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Abstract

Ecological network analysis (ENA) combines mod-
eling and analysis to study the structure, function,
and organization of ecological food webs. Through
biomimicry, ENA provides nature-inspired metrics for
complex engineering systems. However, the major
challenge is how to apply ENA to dynamic engineer-
ing system, such as buildings. To this end, we first
formulate dynamic ENA on an exergy-basis in com-
prehensive mathematical models and implement the
models in Modelica. Then, we validate our approach
with a commonly referenced natural ecosystem. Us-
ing the Modelica models, we apply ENA for two
building energy systems: an electrical system with
renewable sources and a data center cooling system.
Surprisingly, the results revealed that the data cen-
ter conditioned air loop exchanged more exergy than
the electrical energy supplied to the cooling system.
For the electrical system, organizational metrics on
a spectrum from highly redundant to highly efficient
were in range with studied natural ecosystems, while
the data center could benefit from higher redundancy.
On a power basis, the analysis revealed large tempo-
ral variation in the electrical system’s organization
while the data center remained relatively constant.
The paper concludes with future use cases of ENA
for building design and operation.

Highlights

• The first to adopt ENA for building systems

• Adds complex network information beyond tra-
ditional efficiency-based metrics

• Provides a clear and comprehensive formulation
for dynamic ENA

• Demonstrates that ENA can support the design
and operation of integrated energy systems

Introduction

System integration is critical to attaining essen-
tial energy services with net-zero emissions (Davis
et al., 2018). The same is true for building sys-
tems, where physical and operational integration

across multiple functional domains improves perfor-
mance and comfort (Wetter, 2011). However, tra-
ditional efficiency-based metrics (i.e., input/output
relationships) and optimization objectives (i.e., min-
imize costs, emissions, renewable curtailment) that
still dominate today do not capture network complex-
ity. To address the need for new system-of-systems
(SOS) design and operational objectives, this work
adopts biomimicry (ISO/TC 266, 2015) to develop
biologically-inspired innovations. Many SOS features
that create design and operational challenges for en-
gineering systems are also present in natural ecosys-
tems, which include complex dynamics, connectivity,
agent heterogeneity, and others (Nielsen et al., 2020).
Among the highly diverse and rapidly growing field of
system-level biomimicry, ecological network analysis
(ENA) is a leading approach that can meet this SOS
need (Hinkelman et al., 2023).

In ENA, one analyzes exchanges of energy and/or ma-
terials through trophic levels of food webs to under-
stand relationships between biodiversity and ecologi-
cal stability (Coskun, 2019). Mathematically, ENA
originates from information theory and graph the-
ory, which is detailed in one of the seminal works
by Ulanowicz (1986). Figure 1 depicts the standard
ENA process from the physical ecosystem to the ma-
trix model. The major steps are as follows. First, the
ecological food web is mapped to a weighted digraph
that represents the transfers of energy (or matter)
with respect to participating agents (animals, plants,
etc.) as edges fij , where i is the source and j is
the sink. In Figure 1b, each agent represents a node,
and electrical ground symbols represent losses. With
graph theory, the weighted digraph can simply be rep-
resented as a matrix with elements fij , as shown in
Figure 1c. Here, index 0 represents the inputs or out-
puts with respect to the external environment, and
index n + 1 represents the dissipation losses. From
Figure 1c, ENA applies several whole-system metrics
to quantify the organization of the network.

Since the pioneering works in the 1970’s, ENA top-
ics have spanned a wide range of biological, technical,
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Figure 1: A typical ENA process from the (a) physical system to (b) network digraph to (c) matrix representation.

and social applications. Analysis of food web ecosys-
tems have dominated literature, while energy and ur-
ban metabolism and wetland water systems have also
benefited from ENA (Borrett et al., 2018). Lever-
aging biomimicry, engineering applications include
industrial systems (Layton et al., 2016), manufac-
turing supply chains (Chatterjee and Layton, 2020),
and cyber-physical power systems (Chatterjee et al.,
2021). To date, all engineering studies focus on de-
sign with steady state ENA models. Although dy-
namic ENA (D-ENA) has been proposed in biologi-
cal contexts (Coskun, 2019), there have yet to be any
applications for dynamic engineering systems.

As such, it remains unclear how effective ENA is for
such systems, which are dominant in real-world appli-
cations. To fill this gap, the purpose of this study is to
develop and evaluate ENA for integrated building en-
ergy systems, which are complex dynamic engineering
systems. First, we develop a comprehensive formula-
tion for D-ENA in an engineering context. After val-
idating the ENA implementation with a well-studied
model, we then demonstrate the new analysis method
for two case studies. As a novel method in the build-
ing’s domain, we conclude with future use cases of
ENA for both design and operation scenarios.

Methodology

Overview

This work addresses the need for new whole-systems
analysis methods for integrated building energy sys-
tems. To solve this problem, we follow a Biomimet-
ics Technology Pull approach from problem definition
to prototyping (ISO/TC 266, 2015). In this work,
food webs provide natural models to understand (1)
how energy distributes through complex networks in
ecosystems and (2) how trade-offs between efficiency
and redundancy can improve an ecosystem’s ability
to rebound from disturbances (i.e., be resilient) and
sustain life over time.

Similar to food webs, building energy systems are also
complex networks, with several resiliency and sustain-
ability aims being addressed by increasing renewable
energy resources, expanding prosumer functionality,
and incorporating energy diversity, among others.

With ENA, network organization metrics provide new
information for engineering systems beyond the capa-
bilities of traditional efficiency metrics that dominate
today. While some preliminary works formulated D-
ENA in biological contexts (Coskun, 2019), none are
yet suitable for engineering applications. The pri-
mary contributions of this paper are the transfer of
D-ENA methods from biology to engineering and the
application of the new method for two case studies.

The following sections present D-ENA, which is suit-
able for dynamical, networked engineering systems.
While this paper focuses on energy applications, this
formulation could also be used for dynamic mate-
rial networks (e.g., manufacturing/supply chains) or
financial networks (e.g., corporate economics). For
building energy systems, D-ENA is suitable for sev-
eral scales, from equipment to complete grids.

Nomenclature

In biomimetics, it is common that the mathematical
languages used in biology differ from those used in
the engineering applications. As much as possible,
we followed standard mathematical notation for the
targeted building science audience, while maintaining
variable assignments from ENA’s biological origins.
Like Coskun (2019) and Ulanowicz (1986), we define
for n functional nodes: Xi(t) is the total storage in
node i with i = 1, ..., n at time t; ḟij(t, ·) is the non-

negative flow rate from node i to j at time t; ḟi0(t, ·) is
the flow rate leaving the system boundary from node
i at time t; ḟ0i(t, ·) is the flow rate entering the system
boundary into node i at time t; and ḟi,n+1(t, ·) is the
dissipation rate (i.e., destruction rate) from node i at
time t. Encompassing all flows, the total flow matrix
is F = (fij) with 0 ≤ i, j ≤ n+1. Figure 2 visualizes
this nomenclature.

In addition to the above assignments, we adopt sev-
eral standard nomenclature from the engineering do-
main. Following thermofluid sciences, a dot above the
variable indicates a flow rate (e.g., ḟ corresponds to
power [W], while f corresponds to energy [J]). Thus,
over simulation period t ∈ [t1, t2), it follows that

fij =

∫ t2

t1

ḟij(t, ·)dt. (1)



System Boundary

Compartment 𝑖
𝑥𝑖(𝑡,∙)

End Use Outputs

Heating/cooling to zone
Ventilation to zone
DHW
Lighting
Plug loads
Process

Useful Exports

Renewable electricity
Fuels created by system
Thermal resources

Inter-compartmental transfer

External input to system

External output from system

Legend

Dissipations/
losses

Compartment 𝑗
𝑥𝑗 (𝑡,∙)

Primary Energy Sources

Natural gas
Coal, Biomass
Nuclear, Solar, Wind, Etc .

Ambient Environment

Direct radation
Convection
Lake water, Etc.

Figure 2: A generic full two-node network and system boundary for ENA in a building’s context.

For multivariate functions, a center dot as in fi(·) in-
dicates that f is dependent on several other indepen-
dent variables, which tend to vary across all i nodes.

Network Structure and Flows

Figure 2 depicts our suggested system boundary for
ENA in a building’s context, with flows to and from
two nodes. We define the system boundary such that
the total system efficiency ηs is

ηs =

∑
f0i∑
fi0

=
end use outputs+useful exports

primary energy+environment inputs
. (2)

Examples of end use exports, useful exports (to other
heterogeneous systems), and primary energy/envi-
ronmental inputs are given in Figure 2. In this work,
we adopt the definition for primary energy by Stan-
dard 105 (ANSI and ASHRAE, 2014), which includes
site energy plus all energy consumed/lost from the
point of extraction of primary energy forms (e.g., coal,
natural gas, nuclear fuel). The resolution of nodal
boundaries can be selected based on the modeler’s
needs and data availability. For example, a district
energy simulation may lump the HVAC system for
each building as one node, while a single building sim-
ulation may represent each equipment as one node.

For any node i, the governing system of equations for
D-ENA is

dXi

dt
=

n+1∑
j=0

ḟji(t, ·)︸ ︷︷ ︸
inward flow rates

−
n+1∑
j=0

ḟij(t, ·)︸ ︷︷ ︸
outward flow rates

(3)

Xi(t0) = Xi,0, ∀ i = 1, ..., n,

where Xi is the useful energy (i.e., exergy) stored in
node i at time t; the first summation represents all
inward flow rates to i; and the second summation rep-
resents all outward flow rates from i. For the complete
system, the balance is

n∑
i=1

dXi

dt
=

n∑
i=0

[
ḟ0i(t, ·)− ḟi0(t, ·)− ḟi,n+1(t, ·)

]
. (4)

Further explanation on the need for exergy analysis
is given under Implementation.

ENA Metrics

Beyond structure and flows, ENA leverages informa-
tion theory to quantify the organization of conserved
properties in complex networks. In standard ENA,
the foundational metrics are the capacity for system
development c, the ascendancy a, and the overhead
ϕ. Defined in Ulanowicz (1986), these are

c = −
n+1∑
i=0

n+1∑
j=0

fij
Ψ

ln

(
fij
Ψ

)
, (5)

a =

n+1∑
i=0

n+1∑
j=0

fij
Ψ

ln

(
Ψfij

τout,iτin,j

)
, and (6)

ϕ = −
n+1∑
i=0

n+1∑
j=0

fij
Ψ

ln

(
f2
ij

τout,iτin,j

)
, (7)

where Ψ represents the total system throughput as

Ψ =

n+1∑
i=0

n+1∑
j=0

fij , (8)

and τin,i and τout,i represent the total inward and
outward throughflows at node i as

τin,i =

n+1∑
j=0

fji and (9)

τout,i =

n+1∑
j=0

fij . (10)

A frequently adopted metric, degree of system order
α = a/c indicates the organization (or the lack of
flow diversity) in a networked system. By definition,
the decomposition of capacity is c = a + ϕ. Thus,
it is guaranteed that α ∈ [0, 1] because a ≤ c and
c, a, ϕ ≥ 0. As unitless ratio from 0 (high redun-
dancy/diversity) to 1 (high efficiency/low diversity),
it is an effective metric to compare order across dif-
ferent systems (Ulanowicz, 2004) and for evaluating
resiliency (Chatterjee and Layton, 2020). With this
basis, previous ENA literature identified a window
of vitality for biological ecosystems that clustered in



25% ≤ α ≤ 53% (Chatterjee et al., 2021). Previ-
ous ENA studies show that ecosystems falling in this
range are at an optimal balance between redundancy
and efficiency, and that this range can be considered
a desirable level of organization for sustainable devel-
opment (Fath, 2015).

Lastly, Finn’s Cycling Index FCI “accounts for the
percentage of all [flows] that is generated by cy-
cling” (Allesina and Ulanowicz, 2004). Mathemati-
cally, FCI is

FCI =

n∑
i=1

τin,i
Ψ

(
lii − 1

lii

)
, (11)

where lii is the ith entry along the diagonal of the
Leontief matrix L = [I −G]−1, with identify matrix
I and fractional inflow matrix G = (fij/τin,i). For
100 ecosystem models, Borrett and Lau (2014) found
that FCI ranged from 0–98% with a mean of 38%.
Layton et al. (2016) found that maximizing FCI as a
biologically inspired optimization objective for indus-
trial supply chains correlates strongly with traditional
objective functions based on emissions and costs.

Equations (5)-(11) are standard ENA. However, there
are a few notable differences between this and previ-
ous ENA works. First, we adopt Ψ for total sys-
tem throughput instead of the commonly-used T , be-
cause T is used for temperature in thermofluid sci-
ences. Second, extrinsic ENA metrics are often used
(C, A, and Φ), where A = aΨ encompasses both
the “total activity” through Ψ and the “organization
by which component processes are linked” through
a (Ulanowicz, 2004). Instead, we adopt the intrinsic
versions (c, a, and ϕ) to maintain equivalence with
information theory and allow the results to be ex-
tensible to other system types and sizes, similar to
Rutledge et al. (1976). Third, ENA metrics allow for
several logarithmic bases to be appropriate. While
log2(·) is often selected (such as in Ulanowicz (1986),
where the units for a, c, and ϕ are “bits”), we keep
consistency with data science and engineering prac-
tices by adopting ln(·) (base e with units of “nats”).

Finally, we formulate ENA for dynamical systems,
which, to our knowledge, is novel for engineering ap-
plications. As such, we replace constant the fij terms
with dynamically-calculated, multivariate functions
using (1). This extends Coskun (2019), where net-
work structure and flows were defined dynamically,
but ENA metrics were excluded. Further, to un-
derstand ENA metrics dynamically, we newly define
them on a power-basis (indicated with subscript p).
For example, power-based ascendancy ap is

ap =

n+1∑
i=0

n+1∑
j=0

ḟij
Ψp

ln

(
Ψpḟij

τ̇out,iτ̇in,j

)
, (12)

where Ψp =
∑

ij ḟij is the total system throughput
power. Other metrics (cp, ϕp, αp, etc.) follow a sim-
ilar approach. Further, we advance Coskun’s work

from ecological systems with low-order ordinary dif-
ferential equations to engineering systems with stiff,
hybrid differential algebraic equations. As such, this
work is the first to provide a pathway for applying D-
ENA for numerous complex system models across the
engineering sciences and real-world practices.

Implementation

By convention, ENA represents all flow rates ḟij in
absolute terms. This is in contrast to standard energy
analysis of thermofluid systems, where control volume
analysis involves relative changes in fluid’s enthlapy
across system boundaries. To allow meaningful com-
parisons across multiple energy types (i.e., electricity
to hot water), we formulate all flow rates ḟij on an ex-
ergy basis. For the exergy dead state, this work uses
the current outdoor air temperature. This provides
the most meaningful formulation because (1) exergy
is concerned with the portion of energy that has the
potential to do work with respect to the surroundings,
and (2) operating temperatures for building systems
are frequently near ambient, and both the operating
and ambient temperatures vary with time.

Unique among ENA literature, this work adopts a
generic balance for the exergy X in node i as

dXi

dt
=
∑
k

(
1− T0

Tk

)
Q̇k (13a)

−
(
Ẇ − p0

dVcv

dt

)
(13b)

+
∑
j

ṁj |(hj − h0)− T0 (sj − s0)| (13c)

−Ẋf + Ẋke + Ẋpe − Ẋd, (13d)

where the right hand terms in (13) represent the heat
transfer (13a); the useful and boundary work (13b);
the thermofluid inflow and outflow (13c); and the
chemical exergy of fuels, kinetic and potential en-
ergy, and exergy destruction (13d). Temperature is
T , pressure is p, volume is V , heat flow rate is Q̇,
work rate is Ẇ , mass flow rate is ṁ, specific enthlapy
is h, and specific entropy is s. For subscripts, 0 is
the dead state, cv is the control volume, f is chem-
ical fuel, ke is kinetic energy, pe is potential energy,
and d is destruction. In (13c), we formulate the ther-
mofluid exergy with absolute values to maintain the
same sign direction as the mass flow rate regardless
of whether the fluid is cold or hot relative to the dead
state (Jansen and Woudstra, 2010). This ensures that
all fij ≥ 0, consistent with ENA standards and the
standard conceptualization that all useful work is pos-
itive. Exergy analysis is a well-established field by
itself; for a building’s context, interested readers can
find more information in Evola et al. (2018).

To enable ENA of complex, dynamical system models
for the first time, we implement D-ENA in Modelica,
an equation-based and object-oriented modeling lan-
guage. There are several benefits to this, including



the support of both causal and acausal modeling and
the availability of several numerical solvers. Exam-
ples of Modelica-based modeling related to this work
are available in the Modelica Buildings Library (Wet-
ter et al., 2014) and the Biomimetic Integrated Com-
munity Energy and Power Systems (BICEPS) Li-
brary (Hinkelman and Zuo, 2022).

Validation

To validate our Modelica formulation, we imple-
ment a commonly-cited model from ecology: Cone
Springs (Tilly, 1968). This cold spring ecosystem in
Iowa, U.S. has often been studied in ecology because
of its small size, isolated location, and relatively con-
stant physical and chemical conditions (Tilly, 1968).
Depicted in Figure 3, the Cone Spring ENA model is
steady state with five nodes (plants, detritus, bacte-
ria, carnivores, and detritivores).
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Figure 3: Energy exchange network (Wh/m2/y) for
Cone Springs. Solid edges represent inter-nodal
exchanges; dotted edges represent external inputs;
dashed edges represent external outputs; and ground
symbols represent dissipations.

The network structure and flows in Figure 3 (with-
out dissipations) are inputs for the Modelica model.
Then, we run the steady state simulation to calcu-
late dissipations and all ENA metrics. From this
simulation, the calculated Ψ was 49.3 kWh/m2/y; a
was 0.926 nats; c was 2.22 nats; ϕ was 1.29 nats;
α was 41.8%, and FCI was 6.60%. All values ob-
tained for final ENA metrics and intermediate calcu-
lations (i.e, elements of L) are consistent with previ-
ous works (Ulanowicz, 1986, 2004).

Case Studies

We select two models in the Modelica Buildings Li-
brary (Wetter et al., 2014) v9.0.0 for demonstra-
tion: (1) a grid-tied electrical system with renewable
sources and (2) a data center cooling system with
integrated chillers and waterside economizer (WSE).
Both models are extended with D-ENA and simulated
with CVODE solver for one year. In this section, we
present the case study models and simulation results.

Renewable Sources Model

The RenewableSources model in the Buildings Li-
brary’s Electrical subpackage demonstrates the im-

pact of renewable sources on the electric grid. This
model contains seven loads, seven photovoltaic (PV)
arrays, one wind turbine, an electric grid connection,
and eight power lines. The PV and wind turbine
sizing result in load cover factors between 40 and
110%. From the system model, we first map all equip-
ment to nodes and draw the directed network graph.
This network graph is shown under Results in Fig-
ure 5a. Then, we determine all functions ḟij(t, ·) and
formulate F, from which all following ENA metrics
are calculated as post-processing blocks. Figure 4
shows the final model, which includes the base Re-
newableSources system model; ten ENA node blocks
(circles overlaid on model equipment); three primary
inputs; one end use output; and ENA post-processing
for ENA below the system. The network description
blocks store all fij elements as a total flow matrix
F, from which all following metrics are causally cal-
culated. Consistent with Peterson et al. (2015), we
assume a source energy conversion factor of 3.15 for
imported electricity and exported renewable energy.
For a primary energy basis, wind and PV electric-
ity production are considered 100% per ANSI and
ASHRAE (2014). Meanwhile, we assume 90% DC-
to-AC conversion efficiencies.
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Figure 4: Modelica diagram of the RenewableSources
model with ENA nodes and post-processing calcula-
tion blocks indicated with orange.

This model involves dynamic flows and steady energy
balances, since energy storage is negligible for these
electrical components. As an example, the balance
(3) for node 2 (power lines 1-7) is

0 = Pele + Pwin +
∑

Ppv −
∑

Ploa − Ploss, (14)



where P is power and subscripts ele is the electric
grid, win is the wind turbine, pv is photovoltaic, loa
is the end use loads, and loss is losses in the wires.
For electrical systems, note that (14) represents both
the energy and exergy balance.

Data Center Model

For a thermofluid example, we adopt the data cen-
ter cooling system IntegratedPrimaryLoadSideEcon-
omizer from the Applications/DataCenters package
of the Buildings Library. To cool the data center
server room, the system contains two chillers, an inte-
grated WSE, two cooling towers, and an air handling
unit (AHU) with humidification. Similar to Figure 4,
we extend the existing Buildings Library model with
ENA nodes and post-processing blocks. This sys-
tem contains four nodes (cooling tower subsystem,
chiller/WSE subsystem, AHU, and electric grid); one
primary energy source (source energies from the elec-
tric grid); and one end use output (server room). The
network graph for this system is shown under Results
in Figure 5b.

Because this system contains both thermofluid and
electrical energy flows, we model the network with
exergy balances. We assume the cooling tower and
chiller/WSE subsystems have dynamic exergy bal-
ances, while the AHU and electrical grid are steady
with negligible storage. For an example, exergy in
node 3 (chiller/WSE subsystem) is

dX3

dt
= ḟ13 + ḟ23 + ḟ43 − ḟ32 − ḟ34 − ḟ35 (15)

= Pch + Pchwp − Ẋd3

+ ṁcws|hcws − h0 − T0(scws − s0)|
+ ṁchwr|hchwr − h0 − T0(schwr − s0)|
− ṁcwr|hcwr − h0 − T0(scwr − s0)|
− ṁchws|hchws − h0 − T0(schws − s0)| and

X3 =

4∑
i=1

mch,i|hch,i − h0 − T0(sch,i − s0)|, (16)

where subscripts ch is chillers, chwp is chilled water
pumps, chws is chilled water supply, chwr is chilled
water return, cws is condenser water supply, and cwr
is condenser water return. Subscript 0 represents the
dead state, taken as water at thermodynamic equilib-
rium with the surrounding air (atmospheric pressure
and outdoor air drybulb temperature). When air is
present (e.g., in the AHU), we use dynamic mass frac-
tions of water vapor for both the outdoor air (dead
state) and conditioned air. For the chiller/WSE, (15)
is the dynamic exergy balance, while (16) is the ex-
ergy stored in the chiller water volumes at time t.
Together, the solver calculates the time-varying ex-
ergy destruction (i.e., dissipation) Ẋd3.

Results

Table 1 presents the ENA metrics for both case stud-
ies over annual simulations. The total system efficien-

cies ηs (2) for the renewable sources and data cen-
ter models are 42.4% and 83.1%, respectively. While
a is similar for both systems, renewable sources has
higher c and ϕ. This results in an renewable sources
α within the window of vitality, while the data cen-
ter α indicates that the system could benefit from
higher redundancy. For FCI, both systems exhibit
low degrees of cycling.

Table 1: ENA metrics for the two case study systems.

Metric
Renewable Data

Units
Sources Center

Ψ 546 29100 MWh/y
a 0.919 0.924 nats
c 2.56 1.48 nats
ϕ 1.64 0.561 nats
α 35.9 62.2 %

FCI 2.63 0.581 %

Figure 5 shows the exergy exchanges throughout
each network as weighted digraphs. For the re-
newable sources, the path source energies→electrical
grid→dissipations dominates all possible paths. For
the data center, the simple cycle between the AHU
and server dominates. This latter result is surpris-
ing because electricity is the highest quality energy,
and thus we often expect electrical exergy to domi-
nate. Two findings are important to understand this
result. First, the relative change in exergy between
supply and return air streams is smaller than the elec-
trical exergy flows, which follows expectations. Sec-
ond, the absolute-flow perspective with ENA reveals
that the air cooling the data center server room op-
erates as a high exergy loop. Compared to the water
loops in Figure 5b (which are low exergy), the con-
ditioned air loop is high exergy because (1) the sup-
ply air mass flow rate ṁsa is 7.9 times higher than
ṁchws on average, (2) the mass fraction of water in
the conditioned air is 3.4 times higher than the aver-
age outdoor air mass fraction due to humidification
in the AHU, and (3) Tra > Tsa > Tchws and often
Tra, Tsa ≫ T0, where Tra is the return air tempera-
ture from the server room. Contrary to studying rel-
ative energy/exergy flows, as typically done, this ab-
solute exergy network-based perspective reveals op-
portunities to capture waste heat and/or switch to a
liquid cooling technology for server equipment.

Figure 6 presents the evolution of ENA metrics on
a power-basis. Across all power-based metrics, the
data center exhibits relatively low variability with re-
spect to time. Mean and standard deviations for the
data center ap, cp, ϕp, and αp are 0.92±0.033 nats,
1.6±0.19 nats, 0.69±0.18 nats, and 58±5.5%, respec-
tively. In contrast, the renewable sources model has
high daily variability in multiple power-based ENA
metrics. Mean and standard deviations for renew-
able sources ap, cp, ϕp, and αp are 1.0±0.055 nats,
2.0±0.60 nats, 0.92±0.56 nats, and 58±14%, respec-
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Figure 6: Evolution of power-based ENA metrics for Renewable Sources and Data Center models.

tively. Changes in cp and ϕp are directly proportional
to
∑

Ppv, while αp is inversely proportional to
∑

Ppv.
This follows expectations, where higher power diver-
sity resulted in lower degree of system order.

Conclusion

While efficiency indicates the ratio of outputs to in-
puts, ENA gives an indication of network complexity
and quantifies organization in several ways. This pa-
per is the first to demonstrate D-ENA for engineering
applications, and the first to apply ENA for building
systems. After formulating D-ENA in Modelica, the
electrical (renewable sources) model exhibited simi-
lar performance in the efficiency-to-redundancy trade
space as sustainable natural ecosystems, while the
thermofluid (data center) system results suggested
that higher redundancy may be desired. Meanwhile,
low degrees of cycling were present in both systems,
indicating an opportunity to improve cycling through
waste recovery or other recycling technologies for fu-

ture integrated and resilient energy systems.

As a pioneering study on D-ENA, applying this
method for design or operation of engineering systems
remain unexplored. In a design context, future stud-
ies may leverage network information to select tech-
nology investments (e.g., add PV or storage, switch to
liquid cooling). For operational purposes, it would be
interesting to evaluate the benefits of α and FCI for
determining system response strategies under stress.
With the transition of energy and building systems
towards dynamic, interconnected, zero-emission sys-
tems, innovative methods such as D-ENA may pro-
vide invaluable information.
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