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Affine superspace C1|n has a single bosonic coordinate z and n fermionic coordinates 
θ1, . . . , θn . Let M be the supertorus obtained by quotienting C1|n by the abelian group 
generated by the maps S : (z, θ1, . . . , θn) �→ (z + 1, θ1, . . . , θn) and T : (z, θ1, . . . , θn) �→
(z + t, θ1 + α1, . . . , θn + αn) where t ∈ C has positive imaginary part and α1, . . . , αn are 
independent fermionic parameters. We compute the zeroth and first cohomology groups of 
the structure sheaf O of M as doubly graded Sn-modules, exhibiting an instance of Serre 
duality between these groups. We use skein relations and noncrossing matchings to give a 
combinatorial presentation of H0(M, O) in terms of generators and relations.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In classical algebraic geometry, regular functions on complex varieties X are represented by rational functions f in com-
muting variables x1, x2, . . . whose denominators have no zeros on X . The prototypical model is affine m-space Cm with 
coordinate ring C[x1, . . . , xm]. In supergeometry, one considers functions of both commuting variables x1, x2, . . . represent-
ing bosonic coordinates as well as anticommuting variables θ1, θ2, . . . representing fermionic coordinates. The coordinate 
ring of affine superspace Cm|n is the tensor product C[x1, . . . , xm] ⊗ ∧{θ1, . . . , θn} of a polynomial ring of rank m and an 
exterior algebra of rank n.

Let C1|n be affine superspace with one bosonic coordinate z and n fermionic coordinates θ1, . . . , θn . We consider a 
free exterior algebra ∧{α1, . . . , αn} generated by “coefficient” fermionic variables α1, . . . , αn . In supergeometry, elements of 
∧{α1, . . . , αn} of odd homogeneous degree may be substituted for the θi in any regular functions f (z, θ1, . . . , θn) on C1|n; 
this is the anticommutative analogue of evaluating a polynomial C[x1, . . . , xm] at a point in Cm .

Let t ∈C be a complex number with positive imaginary part. We consider two translation operators S, T :C1|n →C1|n
defined in terms of coordinates by

S :(z, θ1, . . . , θn) �→ (z + 1, θ1, . . . , θn), (1.1)

T :(z, θ1, . . . , θn) �→ (z + t, θ1 + α1, . . . , θn + αn). (1.2)

We let M be the quotient of C1|n by the group of operators generated by S and T . If n = 0 and no fermionic variables 
were present, the space M would be a copy of the usual torus S1 × S1 with complex structure given by the modulus t . As 
such, we may regard M as a superspace extension of the torus (technically, a family of supertori over the parameter space 
∧{α1, . . . , αn}).
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Let O be the structure sheaf of M , so that the zeroth cohomology H0(M, O) is the algebra of globally defined regular 
functions on M (see Definition 3.1 for a precise definition of H0(M, O)). If n = 0, the space H0(M, O) is merely a copy of 
the ground field C; there are no nonconstant regular functions on the torus. On the other hand, we show that H0(M, O)

has rich combinatorial structure in the supertorus case of n > 0.

• We show (Corollary 4.8) that H0(M, O) is generated as a C-algebra by the ‘basic invariants’ αi, αiθi , and αiθ j +α jθi for 
1 ≤ i < j ≤ n. Furthermore, we give a combinatorial description (Theorem 4.9) of the relations which hold among these 
invariants in terms of the classical Ptolemy relation [5,8] which resolves a simple crossing as a sum of its two possible 
resolutions.

• Considering degree in the coefficient variables αi as well as the θi , the ring H0(M, O) attains the structure of a bi-
graded module over the symmetric group Sn . We compute its bigraded isomorphism type (Theorem 3.3). In particular, 
the (i, j)-component H0(M, O)i, j is nonzero if and only if i ≥ j, in which case it has dimension 

(n
i

)(n
j

) − ( n
i+1

)( n
j−1

)
. 

Therefore, the dimensions of the spaces H0(M, O)i,i are the Narayana numbers Nar(n + 1, i + 1) for i = 1, . . . , n and the 
sum 

∑n
i=0 H0(M, O)i,i of these dimensions is the (n + 1)st Catalan number Cat(n + 1).

It follows from the second bullet point above that the vector spaces H0(M, O)i, j and H0(M, O)n− j,n−i have the same 
dimension for all i + j ≤ n. We prove (Theorem 3.4) that multiplication by �n−i− j where � = α1θ1 + · · · + αnθn furnishes a 
linear isomorphism between these spaces. This fact may be viewed as a bigraded version of the Hard Lefschetz Theorem 
for the ring H0(M, O). We also show that the first cohomology group H1(M, O) (see Definition 3.5) and H0(M, O) satisfy 
Serre duality (Theorem 3.8). The n = 1 case of these results was proven by the second author [10] in previous work.

We provide a bit more background in supergeometry, although this is not required for the rest of this paper. The n = 1
supertorus considered in [10] was in fact a super Riemann surface, with the second group generator above modified to 
T : (z, θ1) �→ (z + t + θ1α1, θ1 +α1). In principle, functions in H0(M, O) or cocycles in H1(M, O) might depend on z as well 
as α1, θ1. However, one can show by a Fourier series argument [1,4,10] (using the periodicity given by S) that they are in 
fact independent of z. This implies in particular that the extra even term θ1α1 in T does not affect the cohomology and 
can be ignored. It also makes the generator S trivial and allows us to compute the cohomology from T alone acting on the 
fermionic variables. In this paper we will compute H1(M, O) as the group cohomology of the cyclic group generated by T . 
The equivalence of sheaf cohomology and group cohomology in this instance follows from [9,12].

Serre duality for supermanifolds has been proven in [3] for individual supermanifolds and in [1] for families. The duality 
we exhibit between H1(M, O) and H0(M, O) is an instance of this general structure (technically, as applied to the total 
space of our family M of supertori).

Our results can be viewed as a first step toward a general theory of Abelian supervarieties, including the Jaco-
bians of supercurves. In such a context the two generators S, T would be extended to a set of 2g supertranslations 
S1, . . . , S g, T1, . . . , T g representing a canonical homology basis of a torus of complex dimension g . The cohomology of 
the group they generate would be correspondingly more complicated, although still independent of the g even coordinates 
and hence a purely algebraic problem. The computation of H1(M, O) is of particular interest in view of its role in classifying 
topologically trivial line bundles on M [1].

2. Background

We will need a notion of fermionic differentiation. Let (ω1, . . . , ωm) be a list of m fermionic variables and let 
∧{ω1, . . . , ωm} be the exterior algebra over these variables. For 1 ≤ i ≤ m, we define an operator ∂/∂ωi on ∧{ω1, . . . , ωm}
as the linear extension of

∂/∂ωi(ω j1 · · ·ω jr ) :=
{

(−1)s−1ω j1 · · · ω̂ js · · ·ω jr if js = i

0 if i 
= j1, . . . , js
(2.1)

whenever 1 ≤ j1, . . . , js ≤ m are distinct indices. Here the hat denotes omission.
Let G be a finite group. The Grothendieck ring of G is the free Z-module with basis given by isomorphism classes 

[V ] of irreducible C[G]-modules V . We extend the notation [−] to arbitrary finite-dimensional C[G]-modules by setting 
[V ] = [W ] + [U ] whenever we have a short exact sequence 0 → U → V → W → 0 of finite-dimensional C[G]-modules. 
The product structure on the Grothendieck ring is given by

[V ] · [W ] := [V ⊗ W ] (2.2)

where G acts on the vector space V ⊗ W by g · (v ⊗ w) := (g · v) ⊗ (g · w) for g ∈ G, v ∈ V , and w ∈ W . We will consider 
the Grothendieck ring of G = Sn in this paper; this is a free Z-algebra with basis indexed by the set of partitions λ � n. The 
structure constants for the canonical basis [V λ] of irreducible Sn-modules are the Kronecker coefficients; these are famously 
difficult to compute.

We shall need a result guaranteeing the invertibility of a certain combinatorial matrix. Recall that the Boolean poset Bn

has elements given by subsets S ⊆ {1, . . . , n} and order relation S ≤ T if and only if S ⊆ T . Let Bn,i denote the family of size 
2



J. Kim, J.M. Rabin and B. Rhoades Journal of Geometry and Physics 193 (2023) 104963
i subsets of {1, . . . , n}; these are the rank i elements in Bn . The next result states that the incidence matrix between the 
complementary ranks Bn,i and Bn,n−i is invertible.

Theorem 2.1. For 0 ≤ i ≤ j ≤ n, let Mn(i, j) be the 
(n

i

) × (n
j

)
matrix with rows indexed by Bn,i , columns indexed by Bn, j , and entries 

determined by the rule

Mn(i, j)S,T =
{

1 S ⊆ T

0 otherwise.
(2.3)

For all 0 ≤ i ≤ n/2, the matrix Mn(i, n − i) is invertible.

The origins of Theorem 2.1 are difficult to trace. In [13], Stanley used his theory of differential posets to calculate the 
(nonzero) eigenvalues of Mn(i, n − i). Another proof of Theorem 2.1 is due to Hara and Watanabe [2]. In [2] Theorem 2.1 is 
viewed as a witness for the Hard Lefschetz property of the cohomology ring of the n-fold self product P 1 × · · · ×P 1 of the 
Riemann sphere.

3. The bigraded Sn-structure of H 0(M, O) and H 1(M, O)

Let (α1, . . . , αn) and (θ1, . . . , θn) be two lists of fermionic variables and consider the rank 2n exterior algebra

En := ∧{α1, . . . ,αn, θ1, . . . , θn} (3.1)

on these variables over the ground field C. This algebra is doubly graded, with

(En)i, j = ∧i{α1, . . . ,αn} ⊗ ∧ j{θ1, . . . , θn} (3.2)

and carries an action of Sn

w · θi := θw(i) w · αi := αw(i) w ∈Sn, 1 ≤ i ≤ n (3.3)

which respects this bigrading.

3.1. The module structure of H0(M, O)

The zeroth cohomology group H0(M, O) is the set of globally defined regular functions on M , namely the functions 
on C1|n that are invariant under the translations S and T of Eqs. (1.1) and (1.2). Since these functions are known to be 
independent of the even coordinate z [1,4,10], it suffices to check invariance under the action of T on the odd coordinates 
only.

Thus, we consider the map of algebras

T : En → En (3.4)

defined on generators by

T : θi �→ θi + αi T : αi �→ αi . (3.5)

The map T acts by fermionic translation. The zeroth cohomology group H0(M, O) is related to T as follows.

Definition 3.1. Let H0(M, O) := { f ∈ En : T ( f ) = f } be the subalgebra of En fixed by T .

Despite the fact that T is not bigraded, its fixed subspace H0(M, O) is a bigraded subalgebra of En . To show this, we 
introduce the operator τ : En → En given by

τ ( f ) :=
n∑

i=1

αi · (∂/∂θi) f (3.6)

The operator τ is bihomogeneous of degree (1, −1).

Proposition 3.2. Let f ∈ En. We have T ( f ) = f if and only if τ ( f ) = 0. In particular, the subalgebra H0(M, O) of En is bigraded.

Our proof of Proposition 3.2 proceeds by showing that τ is an ‘infinitesimal’ version of the translation operator T .
3
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Proof. We claim that we have the equality of operators

T = exp(τ ) := id + τ + 1

2!τ
2 + 1

3!τ
3 + · · · (3.7)

on En . Since τn+1 = 0 on En , the RHS is really a finite sum. Indeed, this equality of linear operators may be easily checked 
on monomials using the evaluation

T : θi1 · · · θir · α j1 · · ·α js �→ (θi1 + αi1) · · · (θir + αir ) · α j1 · · ·α js . (3.8)

If τ ( f ) = 0, Equation (3.7) immediately gives T ( f ) = f .
On the other hand, if T ( f ) = f , Equation (3.7) gives the relation

0 = τ ( f ) + 1

2!τ
2( f ) + 1

3!τ
3( f ) + · · · (3.9)

inside En . The T -invariant function f may be written uniquely as a sum f = ∑n
i, j=0 f i, j where f i, j ∈ (En)i, j . If f i, j = 0 for 

all i, j, then certainly τ ( f ) = 0 and we are done. Otherwise, choose j0 minimal such that f i, j0 
= 0 for some 0 ≤ i ≤ n and let 
f∗, j0 := ∑n

i=0 f i, j0 . Since τ has bidegree (1, −1), Equation (3.9) and our choice of j0 imply that τ ( f∗, j0) = 0. Equation (3.7)
shows that T ( f∗, j0 ) = f∗, j0 , so that T ( f − f∗, j0) = f − f∗, j0 . By induction on bidegree support, we have τ ( f − f∗, j0) = 0. 
We conclude that τ ( f ) = τ ( f∗, j0 ) + τ ( f − f∗, j0) = 0 + 0 = 0. �

By Proposition 3.2, we have a direct sum decomposition

H0(M,O) =
n⊕

i, j=0

H0(M,O)i, j (3.10)

in the category of bigraded rings or bigraded Sn-modules. The module structure of H0(M, O)i, j is given as follows.

Theorem 3.3. We have H0(M, O)i, j = 0 unless i ≥ j. If i ≥ j, then[
H0(M,O)i, j

]
=

[
∧iCn

]
·
[
∧ jCn

]
−

[
∧i+1Cn

]
·
[
∧ j−1Cn

]
(3.11)

= [(En)i, j] − [(En)i+1, j−1] (3.12)

within the Grothendieck ring of Sn where the action of Sn on Cn is by coordinate permutation.

The bigraded Sn-structure of H0(M, O) is very similar to that of the bigraded Sn-module F D Rn of fermionic diagonal 
coinvariants introduced in [7] and further studied in [6,8]. In [7, Thm. 3.2] it is shown that multiplication by an appropriate 
power of � := ∑

i αiθi affords a linear isomorphism �n−i− j × (−) : (En)i, j
∼−→ (En)n− j,n−i whenever i + j ≤ n. In [7, Thm. 

4.2] this isomorphism is used to deduce the bigraded Sn-structure of F D Rn := En/I where I ⊆ En is the ideal generated by 
Sn-invariants with vanishing constant term. The proof of Theorem 3.3 should be compared to those of [7, Thm. 3.2, Thm. 
4.2].

Proof. Let (i, j) be a fixed bidegree. For any r ≥ 0, we have an operator

τ r : (En)i, j −→ (En)i+r, j−r (3.13)

When i ≤ j and r = j − i, we have a map

τ j−i : (En)i, j −→ (En) j,i (3.14)

between complementary bidegrees.
We claim that the map τ j−i appearing in (3.14) is bijective. To prove this, we examine its matrix with respect to a 

strategic choice of bases.
Given subsets A, B ⊆ {1, . . . , n}, let mA,B ∈ En be the monomial whose variables consist of αa for a ∈ A and θb for b ∈ B

written in increasing order with respect to

α1 < θ1 < α2 < θ2 < · · · < αn < θn. (3.15)

For example, if n = 8, A = {2, 3, 5}, and B = {1, 3, 4, 6} we have

mA,B = θ1 · α2 · α3θ3 · θ4 · α5 · θ6.

It is not hard to see that
4
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τ (mA,B) =
∑
c /∈A
c∈B

mA ∪ c,B − c. (3.16)

The definition of mA,B was chosen so that Equation (3.16) is free of signs. Iterating Equation (3.16) j − i times, we see that

τ j−i(mA,B) = ( j − i)! ·
∑

|C |= j−i
C ⊆ (B−A)

mA ∪ C,B − C . (3.17)

The matrix for τ j−i with respect to the mA,B basis therefore breaks up into a direct sum of matrices indexed by subsets 
D = A ∪ B where each direct summand is ( j − i)! times a matrix which Theorem 2.1 guarantees is invertible. We conclude 
that τ j−i is invertible whenever i ≤ j.

Whenever a composition f ◦ g of functions is a bijection, the map f is a surjection and the map g is an injection. We 
conclude that

τ : (En)i, j −→ (En)i+1, j−1 (3.18)

is injective whenever i < j. Proposition 3.2 implies that H0(M, O)i, j = 0 when i < j. Similarly, if i ≥ j, the map in Equa-
tion (3.18) is surjective. Since τ is Sn-equivariant, Proposition 3.2 implies the desired relation in the Groethendieck ring of 
Sn . �

As a consequence of Theorem 3.3, we have

dim H0(M,O)i, j =
{(n

i

)(n
j

) − ( n
i+1

)( n
j−1

)
i ≥ j

0 i < j
(3.19)

which implies that

dim H0(M,O)i, j = dim H0(M,O)n− j,n−i for i + j ≤ n. (3.20)

The following result shows that multiplication by the appropriate power of

� := α1θ1 + · · · + αnθn (3.21)

yields a linear isomorphism H0(M, O)i, j
∼−→ H0(M, O)n− j,n−i .

Theorem 3.4. Suppose i + j ≤ n. We have a linear isomorphism

(−) × �n−i− j : H0(M,O)i, j
∼−→ H0(M,O)n− j,n−i (3.22)

where � ∈ En is given by (3.21).

Proof. Since � is T -invariant, we have � ∈ H0(M, O) and the given map is well-defined. By the dimension equality (3.20) it 
suffices to show that we have a linear isomorphism

(−) × �n−i− j : (En)i, j
∼−→ (En)n− j,n−i. (3.23)

The proof that (3.23) is bijective is similar to that of Theorem 3.3. For subsets A, B ⊆ {1, . . . , n}, let m′
A,B ∈ En be the 

monomial given by

m′
A,B :=

∏
c∈A∩B

αc · θc ×
∏

a∈A−B

αa ×
∏

b∈B−A

θb (3.24)

where each product is taken in increasing order. For example, if A = {2, 4, 5, 7} and B = {3, 4, 7} then m′
A,B = (α4θ4α7θ7) ·

α2α5 · θ3. It is not hard to see that

� · m′
A,B =

∑
c /∈ A∪B

m′
A∪c,B∪c (3.25)

where the definition of m′
A,B guarantees that Equation (3.25) is free of signs. The proof that the map in (3.23) is bijec-

tive now follows from the same reasoning as in the proof of Theorem 3.3. The isomorphism (3.23) restricts to give the 
isomorphism in the statement of the theorem. �
5
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3.2. The module structure of H1(M, O)

The first cohomology group H1(M, O) of the sheaf O classifies line bundles over M . In order to compute H1(M, O), we 
recall some notions from group cohomology.

Let G be an abelian group and let N be a G-module. A 1-cocycle is a function c : G → N which satisfies

c(gh) = h · c(g) + c(h) for all g,h ∈ G . (3.26)

A 1-cocycle c : G → N is determined by its values on a generating set of G . A 1-coboundary is a function cn : G → N of the 
form

cn(g) := g · n − n (3.27)

for some n ∈ N . It is easily seen that every 1-coboundary is a 1-cocycle. The sets of 1-cocycles and 1-coboundaries both 
form groups under pointwise addition. The first cohomology group is the quotient

H1(G, N) := (1-cocycles)/(1-coboundaries) (3.28)

of the group of 1-cocycles by its subgroup of 1-coboundaries.
From the equivalence between sheaf and group cohomology [9], H1(M, O) ∼= H1(G, N), where G is generated by the 

supertranslations S, T of (1.1), (1.2) acting on the module of functions N on C1|n . Proposition (B.1.3) of [12] gives an exact 
sequence

0 → H1((T ), N S) → H1(G, N) → H1((S), N) (3.29)

whose final term vanishes. Thus H1(G, N) can be computed as the cohomology of the cyclic group generated by T acting 
on the S-invariant functions in N . Since this cohomology is also known to be independent of z, we can take S to be the 
identity and simply compute the cohomology of (T ) acting on En .

Thus, for our purposes, the group G = 〈g〉 is the infinite cyclic group and the module N is the exterior algebra En . The 
generator g of G acts on En by the translation operator T :

g · f := T ( f ) f ∈ En. (3.30)

We may identify the group of 1-cocycles with En itself. Indeed, given an element f ∈ En , the corresponding 1-cocycle 
c f : G → M determined by c f (g) = f . This motivates the following definition.

Definition 3.5. Let H1(M, O) be the quotient of En by its linear subspace

{T ( f ) − f : f ∈ En} (3.31)

of 1-coboundaries.

The denominator in the quotient space of Definition 3.5 may be written in another way using the operator τ . This will 
allow us to deduce that, like H0(M, O), the first cohomology H1(M, O) is bigraded.

Proposition 3.6. The set {T ( f ) − f : f ∈ En} of 1-coboundaries equals the image of the map

τ : En → En. (3.32)

Thus, the quotient H1(M, O) = ⊕n
i, j=0 H1(M, O)i, j is the cokernel of the bihomogeneous map τ . In particular, the vector space 

H1(M, O) is bigraded.

Proof. Equation (3.7) shows that for any f ∈ En we have

T ( f ) − f = τ ( f ) + 1

2!τ
2( f ) + 1

3!τ
3( f ) + · · · = τ

(
f + 1

2!τ ( f ) + 1

3!τ
2( f ) + · · ·

)
(3.33)

so that every 1-coboundary is in the image of τ .
The reverse containment follows from induction on θ -degree. If f ∈ En has θ -degree 0, then τ ( f ) = 0 = T (0) − 0 is a 

1-coboundary. In general, we have

τ ( f ) = T ( f ) − f − 1

2!τ
2( f ) − 1

3!τ
3( f ) + · · · = (T ( f ) − f ) − τ

(
1

2!τ ( f ) + 1

3!τ
2( f ) + · · ·

)
. (3.34)

The term T ( f ) − f is a 1-coboundary by definition and the sum 1
2!τ ( f ) + 1

3!τ
2( f ) + · · · has strictly lower θ -degree than f , 

so its image τ
( 1 τ ( f ) + 1 τ 2( f ) + · · · ) under τ is a 1-coboundary by induction. �
2! 3!

6
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Since τ is Sn-equivariant, the bigraded vector space H1(M, O) = ⊕n
i, j=0 H1(M, O)i, j attains the status of a bigraded 

Sn-module. The structure of this module may be determined using the same ideas as in the proof of Theorem 3.3.

Theorem 3.7. The vector space H1(M, O)i, j is zero unless i ≤ j. When i ≤ j, we have the equality[
H1(M,O)i, j

] =
[
∧iCn

]
·
[
∧ jCn

]
−

[
∧i−1Cn

]
·
[
∧ j+1Cn

]
(3.35)

= [(En)i, j] − [(En)i−1, j+1] (3.36)

in the Grothendieck ring of Sn. Here Sn acts on Cn by coordinate permutation.

Proof. As in the proof of Theorem 3.3, the map

τ : (En)i, j −→ (En)i+1, j−1 (3.37)

is injective whenever i < j and surjective whenever i ≥ j. Since τ is Sn-equivariant, the result follows from Proposi-
tion 3.6. �

Let V and W be finite-dimensional complex vector spaces and let 〈−, −〉 : V ⊗ W → C be a bilinear pairing between 
them. The pairing 〈−, −〉 is perfect if for all nonzero vectors v ∈ V , there exists a vector w ∈ W such that 〈v, w〉 
= 0 and 
for all nonzero vectors w ∈ W , there exists a vector v ∈ V such that 〈v, w〉 
= 0. In particular, if a perfect pairing exists, then 
dim V = dim W .

Let X be an n-dimensional smooth complex projective variety with canonical line bundle KX . If E is an algebraic vector 
bundle over X , Serre duality furnishes a perfect pairing

Hi(X,E) ⊗ Hn−i(X,KX ⊗ E∗) −→ C (3.38)

between sheaf cohomology groups of complementary degree. This is an analogue of Poincaré duality for sheaf cohomology.
We describe a supergeometric version of Serre duality which holds between the bigraded rings H0(M, O) and H1(M, O). 

Consider the ‘volume form’ voln := α1 · · ·αn · θ1 · · · θn in En and define a bilinear pairing 〈−, −〉 on En by

〈 f , g〉 := coefficient of voln in f · g. (3.39)

Theorem 3.8. The pairing 〈−, −〉 induces a perfect pairing H0(M, O) ⊗ H1(M, O) →C.

Proof. The pairing 〈−, −〉 is easily seen to be perfect as a map

En ⊗ En −→ C. (3.40)

We claim that the operator τ is self-adjoint with respect to this pairing; that is

〈τ ( f ), g〉 = 〈 f , τ (g)〉 for all f , g ∈ En. (3.41)

Indeed, it suffices to check Equation (3.41) in the case where f and g are monomials, and this is a straightforward compu-
tation.

Propositions 3.2 and 3.6 together with Equation (3.41) imply that 〈−, −〉 descends to a well-defined bilinear pairing

〈−,−〉 : H0(M,O) ⊗ H1(M,O) −→ C. (3.42)

Indeed, if f ∈ H0(M, O) = Ker(τ ) and g ∈ En then 〈 f , τ (g)〉 = 〈τ ( f ), g〉 = 〈0, g〉 = 0. Since dim H0(M, O)i, j = dim H1(M,

O)n−i,n− j , the pairing 〈−, −〉 remains perfect when regarded as a map H0(M, O) ⊗ H1(M, O) →C. �
An explicit set of coset representatives for elements in H1(M, O) can be obtained, if desired, from Theorem 3.8. For any 

element f ∈ En , write f � (−) : En → En for the differential operator on En obtained from f by replacing each instance of 
θi with ∂/∂θi and each instance of αi with ∂/∂αi . If B is a basis of H0(M, O), it follows from Theorem 3.8 that { f � voln :
f ∈ B} will descend to a basis of H1(M, O).

For example, when n = 2 we have a basis of H0(M, O) = Ker(τ ) given by

B = {1, α1, α2, α1θ1, α2θ2, α1θ2 + α2θ1, α1α2θ1, α1α2θ2, α1α2θ1θ2}.
Recalling that vol2 = α1α2θ1θ2, the corresponding collection { f � vol2 : f ∈ B} of coset representatives of a basis of 
H1(M, O) is

{α1α2θ1θ2, α2θ1θ2, −α1θ1θ2, α2θ2, α1θ1, −α2θ1 − α1θ2, −θ2, θ1, 1}.

7



J. Kim, J.M. Rabin and B. Rhoades Journal of Geometry and Physics 193 (2023) 104963
Remark 3.9. The proofs in this section made heavy use of the operator τ = ∑n
i=1 αi · (∂/∂θi) on the exterior algebra En . This 

operator comes from an action of the Lie algebra sl2(C) on En . Let σ : En → En be the linear operator

σ( f ) :=
n∑

i=1

θi · (∂/∂αi) f (3.43)

and let η : En → En be the linear operator which acts on the subspace (En)i, j by the scalar i − j. It can be shown that

[τ ,σ ] = η [η,τ ] = 2 · τ [η,σ ] = −2 · σ (3.44)

as operators on En . Indeed, the relation [τ , σ ] = η is easily checked on monomials while the relations [η, τ ] = 2 · τ and 
[η, σ ] = −2 ·σ follow from bidegree considerations. Since (3.44) are the defining relations of sl2(C), we see that the action 
of τ , σ , and η endows En with the structure of an sl2(C)-module.

Similarly, it can be seen that the Lefschetz element � = ∑
i αiθi of bidegree (1, 1) appearing in Theorem 3.4 fits into an 

sl2(C)-action with the operator 
∑

i(∂/∂θi)(∂/∂αi) of bidegree (−1, −1). Here the Cartan generator of sl2(C) acts on (En)i, j
by the scalar i + j − n.

Let A = ⊕d
i=0 Ai be a singly-graded C-algebra equipped with a linear map L : A → A satisfying L(Ai) = Ai+1 such that 

Ld−2i : Ai → Ad−i is an isomorphism for all i ≤ d/2. Writing e, f , h for the usual basis of sl2(C), there exists (see e.g. [11, 
Prop. 3.1.6]) a unique sl2(C)-module structure on A such that e acts by L and h acts on Ai by the scalar 2(d − i). In our 
setting we have a doubly-graded algebra En with two commuting actions of sl2(C) coming from two Lefschetz elements.

4. Generators and relations for H 0(M, O)

In the last section, we studied the T -invariant subalgebra H0(M, O) ⊆ En as a doubly-graded Sn-module. In this section, 
we focus on its ring structure and give a simple set of generators and combinatorial relations for H0(M, O).

It can be easily seen that the elements αi , αiθi , and αiθ j + α jθi are all translation invariant (we will informally refer to 
these as “basic invariants”), as are any products of these elements. But there are many dependence relations among products 
of these elements, and it is not immediately obvious how to pick out a basis from said products. This section will explain 
how to do so thereby giving a combinatorial basis for the ring of translation invariants.

We will use labelled matchings to index our basis. A matching of size n consists of a collection of pairwise disjoint size-two 
subsets of {1, . . . , n}. For our purposes we do not require that this collection partition {1, . . . , n}; there may be unmatched 
elements. To visualize matchings, we will depict them as n vertices labelled 1 through n, placed on a line, with an arc 
connecting matched vertices, e.g. when n = 8,

1 2 3 4 5 6 7 8

Let �(n) consist of all matchings of size n in which each unmatched element is either labelled α, αθ or unlabelled. To 
each matching m ∈ �(n) we associate Fm ∈ H0(M, O) as follows. For each unmatched vertex i with an α label, take the 
product of the αi ’s in increasing numerical order. Then, multiply by αiθi for each vertex i labelled αθ . Finally, multiply by 
αiθ j +α jθi for each matched pair {i, j}. Note that these terms are degree 2 and therefore commute, so there is no ambiguity 
in the order in which they are multiplied. For example, if m ∈ �(8) is the labelled matching shown below

1 2 3 4 5 6 7 8

α αθ

then Fm ∈ H0(M, O) is given by α1 · α2θ2 · (α4θ6 + α6θ4)(α5θ7 + α7θ5).
The benefit of visualizing products of basic invariants as matchings lies in an easier description of the linear dependence 

relations among these products, as in the following lemmas. The first is the Ptolemy relation (up to sign).

Lemma 4.1. Let m ∈ �(n) and suppose that m contains arcs (i, k) and ( j, l) with i < j < k < l. Let m0 and m1 be the matchings 
obtained by replacing arcs (i, k) and ( j, l) with arcs (i, j) and (k, l) or with arcs (i, l) and ( j, k) respectively. Then

Fm + Fm0 + Fm1 = 0.

Pictorially:
8
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+ + = 0.

The second describes a relationship between α-labelled vertices and arcs.

Lemma 4.2. Let m ∈ �(n) and suppose that d contains the arc (i, k) and vertex j is labelled by α with i < j < k. Let m0 and m1 be 
the diagrams obtained by replacing arc (i, k) with arc (i, j) and vertex k labelled by α or with arc ( j, k) and vertex i labelled by α
respectively. Then

Fm + Fm0 + Fm1 = 0.

Pictorially:

α
+

α
+

α
= 0.

Lemmas 4.1 and 4.2 are both proven by direct computation; we leave this to the reader. These lemmas allow us to reduce 
the linearly dependent set of translation invariants

{Fm : m ∈ �(n)} (4.1)

to a linearly independent subset. Lemma 4.1 allows translation invariants corresponding to matchings to be written as a 
linear combination of translation invariants corresponding to matchings with fewer crossings or fewer nestings. Lemma 4.2
allows translation invariants corresponding to matchings to be written as a linear combination of translation invariants 
corresponding to matchings with fewer α labels under arcs. The next two lemmas make this idea explicit.

Let m ∈ �(m) and let C(m) denote the number of crossings of m, i.e. the number of quadruples i < j < k < � such that 
{i, k} and { j, �} are matched in m. Similarly, let A(m) denote the number of times an α label appears under an arc of m, i.e. 
the number of triples i < j < k such that j is unmatched and has an α label and {i, k} is matched in m.

Lemma 4.3. If m ∈ �(n), then m satisfies exactly one of the following

• C(m) = A(m) = 0
• C(m) = 0 and there exists a collection of matchings mi ∈ �(n) with A(mi) < A(m) such that Fm = ∑

i ci Fmi for some constants 
ci .

• There exists a collection of matchings mi ∈ �(n) with C(mi) < C(m) with Fm = ∑
i ci Fmi for some constants ci .

Proof. Firstly, suppose C(m) 
= 0. So there exists at least one crossing, and we can apply Lemma 4.1 to satisfy the third 
condition.

Otherwise, suppose C(m) = 0 and A(m) 
= 0. Then there exists at least one α labelled vertex lying under an arc. Applying 
Lemma 4.2 to such a vertex and the shortest arc it lies under will allow us to express Fm as a linear combination of Fm1 and 
Fm2 for two matchings m1 and m2 as defined in Lemma 4.2. Note that since m has no crossings, and we chose the shortest 
arc, m1 and m2 will also have no crossings, and A(m1) < A(m) and A(m2) < A(m), so the second condition is satisfied.

Otherwise, the first condition is satisfied. �
Let NC(n) ⊆ �(n) denote the set of noncrossing matchings in which no arc nests an α label. That is, we set

NC(n) := {m ∈ �(n) : C(m) = A(m) = 0}. (4.2)

Lemma 4.3 has the following corollary.

Corollary 4.4. For any m0 ∈ �(n), the element Fm0 ∈ H0(M, O) lies in the span of

{Fm : m ∈ NC(n)}. (4.3)

Example 4.5. Let n = 5 and let m0 be the labelled matching displayed below

α

9
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Then C(m0) = 1, A(m0) = 1, and

Fm0 = α4(α1θ3 + α3θ1)(α2θ5 + α5θ2). (4.4)

We can rewrite Fm0 as a sum of Fm1 and Fm2 for matchings m1 and m2 with C(m1) = C(m2) = 0.

Fm0 = −α4(α1θ2 + α2θ1)(α3θ5 + α5θ3) − α4(α1θ5 + α5θ1)(α2θ3 + α3θ2) (4.5)

Pictorially:

α
= −

α
−

α

We can then rewrite these as sums of Fmi for matchings m3, . . . , m6 with A(mi) = C(mi) = 0.

Fm0 = α3(α1θ2 + α2θ1)(α4θ5 + α5α4) + α5(α1θ2 + α2θ1)(α3θ4 + α4θ3)

+α1(α4θ5 + α5θ4)(α2θ3 + α3θ2) + α5(α1θ4 + α4θ1)(α2θ3 + α3θ2)

Pictorially:

α = α
+

α

+
α

+
α

It will turn out that the set in Corollary 4.4 is a basis for H0(M, O). We will now show that it is linearly independent 
using a nested induction argument. Let NC(n, k) denote the set of all m ∈ NC(n) such that Fm is of total degree k.

Proposition 4.6. The set {Fm : m ∈ NC(n, k)} is linearly independent in H0(M, O).

Proof. For any labelled matching m, let s(m) denote the index of the smallest vertex not labelled by α or αθ in m, or n + 1
if no such vertex exists.

This proof proceeds via two nested inductions, the first downwards on k and the second on s(m).
When k = 2n, there is a unique matching in NC(n, 2n). In this matching, everything is labelled by αθ .
Now assume as an inductive hypothesis that for some k < 2n the set {Fm : m ∈ NC(n, k + 1)} is linearly independent, 

and suppose∑
m∈NC(n,k)

cm Fm = 0. (4.6)

For clarity, we begin with the simpler case where s(m) = 1; this is the base case of our induction on s(m). To show that 
for every matching where s(m) = 1 we have cm = 0, multiply the given linear dependence by α1. We have∑

m∈NC(n,k)

cmα1 Fm = 0.

For any matching m with s(m) > 1, vertex 1 is either labelled α or αθ . In either case, α1 Fm = 0. Otherwise, if s(m) = 1, 
then α1 Fm = ±Fm′ where m′ is the matching obtained from m by either

(1) Adding an α label to vertex 1 if vertex 1 was not part of any arc.
(2) Removing arc (1, j), then adding an αθ label to vertex 1 and adding an α label to vertex j, if vertex 1 was part of arc 

(1, j).

This is because α1(α1θ j + α jθ1) = α1α jθ1. An example of case 2 is shown in the figure below.

1 2 3 4 5 6

α

1 2 3 4 5 6

αθ α α
10
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Note that in either case, m′ is in NC(n, k + 1), since neither vertex 1 nor vertex j can lie under any arc in m′ . In case 2, 
if vertex j did, that arc would have had to cross arc (1, j) in m. By our first inductive hypothesis all such m′ are linearly 
independent, so cm = 0 for any m with s(m) = 1.

To complete the inductive step, assume as an inductive hypothesis that cm = 0 for any m with s(m) < �. Multiply the 
linear dependence by α� . We have∑

m∈NC(n,k)

cmα� Fm = 0.

For any m with s(m) > �, α� Fm = 0. For any m with s(m) < �, our inductive hypothesis assumed cm = 0. The analogous 
argument to the s(m) = 1 case therefore shows that cm = 0 for all matchings m with s(m) = �. Therefore by strong induction 
cm = 0 for all m, and the set {Fm : m ∈ NC(n, k)} is linearly independent. �

We now know that the set {Fm : m ∈ NC(n)} is linearly independent and spans all products of basic invariants. To show 
that it is a basis for the entire translation invariant subring, we employ a dimension count. To count the size of our proposed 
basis, we will give a bijection.

Proposition 4.7. NC(n, k) is in bijection with ordered pairs (A, B) of subsets of {1, . . . , n}, where A has size �k/2� and B has size 
�k/2�.

Proof. We will show that both sets are in bijection with certain lattice paths in the plane. Let L(n, k) denote the set of all 
lattice paths in Z2 which

• Start at the origin.
• End at (� k

2 �, � k
2 �).

• Use exactly n steps.
• Use steps only from {(1, 0), (0, 1), (1, 1), (0, 0)}.

The bijection to ordered pairs of subsets (A, B) is straightforward, set A records those steps whose x-coordinate is 1, and 
set B records those steps whose y-coordinate is 1.

For the bijection from L(n, k) to NC(n, k), given a lattice path p, with steps s1, . . . , sn , associate to it an element φ(p) ∈
NC(n, k) defined as follows:

• If si = (0, 0), then i is unmatched and unlabelled in φ(p).
• If si = (1, 1), then i is unmatched and labelled αθ in φ(p).
• If si = (0, 1), draw a ray of slope 1 whose endpoint lies on the midpoint of the step, and which extends to the northeast 

(a laser). Then i is matched with the smallest j > i for which the ray intersects the lattice path at step s j . If the ray 
does not intersect again, then i is unmatched and labelled alpha.

• If si = (1, 0), draw a ray of slope 1 whose endpoint lies on the midpoint of the step, and which extends to the southwest 
(a laser). Then i is matched with the largest j < i for which the ray intersects the lattice path at step s j . If the ray does 
not intersect again, then i is unmatched and labelled alpha.

See Fig. 1 for an example. Since all lasers are parallel, we guarantee that φ(p) is noncrossing. Since each α labelled element 
of φ(p) is associated to a laser which never intersects the path again, it cannot lie between a matched pair. So we indeed 
get an element of NC(n, k). To invert this map, given an m ∈ NC(n, k) associate to it the lattice path φ−1(m) ∈ L(n, k), 
defined as follows:

• If i is unmatched and unlabelled, then si = (0, 0).
• If i is unmatched and labelled αθ , then si = (1, 1).
• If i is matched to j > i, then si = (0, 1).
• If i is matched to j < i, then si = (1, 0).
• If i is unmatched and labelled α, and among the first half (rounded up) of α-labelled elements, then si = (0, 1).
• If i is unmatched and labelled α, and among the second half (rounded down) of α-labelled elements, then si = (1, 0).

The composition φ−1 ◦ φ = id is straightforward to verify. To see that φ ◦ φ−1 is also the identity, note that if i and j are 
matched in m ∈ NC(n, k), then the number of (0, 1) steps between si and s j equals the number of (1, 0) steps between si

and s j in φ−1(m), and at any point along travelling from si to s j−1, there will have been more (0, 1) steps than (1, 0) steps. 
So i and j will be matched in φ ◦ φ−1(m). So these sets are indeed in bijection. �
11
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1

2

3 4 5
6

7

8

9

→

1 2 3 4 5 6 7 8 9

αααθ

Fig. 1. An example of the bijection described in the proof of Proposition 4.7. Stationary steps are indicated by a filled circle. Rays are cut off at their first 
intersection for visual clarity.

Proposition 4.7 shows that

|NC(n)| =
∑

k

|NC(n,k)| =
∑

k

(
n

�k/2�
)(

n

�k/2�
)

=
(

2n + 1

n

)
. (4.7)

On the other hand, Theorem 3.3 implies that

dim H0(M,O) =
∑

1≤i≤ j≤n

((
n

i

)(
n

j

)
−

(
n

i − 1

)(
n

j + 1

))
=

(
2n + 1

n

)
. (4.8)

Thanks to Proposition 4.6, we have the following corollary.

Corollary 4.8. The set {Fm : m ∈ NC(n)} is a basis of H0(M, O).

We can also give a simple combinatorial presentation for H0(M, O) as a ring with generators and combinatorial relations. 
Lemmas 4.1 and 4.2 give combinatorial relations among the basic invariants in H0(M, O). The remaining relations among 
these invariants are straightforward.

Theorem 4.9. The translation invariant ring H0(M, O) is generated as a C-algebra by the basic invariants αi, αiθi , and αiθ j + α jθi

subject only to the combinatorial relations in Lemma 4.1 and Lemma 4.2 together with⎧⎪⎨⎪⎩
α2

i = 0

(αiθi)
2 = 0

(αiθi)(αiθ j + α jθi) = 0

⎧⎪⎨⎪⎩
(αiθ j + α jθi)

2 = −2(αiθi)(α jθ j)

αi(αiθ j + α jθi) = −α j · (αiθi)

(αiθi) · (αiθ j + α jθi) = 0

(4.9)

Proof. Corollary 4.8 shows that the basic invariants generate H0(M, O) as a C-algebra, so we only need to show that any 
relation among products of basic invariants can be deduced from the given relations. The relations displayed in braces in the 
statement of the theorem may be used to show that any nonzero product of basic invariants is, up to a scalar, a product Fm0

for some m0 ∈ �(n). Lemma 4.3 shows that, using only the relations of Lemmas 4.1 and 4.2, the product Fm0 can be written 
as a linear combination of Fm ’s for various m ∈ NC(n). Corollary 4.8 says that {Fm m ∈ NC(n)} is a basis of H0(M, O), so 
every relation among the basic invariants is given in the statement of the theorem. �
5. Conclusion

Section 4 describes the ring H0(M, O) in terms of generators and relations. The first homology group H1(M, O) is 
naturally a module over H0(M, O). It could be interesting to describe the structure of this module, in terms of a resolution 
or otherwise.

Throughout this paper, we assumed that the coefficient variables α1, α2, . . . defining the translation T were independent 
fermionic parameters. However, in supergeometry one often considers more general fermionic translations T : En → En of 
the form (θ1, . . . , θn) �→ (θ1 + β1, . . . , θn + βn) where the βi are elements of odd degree in α1, . . . , αn , i.e.

β1, . . . , βn ∈
⊕
i≥0

∧2i+1{α1, . . . ,αn}. (5.1)

In particular, the elements β1, . . . , βn may satisfy nontrivial relations.
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Let R ⊆ En be the subalgebra of En which is invariant under the action of T . Since T (αi) = αi for all i, the algebra R has 
the structure of a module over the exterior algebra ∧{α1, . . . , αn}.

Problem 5.1. Describe the structure of R as a module over the free exterior algebra ∧{α1, . . . , αn}.

Theorems 3.3 and 4.9 solve Problem 5.1 when the βi are independent. The general case is more difficult because relations 
among the βi can generate additional invariants in R in ways that are difficult to predict.
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