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Abstract. We study the optimal control formulation for stochastic nonlinear Schrödinger equa-
tion (SNLSE) on a finite graph. By viewing the SNLSE as a stochastic Wasserstein Hamiltonian flow
on density manifold, we show the global existence of a unique strong solution for SNLSE with a linear
drift control or a linear di↵usion control on graph. Furthermore, we provide the gradient formula,
the existence of the optimal control and a description on the optimal condition via the forward and
backward stochastic di↵erential equations.
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1. Introduction. The nonlinear Schrödinger equation (NLSE) given in the form
of

~i @
@t
 (t, x) =�

~2
2
� (t, x) + (t, x)V(x) + (t, x)f(| (t, x)|2)

has wide applications in quantum mechanics, quantum optics, nuclear physics, trans-
port and di↵usion phenomena, and Bose–Einstein condensations (see, e.g., [34, 35, 10]).
The unknown  (t, x) represents a complex wave function for x 2 Rd,~ > 0 is the
Planck constant, and V(·) and f(·) are real-valued functions, referred to as linear
and nonlinear interaction potentials, respectively. Considering the randomness in
the propagation of nonlinear dispersive waves, the stochastic nonlinear Schrödinger
equation (SNLSE)

~id (t, x) =�
~2
2
� (t, x)dt+ (t, x)V(x)dt+ (t, x)f(| (t, x)|2)dt(1)

� iu(t, x)µ(x)dt+ u(t, x)dW (t, x)

has been introduced and studied in recent years (see, e.g., [21, 8, 7, 16, 19]). Here W
is a colored Wiener process (see, e.g., [20]) defined by

*Received by the editors September 26, 2022; accepted for publication February 21, 2023; pub-
lished electronically July 11, 2023.

https://doi.org/10.1137/22M1524175
Funding: The research was partially supported by Georgia Tech Mathematics Application

Portal (GT-MAP) and by research grants NSF DMS-1830225, and ONR N00014-21-1-2891. The
research of the first author was partially supported by the Hong Kong Research Grant Council
ECS grant 25302822, internal funds (P0039016, P0041274, P0045336) from Hong Kong Polytechnic
University, and the CAS AMSS-PolyU Joint Laboratory of Applied Mathematics.

†
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,

Kowloon, Hong Kong (jianbo.cui@polyu.edu.hk)
‡
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA (sliu459@

gatech.edu, hmzhou@gatech.edu)
§
Department of Mathematics, University of California, Los Angeles, CA 90095, USA (shuliu@

math.ucla.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2021

D
ow

nl
oa

de
d 

05
/1

4/
24

 to
 1

88
.9

2.
13

9.
72

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1524175
mailto:jianbo.cui@polyu.edu.hk
mailto:sliu459@gatech.edu
mailto:sliu459@gatech.edu
mailto:hmzhou@gatech.edu
mailto:shuliu@math.ucla.edu
mailto:shuliu@math.ucla.edu


2022 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

W (t, x) =
NX

j=1

µjej(x)�j(t), t� 0, x2Rd,

and

µ(x) =
1

2

NX

j=1

|µj |
2
|ej(x)|

2, x2Rd

with N 2 N [ 1, µj 2 C, ej real-valued function and �j independent Brownian
motion on a complete filtrated probability space (⌦,F ,{Ft}t�0,P). Another physical
significance of SNLSE is related to the theory of measurements continuous in time in
quantum mechanics and open quantum system (see, e.g., [3, 4]).

In this paper, we focus on two types of SNLSEs on a finite graph G = (V,E,w)
and their related stochastic control problems. Here V is the vertex set, E is the edge
set, and wjl is the weight of the edge (j, l) 2 E satisfying !lj = !jl > 0 if there is
an edge between nodes j and l, and !jl = 0, otherwise. Throughout this paper, we
assume that G is an undirected, connected graph with no self loops or multiple edges.
The first type is the nonlinear Schrödinger equation with random perturbation,

iduj =
⇣
�

1

2
(�Gu)j + ujVj + ujfj(|u|

2)
⌘
dt+ �juj � dWt.(2)

Here �G is a nonlinear discretization of Laplacian operator on G introduced in [12]
(see (13) for its formula), fj : R ! R is a continuous real-valued function, Vj is a
given linear potential on the node j, �j 2 R represents the di↵usion coe�cient, and
{Wt}t�0 is one dimensional Brownian motion on (⌦,F ,{Ft}t�0,P). The stochastic
di↵erential �dWt is understood in the Stratonovich sense. A typical example of the
nonlinear function fj is that fj(|u|2) =

PN
l=1Wjl|ul|

2 with an interactive potential
Wjl = Wlj for any (j, l) 2 E. We would like to remark that (2) can be viewed as a
spatial discretization of (1) when G is a lattice obtained by discretizing a continuous
domain (see, e.g., [15]). Another type is the NLSE with white noise dispersion

iduj =�
1

2
(�Gu)j � dWt + (ujVj + ujfj(|u|

2))dt.(3)

When G is a lattice, (3) becomes a spatial discretization of NLSE with white noise
dispersion [22], which describes the propagation of a signal in an optical fiber with
dispersion management.

Our current investigation is motivated by several reasons. First, the Schrödinger
equation on graph and its control problem have their own interest and applications
[11, 6, 32, 23]. Second, in contrast to the extensive literature on the optimal control
problem and exact controllability of Schrödinger equations on continuous domain in
both the deterministic and stochastic cases (see, e.g., [24, 26, 29, 27, 28, 2]), far fewer
results are known when the problem settings are on graphs. One of the main di�cul-
ties lies on the weak regularization e↵ect of free Schrödinger group and the nonlinear
Laplacian operator on graph [12]. Another one arises from the compact embedding
theorem in probability space. Last but not least, both NLSE and SNLSE on a lat-
tice graph can be viewed as a semidiscretization of NLSE and SNLSE on a continuous
domain, respectively (see, e.g., [15]), hence, can be used as numerical schemes to com-
pute (stochastic) optimal control problems involving SNLSEs in practice. However,
many challenging questions remain open, such as the preservation of mass, energy, and
symplectic structures, and the convergence analysis of semidiscretization of SNLSEs
(see, e.g., [14] for more discussions).
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OPTIMAL CONTROL FOR SNLSE ON GRAPH 2023

Inspired by the optimal control of quantum mechanical system [33, 36], we shall
study an optimal control problem associated with (2) or (3). Formally, we can view
their solution u= u(j, t, b!), t� 0, b! 2⌦, as the quantum state or the nonlinear wave at
time t. The stochastic perturbation may represent an inaccurate measurement via the
quantum observation or a dispersion management in optical fiber. The optimal control
problem considered here is to find an input potential V (or a di↵usion coe�cient �)
such that the state u(T ) is as close as possible to a target state f1(T ) and a trajectory
Z1, and achieves the minimum cost (see sections 4 and 5 for more details). A di↵erent
viewpoint for this problem is to recover the quantum mechanical potential V or a
di↵usion coe�cient � from the observation of the quantum state or the nonlinear
wave u(T ) at the end of [0, T ]. Despite many fruitful results on the continuous optimal
control problems for NLSE and SNLSE [9, 5, 24, 26, 29, 27, 28, 2], a few exist for
the problem defined on a graph. To the best of our knowledge, no result has been
reported for stochastic control systems with (2) or (3).

In this work we study both linear drift and di↵usion control. Our approach is
based on two key ideas. One is used by Nelson in his derivation for NLSE [31]. The
other is viewing SNLSE as a stochastic Wasserstein Hamiltonian flow [18]. By using
the complex expression u =

p
⇢eiS , we obtain the equivalent Madelung systems of

SNLSE on graph (see, e.g., [12, 19]). Then by exploiting the properties of Madelung
systems, we obtain the existence and uniqueness of the strong solution of (2) or (3)
when the control V or � is admissible. When the graph is taken as a lattice, we prove
that the SNLSE on graph with the nonlinear Laplacian operator preserves the sto-
chastic dispersion relationship, while any linear discretization does not. Furthermore,
for a quadratic (or convex) cost functional, we provide the gradient formula and prove
the existence of the optimal control by carefully studying the probability of tail event
of (2) or (3). When � is a constant potential on every node, we derive the adjoint
equation of (2) or (3) which gives a forward-backward stochastic di↵erential equation
and characterizes the necessary optimal condition for the optimal control problem on
graph.

Our paper is organized as follows. In section 2, we explain why we consider the
nonlinear Laplacian for the stochastic Schrödinger equation on graph. In section 3,
we present some useful properties of the stochastic Schrödinger equation on graph. In
section 4, we prove the existence and uniqueness result for (2) or (3) with admissible
control variables and prove the existence result of the optimal control. In section 5, we
derive the gradient formula and present the necessary optimal condition by deriving
a forward-backward stochastic di↵erential equation.

2. Why nonlinear Laplacian for stochastic Schrödinger equation on
graph? To explain the reason, we consider the stochastic linear Schrödinger equation

idu=�
1

2
�udt+ �u � dWt(4)

and the white noise dispersion linear Schrödinger equation

idu=�
1

2
�u � dWt.(5)

One can directly verify that these equations possess the stochastic dispersion rela-
tionship by Itô’s formula.

Lemma 2.1. Let � 2R. Equation (4) (or (5)) admits infinitely many plane wave

solutions given in the form of u(x, t) = Aei(K·x�µt��W (t))
(or Aei(K·x�µW (t))

) with

arbitrary A2R+
, any wave number K2Rd

, and frequency µ satisfying µ= 1
2 |K|

2
.
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2024 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

From the above result, we see that the stochastic dispersion relationship µ= 1
2 |K|

2

coincides with the classical dispersion relationship, and the argument of the plane wave
contains all the information of the Wiener process. However, such a simple property
may become problematic in discrete settings. To illustrate where the trouble is, let
us consider a lattice G obtained by discretizing Rd or Td. Any linear discretizations
of (4) and (5) can be stated

iduj =�
1

2

X

l2N(j)

Cljuldt+ �uj � dWt(6)

and

iduj =�
1

2

X

l2N(j)

Cljul � dWt,(7)

respectively. Here {Clj}(l,j)2E are chosen to approximate the Laplacian operator in
(4) and (5). For simplicity, we assume that every node has the same number of
adjacent nodes, and that the weight on each edge is uniformly given by �x. We
denote the coordinate of the node j by xj = j�x. Regardless of how {Clj}(l,j)2E are
selected, there are at most a finite discrete stochastic plane waves which satisfy the
stochastic dispersion relationship.

Theorem 2.1. For any linear discretization of (4) and (5), there exist at most a

finite number of pairs (µ,K) with µ= 1
2 |K|

2
so that the discrete stochastic plane waves,

i.e., uj =Aei(K·xj�µt��W (t))
for (6) (or Aei(K·xj�µW (t))

for (7)), are the solutions.

Proof. Consider the discrete stochastic plane waves uj(t) = Aei(K·xj�µt��W (t))

for (4) and uj(t) =Aei(K·xj�µW (t)) for (5). Substituting them into (6) and (7), we get

µAei(K·xj�µt��W (t))dt=
1

2

X

l2N(j)

CljAei(K·xl�µt��W (t))dt

and

µAei(K·xj�µW (t))
� dW (t) =

1

2

X

l2N(j)

CljAei(K·xl�µW (t))
� dW (t),

respectively. If µ= 1
2 |K|

2, we obtain

µ=
|K|

2

2
=

1

2

X

l2N(j)

Clje
i(K·(xl�xj)).

Since |K|2
2 is quadratic in K while the trigonometric polynomial on the right-hand side

is periodic and bounded with respect to K, they only intersect in a bounded ball of
the complex domain |K| CN <1. Besides, it can be seen that the imaginary part
of 1

2

P
l2N(j)Clj sin(K · (xl�xj)) = 0 has at most finite zero point. Thus, we complete

the proof.

To numerically preserve the stochastic dispersion relationship for any pair of
(µ,K) with µ = 1

2 |K|
2, we decide to use the nonlinear Laplacian operator �G con-

structed by using the Madelung transformation as shown in [12, 14].

3. Stochastic nonlinear Schrödinger equation on graph. Consider a graph
G= (V,E,!). Let us denote the set of discrete probabilities on the graph by

P(G) =

⇢
(⇢)Nj=1 :

NX

j=1

⇢j = 1,⇢j � 0 for j 2 V

�
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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OPTIMAL CONTROL FOR SNLSE ON GRAPH 2025

and Po(G) as its interior (i.e., all ⇢j > 0 for j 2 V ). Vj is a linear potential on each
node j, and Wjl =Wlj is an interactive potential between nodes j and l. We denote
N(i) = {j 2 V : (i, j) 2 E} to be the adjacency set of the node i and ✓ij(⇢) to be
a density dependent weight on the edge (i, j) 2 E. More precisely, ✓ is defined by
✓ij(⇢) =⇥(⇢i,⇢j), where ⇥ is a continuous di↵erentiable function on (0,1)2 satisfying
⇥(x, y) = ⇥(y,x), ⇥(x, y) � 0, and min(x, y)  ⇥(x, y)  max(x, y) for any x, y 2

(0,1). For example, we may take ✓(⇢) as the averaged probability weight in [12],
i.e., ⇥(x, y) = 1

2 (x+ y), or the logarithmic probability weight in [14], i.e., ⇥(x, y) =R 1
0 x1�tytdt, or the harmonic probability weight in [30], i.e., ⇥(x, y) = 2

1/x+1/y .
In this section, we present the SNLSEs on graph via the viewpoint of stochastic

variational principle proposed in [18]. Define the total linear potential function V ,
interaction potential function W, and the entropy function L by

V(⇢) =
NX

i=1

Vi⇢i, W(⇢) =
1

2

NX

i,j=1

Wij⇢i⇢j , L(⇢) =
NX

i=1

(log(⇢i)⇢i � ⇢i).

I(⇢) is the discrete Fisher information on graph, i.e.,

(8) I(⇢) =
1

2

NX

i=1

X

j2N(i)

e!ij | log(⇢i)� log(⇢j)|
2e✓ij(⇢),

where (e!, e✓) is another pair of weight and density dependent weight on the edges
G. We remark that (e!, e✓) may be selected the same as or di↵erently from (!,✓).
Throughout this paper, we take ✓ as the averaged probability weight, e✓ as the loga-
rithmic probability weight, and !ij = e!ij for simplicity.

As given in [17], the stochastic variational principe on graph is defined as

I
�
⇢0,⇢T

�
= inf

�
S(⇢t,�t)|�⇢t�t 2 T⇢tPo(M),⇢(0) = ⇢0,⇢(T ) = ⇢T

 
,(9)

whose action functional is expressed in the dual coordinates,

S(⇢t,�t) = h⇢(0),�(0)i � h⇢(T ),�(T )i+

Z T

0
h@t�(t),⇢ti+H0(⇢t,�t)dt

+

Z T

0
H1(⇢t,�t) � dWt.

Here �⇢ := div✓G(⇢rG(S)) defined by
⇣
div✓G(⇢rG(·))

⌘

i
:=

X

j2N(i)

✓ij(⇢)
p
!ij(Sj � Si)

for any potential function S = {Si}i2V . The vector field rGS induced by S is defined
by rG(S) := (

p
!ij(Si � Sj))ij2E . With the above notation, one can also introduce

the inner product for the vector fields on graph defined by

hu, vi✓(⇢) :=
1

2

X

ij2E

uijvij✓ij(⇢)!ij

for any two vector fields (skew-symmetric matrices) u, v. The kinetic energy is defined
by K(S,⇢) = 1

2 hrGS,rGSi✓(⇢). Here ⇢0,⇢T are F0 and FT measurable functions. The
dominated energy H0 and perturbed energy H1 are given by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2026 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

H0(⇢, S) =K(S,⇢) + F (⇢)� L(⇢),

H1(⇢, S) = ⌘1K(S,⇢) + ⌘2I(⇢) + ⌘3⌃(⇢) + ⌘4W(⇢) + ⌘5L(⇢)

with  2 R, ⌃ defined by ⌃(⇢) =
PN

j=1 �j⇢j for some �j 2 R, and F (⇢) := 1
8I(⇢) +

V(⇢)+W(⇢). In particular, when ⌘1 = 0, (9) recovers the classical variational problem
with random potential in Lagrangian formalism.

By finding the critical point of the stochastic variational principle (9), we achieve
the following discrete stochastic Wasserstein Hamiltonian flow on the density mani-
fold:

d⇢=
@

@S
H0(⇢, S)dt+

@

@S
H1(⇢, S) � dWt,(10)

dS =�
@

@⇢
H0(⇢, S)dt�

@

@⇢
H1(⇢, S) � dWt.

Selecting di↵erent deterministic energy H0 and perturbed energy H1 results in
various forms of SNLSEs on graph. When H0(⇢, S) = K(S,⇢) + F(⇢) � L(⇢),
H1(⇢, S) =⌃(⇢), the Wasserstein Hamiltonian flow becomes

d⇢i +
X

j2N(i)

!ij(Sj � Si)✓ij(⇢)dt= 0,(11)

dSi +
1

2

X

j2N(i)

!ij(Si � Sj)
2 @✓ij(⇢)

@⇢i
dt+

1

8

@I(⇢)

@⇢i
dt+Vidt

+
NX

j=1

Wij⇢jdt�  log(⇢i)dt+ �idWt = 0.

Its complex formulation u(t) =
p
⇢(t)eiS(t) gives the stochastic nonlinear Schrödinger

on graph,

iduj =

 
�
1

2
(�Gu)j + ujVj + uj

NX

l=1

Wjl|ul|
2
� uj log(|uj |

2)

!
dt+ �juj � dWt.(12)

Here the nonlinear Laplacian on the graph is defined by

(�Gu)j =�uj

✓
1

|uj |
2

 X

l2N(j)

!jl(=(log(uj))�=(log(ul))✓jl)(13)

+
X

l2N(j)

e!jl
e✓jl(<(log(uj))�<(log(ul)))

�

+
X

l2N(j)

!jl
@✓jl
@⇢j

|=(log(uj)� log(ul))|
2

+
X

l2N(j)

e!jl
@e✓jl
@⇢j

|<(log(uj)� log(ul))|
2

◆
,

where < and = are real and imaginary parts of a complex number. This is precisely
the nonlinear graph Laplacian introduced in [14].

When H0 = V(⇢) +W(⇢), H1 = K(⇢, S) + 1
8I(⇢), the Wasserstein Hamiltonian

flow becomes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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OPTIMAL CONTROL FOR SNLSE ON GRAPH 2027

d⇢i =
X

j2N(i)

!ij(Si � Sj)✓ij(⇢) � dWt;

(14)

dSi +

✓
1

2

X

j2N(i)

!ij(Si � Sj)
2 @✓ij
@⇢i

+
1

8

@

@⇢i
I(⇢)

◆
� dWt +

✓
Vi +

NX

j=1

Wij⇢j

◆
dt= 0,

whose complex formulation u(t) =
p
⇢(t)eiS(t) satisfies the NLSEs with white noise

dispersion on graph,

iduj =�
1

2
(�Gu)j � dWt +

✓
ujVj + uj

NX

l=1

Wjl|ul|
2

◆
dt.(15)

Both (12) and (15) can be viewed as spatial discretization of (2) and (3), respectively,
when G is a lattice graph.

Recall that in [12, 14], the global solution in deterministic case (⌘1 = · · · = ⌘4 =
⌘5 = 0,  = 0) is obtained by using the energy conservation law if F(⇢) contains
the Fisher information �I(⇢),� > 0. In the stochastic case, the existence of global
solution has been studied in [17] by using the Poisson bracket {·, ·}. In particular,
when {H0,H1} = 0, for example, H0 is a multiple of H1, then H0 is an invariant of
the stochastic Wasserstein Hamiltonian flow. Here we summarize some fundamental
properties shared by the SNLSEs on graph.

Proposition 3.1. Let T > 0, u(0) be F0-measurable with any finite moment,

and let uj(0) 6= 0 for all j 2 V . Then (12) (or (15)) has a unique strong solution u(t)
on [0, T ]. Moreover, u(t) satisfies the following properties:

(i) It conserves the total mass

NX

j=1

|uj(t)|
2 = 1, a.s..

(ii) The total energy satisfies

E
h

sup
t2[0,T ]

E
p(u(t))

i
C(E(u(0)), T, p),

where E is defined by a combination of the discrete kinetic energy Ekin, linear
potential Elin, interaction potential Eint, and entropy Eent, i.e.,

E(u) = Ekin(u) + Elin(u) + Eint(u) + Eent(u).

Here we have

Ekin(u) =
1

4

X

(j,l)2E

�
|<(loguj � log(ul))|

2!jl✓jl(|u|
2)

+|=(loguj � log(ul))|
2e!jl✓jl(|u|

2)
 
,

Elin(u) =
NX

j=1

Vj |uj |
2, Eint(u) =

1

2

NX

j,l=1

Wjl|uj |
2
|ul|

2,

Eent(u) =�
NX

j=1

(log(|uj |
2)|uj |

2
� |uj |

2).
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2028 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

(iii) It is time transverse invariant when V is independent of time: if u↵(t) is the

solution of (12) (or (15)), where V↵ = (Vj + ↵)Nj=1 with ↵ being a constant

F0-measurable random variable, then

u↵(t) = u(t)ei↵t

is also a solution.

(iv) It is time reversible when V is independent of time in the following sense: for

(12) (or (15)) with fW (t) =W (t), t� 0 and fW (t) =�W (�t), t < 0, then

u(t) = ū(�t).

Following the proof of [17, section 4], one can also obtain the lower bounds for
the density trajectories as stated in the next corollary.

Corollary 3.1. Let the conditions of Proposition 3.1 hold. For (11) and (14),
there exists a positive random variable which is a lower bound of the density trajectory.

To end this section, we demonstrate that the nonlinear discretization of (4) and
(5) can preserve exactly the stochastic dispersion relationship. Consider the graph
version of (4),

iduj =�
1

2
(�Gu)jdt+ �uj � dWt(16)

and that of (5),

iduj =�
1

2
(�Gu)j � dWt.(17)

Proposition 3.2. Given a lattice graph G with |xj � xl| = �x for l 2 N(j),
!ij = (@✓ij@⇢i

N (�x)2)�1
, where N is the total number of nodes in N(j) and ✓ij is the

symmetric probability weight. The nonlinear discretizations of (16) and (17) preserve
the stochastic dispersion relationship.

Proof. The discrete stochastic plane waves read uj(t) =Aei(K·xj�µt��W (t)) for (4)
and uj(t) =Aei(K·xj�µW (t)) for (5) with µ= 1

2 |K|
2. By the Madelung transformation

uj =
p
⇢jeiSj(t), ⇢j =A is constant. As a consequence, the partial derivative of Fisher

information @I(⇢)
@⇢i

= 0. On the other hand, since Si = K · xi � µt � �W (t), one can

verify that 1
2

P
j2N(i) !ij(Si � Sj)2

@✓ij(⇢)
@⇢i

= 1
2 |K|

2 = µ. This implies that

dSi +
1

2

X

j2N(i)

!ij(Si � Sj)
2 @✓ij(⇢)

@⇢i
dt+

1

8

@I(⇢)

@⇢i
dt+ �dWt = 0

is satisfied. Thus (4) preserves all the stochastic dispersion relationship.
Similar calculations can show that (5) satisfies

dSi +
1

2

X

j2N(i)

!ij(Si � Sj)
2 @✓ij(⇢)

@⇢i
� dWt = 0,

which implies that (5) preserves all the stochastic dispersion relationship.

4. Stochastic control problem on density manifold of finite graph. In
this section, we propose two stochastic optimal control formulations corresponding to
SNLSEs (2) and (3) on graph, respectively.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

4/
24

 to
 1

88
.9

2.
13

9.
72

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



OPTIMAL CONTROL FOR SNLSE ON GRAPH 2029

4.1. Stochastic control problem with linear potential control. We first
assume that the linear potential term {Vj}j2V is a control variable depending on t. It
can be seen that this will not a↵ect the well-posedness of (2) and (3). For convenience,
we denote the corresponding solution by uV

j in the complex function representation
and (⇢Vj , S

V
j ) on Wasserstein manifold. The admissible control set U is defined by

U :=
n
V :⌦⇥ [0, T ]!RN

��V(t) is Ft-adapted,Vj 2L2([0, T ]),

there exists ↵> 0, such that |Vj | ↵ a.s. for j 2 V
o

for some ↵> 0. Our first optimal control problem is to minimize the cost functional

J(V) := �E
 NX

i=1

|uV
j (T )� f1

j |
2

�
+ �E

Z T

0

NX

i=1

|Vj(t)�Zj(t)|
2dt

�
,(18)

subject to the constraint given by either (11) or (14) with given (⇢(0), S(0)). Here
�,� � 0, f1 is FT -adapted satisfying kf1

kL2(⌦;CN ) < 1, and Z 2 U . The above
optimal control problem may be viewed as the graph version of the stochastic control
problem in [1, 26, 27, 28]. The following lemma (see, e.g., [25, Chapter 3]) is very
useful to show the existence and uniqueness of the optimal control.

Lemma 4.1. Let B be a uniformly convex Banach space, and let S be a bounded

closed subset of B. Furthermore, let F : S ! R be a lower semicontinuous functional

which is bounded from below and p� 1. Then there exists a dense subset D⇢ B such

that for each x2D, the functional F (s)+ks�xkpB attains its minimum over S, which
implies that there exists an s(x)2 S such that

F (s(x)) + ks(x)� xkpB = inf
s2S

{F (s) + ks� xkpB}.

In particular, if p > 1, then s(x) is unique. Besides, each minimizing sequence con-

verges strongly and the function x 7! s(x) is continuous in D.

In our case, we take B := L2(⌦ ⇥ [0, T ];CN ) which is uniformly convex, and
choose S as the admission control set. The functional F = �E[

PN
i=1 |u

V
j (T )� f1

j |
2] is

bounded from below and p = 2. According to Lemma 4.1, if we can verify the lower
semicontinuity of F , then there exists a dense subset D of B such that for each Z 2D

the functional J(V) = F (V)+�kV�Zk
2
B attains its unique minimum over U . In other

words, there exists a unique V⇤
2 U such that

J(V⇤) = F (V⇤) + �kV⇤
�Zk

2
B = inf

V
J(V).

To prove the lower semicontinuity of uV with respect to V, we show a strong conver-
gence result first.

Proposition 4.1. Let u(0) be F0-adapted with any finite moment satisfying

uj(0) 6= 0, j  N. Let the sequence {Vn
}n�1 ⇢ U be convergent to V, and let uVn

be the corresponding solution of the stochastic nonlinear Schrödinger equation (11)
(or (14)) with respect to the control Vn

and the initial value uVn

(0) = u(0). Then

the sequence (uVn

) 2 L2(⌦;C([0, T ];CN )), n � 1, converges strongly to the solution of

stochastic nonlinear Schrödinger equation (11) (or (14)) with respect to the control

V2 U .
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2030 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

Proof. In this proof, we only show the details when the constraint is (11). A
similar argument can lead to the strong convergence result for the case of (14). By
Proposition 3.1, the Itô formula, and the Burkholder’s inequality, we have the follow-
ing a priori estimates:

NX

i=1

���uVn
i (t)

���
2
=

NX

i=1

|ui(0)|
2 = 1, a.s.

(19)

E
h

sup
t2[0,T ]

⇣
hrGS

Vn(t),rGS
Vn(t)i✓(⇢Vn (t)) +

1

8
I(⇢Vn(t))

⌘pi
C(u(0), T,↵, p), p� 1.

(20)

To show the strong convergence of uVn , we introduce a stopping time ⌧c defined by

⌧nc := inf{t2 [0, T ] : kSVnkC([0,t];RN ) � c}^ inf

⇢
t2 [0, T ] :

N
min
i=1

min
s2[0,t]

⇢Vn
i (s)

1

c

�
.

By Corollary 3.1, we have that limc!1 ⌧c = T,a.s. Introduce the truncated sample
subspace ⌦n

c defined by

⌦n
c =

(
sup

t2[0,T ]
kSVnkC([0,t];RN )  c,

N
min
i=1

min
s2[0,T ]

⇢Vn
i (s)�

1

c

)
.

Similarly, we denote ⌦c as the truncated sample subspace with respect to uV. Our
goal is to show the error estimate in ⌦n

c \ ⌦c and ⌦/{⌦n
c \ ⌦c}. First, we prove the

convergence in ⌦/{⌦n
c \ ⌦c}. Due to the mass conservation law (19) of the SNLSE,

by applying the Chebyshev’s inequality, we get

k1⌦/{⌦n
c \⌦c}(u

Vn

� uV)k2B



Z T

0
E
h
1⌦/{⌦n

c \⌦c}(|u
Vn

(s)|2 + |uV(s)|2)
i
ds

CT
h
P
⇣

sup
s2[0,T ]

|SVn

|� c
⌘
+ P

⇣
sup

s2[0,T ]
|SV

|� c
⌘

+ P
⇣ N
min
i=1

min
s2[0,T ]

⇢V
n

i (s)
1

c

⌘
+ P

⇣ N
min
i=1

min
s2[0,T ]

⇢Vi (s)
1

c

⌘i
.

It su�ces to prove all the above probabilities converges to 0 as c!1. Indeed, since
G is connected, by applying the lower bound estimate in [14, section 3], there exists
a positive random variable C(!) such that

inf
t�0

min
iN

⇢V
n

i (t)� c2 exp(�c1C(!)).(21)

Here c2, c1 > 0 are constants depending on the structure of G, and C(!) is the positive
random variable in Corollary 3.1. More precisely, the positive random variable C(!)
is bounded by the upper bound of Vn and V plus

sup
t2[0,T ]

⇣
hrGS

Vn

(t),rGS
Vn

(t)i✓(⇢Vn (t)) +
1

8
I(⇢V

n

(t))
⌘
,(22)
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OPTIMAL CONTROL FOR SNLSE ON GRAPH 2031

which possess any finite moment by (20). Thus, by (21), Chebyshev’s inequality and
the monotonicity of the logarithmic function, we get

P
⇣

min
s2[0,T ]

N
min
i=1

⇢V
n

i (s)
1

c

⌘
 P

⇣
c2 exp(�c1C(!))

1

c

⌘
(23)

= P
⇣
C(!)�

1

c1
(log(c) + log(c2))

⌘


cp1E
⇥
C(!)p

⇤

(log(c)� log(c2))p
, p� 1.

When c!1, by the dominated convergence theorem, we have that

lim
c!1

h
P(

N
min
i=1

min
s2[0,T ]

⇢V
n

i (s)
1

c
) + P(

N
min
i=1

min
s2[0,T ]

⇢Vi (s)
1

c
)
i
= 0.

For the tail estimate of SVn

, we make use of the di↵erential equation of SVn

and
get that

|SVn

i (t)| |SVn

i (0)|+

Z T

0

X

j2N(i)

1

4
|Si � Sj |

2!ij

����
@

@⇢i
I(⇢)

����ds

+

Z T

0
|Vn

i |+
NX

j=1

|Wij |⇢jds+ sup
t2[0,T ]

����
Z t

0
�idW (s)

����.

The Burkholder’s inequality yields that E[supt2[0,T ] |
R t
0 �idW (s)|p]  C(p,�). Notice

that (20) and (21) implies that

max
ij2E

|Si � Sj |
2


2

minij2E !ij(⇢i + ⇢j)
C(!)

1

minij2E !ijc2
exp(c1C(!))C(!), a.s.

max
i

���
@

@⇢i
I(⇢)

���max
ij

!ij max
i

h 2
⇢i

+ 2| log(⇢i)|
i

max
ij

!ij2
⇣ 1

c2
exp(c1C(!)) + | log(c2)|+ c1C(!)

⌘
<1, a.s.

Combining with the fact that |Vn
i (t)| ↵, we conclude that for c large enough,

P
 

sup
s2[0,T ]

|SVn

|� c

!

 P
✓
min
ij2E

1

!ijc2
exp(c1C(!))C(!)�

c

4T

◆

+ P
✓
max
ij2E

!ij2

✓
1

c2
exp(c1C(!)) + | log(c2)|+ c1C(!)

◆
�

c

4T

◆

+ P
 
sup
iN

sup
t2[0,T ]

���
Z t

0
�idW (s)

����
c

4T

!

+ P
✓
sup
iN

|SVn

i (0)|+max
ij2E

Wij + ↵T �
c

4T

◆
.

Using the moment estimate of C(!) and Chebyshev’s inequality, we obtain that

lim
c!1

P
 

sup
s2[0,T ]

|SVn

|� c

!
= 0.

Similarly, we can get limc!1 P(sups2[0,T ] |S
V
|� c) = 0.
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2032 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

On ⌦n
c \⌦c, we use the stopping time technique to show the strong convergence.

By the definition of ⌧nc and ⌧c we can see that ⌧nc = T on ⌦n
c and ⌧c = T on ⌦c.

According to the complex form of uVn

=
p
⇢VneiS

Vn
, we have that

Z T

0
E[1⌦n

c \⌦c |u
Vn

� uV
|
2]ds



Z T

0

NX

i=1

2
⇣
E[1⌦n

c \⌦c |

q
⇢Vn

i �

p
⇢Vi|

2] +E[1⌦n
c \⌦c |

q
⇢Vi (e

iSVn
i � eiS

V
i )|2]

⌘
ds

C

Z T

0

NX

i=1

⇣
E[1⌦n

c \⌦c |

q
⇢Vn

i �

q
⇢Vi |

2] +E[1⌦n
c \⌦c |S

Vn

i � SV
i |

2]
⌘
ds.

By applying the Itô formula before ⌧nc \ ⌧c and Hölder’s inequality, we obtain that
���
q
⇢Vn(t)�

q
⇢V(t)

���
2

=

Z t

0
2

NX

i=1

X

j2N(i)

✓
1p
⇢Vn

i

(SVn

i � SVn

j )✓ij(⇢
Vn

)�
1p
⇢Vi

(SV
i � SV

j )✓ij(⇢
V)

◆

✓q
⇢Vn

i �

q
⇢Vi

◆
ds



Z t

0
C(1 + c)

NX

i=1

⇣
|SVn

i � SV
i |

q
⇢Vn

i �

q
⇢Vi |+ |

q
⇢Vn

i �

q
⇢Vi |

2
⌘
ds

and that

|SVn

(t)� SV(t)|2

=

Z t

0
2

NX

i=1

X

j2N(i)

⇣
�

1

4
(SVn

i � SVn

j )2 +
1

4
(SV

i � SV
j )

2)(SVn

i � SV
i

⌘
ds

+

Z t

0
2

NX

i=1

(�Vn
i +Vi)(S

Vn

i � SV
i )ds

+

Z t

0
2

NX

i=1

X

j=1N

(�Wij⇢
Vn

j +Wij⇢
V
j )(S

Vn

i � SV
i )ds



Z t

0
C(1 + c)

⇣
|SVn

� SV
|
2 + |

p
⇢Vn

�

p
⇢V|2 + |Vn

�V|2
⌘
ds.

The Gronwall’s inequality, together with the above estimates, leads to

E
h���
q
⇢Vn(t)�

q
⇢V(t)

���
2
+ |SVn

(t)� SV(t)|2
i
 exp

R t
0
C(1+c)ds

Z t

0
E
⇥
|Vn

�V|2
⇤
ds.

Taking n!1 and then c!1, we achieve that

lim
c!1

lim
n!1

Z T

0
E[1⌦n

c \⌦c |u
Vn

� uV
|
2]ds

 lim
c!1

lim
n!1

Z T

0
exp

R t
0
C(1+c)ds

Z t

0
E
⇥
|Vn

�V|2
⇤
dsdt= 0.

Combining the estimate on ⌦n
c \ ⌦c and ⌦/(⌦n

c \ ⌦c), we obtain the desired re-
sult. Similarly, one could also obtain the strong convergence of uVn

in the topology
L2(⌦;C([0, T ];CN )).
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OPTIMAL CONTROL FOR SNLSE ON GRAPH 2033

Theorem 4.1. Let � � 0. For the control problem (18) with the constraint (11)
or (14). there always exists an optimal control V⇤

2 U which minimizes the objective

functional J.

Proof. By Lemma 4.1, to get the unique existence of an optimal control, it su�ces
to show the lower semicontinuity of F if � > 0, which can be obtained by using
Proposition 4.1 and the Fatou lemma.

In the following, we show the existence of an optimal control when � = 0. Since
�
PN

i=1 |u
V
i (T )�f1

i |
2 is bounded from below and |Vi| ↵ in U , the infimum of F exists.

Let (uVn

,Vn) be a minimizing sequence. By the a priori estimate in Proposition 3.1,
there exists a subsequence, still denoted by Vn, such that Vn

!V⇤ weakly in L2(⌦⇥

[0, T ];RN ). By Mazur’s theorem, we have a sequence of convex combinations denoted
by eVm :

P
n�1↵nmun+m with ↵nm � 0,

P
n�1↵nm = 1 such that

eVm
!V⇤, strongly inL2(⌦⇥ [0, T ];RN ).

Using the fact that |eVm
i |  ↵, it follows that V⇤

2 U . By Proposition 4.1, we also
have the strong convergence, u

eVm

! uV⇤
in L2(⌦;C([0, T ];CN )). Therefore, (uV⇤

,V⇤)
is admissible. By making use of the convexity of |uV

i (T )� f1
i |

2, iN and the Fatou
lemma, we conclude that

J(uV⇤
) lim

m!1
J(eVm) lim

m!1

X

n�1

↵nmJ(eVm) inf
V2U

J(V),

which completes the proof.

From the above procedures, it can be seen that all the results in this subsection
still hold as long as the cost functional has a lower bound and is lower semicontinuous
convex.

4.2. Stochastic control problem with di↵usion control. Similar to the
linear potential control problem on graph, we can also obtain the existence of an
optimal control problem with di↵usion control which has not been reported even in
the continuous case. Since the proof is similar to that of Theorem 4.1, we omit the
details and only present the main result here.

Consider the constraint (11) with the control variable � 2 RN . The admissible
control set eU is defined by

eU :=
n
� :⌦⇥ [0, T ]!RN

�� �(t) is Ft-adapted,� 2L2([0, T ]),

there exists ↵> 0, such that |�j | ↵ a.s.
o
.

Here the optimal control problem is to minimize the cost functional

J(�) := �E
 NX

i=1

|u�
i (T )� f1

i |
2

�
+ �E

Z T

0

NX

i=1

|�i(t)�Zi(t)|
2dt

�
,(24)

where �,� � 0, f1 is FT -adapted satisfying kf1
kL2(⌦;CN ) <1, and Z 2 eU , u� is the

solution of (11) with the control �.

Theorem 4.2. For the control problem (24) with the constraint (11), there always
exists an optimal control �⇤

2 eU which minimizes the objective functional J.
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2034 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

Proof. By applying Proposition 3.1 and repeating the steps in the proof of Propo-
sition 4.1, the lower continuity of J when � = 0 can be established. Therefore, the
existence of optimal control is ensured by the convexity of |u�

j (T )�f1
j |

2. When � > 0,
the existence of optimal control can be guaranteed by Lemma 4.1.

Similar to the linear potential control problem on graph, it can be seen that all
the results in this subsection still hold as long as the cost functional has a lower bound
and is lower semicontinuous convex.

5. Optimal condition for the stochastic control on graph. As has been
pointed out in [27], compared to NLSEs driven by additive noise, it is more di�cult
to investigate the multiplicative noise case. Beyond that, for the NLSE on graph, the
appearance of the nonlinear Laplacian �G makes it more challenging to characterize
the optimal condition than the continuous control problem.

In this section we mainly consider the following control problem:

J(V) := �E
 NX

i=1

|uV
i (T )� f1

i |
2

�
+ �1E

Z T

0

NX

i=1

|uV
i (t)�Z1

i (t)|
2

�
dt(25)

+ �E
Z T

0

NX

i=1

|Vi(t)�Zi(t)|
2dt

�

with the constraint (11) to illustrate how to derive the optimal condition on graph.
Here � � 0,�1 � 0,� � 0, and Z1 is an Ft-adapted and L2-integrable process. When
�1 = 0, (25) degenerates into (18). Our approach can be also extended to a more
general smooth convex functional setting.

5.1. Gradient formula. In section 4, we have shown the existence of optimal
potential and di↵usion controls. Furthermore, in this part we study the necessary
optimal condition near the minimizer V⇤ of (25) which is also called the gradient
formula.

Proposition 5.1. Let (uV⇤
,V⇤) be the solution and optimal control of (25). Then

for

sup
t2[0,T ]

|V✏(t)�V⇤(t)| ✏, V✏
2 U ,

it holds that

E

1⌦c sup

t2[0,T ]
|uV⇤

(t)� uV✏

|
p

�
C(c, u(0), T, p)✏p,(26)

where p� 2 and ⌦c = {supiN sups2[0,T ]
1

⇢V⇤
i

+ supiN sups2[0,T ]
1

⇢V✏
i

 c}.

Furthermore, suppose there exists c(✏)!1 such that the random variable C(!),
defined by (22) with V2 U , satisfies

lim
✏!0

h
C(c(✏), u(0), T,2)✏+

1

✏
P
⇣
C(!)�

1

c1
(log(c(✏)) + log(c2))

⌘i
= 0;(27)
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OPTIMAL CONTROL FOR SNLSE ON GRAPH 2035

then for any V2 U , the following variational inequality holds:

lim
c(✏)!1

E

1⌦c(✏)

<

⇢Z T

0

NX

i=1

⇣
(uV⇤

i (t)�Z1
i (t))Xi(t) + (V⇤

i (t)�Zi(t))(Vi(t)�V⇤
i (t))

⌘
dt

(28)

+
NX

i=1

(uV⇤

i (T )� f1
i (T ))Xi(T )

��
� 0,

where X is the solution of the following equation:

dXi(t) =

⇢
i

2

X

j2N(i)

@(�Gu)i
@uj

���
u=uV⇤

Xj � iV⇤
iXi � i

NX

l=1

Wil|u
V⇤

l |
2Xi

(29)

� 2i
NX

l=1

Wil<(ū
V⇤

l Xl)u
V⇤

i

�
dt+

n
� iuV⇤

i (Vi �V⇤
i )
o
dt+

n
� i�iXi

o
� dW (t)

X(0) = 0.

Proof. Since the admission control set U is convex, we can use a convex perturba-
tion to illustrate the procedures. Consider V✏ = (1� ✏)V⇤ + ✏V. Define two processes

⇠(t) := uV✏�uV
✏ and �V :=V�V✏. Before the stopping time ⌧ c, according to the proof

of Proposition 4.1, the equation of Xi is well-posed since the coe�cients of (29) are
globally Lipschitz. By the mean value theorem, ⇠ will satisfy

d⇠i(t) =

⇢
i

2

X

j2N(i)

Z 1

0

@(�Gu)i
@uj

���
u=uV⇤+✏⇠

d⇠j �

Z 1

0
i(V⇤

i + ✏�Vi)d⇠i

�

NX

l=1

iWil

⇣Z 1

0
|uV⇤

l + ✏⇠i|
2d
⌘
⇠i

� 2
NX

l=1

iWil

Z 1

0
<((uV⇤

l + ✏⇠l)⇠l)(u
V⇤

i + ✏⇠i)d

�
dt

+

Z 1

0

n
� i(uV⇤

i + ✏⇠i)(Vi �V⇤
i )
o
ddt+

n
� i�i⇠i

o
� dW (t).

Using the similar steps in the proof of Proposition 4.1, on ⌦c, it holds that for
any p� 2,

E
h
1⌦c sup

t2[0,T ]
|⇠(t)|p

i
+E

h
1⌦c sup

t2[0,T ]
|X(t)|p

i
C(c, u(0), T )E

✓Z T

0
|�V|2ds

◆ p
2

�

and that for p� 2,

E
h
1⌦c sup

t2[0,T ]
|⇠(t)�X(t)|p

i
C(c, u(0), T, p).

Thus, (26) follows. Here C(c, u(0), T, p) is increasing with respect to c satisfying
limc!1C(c, u(0), T, p) =+1.
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2036 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

For convenience, let us denote

J⌦c(V) := �E

1⌦c

NX

i=1

|uV
i (T )� f1

i |
2

�
+ �1E


1⌦c

Z T

0

NX

i=1

|uV(t)�Z1(t)|2
�
dt

+ �E

1⌦c

Z T

0

NX

i=1

|Vi(t)�Zi(t)|
2dt

�
.

Due to the fact that J(V⇤) J(V✏), we obtain that

0 J(V✏)� J(V⇤)

= J⌦c(V✏)� J⌦c(V⇤) + J⌦/⌦c
(V✏)� J⌦/⌦c

(V⇤).

Using the tail estimate of 1⌦/⌦c
by the arguments in the proof of Proposition 4.1, we

get

lim
c!1

lim
✏!0

J⌦/⌦c
(V✏)� J⌦/⌦c

(V⇤) = 0.

To derive a necessary optimal condition, we need to consider the speed of the conver-
gence for c and ✏. By (23), we have that

J⌦/⌦c
(V✏)CP

⇣
C(!)�

1

c1
(log(c) + log(c2))

⌘
.

By the Taylor expansion and (26), we have

0
1

✏

h
J⌦c(V✏)� J⌦c(V⇤)

i
+

1

✏

h
J⌦/⌦c

(V✏)� J⌦/⌦c
(V⇤)

i

E

1⌦c<

⇢Z T

0

NX

i=1

⇣
(uV⇤

i (t)�Z1
i (t))Xi(t) + (V⇤

i (t)�Zi(t))(Vi(t)�V⇤
i (t))

⌘
dt

+
NX

i=1

(uV⇤

i (T )� f1
i (T ))Xi(T )

��

+C(c, u(0), T,2)✏+
1

✏
CP
⇣
C(!)�

1

c1
(log(c) + log(c2))

⌘
.

Using the condition (27), there exists c(✏)!1 such that

lim
c!1

E

1⌦c<

⇢Z T

0

NX

i=1

⇣
(uV⇤

i (t)�Z1
i (t))Xi(t) + (V⇤

i (t)�Zi(t))(Vi(t)�V⇤
i (t))

⌘
dt

+
NX

i=1

(uV⇤

i (T )� f1
i (T ))Xi(T )

��
� 0,

which implies (28).

Remark 5.1. If V⇤ is in the interior of U , then (28) becomes the equality. In
general, the limit with respect to c in (28) does not commute with the expectation
since the variational equation (28) may not have a global estimate in the expectation
sense and the coe�cient is singular near boundary of P(G).

Our approach is also applicable for the cost functional

J(V) =E
Z T

0
g(uV(t),V(t))dt+ h(uV(T ))

�
(30)
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OPTIMAL CONTROL FOR SNLSE ON GRAPH 2037

or

J(�) =E
Z T

0
g(u�(t),�(t))dt+ h(u�(T ))

�
,(31)

where g and h are continuous convex and di↵erentiable with bounded first derivatives.
Due to the page limitation, we omit the details here.

5.2. Backward SDE. In this subsection, we aim to give a more in-depth de-
scription on the optimal condition via the forward and backward stochastic di↵erential
equations. To better illustrate the procedure while clearly explaining the main idea,
we use the control problem (25) with � = � = �1 = 1 as an example. To this end, we
need a priori estimate of the variational solution X of (29) such that the limit with
respect to c commutes with the expectation in (28).

Proposition 5.2. Let � be a constant potential, i.e., �i = �j, and ⇢(0)2Po(G),
S(0)2RN

. Assume that V2 U . Then it holds that for p� 2,

E
h

sup
t2[0,T ]

kuV(t)kp
i
C(u(0), T, p,↵),(32)

E
h

sup
t2[0,T ]

kX(t)kp
i
C(u(0), T, p,↵).

Proof. According to Proposition 3.1 and the proof of Proposition 4.1, it su�ces to
prove a uniform lower bound estimate of the density function ⇢V(t) = |uV(t)|2. Since
�i = �j , we denote �i = e�. Introducing eSi = Si + e�W (t), (11) can be rewritten as

d⇢i =
X

j2N(i)

!ij(eSi �
eSj)✓ij(⇢)dt;

deSi +

✓
1

2

X

j2N(i)

!ij(eSi �
eSj)

2 @✓ij
@⇢i

+
1

8

@

@⇢i
I(⇢) +Vj +

X

j2N(i)

Wij⇢j

◆
dt= 0,

which is a nonlinear Schrödinger equation with random inputs. Thus it follows that

H(⇢(t), eS(t)) := 1

2
hrG

eS,rG
eSi✓(⇢(t)) + V(⇢(t)) +W(⇢(t)) +

1

8
I(⇢(t))

=H(⇢(0), S(0))<1, a.s.

The property of Fisher information yields that there exists a constant clow > 0 such
that

inf
t�0

min
iN

⇢i(t)� clow > 0,a.s.

Therefore, we have ⌦ 1

clow
=⌦ and

E
h

sup
t2[0,T ]

kuV(t)kp
i
C(u(0), T, p,↵, clow).

The lower bound of the density function also implies that the coe�cient of (29) are
bounded and Lipschitz. By repeating similar steps in the proof of Proposition 5.1, we
complete the proof.

Thanks to the lower bound estimate of the density function, we are also able
to derive the corresponding backward stochastic di↵erential equation, which is also
called the adjoint equation of (29).
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2038 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

Corollary 5.1. Let the condition of Proposition 5.1 hold. Let (uV⇤
,V⇤) be an

optimal control of (25). Then there exists an adapted solution (Y,Z) of the following

system:

dYi(t) =�

8
<

:
i

2

X

i2N(j)

@(�Gu)j
@ui

����
u=uV⇤

Yj � iV⇤
i Yi � i

NX

l=1

Wil|u
V⇤

l |
2Yi(33)

�2
NX

l=1

Wil<(iu
V⇤

l Ȳl)u
V⇤

i

)
dt

+
1

2
�2
i Yi(t)dt+ i�iZidt+ 2(uV⇤

i �Z1
i )dt+Zi(t)dW (t),

Y (T ) =�2uV⇤
(T ) + 2f1(T ).

Proof. Thanks to Proposition 5.2, the coe�cients of (33) are Lipschitz and
bounded. Then the standard arguments in [37, section 3] yield the well-posedness
of the linear BSDE (33), that is, there exists a unique adapted solution (Y,Z).

Based on the above results, we are ready to characterize the optimal condition
by a coupled forward-backward SDE system.

Theorem 5.1. Let the condition of Proposition 5.2 hold. Then the optimal con-

trol pair (uV⇤
,V⇤) satisfies the generalized stochastic Hamiltonian system consisting

of (11), (33) with u(0) =
p
⇢(0)eiS(0)

, Y (T ) =�2uV⇤
(T ) + 2f1(T ) and the stationary

condition, i.e., for arbitrary V,

<h�iuV⇤
Y + 2(V⇤

�Z),V�V⇤
i � 0, a.e. t2 [0, T ], a.s.

Proof. For convenience, let us denote <hX,Y i := <(
PN

i=1 X̄iYi) and <(a, b) =
<(āb). Applying Itô’s formula, we obtain that

d<hX(t), Y (t)i

=
NX

i=1

⇢
<

✓
i

2

X

j2N(i)

@(�Gu)i
@uj

����
u=uV⇤

Xj , Yi

◆
�<(iV⇤

iXi, Yi)

�<

✓
i

NX

l=1

Wil|u
V⇤

l |
2Xi, Yi

◆

� 2<

✓ NX

l=1

iWil<(ū
V⇤

l Xl)u
V⇤

i , Yi

◆�
dt+

NX

i=1

⇢
<

⇣
�

1

2
�2
iXi, Yi

⌘

+
NX

i=1

<

⇣
� iuV⇤

i (Vi �V⇤
i ), Yi

⌘)
dt

+
nX

i=1

⇢
<

✓
�

i

2

X

i2N(j)

@(�Gu)j
@ui

����
u=uV⇤

Yj ,Xi

◆
+<

⇣
iV⇤

i Yi,Xi

⌘

+<

✓
i

NX

l=1

Wil|u
V⇤

l |
2Yi + 2

NX

l=1

Wil<(iu
V⇤

l Ȳl)u
V⇤

i ,Xi

◆�
dt

+
NX

l=1

n
<

⇣1
2
�2
i Yi,Xi

⌘
+<(i�iZi,Xi) + 2<

⇣
uV⇤

i �Z1
i ,Xi

⌘o
dt
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OPTIMAL CONTROL FOR SNLSE ON GRAPH 2039

+
NX

l=1

n
<

⇣
Zi(t), Yi(t)

⌘
+<

⇣
� i�iXi,Zi

⌘o
dW (t) +

NX

l=1

<

⇣
� i�iXi,Zi

⌘
dt

=
NX

i=1

<

⇣
� iuV⇤

i (Vi �V⇤
i ), Yi

⌘
dt+

NX

i=1

2<
⇣
uV⇤

i �Z1
i ,Xi

⌘
dt+

NX

l=1

n
<

⇣
Zi(t), Yi(t)

⌘

+<

⇣
� i�iXi,Zi

⌘o
dW (t).

Taking expectation yields that

�E[2<huV(T )� f1(T ),X(T )i] =E[<hX(T ), Y (T )i]�E[<hX(0), Y (0)i]

=

Z T

0
E
h
<hiuV⇤

(V�V⇤), Y i+ 2<huV⇤
�Z1,X(t)i

i
dt.

By using (28), Proposition 5.2, and Corollary 5.1, we obtain

0E
⇢Z T

0

NX

i=1

2

✓
(uV⇤

i (t)�Z1
i (t))Xi(t) + (V⇤

i (t)�Zi(t))(Vi(t)�V⇤
i (t))

◆
dt

+
NX

i=1

2(uV⇤

i (T )� f1
i (T ))Xi(T )

��

=

Z T

0
E
h
�<hiuV⇤

Y,V�V⇤
i+ 2<hV⇤

�Z,V�V⇤
i

i
dt.

Thus for arbitrary V, we conclude that

<h�iuV⇤
Y + 2(V⇤

�Z),V�V⇤
i � 0, a.e. t2 [0, T ], a.s.

Theorem 5.1 can be also viewed as the Pontryagin’s maximum principle. Based
on the above theorem, we propose the corresponding forward-backward stochastic
di↵erential equation (FBSDE) for (25),

iduj =�
1

2
(�Gu)jdt+ ujVjdt+ uj

NX

l=1

Wjl|ul|
2dt+ �juj � dWt,

(34)

dYi(t) =�

8
<

:
i

2

X

i2N(j)

@(�Gu)j
@ui

����
u=uV

Yj � iViYi � i
NX

l=1

Wil|u
V
l |

2Yi

�2i
NX

l=1

Wil<(ū
V
l Yl)u

V
i

)
dt

+
1

2
�2
i Yi(t)dt+ i�iZidt+ 2(uV

i �Z1
i )dt+Zi(t)dW (t),

u(0) =
p

⇢(0)eiS(0), Y (T ) =�2uV⇤
(T ) + 2f1(T ), <hiu

V⇤
Y + 2(V⇤

�Z),V�V⇤i= 0.

If the control problem (25) admits a unique optimal control, and the stochastic gen-
eralized FBSDE also admits a unique adapted solution (u,Y,Z), then u is the optimal
state process and the corresponding control V is optimal.
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2040 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

We could also present the Pontryagin’s maximum principle for (24) with the
constraint (11) and the di↵usion control �i = �j , i, j N .

Theorem 5.2. Let the condition of Proposition 5.2 hold. Then the optimal con-

trol pair (u�⇤
,�⇤) satisfies the generalized stochastic Hamiltonian system consisting

of (11), and

dYi(t) =�

8
<

:
i

2

X

i2N(j)

@(�Gu)j
@ui

����
u=u�⇤

Yj � iViYi � i
NX

l=1

Wil|u
�⇤

l |
2Yi(35)

�2
NX

l=1

Wil<(iu
�⇤

l Ȳl)u
�⇤

i

)
dt

+
1

2
�2
i Yi(t)dt+ i�iZidt+ 2(u�⇤

i �Z1
i )dt+Zi(t)dW (t),

Y (T ) =�2u�⇤
(T ) + 2f1(T ),

with u(0) =
p

⇢(0)eiS(0)
, Y (T ) =�2u�⇤

(T ) + 2f1(T ), and the stationary condition

<h��u�Y � iu�Z + 2(��Z),�� �⇤i � 0 a.e. t2 [0, T ], a.s.

Proof. The proof is similar to that of Theorem 5.1. By applying Propositions 5.2
and using Itô’s formula to <hX(t), Y (t)i, we have that

Z T

0
E
h
<h��⇤u�⇤

Y � iu�⇤Z⇤,�� �⇤
i+ 2<h�⇤

�Z,�� �⇤
i

i
dt� 0,

which completes the proof.

In general, if the cost functional is (30) or (31), the similar result still holds. We
omit this part due to the page limitation. Besides, it can be seen that if the V ⇤

(or �⇤) is achieved in the interior of U (or eU), then the stationary condition could be
simplified to an equality.

6. Conclusion. In this paper, we propose the stochastic control problem subject
to stochastic nonlinear Schrödinger equation on graph with either a linear potential
or di↵usion control. From the numerical viewpoint, we demonstrate the particu-
lar features, such as the stochastic dispersion relationship, mass conservation law,
and moment bounds of energy of stochastic nonlinear Schrödinger on graph. Fur-
thermore, we provide the gradient formula and the Pontryagin’s maximum princi-
ple for stochastic nonlinear Schrödinger equation on graph driven by multiplicative
noise. These may serve as a foundation of the numerical computation for stochastic
control of stochastic nonlinear Schrödinger equation in a continuous domain as well
(see, e.g., [13]).

There are many interesting questions that remain to be tackled. For instance, it
will be more di�cult to investiagete the nonlinear potential and di↵usion controls of
the stochastic nonlinear Schrödinger equation driven by general multiplicative noise.
Given the solutions of the FBSDEs, can this stationary condition uniquely determine
the optimal control for stochastic nonlinear Schrödinger equation on graph? The
stochastic control problem over density manifold, such as the mean-field game involved
with the Fisher information or nonmonotone coe�cient, is challenging. Besides, the
numerical computation has not been addressed in the current work. We plan to
explore these issues in the future work.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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[1] V. Barbu, M. Röckner, and D. Zhang, Stochastic nonlinear Schrödinger equations, Nonlin-
ear Anal., 136 (2016), pp. 168–194.

[2] V. Barbu, M. Röckner, and D. Zhang, Optimal bilinear control of nonlinear stochastic
Schrödinger equations driven by linear multiplicative noise, Ann. Probab., 46 (2018),
pp. 1957–1999, https://doi.org/10.1214/17-AOP1217.

[3] A. Barchielli and M. Gregoratti, Quantum Trajectories and Measurements in Continuous
Time: The Di↵usive Case, Vol. 782, Springer, 2009.

[4] A. Barchielli and A. S. Holevo, Constructing quantum measurement processes via classical
stochastic calculus, Stochastic Process. Appl., 58 (1995), pp. 293–317, https://doi.org/
10.1016/0304-4149(95)00011-U.

[5] A. Borz̀ıand and U. Hohenester, Multigrid optimization schemes for solving Bose–
Einstein condensate control problems, SIAM J. Sci. Comput., 30 (2008), pp. 441–462,
https://doi.org/10.1137/070686135.

[6] J. Bourgain and A. Klein, Bounds on the density of states for Schrödinger op-
erators, Invent. Math., 194 (2013), pp. 41–72, https://doi.org/10.1007/s00222-012-
0440-1.
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