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Metabolic flux analysis (MFA) is a valuable tool for quantifying cellular phenotypes and to guide
plant metabolic engineering. By introducing stable isotopic tracers and employing mathematical

models, MFA can quantify the rates of metabolic reactions through biochemical pathways.
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I. Introduction

The partitioning of resources through metabolism in plants
enables growth, confers resilience to stress, and establishes crop
yield. Therefore, a quantitative understanding of plant metabo-
lism is crucial to sustainably feed and fuel a growing population
on less land and in future changing climates. Contemporary
approaches that assess cellular processes to improve plant
productivity rely on system biology tools including genomics,
transcriptomics, proteomics, and metabolomics. These tools
provide an inventory of cellular components and can suggest
regulation at different levels, though none are intended to be a
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Recent applications of isotopically nonstationary MFA (INST-MFA) to plants have elucidated
nonintuitive metabolism in leaves under optimal and stress conditions, described coupled fluxes
for fast-growing algae, and produced a synergistic multi-organ flux map that s a first in MFA for
any biological system. These insights could not be elucidated through other approaches and
show the potential of INST-MFA to correct an oversimplified understanding of plant metabolism.

proxy for flux. Thus, system biology models attempting to link
omics frequently yield discordant results (Fernie & Stitt, 2012;
Schwender ez al., 2014). The discrepancies arise in part because
omics tools measure a concentration or level at a snapshot in time
and do not inherently distinguish production of metabolically
active molecules from remnants of a prior metabolic state.
Metabolic flux analysis (MFA) addresses this gap. Fluxes are
strictly related to one another by mass conservation principles,
and their measurement provides dynamic information about the
active flow of atoms through metabolic pathways that quantita-
tively define cellular operation and result in the observed plant
phenotype.
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The internal fluxes resulting from MFA often cannot be
measured using alternative methods and provide a comprehensive
picture that serves as a basis for defining and validating the
metabolic objectives of a network through subsequent genetic
studies. For example, the role of malic enzyme and isocitrate
dehydrogenase in fatty acid production in oilseeds (reviewed in
Allen et al., 2015) indicated unexpected flux patterns that could
contribute to biotechnologically relevant phenotypes. Some of
these ideas were recently validated by a genetic study with altered
subcellular levels of malic enzyme (Morley ez al., 2023; Schwen-
der, 2023). Studies surveying the impact of abiotic stress, including
altered lightintensity (Ma ez al., 2014; Medeiros ez al., 2022; Treves
et al., 2022), temperature (Sharkey ez al., 2020), or nutrient status
(Allen & Young, 2013; Masakapalli ¢z al., 2013, 2014; Zhang
et al., 2018), and descriptions of unanticipated storage reserve
remobilization in engineered plants (Chu ez al, 2022) hold
potential significance for crop production given expected shifts in
climate and agricultural conditions. Flux studies can also provide a
fundamental assessment of the crosstalk between complementary
biosynthetic pathways, such as spatially distinct terpene production
(Koley et al, 2020) or the role of steps in oxidative pentose
phosphate pathway relative to glycolysis in seeds (Carey
et al., 2020) or to Calvin—Benson cycle (CBC) in leaves (Xu
etal.,2021,2022). These examples indicate that portrayals of plant
metabolism as an extension of heavily studied systems including
Escherichia coli or Arabidopsis thaliana are oversimplified and do
not reflect the metabolic diversity among species (Stitt ez al., 2021;
Clapero ez al., 2023). Metabolic flux analysis studies emphasize
central metabolism, which is the basis for biosynthesis of all
biomolecules, is pliable and context-specific, varies within organs
and dssues, and accommodates perturbations in potentially
unanticipated ways (Allen, 2016). Such studies provide a
foundational ground-truthing for conclusions derived from other
omics or scientific investigations and an understanding of
metabolic network operation that can be tested through genetic
alterations or changes in the environment.

Il. Basic considerations for metabolic flux analysis

Metabolic fluxes are inferred by tracking the movement of isotopes
through bond breaking and reforming reactions (Kruger &
Ratcliffe, 2015). The use of isotopes to assess flux is not new and
was the primary approach to elucidating metabolic pathways before
advances in mutant generation. Historical descriptions of photo-
synthetic, central, and lipid metabolic pathways are based on
isotope tracing (Allen er al, 2015); however, MFA studies use
computational modeling to deduce network fluxes that establish
the redistribution of label. Fig. 1 summarizes the basic steps
including choosing an isotope or combination that are incorpo-
rated over spans of time most relevant to the metabolism of interest
and quantifying labeled and unlabeled atoms within metabolites by
mass spectrometry and nuclear magnetic resonance (Allen &
Ratcliffe, 2009). Then, the tracer description, metabolic network,
measured rates, and quantified labeling in metabolites are used
within a computational model that optimizes fluxes to minimize
the error between experimental and iz silico measurements across
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the entire network as reviewed elsewhere (Kruger er al., 2012;
Antoniewicz, 2013).

Ill. Transformative advances enabled MFA in
autotrophs

Labeling of metabolites can be measured once they are isotopically
unchanging (i.e. steady-state-MFA, or SS-MFA) or during the
transient incorporation of isotope over time (i.e. isotopically
nonstationary, or INST-MFA) (Fig. 2). Among plant tissues, long
metabolic steady states required for SS-MFA are the exception and
exclude diurnally changing photosynthetic tissues. Further,
autotrophic metabolism relies on a single source of carbon (CO,)
that would entirely label metabolites at isotopic steady state and be
uninformative (Roscher ezal., 2000; Shastri & Morgan, 2007). The
development of INST-MFA software tools (Matsuda er a/., 2021;
Rahim ez al., 2022; Borah Slater et al., 2023; Wu et al., 2023) and
the capacity to measure labeling in phosphorylated intermediates of
central metabolism (Arrivault ez al., 2015; Koley ez al., 2022a) with
electrospray ionization-MS (ESI-MS) enabled flux studies in
systems with short metabolic steady states (minutes—hours)
including those with photosynthetic CO, assimilation (Szecowka
et al., 2013; Ma et al., 2014).

IV. Insights established from INST-MFA
The potential for INST-MFA is highlighted here, by five studies

that describe novel, unanticipated insights into central metabolism.
Isotopically nonstationary MFA in plants initially focused on the
response of photoautotrophic fluxes to high-light acclimation in
leaves (Ma er al., 2014). The flux maps identified differences
in subcellular fluxes and ‘inactive’ metabolite pools that diluted
measured labeling as a result of cellular heterogeneity and slow pool
turnover (e.g. serine, UDP-glucose). Further, the study indicated
high-light acclimation resulted in more biomass that was produced
less efficiently due to increased photorespiratory CO, release. In
essence, long-term high-light exposure increased CBC carboxyla-
tion and a greater drawdown on CO,, which was incompletely
accommodated by changes in leaf architecture (Terashima
et al., 2011) and resulted in proportionally more photorespiration
(Fig. 3a) as part of the acclimation strategy.

Isotopically nonstationary MFA has recently uncovered novel
aspects of hexose phosphate metabolism (Xu ez 4/, 2021, 2022) in
Camelina leaves. The seminal observation of incompletely labeled
CBC metabolites even after prolonged exposure to CO, in
photosynthetic leaves was explained by recycling stored carbohy-
drate pools. Basically, unlabeled sucrose was converted to glucose
6-phosphate (G6P), which entered CBC via oxidative conversion
to pentose phosphates (G6P shunt) and diluted the labeling of
CBC intermediates. The authors estimated that possibly 93% of
non-photorespiratory CO, released, that is day respiration, is
attributable to the G6P shunt and not mitochondrial decarboxyla-
tion through the TCA cycle or fatty acid biosynthesis (Xu
et al., 2021) (Fig. 3b). Historically perceived futile cycles, such as
potentially counterproductive fluxes through oxidative and
reductive (CBC) steps, may actually help subvert stress (Sharkey
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Fig. 1 Key steps of metabolic flux analysis. Step 1: Select an isotopic tracer based on the biological question. Forinstance, '3C-labeled substrates (single or dual/
parallel labeling) are often used to study carbon flux in mixotrophic systems, while '*CO, is used in autotrophic systems. "N or 2H are more applicable for roots
that take up nutrients and water. Step 2: Determine the type of labeling experiment. For systems with long metabolic steady states, labeled substrates are
continuously supplied until an isotopic steady state is achieved before sampling. Nonstationary labeling conditions involve multiple sampling times to assess the
labeling dynamics. Nonstationary labeling is required when metabolic steady states are short-lived. Step 3: Measure external rates of substrate consumption or
product formation such as the production of biomass. Step 4: Use nuclear magnetic resonance, and/or mass spectrometry (MS) and high-resolution-MS to
quantify labeling in metabolites. Step 5: Construct a metabolic network that represents the atom transitions between biochemical reactions. Step 6: Estimate
flux parameters computationally using metabolic flux analysis platforms that minimize the difference between experimental and in silico data through
regression. Repeat the analysis with different initial parameter estimates to maximize the probability of obtaining global optimal values. Calculate confidence
intervals or perform other statistical evaluations to assess the certainty in fluxes. Iteratively adjust the network to best represent the biology and repeat the
evaluation until satisfied.
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Fig. 2 Choices in labeling and metabolic flux analysis (MFA) approach. Differences in isotopically steady or transient labeling that are used with steady state
MFA (SS-MFA) or isotopically nonstationary MFA (INST-MFA), respectively, and commonly associated with heterotrophic or autotrophic metabolism.

et al., 2020), and stabilize substrate availability for the CBC,
increasing responsiveness to dynamic field conditions (Allen &
Young, 2020; Medeiros et al., 2022) or altered CO, (Wieloch
et al., 2022). Other pathways that historically were simplistically
described as cyclic and wasteful, such as photorespiration, are now
known not be closed loops (Busch ez al., 2018; Fu ez al., 2023) and
provide carbon for other aspects of metabolism. Fu ez al. (2023)
showed a remarkable 23-41% of serine flux leaves photorespira-
tion, although the use of metabolites exiting the pathway remains a
point of interest.

To date, one of the most comprehensive INST-MFA studies
involved eight labeling experiments including 3C0,, U-"*C,
1-13C, 6-13C and 1,6-13C, glucose, U-13Cs glutamine, U-B¢y
malate, and U-'">Cj; alanine, and resulted in a multi-organ flux
map that was the first of this kind for any biological system, plant,
or otherwise (Koley ez al., 2022b) describing the synergy between
reproductive tissues in Camelina. Silique-based photosynthesis
contributed 33—45% of all carbon within the seed (Fig. 3c).
Further, recovery of seed-respired CO, by silique walls increased
carbon use efficiency from 63% to 70% when reproductive tissues
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were considered in combination. Shading experiments of leaves or
siliques indicated a significant latent capacity for greater seed
yield. Perhaps this untapped productivity is an adaptation to
mitigate the fluctuating environmental effects plants encounter in
the field. Green siliques have unencumbered access to sunlight
and their close proximal location to developing seeds that
minimizes sucrose translocation and provides a developmentally
‘just-in-time’  delivery of photoassimilates is potentially an
architectural optimum designed by nature. Leaf photosynthate
can be allocated to roots, stems, and other sinks of the plant to
produce hardy crops.

Changes in photoassimilate partitioning were considered in
engineered tobacco. Plant leaves generally produce starch during
the day that is turned over at night, although some accumulate
starch in their leaves over development. Isotopically nonstationary
MFA (Chu ezal., 2022) of genetically altered tobacco leaves, which
were engineered to produce over 30% lipid (Vanhercke
et al., 2017), indicated changes in metabolism that accompanied
a switch from starch to lipid production. Flux maps quantified
enhanced malic enzyme activity to provide carbon and reducing
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equivalents for fatty acid biosynthesis and increased Rubisco
carboxylase activity. Unlike other crops, tobacco was domesticated
for productive leaves rather than seeds. Thus, one implication is
that if leaves of some plants can act as a combined source and sink,
they may be well-suited to producing valued products without
compromising photosynthesis and growth.

Combined source and sink capacities are also found in
unicellular algae. Capitalizing on algal biodiversity, Treves
et al. (2022) considered whether flux patterns of fast-growing
Chlorella obadii differ from those of other algae or C; and Cy
photosynthetic systems. Chlorella obhadii exhibited increased
coupling of CBC to phosphoenolpyruvate that was used through
anaplerosis to replenish carbon skeletons for rapid growth. The
algae had a 25-fold lower 2-phosphoglycolate content than other
algae, implying very low photorespiration and minimal feedback
inhibition on the CBC. Observed increases in other central
metabolites could offset stress or provide a stronger push of carbon
through enzymes to enhance CBC flux under variable environ-
mental conditions. The authors surmised that substrate levels may
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be a key to reducing the need for enzyme machinery and ensuring
flexible metabolic responsiveness, which would be important for
algal or crop productivity. However, flux themes may not be
universally shared among photosynthetic systems because, for
example, photosynthetically competent leaves are mostly exporting
carbon as sucrose or producing starch, unlike algal cells, which
undergo rapid cell division.

V. Current challenges and future opportunities

Isotopically nonstationary MFA offers considerable promise to
advance metabolic phenotypes crucial for biotechnology and
sustainability; however, realizing the potential will require: (1)
improved measurements for subcellular phenomena; (2) strategies
to examine unexplored cell types and organs; and (3) continued
leveraging of the latest technological progress.

At the subcellular level, distinguishing compartmentalized
metabolites remains challenging and methods are limited to
fractionation (Arrivault ez a/., 2017) or examination of labeling in
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macromolecules made from precursors with unique subcellular
biosynthetic origins (Allen et al., 2012). Labeled biopolymers may
hold some of the keys to spatial analysis but would require
adaptation to be suitable for INST-MFA. For example, amino acids
in proteins translated from nuclear or plastidic genomes have
distinct labeling patterns because of the differing subcellular origins
of biosynthesis (Allen ez al, 2012); thus high-resolution-MS
quantification of labeled peptides (Allen ez al., 2014) can provide
data for peptide-based flux analysis (Mandy ez 2/, 2014). Protein
amino acid sequences possess information specific to the organism
(Ruhl ez al, 2011; Ghosh er al, 2014), and tracking ectopic
expression of isotope-labeled GFP can be an option to investigate
phenomena specific to cell type (Rossi ez al, 2017). These
developments provide the opportunity to match single-cell-derived
fluxes with transcripts, unlabeled metabolites, and proteomic data;
however, for compatibility with INST-MFA, waiting for a protein
to become sufficiently labeled may not fit with time-course labeling
of the metabolism of interest. Thus, challenges remain to optimize
the readouts that can define spatial and, in some instances,
community relationships.

Metabolism across multiple cell types, such as C4 systems,
would also benefit from enhanced spatial information. As an
example, labeling kinetics in maize leaves indicate flux through
phosphoenolpyruvate carboxykinase (PEPCK) is 10-25% of
malic enzyme (Weissmann et al., 2016; Arrivault ez al., 2017),
though this role can be enhanced in low irradiances (Medeiros
et al., 2022) when inefficiencies in the carbon concentrating
mechanism result in enhanced photorespiration. The authors
posited that accumulation of photorespiratory intermediates
may provide a reservoir for rapid consumption when CBC
increases with light, which would be similar in concept to
recent descriptions of photorespiratory glycine buffering in Cj
plants (Fu er al, 2023). These findings suggest nonintuitive
metabolic operation because they include dynamic, responsive
aspects of metabolism, which are highly relevant in the field and
infrequently evaluated in controlled lab settings; however, rapid
changes in metabolism may compromise the application of
INST-MFA, highlighting the need to further advance techni-
ques to study dynamic metabolism more effectively.

The movement of isotopes between cells and tissues within a
short time frame poses challenges in non-foliar tissues. A recent
study (Smith et al., 2022) highlighted persistent challenges when
applying INST-MFA to heterotrophic cell systems where inter-
cellular diffusion of supplied carbon sources may be slow and
impact interpretation. Isotopic studies to assess lignin biosynthesis
in stems (Guo ez al., 2018; Wang et al., 2018) required specialized
methods to deliver '*C-phenylalanine for flux maps. Transient
'3C-analysis in reproductive tissues of sorghum identified a role for
pedicellate spikelets in grain productivity (AuBuchon-Elder
et al., 2020), signifying the importance of non-foliar organs, but
as of yet a multi-organ map exploring this synergy in sorghum does
not exist. In the future, applications that widen the scope of
INST-MFA to other organs or their combination may benefit from
complementary advances in imaging that can quandtitatively asses
aspects of cells and tdissues (Rolletschek ez al, 2021; Borisjuk
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et al., 2023) and in some instances can resolve isotopologues
(Romsdahl ez af., 2021).

Fundamental to comprehensive INST-MFA is the choice of
isotopes and their use alone or in tandem. A historic example of
the power of dual labeling capitalized on the differential turnover
of lipids enriched with >C'®O carboxyl groups in fatty acids
(Pollard & Ohlrogge, 1999) to distinguish flux through
duplicated lipid assembly pathways differing by subcellular
location in the endoplasmic reticulum or chloroplast. Current
advances in high-resolution-MS (HRMS) can distinguish small
differences in m/z due to differing elements isotopologues.
Advances in computational tools (Borah Slater ez 2/, 2023) that
can incorporate isotopes of multiple elements as separate
experiments (Callaghan er 4/, 2023), and those that utilize
HRMS to distinguish
single-labeling experiments resulting in more sensitive flux
assessment (Kambhampati ez al., 2024), represent a next frontier
for INST-MFA.

isotopes from  multi-element

VI. Conclusions

The comprehensive descriptions afforded by MFA studies have
produced novel insights, not possible through other techniques.
Advances in software and instrumentation in support of
INST-MFA now provide a near limitless opportunity to rigorously
examine most aspects of plant metabolism quantitatively.
Examples presented here highlight the potential for INST-MFA
to inspire efforts to augment cellular metabolism that results in
increased crop productivity in lieu of less favorable climates and
environmental conditions.
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