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1. Introduction

In classical algebraic geometry, regular functions on complex varieties X are represented by rational functions f in com-
muting variables xi, x2,... whose denominators have no zeros on X. The prototypical model is affine m-space C™ with
coordinate ring C[xq, ..., Xn]. In supergeometry, one considers functions of both commuting variables x1, x, ... represent-
ing bosonic coordinates as well as anticommuting variables 61, 62, ... representing fermionic coordinates. The coordinate
ring of affine superspace C™" is the tensor product C[x1,...,Xm] ® A{61,...,0,} of a polynomial ring of rank m and an
exterior algebra of rank n.

Let C!" be affine superspace with one bosonic coordinate z and n fermionic coordinates 61,...,6,. We consider a
free exterior algebra A{a1,...,on} generated by “coefficient” fermionic variables a1, ..., on. In supergeometry, elements of
Ao, ..., oy} of odd homogeneous degree may be substituted for the 6; in any regular functions f(z,6s,...,6,;) on C!l";
this is the anticommutative analogue of evaluating a polynomial C[x, ..., x] at a point in C™,

Let t € C be a complex number with positive imaginary part. We consider two translation operators S, T : C1I" — C1In
defined in terms of coordinates by

S:z,01,....00) > (Z+1,01,....60), (1.1)
T:(Z2,01,....00) > (Z+6,61+a1,...,00+ o). (1.2)

We let M be the quotient of C!" by the group of operators generated by S and T. If n =0 and no fermionic variables
were present, the space M would be a copy of the usual torus S' x S! with complex structure given by the modulus t. As
such, we may regard M as a superspace extension of the torus (technically, a family of supertori over the parameter space
Ao, ..., o))
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Let O be the structure sheaf of M, so that the zeroth cohomology H°(M, ©) is the algebra of globally defined regular
functions on M (see Definition 3.1 for a precise definition of HO(M, ©)). If n = 0, the space H*(M, ©) is merely a copy of
the ground field C; there are no nonconstant regular functions on the torus. On the other hand, we show that HO(M, ©)
has rich combinatorial structure in the supertorus case of n > 0.

e We show (Corollary 4.8) that HO(M, ©) is generated as a C-algebra by the ‘basic invariants’ «;, «;6;, and aifj+ o 6; for
1 <i < j <n. Furthermore, we give a combinatorial description (Theorem 4.9) of the relations which hold among these
invariants in terms of the classical Ptolemy relation [5,8] which resolves a simple crossing as a sum of its two possible
resolutions.

e Considering degree in the coefficient variables «; as well as the 6;, the ring H(M, ©) attains the structure of a bi-
graded module over the symmetric group &,. We compute its bigraded isomorphism type (Theorem 3.3). In particular,

the (i, j)-component H°(M, O); j is nonzero if and only if i > j, in which case it has dimension (}) ('}) — (H'f])(jf]).

Therefore, the dimensions of the spaces HO(M, 0);,; are the Narayana numbers Nar(n+1,i+1) fori=1,...,n and the
sum > o HO(M, 0);; of these dimensions is the (n + 1) Catalan number Cat(n + 1).

It follows from the second bullet point above that the vector spaces HO(M, 0);,j and HO(M, O)n—jn—i have the same
dimension for all i + j <n. We prove (Theorem 3.4) that multiplication by ¢"~i—/ where ¢ = 016; + - - - 4+ an0, furnishes a
linear isomorphism between these spaces. This fact may be viewed as a bigraded version of the Hard Lefschetz Theorem
for the ring HO(M, ©). We also show that the first cohomology group H!(M, ©) (see Definition 3.5) and HO(M, ©) satisfy
Serre duality (Theorem 3.8). The n =1 case of these results was proven by the second author [10] in previous work.

We provide a bit more background in supergeometry, although this is not required for the rest of this paper. The n =1
supertorus considered in [10] was in fact a super Riemann surface, with the second group generator above modified to
T:(z,01) — (z+t+61a1, 61 +a1). In principle, functions in H*(M, ©®) or cocycles in H'(M, 0) might depend on z as well
as o1, 61. However, one can show by a Fourier series argument [1,4,10] (using the periodicity given by S) that they are in
fact independent of z. This implies in particular that the extra even term 6ic; in T does not affect the cohomology and
can be ignored. It also makes the generator S trivial and allows us to compute the cohomology from T alone acting on the
fermionic variables. In this paper we will compute H!(M, ©) as the group cohomology of the cyclic group generated by T.
The equivalence of sheaf cohomology and group cohomology in this instance follows from [9,12].

Serre duality for supermanifolds has been proven in [3] for individual supermanifolds and in [1] for families. The duality
we exhibit between H'(M, ®) and H%(M, ©) is an instance of this general structure (technically, as applied to the total
space of our family M of supertori).

Our results can be viewed as a first step toward a general theory of Abelian supervarieties, including the Jaco-
bians of supercurves. In such a context the two generators S,T would be extended to a set of 2g supertranslations
S1,...,Sg,Tq,..., Tg representing a canonical homology basis of a torus of complex dimension g. The cohomology of
the group they generate would be correspondingly more complicated, although still independent of the g even coordinates
and hence a purely algebraic problem. The computation of H! (M, ©) is of particular interest in view of its role in classifying
topologically trivial line bundles on M [1].

2. Background
We will need a notion of fermionic differentiation. Let (wq,...,wn) be a list of m fermionic variables and let

ANwi, ..., wn} be the exterior algebra over these variables. For 1 <i <m, we define an operator d/dw; on A{w1,...,®n}
as the linear extension of

D lwi oo wi ifio=1
3/dwi(j, - wj,) = DT gy s = . (21)
0 ifi#ji,.... Js
whenever 1 < jq, ..., js <m are distinct indices. Here the hat denotes omission.

Let G be a finite group. The Grothendieck ring of G is the free Z-module with basis given by isomorphism classes
[V] of irreducible C[G]-modules V. We extend the notation [—] to arbitrary finite-dimensional C[G]-modules by setting
[V]=[W]+ [U] whenever we have a short exact sequence 0 - U — V — W — 0 of finite-dimensional C[G]-modules.
The product structure on the Grothendieck ring is given by

[V]-[W]:=[VoW] (2.2)

where G acts on the vector space VW by g- (v w):=(g-v)®(g-w) for ge G,v eV, and w € W. We will consider
the Grothendieck ring of G = &, in this paper; this is a free Z-algebra with basis indexed by the set of partitions A - n. The
structure constants for the canonical basis [V*] of irreducible &,-modules are the Kronecker coefficients; these are famously
difficult to compute.

We shall need a result guaranteeing the invertibility of a certain combinatorial matrix. Recall that the Boolean poset B,
has elements given by subsets S C {1, ...,n} and order relation S <T if and only if S C T. Let B, ; denote the family of size
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i subsets of {1,...,n}; these are the rank i elements in B,. The next result states that the incidence matrix between the
complementary ranks Bj ; and Bj ,—; is invertible.

Theorem 2.1. For 0 <i < j <n, let My(i, j) be the (’f) X (';) matrix with rows indexed by By, ;, columns indexed by By, j, and entries
determined by the rule

1 SCT

M, j = 2.3
n. J)s.1 {0 otherwise. (23)

Forall 0 <i <n/2, the matrix M (i,n — i) is invertible.

The origins of Theorem 2.1 are difficult to trace. In [13], Stanley used his theory of differential posets to calculate the
(nonzero) eigenvalues of My (i,n — i). Another proof of Theorem 2.1 is due to Hara and Watanabe [2]. In [2] Theorem 2.1 is
viewed as a witness for the Hard Lefschetz property of the cohomology ring of the n-fold self product P! x --- x P! of the
Riemann sphere.

3. The bigraded S,-structure of H*(M, ©) and H'(M, ©)
Let (otq,...,a,) and (01, ...,6,) be two lists of fermionic variables and consider the rank 2n exterior algebra
EnZ=/\{Ol1,...,0[n,91,...,9,—,} (3.1)
on these variables over the ground field C. This algebra is doubly graded, with
(En)ij=Aar,....an} @ A{O1, ..., 00} (3.2)
and carries an action of &,
W - 0; 1= 0w W - O = (i) web,, 1<i<n (3.3)
which respects this bigrading.
3.1. The module structure of HO(M, ©)

The zeroth cohomology group HY(M, ®) is the set of globally defined regular functions on M, namely the functions
on CU" that are invariant under the translations S and T of Egs. (1.1) and (1.2). Since these functions are known to be
independent of the even coordinate z [1,4,10], it suffices to check invariance under the action of T on the odd coordinates
only.

Thus, we consider the map of algebras

T:E,— E, (3.4)
defined on generators by

T:0;— 0; + o T:aj— «. (3.5)
The map T acts by fermionic translation. The zeroth cohomology group H%(M, ©) is related to T as follows.

Definition 3.1. Let HO(M, O) :={f € E, : T(f) = f} be the subalgebra of E, fixed by T.

Despite the fact that T is not bigraded, its fixed subspace H®(M, ©) is a bigraded subalgebra of E,. To show this, we
introduce the operator 7 : E, — Ej given by

T(f):=) - (3/06) f (3.6)

i=1

The operator 7t is bihomogeneous of degree (1, —1).
Proposition 3.2. Let f € E,. We have T(f) = f ifand only if T (f) = 0. In particular, the subalgebra HO(M, ©) of Ey, is bigraded.

Our proof of Proposition 3.2 proceeds by showing that 7 is an ‘infinitesimal’ version of the translation operator T.
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Proof. We claim that we have the equality of operators
1 1
T = exp(T) ::id+r+5r2+§r3+--- (3.7)

on Ey. Since 7"t =0 on E,, the RHS is really a finite sum. Indeed, this equality of linear operators may be easily checked
on monomials using the evaluation

T:0; -6, -aj, ---aj, = (0 +aip) -~ (05, +ag) -aj, - o, (3.8)
If T(f) =0, Equation (3.7) immediately gives T(f) = f.
On the other hand, if T(f) = f, Equation (3.7) gives the relation
1 1
0=7(N)+ 5N+ 5N+ (3.9)

inside Ej. The T-invariant function f may be written uniquely as a sum f = Z?,j:o fi,j where f; j € (Ep); ;. If fi ;=0 for
all i, j, then certainly 7(f) =0 and we are done. Otherwise, choose jo minimal such that f; j, # 0 for some 0 <i <n and let
fajo = Z?:o fi,jo- Since T has bidegree (1, —1), Equation (3.9) and our choice of jo imply that 7(f j,) =0. Equation (3.7)
shows that T(fy j,) = f« j,» S0 that T(f — f« j,) = f — f« j,- By induction on bidegree support, we have t(f — f, j,) =0.
We conclude that 7(f) =7 (fs j,) +7(f — f«j,) =0+0=0. O

By Proposition 3.2, we have a direct sum decomposition

H°(M, 0) = @) H'(M, 0); (3.10)
i,j=0

in the category of bigraded rings or bigraded &,-modules. The module structure of HO(M, 0);,j is given as follows.

Theorem 3.3. We have H*(M, O); j = O unless i > j. Ifi > j, then
[HO(M, O)i,j] = [AiC”] : [AJC”] - [A“”C”] : [/\j_l(C“] (3.11)
=[(En)i,jl — [(En)it1,j-1] (3.12)
within the Grothendieck ring of G, where the action of G, on C" is by coordinate permutation.

The bigraded &,-structure of HO(M, ©O) is very similar to that of the bigraded &,-module FDR, of fermionic diagonal
coinvariants introduced in [7] and further studied in [6,8]. In [7, Thm. 3.2] it is shown that multiplication by an appropriate
power of £ := Y, a;6; affords a linear isomorphism ¢"~'~J x (=) : (Ep)i j — (En)n—jn—i Whenever i + j <n. In [7, Thm.
4.2] this isomorphism is used to deduce the bigraded G,-structure of FDR,, := E; /I where I C E; is the ideal generated by

Gy -invariants with vanishing constant term. The proof of Theorem 3.3 should be compared to those of [7, Thm. 3.2, Thm.
4.2].

Proof. Let (i, j) be a fixed bidegree. For any r > 0, we have an operator

T (En)i,j — (En)igr,j—r (313)
When i < j and r = j — i, we have a map

T/ (En)i j — (En)ji (3.14)

between complementary bidegrees.
We claim that the map /=% appearing in (3.14) is bijective. To prove this, we examine its matrix with respect to a
strategic choice of bases.
Given subsets A, B C {1,...,n}, let ma p € E; be the monomial whose variables consist of «; for a € A and 6, for b € B
written in increasing order with respect to
o1 <Br<ap<by<---<ay<by. (3.15)

For example, if n=8,A={2, 3,5}, and B={1, 3,4, 6} we have

map=~61-02 0303-04-0s - 6.

It is not hard to see that
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T(Mmap) =Y MaucE-c- (3.16)
c¢A
ceB

The definition of m4 p was chosen so that Equation (3.16) is free of signs. Iterating Equation (3.16) j — i times, we see that

T map) =G -0 > maucs-c. (3.17)
ICl=j—i
C<c(B-A)
The matrix for 7/~ with respect to the ma.p basis therefore breaks up into a direct sum of matrices indexed by subsets
D = AU B where each direct summand is (j — i)! times a matrix which Theorem 2.1 guarantees is invertible. We conclude
that v/~ is invertible whenever i < j.
Whenever a composition f o g of functions is a bijection, the map f is a surjection and the map g is an injection. We
conclude that

T:(Ep)ij — (En)it1,j-1 (3.18)
is injective whenever i < j. Proposition 3.2 implies that HO(M, 0)i,j =0 when i < j. Similarly, if i > j, the map in Equa-

tion (3.18) is surjective. Since t is &,-equivariant, Proposition 3.2 implies the desired relation in the Groethendieck ring of
Gp. O

As a consequence of Theorem 3.3, we have

N - (") (." i > |
dim HO(M, O)i,j — {(l)(]) (l+l)(]—1) l = ] (319)
0 i<j
which implies that
dim H°(M, 0); j =dim H*(M, O)y_jn—i  fori+j<n. (3.20)

The following result shows that multiplication by the appropriate power of

Z::Ol191 ++an9n (321)

yields a linear isomorphism HO(M, O); j — Ho(M, O)p_j n—i-
Theorem 3.4. Suppose i + j < n. We have a linear isomorphism

(=) x "7 HO(M, 0); j — H(M, O)n_jni (3:22)
where € € Ey is given by (3.21).

Proof. Since ¢ is T-invariant, we have ¢ € HO(M, ©) and the given map is well-defined. By the dimension equality (3.20) it
suffices to show that we have a linear isomorphism
(=) x "7 (En)ij —> Endnejni- (3.23)

The proof that (3.23) is bijective is similar to that of Theorem 3.3. For subsets A,B C {1,...,n}, let m), ;, € E, be the
monomial given by

mypi= [] ac-tex [] aax [] 0 (3.24)
ceANB acA—B beB—A

where each product is taken in increasing order. For example, if A=1{2,4,5,7} and B = {3, 4,7} then m/AB = (4640707) -
a5 - 03, It is not hard to see that

Cmyg= Y My puc (3.25)
c¢AUB

where the definition of m/A_B guarantees that Equation (3.25) is free of signs. The proof that the map in (3.23) is bijec-
tive now follows from the same reasoning as in the proof of Theorem 3.3. The isomorphism (3.23) restricts to give the
isomorphism in the statement of the theorem. O
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3.2. The module structure of H' (M, ©)

The first cohomology group H' (M, ©) of the sheaf @ classifies line bundles over M. In order to compute H'(M, ©0), we
recall some notions from group cohomology.
Let G be an abelian group and let N be a G-module. A 1-cocycle is a function ¢ : G — N which satisfies

c(gh)=h-c(g) +c(h) forall g,h €G. (3.26)

A 1-cocycle c: G — N is determined by its values on a generating set of G. A 1-coboundary is a function ¢, : G — N of the
form

Cn(g):=g-n—n (3.27)

for some n € N. It is easily seen that every 1-coboundary is a 1-cocycle. The sets of 1-cocycles and 1-coboundaries both
form groups under pointwise addition. The first cohomology group is the quotient

HY(G,N):= (1-cocycles)/(1-coboundaries) (3.28)

of the group of 1-cocycles by its subgroup of 1-coboundaries.

From the equivalence between sheaf and group cohomology [9], H! (M, ©) = H!(G, N), where G is generated by the
supertranslations S, T of (1.1), (1.2) acting on the module of functions N on C!I", Proposition (B.1.3) of [12] gives an exact
sequence

0— H'((T),N*) = H'(G,N) — H'((S), N) (3.29)

whose final term vanishes. Thus H!(G, N) can be computed as the cohomology of the cyclic group generated by T acting
on the S-invariant functions in N. Since this cohomology is also known to be independent of z, we can take S to be the
identity and simply compute the cohomology of (T) acting on Ej.

Thus, for our purposes, the group G = (g) is the infinite cyclic group and the module N is the exterior algebra E,. The
generator g of G acts on E, by the translation operator T:

g-f=T(f) fekEn (3.30)

We may identify the group of 1-cocycles with E, itself. Indeed, given an element f € E,, the corresponding 1-cocycle
cf:G— M determined by cs(g) = f. This motivates the following definition.

Definition 3.5. Let H! (M, ©) be the quotient of E, by its linear subspace

{T(f)—f: fekn) (3.31)

of 1-coboundaries.

The denominator in the quotient space of Definition 3.5 may be written in another way using the operator t. This will
allow us to deduce that, like HO(M, @), the first cohomology H!(M, ©) is bigraded.

Proposition 3.6. The set {T(f) — f : f € E,} of 1-coboundaries equals the image of the map

T:E,— Ep. (3.32)

Thus, the quotient H'(M, ©) = @?J:o H'(M, 0);,; is the cokernel of the bihomogeneous map T. In particular, the vector space
HY(M, O) is bigraded.

Proof. Equation (3.7) shows that for any f € E, we have
1, 1 3 1 1,
T(f)—fzr(f)+5r (f)+§f H+-=t f+if(f)+§f H+-- (3.33)
so that every 1-coboundary is in the image of 7.

The reverse containment follows from induction on 6-degree. If f € E, has 6-degree 0, then 7(f)=0=T(0) —0 is a
1-coboundary. In general, we have

1 1 1 1
t(f)=T()—f - irz(f) - §t3(f) +=THH-H-7 (f(f) + irz(f> + - ) . (334)

The term T(f) — f is a 1-coboundary by definition and the sum %t(f) + %rz(f) + -+ has strictly lower 6-degree than f,
so its image T (%r(f) + %rz(f) +- ) under 7 is a 1-coboundary by induction. O
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Since T is Gp-equivariant, the bigraded vector space H'(M, Q) = EB?,;‘:O H'(M, 0);,j attains the status of a bigraded
&;,-module. The structure of this module may be determined using the same ideas as in the proof of Theorem 3.3.

Theorem 3.7. The vector space H' (M, 0);,j iszero unless i < j. When i < j, we have the equality
[H'(M,0); ;] = [AiC”] : [AJ(C”] - [/\i‘l(C”] : [Aj+1(3”] (3.35)
=[(En)i,j] — [(En)i-1,j+1] (3.36)

in the Grothendieck ring of &,. Here &, acts on C" by coordinate permutation.

Proof. As in the proof of Theorem 3.3, the map

T:(Ep)i,j — (En)it+1,j-1 (3.37)
is injective whenever i < j and surjective whenever i > j. Since 7 is Gy-equivariant, the result follows from Proposi-

tion 3.6. O

Let V and W be finite-dimensional complex vector spaces and let (—, —):V ® W — C be a bilinear pairing between
them. The pairing (—, —) is perfect if for all nonzero vectors v € V, there exists a vector w € W such that (v, w) # 0 and
for all nonzero vectors w € W, there exists a vector v € V such that (v, w) # 0. In particular, if a perfect pairing exists, then
dimV =dimW.

Let X be an n-dimensional smooth complex projective variety with canonical line bundle Kx. If £ is an algebraic vector
bundle over X, Serre duality furnishes a perfect pairing

Hi(X, &) @ H" (X, Kx ® £*) — C (3.38)

between sheaf cohomology groups of complementary degree. This is an analogue of Poincaré duality for sheaf cohomology.
We describe a supergeometric version of Serre duality which holds between the bigraded rings HO(M, @) and H'(M, O).
Consider the ‘volume form’ vol, := a1 ---ay - 601 ---6, in E; and define a bilinear pairing (—, —) on E, by

(f, g) := coefficient of vol,, in f - g. (3.39)
Theorem 3.8. The pairing (—, —) induces a perfect pairing HO(M, ©) ® H' (M, ©) — C.

Proof. The pairing (—, —) is easily seen to be perfect as a map

En®E, —> C. (3.40)

We claim that the operator 7 is self-adjoint with respect to this pairing; that is

(t(f).g)=(f.7(g) forall f,geEy. (3.41)

Indeed, it suffices to check Equation (3.41) in the case where f and g are monomials, and this is a straightforward compu-
tation.

Propositions 3.2 and 3.6 together with Equation (3.41) imply that (—, —) descends to a well-defined bilinear pairing

(=, —):H'(M,0)® H'(M, ©) —> C. (3.42)
Indeed, if f € HO(M, O) =Ker(z) and g € E, then (f, 7(g)) = (z(f),g) = (0, g) = 0. Since dimH°(M, O); j = dim H! (M,
O)n—in—j, the pairing (—, —) remains perfect when regarded as a map HOYM,0)@ H'(M,0) - C. O

An explicit set of coset representatives for elements in H' (M, @) can be obtained, if desired, from Theorem 3.8. For any
element f € E,, write f © (=) : E; — E, for the differential operator on E, obtained from f by replacing each instance of
6; with 9/86; and each instance of «; with 8/dc;. If B is a basis of HO(M, ©), it follows from Theorem 3.8 that {f © vol,, :
f € B} will descend to a basis of H! (M, O).

For example, when n =2 we have a basis of H*(M, ©) = Ker(t) given by

B={1, a1, a2, o101, a26>, @162 + 261, a100201, a10262, o1026162}.

Recalling that vol, = oj016;, the corresponding collection {f ® vol, : f € B} of coset representatives of a basis of
H'(M, 0) is

{@10201602, 020102, —16102, (202, 161, —0t201 — 162, —02, 01, 1}.
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Remark 3.9. The proofs in this section made heavy use of the operator T = Y| ; «; - (3/36;) on the exterior algebra Ej. This
operator comes from an action of the Lie algebra sl;(C) on Ej. Let o : E, — E, be the linear operator

o(f)=) 6;-(0/dai) f (3.43)

i=1

and let n: E; — E; be the linear operator which acts on the subspace (E); j by the scalar i — j. It can be shown that

[T,0]l=n [n,t]=2-7 [n,ol=-2-0 (3.44)

as operators on Ej,. Indeed, the relation [t,0] =1 is easily checked on monomials while the relations [n,7] =2 -7 and
[n,0]1=—2-0 follow from bidegree considerations. Since (3.44) are the defining relations of sl (C), we see that the action
of 7,0, and n endows E, with the structure of an sl,(C)-module.

Similarly, it can be seen that the Lefschetz element ¢ =), «;6; of bidegree (1, 1) appearing in Theorem 3.4 fits into an
sl(C)-action with the operator ) ;(9/96;)(3/d«;) of bidegree (—1, —1). Here the Cartan generator of sl(C) acts on (Ey); ;
by the scalar i + j —n.

Let A= @?:O A; be a singly-graded C-algebra equipped with a linear map L: A — A satisfying L(A;) = Aj;1 such that
L9-20: A; — A4_; is an isomorphism for all i <d/2. Writing e, f, h for the usual basis of sl,(C), there exists (see e.g. [11,
Prop. 3.1.6]) a unique sl;(C)-module structure on A such that e acts by L and h acts on A; by the scalar 2(d — i). In our
setting we have a doubly-graded algebra E, with two commuting actions of sl;(C) coming from two Lefschetz elements.

4. Generators and relations for H(M, ©)

In the last section, we studied the T-invariant subalgebra H(M, ©) C E, as a doubly-graded &,-module. In this section,
we focus on its ring structure and give a simple set of generators and combinatorial relations for HO(M, ©).

It can be easily seen that the elements «;, «;6;, and «;6; + «j6; are all translation invariant (we will informally refer to
these as “basic invariants”), as are any products of these elements. But there are many dependence relations among products
of these elements, and it is not immediately obvious how to pick out a basis from said products. This section will explain
how to do so thereby giving a combinatorial basis for the ring of translation invariants.

We will use labelled matchings to index our basis. A matching of size n consists of a collection of pairwise disjoint size-two
subsets of {1,...,n}. For our purposes we do not require that this collection partition {1, ...,n}; there may be unmatched
elements. To visualize matchings, we will depict them as n vertices labelled 1 through n, placed on a line, with an arc
connecting matched vertices, e.g. when n =8,

Let ®(n) consist of all matchings of size n in which each unmatched element is either labelled o, @6 or unlabelled. To
each matching m € ®(n) we associate F, € HO(M, ©) as follows. For each unmatched vertex i with an « label, take the
product of the «;’s in increasing numerical order. Then, multiply by «;6; for each vertex i labelled «6. Finally, multiply by
a;fj+a;b; for each matched pair {i, j}. Note that these terms are degree 2 and therefore commute, so there is no ambiguity
in the order in which they are multiplied. For example, if m € ®(8) is the labelled matching shown below

e e o [ ]
1 2

then Fp, € HO(M, O) is given by a1 - 026, - (00405 + t664) (005607 + 0t765).
The benefit of visualizing products of basic invariants as matchings lies in an easier description of the linear dependence
relations among these products, as in the following lemmas. The first is the Ptolemy relation (up to sign).

Lemma 4.1. Let m € ®(n) and suppose that m contains arcs (i,k) and (j,l) withi < j <k < L. Let mg and my be the matchings
obtained by replacing arcs (i, k) and (j, l) with arcs (i, j) and (k, 1) or with arcs (i, 1) and (j, k) respectively. Then

Fm+Fm0+Fm1:O~

Pictorially:
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The second describes a relationship between «-labelled vertices and arcs.

Lemma 4.2. Let m € ®(n) and suppose that d contains the arc (i, k) and vertex j is labelled by a with i < j < k. Let mg and my be
the diagrams obtained by replacing arc (i, k) with arc (i, j) and vertex k labelled by « or with arc (j, k) and vertex i labelled by o
respectively. Then

Fm + Fig + Fm, =0.

Pictorially:

o 07 07
¢ T TN 4 e o + o « e =0

Lemmas 4.1 and 4.2 are both proven by direct computation; we leave this to the reader. These lemmas allow us to reduce
the linearly dependent set of translation invariants

{Fm : me &)} (4.1)

to a linearly independent subset. Lemma 4.1 allows translation invariants corresponding to matchings to be written as a
linear combination of translation invariants corresponding to matchings with fewer crossings or fewer nestings. Lemma 4.2
allows translation invariants corresponding to matchings to be written as a linear combination of translation invariants
corresponding to matchings with fewer o labels under arcs. The next two lemmas make this idea explicit.

Let m € ®(m) and let C(m) denote the number of crossings of m, i.e. the number of quadruples i < j <k < £ such that
{i,k} and {j, ¢} are matched in m. Similarly, let A(m) denote the number of times an « label appears under an arc of m, i.e.
the number of triples i < j <k such that j is unmatched and has an « label and {i, k} is matched in m.

Lemma 4.3. [f m € ®(n), then m satisfies exactly one of the following

o C(m)=A(m)=0

e C(m) =0 and there exists a collection of matchings m; € ®(n) with A(m;) < A(m) such that F, = )_; ¢;Fim; for some constants
Ci.

e There exists a collection of matchings m; € ®(n) with C(m;) < C(m) with Fy =), ¢;Fm, for some constants c;.

Proof. Firstly, suppose C(m) # 0. So there exists at least one crossing, and we can apply Lemma 4.1 to satisfy the third
condition.

Otherwise, suppose C(m) =0 and A(m) # 0. Then there exists at least one « labelled vertex lying under an arc. Applying
Lemma 4.2 to such a vertex and the shortest arc it lies under will allow us to express Fp as a linear combination of Fp, and
Fi, for two matchings mq and my as defined in Lemma 4.2. Note that since m has no crossings, and we chose the shortest
arc, my and my will also have no crossings, and A(my) < A(m) and A(my) < A(m), so the second condition is satisfied.

Otherwise, the first condition is satisfied. O

Let NC(n) € ®(n) denote the set of noncrossing matchings in which no arc nests an « label. That is, we set

NC(n):={me ®(n) : C(m) = A(m)=0}. (4.2)

Lemma 4.3 has the following corollary.

Corollary 4.4. For any mg € ®(n), the element F,, € HO(M, O) lies in the span of
{Fm : me NC(n)}. (4.3)

Example 4.5. Let n =5 and let mg be the labelled matching displayed below

e
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Then C(mg) =1, A(mg) =1, and

Fing = 04(a0103 + a361) (0205 + a05602). (4.4)

We can rewrite Fy,, as a sum of Fp, and Fp, for matchings m; and mp with C(m1) = C(my) =0.

Fing = —0ta(0t102 + 0261) (0305 + ar503) — avg (o105 + oe501) (263 + oe362) (4.5)
Pictorially:

/7(?\.:_./\../7\._ « e o

We can then rewrite these as sums of Fy, for matchings ms, ..., mg with A(m;) = C(m;) =0.

Fmy = a3(a16; + 201) (00405 + os5004) + a5 (162 + 261) (00304 + 01403)
01 (00465 + at504) (0203 4 3602) + a5 (00164 + 00461) (00203 + 01367)
Pictorially:

./7<O.l\. e e e e e e 4+ e e e e
o /—\. o
+ o & o & e o+ o« e .

It will turn out that the set in Corollary 4.4 is a basis for HO(M, @). We will now show that it is linearly independent
using a nested induction argument. Let NC(n, k) denote the set of all m € NC(n) such that Fy, is of total degree k.

o R

Proposition 4.6. The set {F,, : m € NC(n, k)} is linearly independent in HO(M, O).

Proof. For any labelled matching m, let s(m) denote the index of the smallest vertex not labelled by @ or «6 in m, or n+1
if no such vertex exists.

This proof proceeds via two nested inductions, the first downwards on k and the second on s(m).

When k = 2n, there is a unique matching in NC(n, 2n). In this matching, everything is labelled by «6.

Now assume as an inductive hypothesis that for some k < 2n the set {F; : m € NC(n,k + 1)} is linearly independent,
and suppose

Z cmFm = 0. (4.6)
meNC(n,k)

For clarity, we begin with the simpler case where s(m) = 1; this is the base case of our induction on s(m). To show that
for every matching where s(m) =1 we have ¢ = 0, multiply the given linear dependence by «1. We have

Y cm@iFpn=0.
meNC(n,k)
For any matching m with s(m) > 1, vertex 1 is either labelled « or «6. In either case, a1 F = 0. Otherwise, if s(m) =1,

then a1 F;, = £F,y where m’ is the matching obtained from m by either

(1) Adding an « label to vertex 1 if vertex 1 was not part of any arc.
(2) Removing arc (1, j), then adding an «@ label to vertex 1 and adding an « label to vertex j, if vertex 1 was part of arc
(1, 5.

This is because o1(a10; + «j01) = o1 jO1. An example of case 2 is shown in the figure below.

10
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Note that in either case, m’ is in NC(n, k + 1), since neither vertex 1 nor vertex j can lie under any arc in m’. In case 2,
if vertex j did, that arc would have had to cross arc (1, j) in m. By our first inductive hypothesis all such m’ are linearly
independent, so ¢, =0 for any m with s(m) =1.

To complete the inductive step, assume as an inductive hypothesis that ¢, = 0 for any m with s(m) < £. Multiply the
linear dependence by «y. We have

Z cm0teFm = 0.

meNC(n,k)

For any m with s(m) > ¢, a¢F; = 0. For any m with s(m) < ¢, our inductive hypothesis assumed ¢, = 0. The analogous
argument to the s(m) =1 case therefore shows that c¢; = 0 for all matchings m with s(m) = £. Therefore by strong induction
c¢m =0 for all m, and the set {Fp, : m € NC(n, k)} is linearly independent. O

We now know that the set {Fp, : m € NC(n)} is linearly independent and spans all products of basic invariants. To show
that it is a basis for the entire translation invariant subring, we employ a dimension count. To count the size of our proposed
basis, we will give a bijection.

Proposition 4.7. NC(n, k) is in bijection with ordered pairs (A, B) of subsets of {1,...,n}, where A has size |k/2] and B has size
rk/21.

Proof. We will show that both sets are in bijection with certain lattice paths in the plane. Let L(n, k) denote the set of all
lattice paths in Z? which

Start at the origin.

End at (51, [57.

Use exactly n steps.

Use steps only from {(1, 0), (0, 1), (1, 1), (0, 0)}.

The bijection to ordered pairs of subsets (A, B) is straightforward, set A records those steps whose x-coordinate is 1, and
set B records those steps whose y-coordinate is 1.

For the bijection from L(n, k) to NC(n, k), given a lattice path p, with steps sq, ..., s, associate to it an element ¢ (p) €
NC(n, k) defined as follows:

e If s5; = (0, 0), then i is unmatched and unlabelled in ¢ (p).

e If s; =(1,1), then i is unmatched and labelled «6 in ¢(p).

e If 5; =(0, 1), draw a ray of slope 1 whose endpoint lies on the midpoint of the step, and which extends to the northeast
(a laser). Then i is matched with the smallest j > i for which the ray intersects the lattice path at step s;. If the ray
does not intersect again, then i is unmatched and labelled alpha.

e If s; = (1, 0), draw a ray of slope 1 whose endpoint lies on the midpoint of the step, and which extends to the southwest
(a laser). Then i is matched with the largest j <i for which the ray intersects the lattice path at step s;. If the ray does
not intersect again, then i is unmatched and labelled alpha.

See Fig. 1 for an example. Since all lasers are parallel, we guarantee that ¢ (p) is noncrossing. Since each « labelled element
of ¢(p) is associated to a laser which never intersects the path again, it cannot lie between a matched pair. So we indeed
get an element of NC(n, k). To invert this map, given an m € NC(n, k) associate to it the lattice path ¢~1(m) e L(n, k),
defined as follows:

If i is unmatched and unlabelled, then s; = (0, 0).

If i is unmatched and labelled «6, then s; = (1, 1).

If i is matched to j > i, then s; = (0, 1).

If i is matched to j < i, then s; = (1, 0).

If i is unmatched and labelled «, and among the first half (rounded up) of «-labelled elements, then s; = (0, 1).

If i is unmatched and labelled «, and among the second half (rounded down) of «-labelled elements, then s; = (1, 0).

The composition ¢~! o ¢ =id is straightforward to verify. To see that ¢ o ¢~ ! is also the identity, note that if i and j are
matched in m € NC(n, k), then the number of (0, 1) steps between s; and s; equals the number of (1,0) steps between s;
and s; in ¢~1(m), and at any point along travelling from s; to sj—1, there will have been more (0, 1) steps than (1, 0) steps.
So i and j will be matched in ¢ o ¢~1(m). So these sets are indeed in bijection. O

11
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v

~H

3 4 5
.
/7 o . .
2 [ ) [ ) [ ) [ ] [} ./—\.
/ / 1 2 3 4 5 6 7 8 9

N4

Fig. 1. An example of the bijection described in the proof of Proposition 4.7. Stationary steps are indicated by a filled circle. Rays are cut off at their first
intersection for visual clarity.

Proposition 4.7 shows that

2 1
NCI =2 INCm bl =) (LJZJ) (f’;ZT) - ( " ) @)

k k
On the other hand, Theorem 3.3 implies that
n\ /n n n 2n+1
dimHoM.0)= > (()(.) -1, , ("), (4.8)
— i1/\J i—1/\j+1 n
1=i<j=n

Thanks to Proposition 4.6, we have the following corollary.
Corollary 4.8. The set {F,, : m € NC(n)} is a basis of HO(M, O).

We can also give a simple combinatorial presentation for H*(M, ©) as a ring with generators and combinatorial relations.
Lemmas 4.1 and 4.2 give combinatorial relations among the basic invariants in H%(M, ©). The remaining relations among

these invariants are straightforward.

Theorem 4.9. The translation invariant ring HO(M, ©) is generated as a C-algebra by the basic invariants o;, c;6;, and aifj + o6
subject only to the combinatorial relations in Lemma 4.1 and Lemma 4.2 together with

a2 =0 (@i} + aj6i)? = —2(aibi) (@ j6))
(i) =0 ai(@ib) + ajf) = —aj - (@if;) (@9
(i) (@i + ;) =0 (@ith) - (0 + aj6;) = 0

Proof. Corollary 4.8 shows that the basic invariants generate H®(M, ©) as a C-algebra, so we only need to show that any
relation among products of basic invariants can be deduced from the given relations. The relations displayed in braces in the
statement of the theorem may be used to show that any nonzero product of basic invariants is, up to a scalar, a product Fp,
for some mg € ®(n). Lemma 4.3 shows that, using only the relations of Lemmas 4.1 and 4.2, the product Fp, can be written
as a linear combination of Fp's for various m € NC(n). Corollary 4.8 says that {F,, m € NC(n)} is a basis of HO(M, ©), so
every relation among the basic invariants is given in the statement of the theorem. O

5. Conclusion
Section 4 describes the ring HO(M, ©) in terms of generators and relations. The first homology group H'(M, ©) is

naturally a module over HO(M, ©). It could be interesting to describe the structure of this module, in terms of a resolution
or otherwise.

Throughout this paper, we assumed that the coefficient variables o1, a2, ... defining the translation T were independent
fermionic parameters. However, in supergeometry one often considers more general fermionic translations T : E, — E, of
the form (61,...,0p) — (61 + B1,...,6n + Bn) where the B; are elements of odd degree in &1, ..., o, ie.

2i+1
Bro....fne DA Han, ... o). (51)
i>0
In particular, the elements Bq, ..., Bn may satisfy nontrivial relations.

12
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Let R C E, be the subalgebra of E, which is invariant under the action of T. Since T(«;) = «; for all i, the algebra R has
the structure of a module over the exterior algebra A{oq, ..., an}.

Problem 5.1. Describe the structure of R as a module over the free exterior algebra A{oq, ..., an}.

Theorems 3.3 and 4.9 solve Problem 5.1 when the §; are independent. The general case is more difficult because relations
among the B; can generate additional invariants in R in ways that are difficult to predict.
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