu-

tion, or drop frames-per-second [72].

• Video conferencing: multiple users interactively video-

chat. When network is congested, clients transform frames

to lower resolutions [19], [79], or drop to voice-only mode

(e.g., FaceTime “poor connection” [59]). For consistent

poor network conditions, they redirect to calls through a

different meet-up server [37], or occasionally drop out-of-

sync frames if delayed too long.

• Internet of Things (IoT): distributed clients collect and

stream sensor data to the cloud. The clients react to

changes in network environment by dropping (filtering)

data points below a threshold [28], aggregating or tran-
forming data into an average or histogram [36], and

re-ordering low-priority data points to the tail of the

queue [30].

• Stream-processing applications: distributed workers pro-

cess continuous streams of data for real-time insights

(e.g., fraud detection). However, the distributed nature of

the jobs often encounter turbulent network environment.

The applications adapt by dropping less important mes-

sages [64], re-ordering new messages to the front queue to

avoid backlogs [2], [58], transforming multiple messages

to aggregated message [66], and redirecting messages that

are assigned to overloaded worker to another worker.

We identified four common adaptation patterns used across

existing adaptive systems:

• Drop eliminates data when it is no longer useful.

• Reorder defers lower priority data in preference to more

important but subsequent elements.

• Redirect changes routing from an over-utilized resource to

an available but possibly lower-quality one.

• Transform converts data from one format to another, typ-

ically reducing size at the cost of data fidelity.

Each system we examined used at least one of these patterns;

some combined more than one. Importantly, all of these can

be implemented by observing at most a small, contiguous

range of network messages at the head of the current transmis-

sion sequence. Stock Envoy exposes messages individually to

stateless scripts. We expanded this interface to allow scripts

access to a single mutable ordered queue for each (source,

destination) pair. We were reluctant to widen the interface in

this way, but doing so is necessary to support reordering of

messages in applications that can benefit from it.

A. BumbleBee’s interface

BumbleBee aims to provide an interface that is both simple

and low-overhead. This motivated a few key design decisions.

The first was to describe adaptation strategies via an impera-

tive Lua scripting interface. We initially explored declarative

interfaces like YAML or SQL. Unfortunately, we found it

difficult to express simple adaptations declaratively. At the

same time, these systems included significant unnecessary

mechanism, representing a potential runtime liability to the

critical path of message processing. In addition, nearly all

individual adaptation strategies of which we are aware of

have been implemented in imperative languages, and it seemed

burdensome to change models.

Second, we explicitly do not support the use of Lua libraries

beyond the standard, built-in set. This helps ensure that in-

script behavior is simple, inexpensive, and reduces the surface

area for malicious actors. If more complex functionality is

necessary, it must be provided through external callbacks, as

we discuss below.

BumbleBee views the world from the perspective of a single

Kubernetes pod, and how that pod should react to changes in

the network. Figure 3 shows a sample BumbleBee adaptation

script for a surface street traffic monitoring application. This

application uses an ML model to detect traffic, choosing

between an inexpensive one on the nearby edge or a remote,

full-fidelity version in the cloud. It adaptively decides where

to run the ML model and at what resolution. As shown, the

main abstraction exported to BumbleBee scripts is a set of

queued messages per (source, destination) pair. The scripts can
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1 function envoy_on_request(h)
2 -- for each sink
3 for queue in h:Queues():getQueue() do
4 -- check the route
5 route = queue:route()
6 if string.find(route, "cloud") then
7 -- check current bandwidth estimate
8 bw = queue:getBW()
9 if bw == 0 then

10 -- if disconnected
11 -- redirect the request to the edge
12 h:redirect("edge-detector")
13 elseif bw < required then
14 -- if bw is too low
15 -- transform the request to lower-res
16 h:transform("180p")
17 end
18 if bw < required/2 then
19 -- if bw drops well below required
20 -- notify the request source
21 h:notify(bw)
22 end
23 end end end

Fig. 3: This simple Lua script for the traffic-monitoring

application redirects requests to the edge when the network

becomes disconnected, down-samples enqueued requests when

bandwidth drops, and invokes a registered callback network

conditions change significantly.

iterate over these queues (Line 3) and access various queue

properties, such as its length, route, or observed bandwidth

(Line 5–8). The queue iterators are also used to apply in place

adaptations, such as redirecting messages to another endpoint

(Line 12). Other adaptation strategies such as dropping or

reordering messages are implemented in a similar fashion.

More complex actions, such as transforming messages (Line

16) or notifying the application of metrics (Line 21) can be

done through asynchronous callbacks.

Metrics exposed: BumbleBee exports a number of network

performance metrics on which to base adaptation decisions;

these are summarized in Table I. At the lowest level, Bum-

bleBee exposes TCP metrics such as the congestion window

size, number of in-flight packets, and round-trip time (RTT).

BumbleBee also exposes the average end-to-end latency for

messages in a queue, which Envoy calculates using request

and response arrival times. In addition, BumbleBee provides

information about how long each messages has spent in a

queue through an object-item’s age property.

Network bandwidth is a crucial metric for numerous adap-

tation strategies. BumbleBee does not measure available band-

width along a physical link, but it calculates the observed

bandwidth for messages forwarded from a particular queue.

This allows scripts to reason about the observed bandwidth

along their path of interest. For example, scripts can detect

that a path has been disconnected if its observed bandwidth

drops to zero.
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Fig. 4: BumbleBee extends the Envoy sidecar (BumbleBee

components marked as yellow).

B. BumbleBee architecture

Figure 4 shows the architecture of BumbleBee. It is situated

within an Envoy sidecar, with user-defined adaptation logic

executed in the BumbleBee filter. The rest of this section

describes the three key components of this architecture: a

queue manager that maintains message queues, an in-network

scripting facility that executes custom application logic as

messages arrive, and a callback mechanism that allows scripts

to interact with other parts of an application.

Message queues: BumbleBee represents each (source, des-

tination) pair in a pod as a single, mutable queue, widening

the prior interface of stateless message processing. The latter is

sufficient for common tasks of a service mesh: load balancing,

filtering, etc., but cannot support the reordering pattern needed

by many adaptive applications. We add this abstraction with

a separate queue manager that runs concurrently with the

Envoy worker pool. Worker threads pass messages to the queue

manager through the BumbleBee filter. The BumbleBee filter

buffers data until a complete network message (e.g., HTTP

request/response, Netty [50] message) has been assembled,

and then forwards the message to the queue manager. Note

that treating messages at higher protocol layers may add some

additional latency; as we show in Section IV-D this is modest.

By default the queue manager creates pairs of queues

for each endpoint pair, one in each direction, providing a

handful of methods to BumbleBee filters within the worker

threads. The application can optionally request finer-grained

division of queues on a per-pod basis. For example, in its

orchestration configuration an application may name pods

containing an object-detector running on the cloud ”cloud-

object-detector.local.” It can then instruct BumbleBee to create

queues in each pod’s sidecar for handling requests to those

specific pods. Individual filters are invoked as messages arrive

on inbound queues, and pass messages after processing to

the corresponding outbound queue. Because operations are

non-blocking, we use a simple per-queue locking scheme to

synchronize access.

In addition to events based on message arrival, the manager

periodically receives timer events that implement a token-

bucket algorithm for outbound messages. When the manager

has accumulated enough tokens, messages are forwarded to
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Context Interface Description Returns

Queue

length() returns number of messages in a queue, useful to approximate queuing delay. queue length
avgLatency() returns weighted moving average of end-to-end latency of messages (delta between request &

response)
average latency

observedBW() returns observed bandwidth allocated to the queue–the rate of the queue sending data. observed bandwidth
TCPMetrics(m) retrieves the TCP metrics (e.g., mean RTT) at the queue level. TCP metric
messages() for-loop entry to iterate over messages in the queue. message object

Message

size() returns the size of the message’s current payload. size of payload
age() get the age, i.e., how long the message has been in the queue, in ms resolution. age of message
TCPMetrics(m) retrieves the TCP metrics (e.g., mean RTT) at the message/request level. TCP metric
dst() returns the current destination of the message. message destination
header() returns the message’s header. message header
bytes(i, j) returns data from i to j of payload of the current message in raw binary format. raw payload
redirect(dst) redirect the message to a new destination (dst).
transform(args) asynchronously transform a message’s payload by forwarding to a registered endpoint.
drop() drops the current message from the queue. The function does not guarantee successful operation

(e.g., already transmitted in the middle of dropping). If successful, returns the updated queue length,
otherwise, returns the old queue length.

new queue length

insert(msg) inserts a new message msg after the current message in the queue. If successful, returns the updated
queue length, otherwise, returns the old queue length.

new queue length

moveToFront() move the message to front of the queue.
moveToBack() move the message to end of the queue.

Callback notify(metrics) asynchronously send registered endpoints a metrics string.

TABLE I: BumbleBee interface for in-network scripting.

Envoy’s event dispatcher. To minimize overhead, timers scale

the token refill rate and are only active when the queue has

pending messages.

Scripting facility: BumbleBee applies user-defined adap-

tation logic to the queues maintained by the queue manager.

When a worker thread loads a BumbleBee filter, the filter reads

the appropriate script from the orchestration configuration and

launches it within a Lua runtime, a feature natively supported

by Envoy. These scripts are executed only as messages arrive;

we have chosen not to also add timer events. This ties

adaptation agility to message arrival rate; a limitation we have

not found burdensome in our limited experience so far.

External callbacks: BumbleBee’s scripting environment

allows applications to perform simple processing on enqueued

messages: drop, redirect, or reorder. However, many appli-

cations can benefit from richer interactions between adaptive

scripts and the rest of the application. For example, an appli-

cation might benefit from in-network observation, providing

early detection of bandwidth or latency changes. Likewise,

an application may want to transform message payloads in

ways that are too complex for a lightweight Lua runtime.

For example, a video streaming application may want to

downsample video chunks ahead of network constructions

to prevent head-of-line blocking. To support this kind of

functionality, BumbleBee allows scripts to make asynchronous

callbacks.

There are two forms such callbacks might take. The first

(and simpler) one is used to notify external endpoints of events

within an adaptation script. An application’s orchestration

configuration can bind a list of RESTful endpoints to particular

notifications within a script, taking a string as an argument.

On invocation, the Lua runtime generates asynchronous HTTP

calls with the string argument to any endpoints listed in the

orchestration configuration. This exposes information from

lower layers, and so should be used in the rare cases when

an application benefits significantly from such feedback.

The second form is used to transform message contents. As

with notifications, applications bind invocations to a RESTful

endpoint through their orchestration configuration. When a

script invokes transformation on an enqueued message, the

Lua runtime marks the entry asynchronously forwards the

message payload to the registered endpoint for transformation.

The result is returned and substitutes for the original message.

To avoid blocking on this operation, pending messages are

marked in progress, and subsequent messages can be sent in

the interim. Transformations are typically used for complex

computations that should not take place in the critical path

of the Envoy sidecar. Transformations may optionally access

other resources–such as an external database–that are not

possible within a sidecar limited only to the standard libraries.

IV. EVALUATION

To evaluate BumbleBee, we seek answers to the following

questions:

• Does BumbleBee enable beneficial adaptation strate-

gies?

• How difficult is writing adaptation strategies in Bum-

bleBee?

• How much overhead does BumbleBee add to Envoy?

To answer the first three questions we use our BumbleBee

prototype to investigate adaptation strategies for three case-

study applications. First, we use BumbleBee to help a dis-

tributed, vehicular-traffic monitoring application that adapts

the quality of its object detection to changing network condi-

tions. Second, we use BumbleBee to help a stream-processing

application intelligently shed requests under bursty workloads.

Finally, we use BumbleBee to help a live video-streaming ser-

vice to reduce stalled playback while maintaining acceptable

video resolution. To answer the last question, we run wrk2 [75]

micro-benchmarks to measure how BumbleBee affects request

latency compared to Envoy.
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We run these workloads with BumbleBee using Istio 1.4.3,

Envoy 1.13.0, and clusters of virtual machines managed by

Azure Kubernetes Service (AKS) 1.18.14.

A. Case study: traffic monitoring

Our first case study is an emulated smart-city application

that streams roadside video to machine-learning (ML) models.

The ML models forward a detected vehicle’s bounding box

and confidence level to one or more traffic-light controllers.

The controllers filter bounding boxes with confidence levels

below a threshold (e.g., 50%). The controllers use vehicle

counts and locations to monitor and schedule traffic, such as

reducing the time between green and red lights when road

congestion is high.

Traffic monitoring is representative of many edge computing

applications [55]. The input sensors (e.g., roadside cameras)

and controllers (e.g., traffic controllers) are co-located on the

edge with a distributed computing pipeline between them. This

pipeline must process sensor data fast enough for the con-

trollers to respond to changes in the physical environment, and

the application must operate even when network conditions are

poor.

The ML pipeline can be instantiated along two paths: em-

bedded in a resource-rich cloud environment or a lightweight

edge environment. The cloud offers powerful machines and

can support sophisticated and accurate ML models, whereas

the edge can run a limited number of less accurate models.

The application prefers results from the cloud models, and it

will send frames to the cloud as long as network conditions

allow it.

Detection accuracy is a key measure of fidelity for traffic

monitoring. Accuracy is highest when the network allows

the application to stream high-resolution frames to the cloud,

but as network conditions change, the application can adapt

the video stream’s quality by changing frame resolution or

frame rate. Low-quality streams diminish model accuracy, and

high-quality streams improve accuracy. The application runs

at lowest fidelity when it is disconnected from the cloud.

During disconnections, the application must redirect video

frames to its lightweight edge models, sacrificing accuracy

for availability.

Figure 3 from Section III shows a BumbleBee script that

implements these trade-offs. The script iterates over an egress

request queue looking for entries destined for a cloud object-

detector. When bandwidth drops to zero, BumbleBee redirects

requests to the edge object-detector. If bandwidth falls below

a threshold, BumbleBee forwards requests to the application’s

transform service, which reduces frames’ resolution to 180p

(320x180). And if bandwidth falls well below what is required,

BumbleBee notifies the sender so that it can start to send

lower-resolution frames instead of relying on BumbleBee to

do so.

Major cloud providers like AWS [1], [4], Azure [6], [52],

and Google Cloud [26], [27] all suffer significant outages,

and recent studies show that network conditions between

the edge and cloud can be turbulent [13], [55], [77]. To

(a) stable baseline

(b) disconnecting network

Fig. 5: The number of detected vehicles with greater than 50%

confidence with (a) stable network conditions and the work-

load running fully in the cloud, and (b) network disconnections

that shift the workload to the edge using BumbleBee.

understand how our traffic-monitoring application behaves

when edge-to-cloud connectivity is poor, we run experiments

with disconnections and constricted bandwidth between the

edge pods and cloud pods. Note that for our experiments we

logically divide cluster nodes between the edge and cloud, but

the underlying physical machines and network are entirely in

Azure. Our Kubernetes cluster contains virtual machines with

four vCPUs, 16 GB RAM, and a 32 GB SSD. The cluster also

includes two GPU nodes with an Nvidia Tesla K80 GPU,

six vCPUs, 56 GB RAM, and a 340 GB SSD. We simulate

a roadside camera by streaming a highway-traffic recording

from Bangkok, Thailand [11]. We use YOLOv3 as our cloud

object-detection model and TinyYOLO as our edge model.

Both models are trained with the COCO dataset [45], which

is designed to detect vehicles and passengers.

To evaluate if the application benefits from BumbleBee,

we measure the number of detected vehicles and end-to-

end detection latency. The former metric influences how well

the application controls traffic, and the latter influences how

quickly the light controller responds to traffic changes.

To characterize our traffic-monitoring application without

BumbleBee, we first capture the baseline object-detection

accuracy of streaming 360p (640x360) video at 15 fps when

fully connected to the cloud. Figure 5a shows the number of

detected vehicles over time with a confidence threshold above

50%. The YOLOv3 model in the cloud consistently detects
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Fig. 6: When edge-to-cloud bandwidth is 15 Mbps, sending

360p frames leads to head-of-line blocking and exponentially

increasing detection latency. Sending 180p frames reduces

median latency to 815 ms with no head-of-line blocking. Bum-

bleBee (BB) allows the application to selectively downsample

frames to balance latency (median latency of 1700ms) and

detection accuracy.

between 10 and 40 vehicles.

To simulate a disconnected edge site, we run the application

under BumbleBee and partition the edge and cloud pods after

1000 and 3000 frames so that the cloud object-detector is

unreachable. We heal the network between frames 2000 and

3000. Loading tensor-flow models can be slow, so BumbleBee

pre-loads the edge detector at the beginning of the experiment.

Figure 5b shows the detected cars drop during disconnection,

because the application switches to TinyYOLO on the edge.

There is a delay between when a disconnection occurs

and when BumbleBee detects the disconnection. In our ex-

periment, five frames stall before BumbleBee detects that

bandwidth is zero. Recall that our video streams at 15 fps,

and so requests arrive every 67 ms. Thus, the first request

sent after the disconnection experiences an approximately

350 ms of additional delay before BumbleBee redirects it to

the edge. This is because four cloud-bound requests arrive

after the first post-disconnection request but before BumbleBee

detects the disconnection. When the sixth post-disconnection

request arrives, BumbleBee has detected the disconnection and

responds by redirecting all cloud-bound requests to the edge.

Between disconnections, the application matches baseline de-

tection accuracy. These results show that with BumbleBee, the

application can continue to operate, albeit in a degraded mode,

when the cloud is unavailable.

We also want to understand if the application benefits from

adapting to network changes that are less dramatic than a

disconnection. Recall that end-to-end latency is a critical ap-

plication metric. When disconnected, the weaker edge detector

processes 360p frames 33% faster than the cloud detector

using equivalent hardware. However, when bandwidth to the

cloud drops, sending 360p frames can cause exponentially

increasing queuing delay. To demonstrate, we restrict edge-to-

cloud bandwidth to 15 Mbps and repeat the traffic-monitoring

experiment twice, first sending 360p frames and then sending

180p frames. Frames are full-color, JPEG-compressed images.

Figure 6 shows the results. When the application streams 360p

Fig. 7: The cloud object detector identifies more vehicles with

confidence greater than 50% in 360p frames than in 180p

frames.

Fig. 8: BumbleBee enables the traffic-monitoring application

to send 360p frames when possible and avoid head-of-line-

blocking by selectively downsampling frames to 180p. Each

blue data point represents the percentage of additional objects

that the BumbleBee-enabled application detects in a frame

compared to sending all 180p frames. The 3444 frames (out of

5000) are downsampled to avoid exponential queuing delays.

These frames gain zero percent improvement.

frames (the blue line), the latency rises exponentially, but the

median latency of streaming 180p frames is 772 ms.

However, lower resolution frames reduce detection accu-

racy. Figure 7 shows the number of objects the application

detects with confidence greater than 50% for 360p and 180p

frames. Note that the blue dots are identical to those in

Figure 5a. 360p frames allow the cloud model to consistently

detect more objects than the 180p stream, often significantly

so. These results suggest that the traffic-monitoring application

could benefit from selective adaptation by downsampling

frames that cause queuing delay, and transmitting the remain-

ing frames intact.

To confirm our hypothesis, we repeat our limited-bandwidth

experiment using BumbleBee. The application sends 360p

frames, and BumbleBee selectively downsamples frames that

cause queuing delay. Figure 8 shows the percent improvement

of the object detector with BumbleBee’s selective downsam-

pling enabled compared to always sending 180p frames. When

BumbleBee downsamples a frame to 180p, the improvement

percentage is zero. Overall, BumbleBee downsamples 3444

frames and leaves 1556 intact. Furthermore, the graph shows
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that selectively downsampling provides much better detection

accuracy than always downsampling. Combined with the me-

dian latency of 1700ms in Figure 6, these results show that

BumbleBee allows the traffic-monitoring application to find a

good balance between detection accuracy and latency using

the simple script in Figure 3.

To summarize, the results show that our traffic-monitoring

application benefits from BumbleBee in two ways. First, the

application operates when disconnected from the cloud by

redirecting requests to a weaker edge object-detector. Second,

when network bandwidth constricts, the application selectively

downsamples frames to balance end-to-end latency and de-

tection accuracy. We also show that the adaptation strategies

responsible for these benefits can be concisely expressed by

the script in Figure 3.

B. Case-study: stream processing

Our second case study is the Yahoo! stream-processing

benchmark [14] that counts ad views from an input stream

of ad impressions, i.e., clicks, purchases, and views. The

benchmark is widely used [33], [46], [70], [78], because it

mimics in-production workloads and business logic. The first

stage reads and parses impression data, the second stage filters

out non-view events, and the final stage stores aggregate view

counts over 10 s sliding windows. Impression counts help ad

services bill customers and select the next ads to display. In

the latter case, timeliness (meeting a latency deadline) is more

important than completeness (fully processing every input),

and many practitioner testimonials [21], [22], [69] emphasize

the importance of timeliness.

By default, the Yahoo! benchmark generates emulated im-

pressions at a constant rate, but real-world rates can be bursty.

Bursts may be problematic for applications with timeliness

requirements, because practitioners often statically allocate

resources and must restart pipelines to scale dynamically [70].

Over-provisioning is not always possible, and unexpected

bursts can rapidly increase end-to-end latency as applications

fall behind processing every message.

Load-shedding [64], [65], [76] is a common way to adapt

to such bursts. Shedding trades completeness for timeliness by

dropping less important inputs to free resources and improve

the number of deadlines met. Today this adaptation strategy

can only be implemented by modifying an application’s inter-

nals, but BumbleBee can intelligently shed load for unmodified

applications.

To characterize how effectively BumbleBee helps the Ya-

hoo! benchmark improve timeliness, we orchestrate the bench-

mark with Kubernetes by placing a containerized Apache

Flink [12] worker in a pod. A worker pod can execute any

stage and can pass inter-stage data within the same pod. Each

Kubernetes node hosts one pod and is a virtual machine with

two vCPUs and 8 GB RAM, connected by an underlying

network provisioned at 1 Gbps. The benchmark polls external

Kafka brokers for input events and stores results in an external

Redis database. 10 s sliding windows are too coarse to properly

measure the impact of bursts on timeliness, so we add a

1 filt_thrd = 0.5 --- filtering threshold in sec
2 late_thrd = 1.0 --- lateness threshold in sec
3 function envoy_on_response(h)
4 queues = h:Queues()
5 for queue in queues:getQueue() do
6 for msg in queue:messages() do
7 json = msg:json()
8 if queue:avgLatency() > filt_thrd then
9 event_type = json:getString("event_type")

10 if event_type ˜= "view" then
11 msg:drop() --- pre-emptively filter
12 end
13 end
14
15 event_time = json:getNum("event_time")
16 age = h:epoch() - event_time
17 if age > late_thrd then
18 msg:drop() --- drop late msgs
19 end
20 end end end

Fig. 9: This BumbleBee script pre-emptively filters messages

and drops late messages to save inter-pod bandwidth when it

detects latency in the pipeline.

Fig. 10: Our stream-processing application processes input

messages mostly under 2 s latency after a short warm-up

period, when 170k input messages are streamed per second.

small amount of instrumentation to aggregate over 1 s sliding

windows.

Figure 9 shows a BumbleBee script that uses custom mess-

age-dropping logic to implement two forms of load shedding:

pre-emptive filtering and dropping late messages. Recall that

the benchmark filters out click and purchase events in its

second stage. Under BumbleBee, if latency increases, the

benchmark pre-emptively filters non-view events before the

second stage (lines 8-13). The script also drops view events

if they are unlikely to meet their deadline (lines 17-19). Both

adaptations free resources as the script detects latency in the

pipeline.

Our baseline benchmark configuration runs under Kuber-

netes, without an Envoy sidecar or BumbleBee. We first run

the baseline configuration with a constant, baseline load of

170k events per second. To characterize latency, we sample

the end-to-end latency of the last event included in the

benchmark’s 1 s aggregation window. Figure 10 shows how

the latency of these sampled events change over time. Latency

for the first 25 s is highly variable as the benchmark warms

up. After the warmup, sampled latency is largely under 2 s.

This is expected since we provisioned enough compute and

network resources to process every event within 2 s.
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Fig. 11: Temporal 2x input load spikes leads the application

to experience high latency for 1.5 times longer than the spike

duration even after the input load returns back to the previous

level. The BumbleBee-enabled application takes less than 30 s

to bring latency back to the previous level.

We next run an experiment with variable load: first 170k

events per second for 125 s, followed by a burst of 340k events

per second for 100s, followed by a return to 170k events

per second for 200s. Figure 11 shows sampled latency for

the baseline benchmark (w/o BB) and the benchmark with

BumbleBee (w/ BB) under variable load. During the burst,

BumbleBee drops over 29% of all events, and after the burst,

BumbleBee drops less than 6% of events. Compared to the

baseline, BumbleBee’s custom dropping policy significantly

improves sampled latency and time to recovery. Excluding

warmup, BumbleBee allows nearly 74% of sampled views

to be processed within 2 s, whereas the baseline benchmark

allows only 44%. In addition, BumbleBee returns the bench-

mark to steady state less than 50 s after the burst ends; without

BumbleBee, it returns to steady state after 125 s.

A limitation of the current BumbleBee implementation

causes the two arcs in Figure 11 that peak at 20 s and 25 s

sampled latency. BumbleBee intercepts only inter-pod commu-

nication, but benchmark pods contains workers for all stages.

Thus, sometimes the benchmark transfers data between stage

workers residing in the same pod, i.e., over local Unix sockets

on which BumbleBee cannot interpose. This phenomenon is

an artifact of the Yahoo! benchmark’s design and would not

be an issue for applications that separate each stage into a

dedicated tier of pods.

Figure 12 highlights how BumbleBee impacts meeting dead-

lines of 1-20 s during the warmup, baseline-load, bursty-load,

and second-baseline intervals. As expected, longer deadlines

(e.g., 20 s) are met more often than shorter ones (e.g., 1 s) with

and without BumbleBee. There is also little difference between

the two configurations during the initial warmup and baseline

intervals. However, BumbleBee provides substantial benefit

during the bursty interval, allowing the benchmark to meet

nearly 23x more 1 s deadlines and 37.8% more 20 s deadlines

than without BumbleBee. BumbleBee provides substantial

benefits when load returns to normal, allowing the benchmark

to meet over 90% of its deadlines, regardless of length. In

Fig. 12: When the input load increases above expected level

that operators have projected and provisioned resources ac-

cordingly, the application hardly processes messages within a

deadline. The consequence continues to stay longer than the

ramp-up period.

contrast, the baseline benchmark only meets less than 40% of

its 1 s deadlines and 65% of its 20 s deadlines. This is due

to the baseline benchmark’s emphasis on completeness, and

having to work through its backlog of enqueued events even

after load has returned to normal.

C. Case study: video streaming

For our final case study, we evaluate an HTTP Live

Streaming (HLS) service with an Nginx server and HLS.js

client [32]. At runtime, the server partitions an input live

stream into a rolling sequence of self-descriptive, fixed-length

MPEG-TS chunks at several resolutions. When a chunk can

be downloaded, the server updates an HLS manifest file to

announce its availability and resolution. The HLS client is

responsible for all adaptation logic and periodically polls the

manifest to learn when the newest chunk is ready. After

reading the manifest, the client predicts the time to download

the next chunk at the available resolutions. These predictions

are based on the chunks’ sizes and a bandwidth estimate

calculated over a sliding window of prior downloads.

The client’s competing objectives are continuous video

playback and high video quality. Stalling occurs when the

client’s playback buffer is empty, which is far worse for the

user experience than temporary drops in video quality [20]. For

example, if bandwidth drops in the middle of downloading

a chunk, the client’s playback buffer may drain before the

transfer completes. This is common when clients react too

slowly to abrupt bandwidth drops and high variability [47],

[77].

Prior solutions to this problem rely on either server [47] or

client [77] modifications. Modifying a server without the clean

separation provided by BumbleBee requires either building

from scratch or understanding an existing codebase and con-

tinuously merging with external updates. Furthermore, client

agnosticism is critical for open protocols like HLS, because

service providers cannot dictate which of the many players a

client may use [68]. Fortunately, BumbleBee can transparently
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1 function envoy_on_request(h)
2 hdr = h:header()
3 bw = hdr:get("bw-est")
4 curr, chunk = hdr:get("path")
5 -- use bw estimate to choose a chunk
6 pred = find_resolution(bw)
7 if pred < curr then
8 -- downsamples
9 hdr:replace("path", pred.. "/".. chunk)

10 elseif pred > curr * 2 then
11 -- upsamples
12 hdr:replace("path", pred.. "/".. chunk)
13 end end

Fig. 13: This BumbleBee script for the video streaming

application predicts appropriate resolution to transmit based

on the most recent bandwidth measurement and distribution

of chunk sizes. When the script disagrees with the client, it

overwrites the path of chunk’s resolution to increase/decrease

resolutions. Note that the script is conservative about up-

sampling to avoid potential stalls.

apply a variety of adaptation strategies to correct an HLS

client’s bandwidth mis-predictions.

The BumbleBee script in Figure 13 illustrates such a strat-

egy. The script adapts to sudden bandwidth changes faster

than an unmodified HLS.js client by only considering the

most recent chunk transfer rather than a sliding window over

several transfers. Based on this bandwidth estimate, the script

chooses among available chunk resolutions. If the requested

resolution could cause a stall (line 6-9), BumbleBee modifies

the path field of the HTTP header so that it refers to a lower-

resolution chunk. However, if the client requests a resolution

that could under-utilize the available bandwidth (line 10),

BumbleBee swaps in a higher-resolution chunk path. Bum-

bleBee’s bandwidth estimate requires Envoy modifications to

monitor low-level transfer progress or a service provider to

place a middlebox between the client and server. For the

purposes of our experiments, we emulate the latter by co-

locating a proxy with the client and configuring the client

to direct its requests through the proxy. Future versions of

BumbleBee will include the necessary Envoy modifications.

We first evaluate the video-streaming service with two

synthetic bandwidth changes: a sudden drop and recovery,

and a gradual drop and recovery. These changes highlight

the trade-offs of reacting more quickly than the HLS client’s

strategy. In addition, to evaluate the efficacy of BumbleBee

in real-world scenarios, we analyze network-condition logs of

Puffer [77] clients watching live video streams. We limit our

experiments to traces that cause stalls of more than 100 s, and

from these traces replay estimated instantaneous bandwidth

conditions. We replay the first ten minutes of each trace.

For all experiments we run the Nginx server under Kuber-

netes in a dedicated virtual machine with an Nvidia V100

GPU, 6 vCPUs, and 112 GB of RAM. For the client, the

HLS.js player in the same data center as the Kubernetes cluster

but in a separate virtual machine with sufficient underlying

bandwidth between the two. We use Linux TC to replay

bandwidth traces at the client side, and we use the default

player configuration unless noted. Each video chunk is four-

seconds long.

We characterize streaming with and without BumbleBee

with two metrics: playback buffer and video resolution. The

playback buffer is the seconds of video that a client can

play without receiving new data from the server. When the

buffer reaches zero, the video stalls. Resolution represents

video quality. Buffer and resolution can be traded off. In

the extremes, sending only low-resolution chunks minimizes

quality but maximizes buffer, and sending only high-resolution

chunks maximizes quality but minimizes buffer. Because stalls

are so painful [20], BumbleBee wants to offer acceptable

quality with minimum stalls.

Figure 14a shows the first synthetic trace: a sharp bandwidth

drop for 20 s and fast recovery. Figures 14b and 14c show the

clients’ playback buffer levels and displayed resolutions over

the course of the trace, respectively. The client under both

configurations stalls as it calibrates its bandwidth estimates.

The client under both configurations also stalls when band-

width drops. However, under BumbleBee the client adapts to

the drop and rebuilds its playback buffer faster than without

BumbleBee. Overall, BumbleBee reduces stalling from 13 s to

9 s, a 32% improvement. As Figure 14c shows this is possible

because under BumbleBee the client reduces its resolution

to 360p near 65 s, whereas without BumbleBee the client

continues to download 1080p chunks.

Figure 14d shows the second synthetic trace: gradual band-

width decrease and recovery, each over 50 s. We hypothe-

sized that BumbleBee would offer little benefit on this trace,

anticipating that the client’s default estimates would closely

track the gradual changes. Surprisingly, Figure 14e shows that

BumbleBee reduces post-calibration stalling from 11 s to 5 s, a

55% improvement. Figure 14f shows that without BumbleBee

the client fails to adapt to decreasing bandwidth, continuing

to fetch 1440p chunks. In comparison, BumbleBee reduces

resolution in a step-wise fashion and eliminates all stalling in

the valley.

We repeat the experiments with nine Puffer traces. Fig-

ure 15a summarizes the percentage of total stall time that

a client experiences during each trace, with and without

BumbleBee. The client with BumbleBee stalls at the most

5% of the total duration, and the client without BumbleBee

stalls 22% of the time, a 77% improvement. Figure 15b shows

box plots of playback resolution, including mean and median.

Note that in trace T2, which exhibits the least stalling without

BumbleBee, the HLS.js client achieves higher resolutions than

with BumbleBee albeit with some additional stalling. From

the logs, we find that BumbleBee’s script is too cautious

about sending higher resolutions that could clog the connection

during T2. This matches our expectation that quickly reacting

to network changes to aggressively avoid stalling can lead to

worse bandwidth utilization.
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(a) Synthetic-0 Bandwidth Estimation (b) Synthetic-0 Playback Buffer (c) Synthetic-0 Video Resolutions

(d) Synthetic-1 Bandwidth Estimation (e) Synthetic-1 Playback Buffer (f) Synthetic-1 Video Resolutions

Fig. 14: BumbleBee helps the live video streaming application to adapt quickly and cautiously. Figures in the first column

show the bandwidth estimates for both traces. Figures in the second column show how the client’s playback buffer changes

during the trace. Figures in the last column demonstrates fast and agile adaptations by BumbleBee’s script.

(a) Across all traces, playback stalls are significantly less with
BumbleBee than without.

(b) To eliminate stalls, BumbleBee sacrifices some video resolution.

Fig. 15: Experiments with the nine Puffer traces with the most

stalls show how BumbleBee helps the live video streaming

application to reduce stalls while maintaining acceptable video

resolution.

D. Latency micro-benchmarks

To evaluate the overhead imposed by BumbleBee compared

to Envoy, we measure end-to-end latency using the HTTP

benchmarking tool wrk2 [75]. The tool generates HTTP re-

quests at a constant rate and outputs a latency distribution.

We configure wrk2 to generate 500 requests per second with

1000 concurrent connections over five one-minutes runs.

For our experiments, we create a client pod that runs

wrk2 and assign it to a GPU node. We also create a server

pod running the Nginx web server under default settings on

a normal node. Both pods contain an Envoy sidecar with

access to two cores. We measure the latency distribution under

four client configurations: (1) Envoy without BumbleBee, (2)

BumbleBee with no Lua script, (3) BumbleBee with a simple

queue-iteration script, and (4) BumbleBee with a simple LIFO

(Last In First Out) script. The first configuration serves as

baselines for understanding BumbleBee’s scripting overhead.

Note that all configurations with BumbleBee move messages

from the BumbleBee filter to the queue manager.

We use a simple LIFO and queue-iteration scripts used in

the experiments. BumbleBee’s queues are internally imple-

mented as doubly-linked lists, which makes LIFO reordering

relatively inexpensive. However, iterating over the queue could

be slow for two reasons. First, BumbleBee uses a per-queue

locking scheme that ensures only one script can execute at a

time. Second, the Lua runtime creates a new stack and object

bindings each time the iteration script runs. These startup costs

are drawbacks of using a scripting language instead of binary

executables or bytecodes like WebAssembly.

To test our hypothesis, we run wrk2 five times with each

client configuration. Figure 16 shows the latency distributions

at the 50th, 75th, 90th, and 99th percentiles on the X-axis.

Up to the 75th percentile, the latency for all BumbleBee

configurations is very close to Envoy, between 6.5% to 12%

extra overhead, where the absolute value for the latency

overhead is between 0.15ms and 0.35ms. However, the cost

of iterating over the queue is apparent at the very tail of the

distribution. For example, at the 90th percentile, the iteration

script’s latency is 23% more than Envoy’s, and at the 99th
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Fig. 16: Micro-benchmarks with wrk2 show that BumbleBee

adds no additional overhead compared to Envoy up the 99th

percentile. However, the additional cost of iterating over a

message queue becomes apparent at the very tail of distri-

bution.

percentile it is 9.5% more.

V. RELATED WORK

Adaptation in mobile computing: Resources in mobile com-

puting are highly constrained as opposed to a data-center envi-

ronment. Prior adaptation systems [23], [54] trade application

fidelity for various metrics. Similar to BumbleBee’s callback

functionality, Odyssey [54] creates a collaborative adapta-

tion solution that notifies applications to adapt their fidelity.

On-demand distillation [23] performs “on-the-fly” adaptive

transcoding of web contents based on the client’s bandwidth,

similar to BumbleBee’s dynamic transformation. However,

these systems do no expose control over the enqueued data.

Many others [7], [15], [17] integrate adaptation logic for

better use of computation resources. Cyber foraging [7] is a

runtime framework that allows developers to write and deploy

complex adaptation tactics. MAUI [17] and CloneCloud [15]

partition application code, either with developer-defined anno-

tations (MAUI) or through static analysis (CloneCloud). Then,

they adaptively offload partitions between local execution (on

the mobile device) to remote execution. BumbleBee can be

thought of as an extension to these systems where it can

redirect the offloading traffic based on runtime variables such

as network bandwidth.

Adaptation in video streaming: Video streaming [34], [38],

[48], [56], [62], [77] is another domain that employs various

adaptation strategies to improve video watching experience. A

few recent works [47], [77] propose video streaming servers

that adaptively select the best bit-rate by using machine

learning to predict the bandwidth or transmission time. Others

have developed video clients to adapt to network conditions

changes for fairness [38] and stability [34], to minimize re-

buffering [62], and to handle unexpected network outage [56].

While the individual solutions vary, these solutions can easily

be reimplemented in BumbleBee and leverage the low-level

networking metrics and control available by BumbleBee to

achieve improved performance (as shown in Section IV-C).

Other Adaptations: Odessa [57] is an adaptive runtime

for partitioning and executing computer vision application

remotely. The runtime balances the level of pipelining and

data-parallelism to achieve low latency under variable network

conditions. Kahawai [18] is a system for cloud gaming where

clients with modest local GPUs collaborate with powerful

cloud servers to generate high-fidelity frames. Kahawai adapts

to network changes by adjusting the fidelity and frame rate

of frames. Outatime [41] is a speculative execution system

for cloud gaming where thin-clients send input and servers

at the cloud render speculative frames of future possible

outcomes while adapting to network tail latencies. These

systems can leverage the scripting interface and in-network

processing capabilities of BumbleBee to improve or simplify

their adaptation strategy.

In-network Processing: The concept of in-network process-

ing has been proposed over two decades ago where custom

in-network applications are deployed at the router to pro-

vide additional functionalities, e.g., webpage caching [67].

Recent developments in networking hardware (e.g., smart NIC,

FPGA) have led to revisiting the idea of in-network process-

ing. Flexible programming languages such as P4 [9] have

emerged to simplify the development of in-network processing

applications. As a result, many [29], [42], [43], [63] have

explored using in-network processing for wide variety of use

cases such as improving consensus protocols (NOPaxos [43]),

faster transactions (Eris [42]), network telemetry (Sonata [29]),

or improving network functionalities, e.g., DNS and NAT

(Emu [63]). Along the lines of these work, BumbleBee allows

in-network processing of custom adaptation logic but for

containerized environments such as Kubernetes.

VI. CONCLUSIONS

In this paper we describe BumbleBee, a platform supporting

application-aware adaptation that is integrated with the orches-

tration and service mesh mechanisms that support container-

based microservices. This is done by judiciously widening the

in-network interface in two ways. From above, applications

supply simple scripts that describe adaptive logic. From below,

service mesh sidecars expose the queue of pending messages

so that these scripts can drop, reorder, redirect, or transform

those messages. Experiments with a BumbleBee prototype

demonstrate the benefits of our approach: (1) by using Bum-

bleBee, ML applications at the edge can utilize cloud resources

when available and operate without interruption when dis-

connected, (2) BumbleBee increases the number of deadlines

met between 23x and 37.8% on the Yahoo! stream-processing

benchmark, and (3) BumbleBee reduces stalled playback by

77% during HLS video streaming under real-world network

conditions.
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