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Supervised Learning in a Multilayer, Nonlinear
Chemical Neural Network

David Arredondo

Abstract—The development of programmable or trainable
molecular circuits is an important goal in the field of molecular
programming. Multilayer, nonlinear, artificial neural networks
are a powerful framework for implementing such functionality
in a molecular system, as they are provably universal func-
tion approximators. Here, we present a design for multilayer
chemical neural networks with a nonlinear hyperbolic tangent
transfer function. We use a weight perturbation algorithm to
train the neural network which uses a simple construction to
directly approximate the loss derivatives required for training.
We demonstrate the training of this system to learn all 16 two-
input binary functions from a common starting point. This
work thus introduces new capabilities in the field of adaptive
and trainable chemical reaction network (CRN) design. It also
opens the door to potential future experimental implementations,
including DNA strand displacement reactions.

Index Terms— Chemical reaction networks (CRNs), hyperbolic
tangent, neural networks, nonlinearity.

I. INTRODUCTION

HE field of molecular programming lives at the inter-

section of computer science and wet chemistry. A key
goal in this field is to interface rationally designed information
processing systems with biology. Engineered nucleic acids can
implement computational systems capable of reproducing the
behavior of conventional algorithms, using biomolecules as
inputs, outputs, and computational components. Such systems
have been designed to implement a range of computational
frameworks, including digital logic circuits [1], [2], signal
amplifiers [3], distributed algorithms [4], localized molecular
computations [5], molecular oscillators [6], and intracellular
computations [7].

Here, we focus on the implementation of algorithms via
reactions between abstract chemical species, which could,
in principle [8], be implemented using toehold-mediated
DNA strand displacement [9]. In molecular programming,
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the requirement to redesign a new molecular circuit for each
different computation hinders the pace of development. There-
fore, the ability to implement programmable or “trainable”
molecular circuits with adaptive behavior would significantly
enhance the state of the art. The contribution of this article is a
design for such a system: a chemical reaction network (CRN)
that implements a trainable autonomous artificial neural net-
work with a mathematically well-defined learning algorithm.

Molecular computing systems that react in real time
to changing biomolecular inputs, such as blood glu-
cose levels [10] or mutating viral genomes in biomedical
diagnostics [11], would be a valuable tool for the biomedical
sciences. Previous molecular implementations of neural net-
works [12], [13] can be configured to yield a desired output for
a given input; however, they must be trained in silico because
they lack the feedback mechanisms necessary for autonomous
learning within the chemical system itself. To date, proposals
for autonomous learning systems fall short in that they only
qualitatively implement the behavior of a neural network [14].
Other proposed systems cannot learn nonlinear functions such
as XOR [15]-[17].

We present a CRN that implements the stochastic gradient
descent algorithm to train a multilayer, nonlinear artificial
neural network. Our network architecture is multilayer because
it has two layers: a hidden layer (containing two neurons)
and an output layer (containing one neuron). The stochastic
gradient descent algorithm is used to train the neural network
to reproduce the behavior of a particular function. Using
computational simulations of a deterministic kinetic model
derived from the CRN, we show that the network can be
trained to implement any of the 16 two-input Boolean logic
functions via supervised learning [14], [17]. Training examples
consist of two binary input signals and the respective binary
output. In each training round, the desired output is compared
to the output of the network given its current weights. The
partial derivative of the loss (output error) with respect to a
particular weight is used to update that weight value in the
network so as to reduce the loss in subsequent rounds.

Our network is nonlinear because each artificial neuron
incorporates a nonlinear transfer function. Specifically, we use
the hyperbolic tangent, a continuous sigmoid that squashes its
input into the interval (—1, 1) and that is of practical interest
in mainstream machine learning research. We report a novel
construction that allows the hyperbolic tangent of an input
signal to be computed exactly using a small set of abstract
chemical reactions, thereby enabling a mathematically precise
definition of the behavior of our CRN.

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.htm! for more information.

Authonzed licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on October 09,2023 at 22:13:18 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-2477-9162
https://orcid.org/0000-0002-8516-4789

ARREDONDO AND LAKIN: SUPERVISED LEARNING IN MULTI-LAYER, NONLINEAR CHEMICAL NEURAL NETWORK

(@) (b)

X0 xwo

Xn XWn

(©) -1

X1

XWO00

XWO01 NO

—
-

XWI11

X2 XW12

Fig. 1.

T

Architecture of our artificial neural network system. (a) A single artificial neuron computes a weighted linear sum of its inputs and then passes the
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result of that sum through a nonlinear transfer function to produce its output value. (b) Graph of the tanh transfer function, which we use in this work, over
the interval (—10, 10). The tanh function is a sigmoid that squashes its input into the interval (—1, 1). (c) The particular artificial neural network instance

under study here. There are two input signals, X1 and X2. These are fed into

the two “hidden layer” neurons, NO and N1. The outputs of the two hidden

layer neurons, HO and H1, feed into a single “output layer” neuron, N2, which produces the final output signal ¥. Each neuron has a total of three inputs,
the third being a “bias™ signal which is always set to —1. Each input signal to each artificial neuron has its own weight, thus there are nine weights in total.

We write Wij for the weight associated with the jth input to neuron Ni.

A key aspect of the gradient descent algorithm is com-
puting the derivative of the loss function. We address this
issue by directly approximating the partial derivative of the
loss function by finite difference approximation using weight
perturbation [18]. For each training example, another output
is computed in parallel by a copy of the network with a small
change in one of its weights, and the difference between these
outputs is proportional to the partial derivative of the loss
function with respect to the given weight. We show that from
the same set of initial weight values, all 16 binary operators
are learned by the CRN in ten rounds of training and also
generalize to a highly parallel construction in which all of the
weights are perturbed in parallel. Our work thus provides a
novel design for a learning CRN that could find application
in adaptive and trainable molecular computing systems.

II. RESULTS

The structure of our CRN is shown in Fig. 1, which shows
the basic architecture of an artificial neuron [see Fig. 1(a)],
a plot of the hyperbolic tangent (tanh) function that we will
use as the nonlinear transfer function in our artificial neurons
[see Fig. 1(b)], and the architecture of the neural network
that we will implement as a CRN and train [see Fig. 1(c)].
This architecture takes two inputs (X1 and X2) that are both
passed to two hidden-layer neurons (NO and N1). The outputs
(HO and H1) of the hidden layer neurons feed into a single
output layer neuron (N2), whose output (Y) is the overall
network output. Each neuron also has a third “bias” input
whose value is always —1. This neural network architecture
is simple and yet powerful enough to learn all of the two-
input binary functions, including those that are not linearly
separable, such as XOR [14].

To simplify the presentation, we break down the network
into logical constituent parts, which we describe separately.
We then present simulation results that demonstrate mathe-
matically faithful implementation of our weight perturbation
training algorithm for artificial CRN neurons using the practi-
cally relevant tanh function as their nonlinear transfer function.
We show this both for the simple case where a single weight
is perturbed in each training round and for the generalization
that can update all of the weights in parallel.

A. CRN Model and Simulation Process

We use a deterministic ordinary differential equation (ODE)
model of chemical reaction kinetics. We assume that reactants
and products of individual reactions may be arbitrary multisets
of chemical species, that is, reactions with arbitrary numbers
of reactants and products are permitted. We use standard mass
action kinetics and our simulation approach is to use the mass
action rate law to convert the abstract CRN into a collection
of ODEs. We then carry out deterministic simulations of
network dynamics using a simulator written in Python that
we call ProBioSim, which constructs the ODEs from the
CRN notation and integrates them. Importantly, the ProBioSim
simulator provides the ability to perturb the system after time
t = 0, which corresponds to the subsequent addition of species
representing the training instances. This simulator is available
online from: https://github.com/matthewlakin/ProBioSim/.

B. Learning CRN Architecture

We begin by discussing the version of the system in which
a single weight is updated during each training round. The
high-level architecture of this learning CRN is presented in
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Fig. 2. Overview of chemical reaction network architecture for training an artificial neural network via weight perturbation. The input signals Xi and
associated weights Wi, are inputs to the system. For supervised leaming, the target output value T must also be supplied. These inputs are duplicated into
two copies of the network, the main network and the shadow network, where the shadow network has one weight Wi perturbed by an amount AWi. Both
networks use the input values, weight values, and target values to compute the loss incurred by the network relative to that target value. All of these signals are
represented as concentrations of species in an abstract CRN. For the main network, the value of the loss species represents when weight Wi is unperturbed,
that is, L(Wi). For the perturbed network, the value of its loss species represents the loss when Wi is perturbed by an amount AWi, that is, L(Wi + AWi),
that is, the loss under the perturbed version of the weights. These loss values are subtracted and then multiplied by (a/AWi) to produce the corresponding
weight update amount for the perturbed weight Wi. This is then fed through a demultiplexer, which uses a “selector” species SELECTWi to determine which
of the weights that value will be fed back into. This feedback process modifies the concentrations of the weight species so that the next training round will

take place starting from those modified weights and can then modify them further.

Fig. 2. The network is actually implemented twice, by similar
CRNs containing distinct abstract chemical species. We refer
to these as the “main” and “shadow” networks. We append
the prime symbol (or Prime) to the shadow network species
names to distinguish them from the corresponding species
in the main network. For example, the shadow network
counterpart of a species X would be X'. The weights are
stored as the concentrations of certain species in the main
and shadow networks, which are kept in sync by the design
of the circuit. The inputs at each supervised training round
are the input values and the expected (“target”) output value.
These first undergo a fan-out process that duplicates them
into both the main and shadow networks with equal values in
each. The main network computes the output of the network,
and the associated loss L, according to the current stored
weight values and these presented inputs, according to L =
(Y — T)?, where Y is the output from the network and T
is the target (expected) output. The shadow network, on the
other hand, has one of its weights (Wi say) perturbed by a
small amount A Wi, so its computed loss value will be slightly
different. This perturbation is achieved in the CRN by adding

the corresponding additional amount of the Wi " that represents
that weight in the shadow network. By comparing the different
loss values computed by the main and shadow networks, the
first derivative of the loss with respect to the perturbed weight
can then be estimated, as outlined below. This value is then
fed back to update the selected weight, which completes the
training round. We now present the detail of how the different
parts of the circuit are implemented as an abstract CRN.

C. Timing Reactions Using a Molecular Clock Signal

A key aspect of implementing a neural network CRN is tim-
ing chemical reactions to occur in the correct order. We follow
the approach of Vasic et al. [19], using a molecular oscillator
to produce a “clock signal” that controls the availability of
catalyst species Ci that catalyze the other reactions, so they
can only occur with a non-negligible rate during the clock
phase where that clock signal is high. This produces a system
that runs as autonomously as possible, relying only on the
inputs provided at the start of each training round to drive the
computation. Our clock reactions are as follows:
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TABLE I
DIVISION OF LEARNING CRN OPERATIONS INTO CLOCK PHASES
Clock phase Reactions
C1 Fan-out inputs to main and shadow network(s)
C3 Compute weighted sums for hidden layer neurons (N0, N1)
C5 Compute tanh transfer function for hidden layer neurons (N0, N1)
cT Compute weighted sum for output layer neuron (N2)
c9 Compute tanh transfer function for output layer neuron (N2)
C11 Compute loss in main and shadow network(s)
C13 Compute estimate of loss derivative(s)
C15 Feed back loss derivative estimate(s) to update weight(s)
C17 Reset for next round by degrading certain species
kClock . . . e
1) C1+C2 L c2+C2 E. Dual-Rail Species Representations and Annihilation
kClock .
2) C2+C3 — C3+C3 Reactions

3) ...
4) c20+C1 X% 14 c1.

We use an oscillator with 20 phases to serve as our clock.
We only use the odd-numbered clock signals to catalyze the
other reactions in the system, so that the different phases
of execution do not overlap. In our simulations, we set the
kClock rate constant to 0.1. The clock signals C19 and
C20 are initially set high, with concentration 1.0, and all
other clock signals are initially set low, with a concentration
of 107°. These settings give a clock phaselength of ~72.9 time
units, which empirically is sufficient to carry out the required
reactions for our design in each clock phase. This value is
used in the timing of the perturbations required to carry
out learning, as outlined below, since the training examples
and weight perturbation species must be introduced at the
start of the C1 clock cycle. The division of the operations
of our learning CRN into different clock phases is outlined
in Table I.

D. Reaction Rates

All reactions other than the clock reactions will have rate
constant k£ = 1.0. The correctness of our CRN does not depend
on the precise value of k. However, many of the reactions
rely on competitive processes to compute the correct result,
meaning that the rate constants for those reactions should be
the same as those with which they compete. Since our CRN
design is highly abstract, we assume arbitrary units of time
and concentration when specifying initial conditions and rate
constant values. As such, we do not state these units explicitly
and, in an abuse of notation, we use the same rate constant
symbol for reactions that have different numbers of reactants
and whose rate constants would thus have different units. Here,
we really just mean that the rate constants for those reactions
have the same numeric value.

We note that, for the correctness of our system, all of
the reactions do not necessarily need to have the same rate
constant value; only in the case where particular reactions are
in direct competition over reactants, such as in the catalytic
multiplication motif outlined below, do those particular reac-
tions need matching rate constants. If competitive reactions
have distinct rate constants and these are known, then the
discrepancy can be compensated for by adjusting the input
amounts. If not, then the rate mismatch will introduce errors
into the result of those reactions in proportion to the degree
of mismatch.

Most of the signals involved in our system could be either
positive or negative. However, the concentrations of chemical
species can only be positive. Therefore, to represent these
signals, we use a dual-rail representation [20], whereby each
signal (X say) is actually represented by two chemical species:
X p representing the positive component and Xm representing
the negative component. Then, the value of the X signal at
any point is actually given by the difference between these
concentrations, [Xp] — [Xm]. We include an annihilation
reaction between the positive and negative components of
every pair of dual-rail signal species in our system so that only
the positive or negative component of a given signal will be
present with non-negligible concentration. For example, the
annihilation reaction for the dual-rail signal X would be as
follows:

1) Xp+XmS.

Henceforth, we will assume that signals are dual-rail unless
stated otherwise.

E. Fan-Out of Input Signals

To ensure that the input and target output signals are
represented with the same values in both the main and shadow
networks, each of the signals is presented as a single species.
These then undergo fan-out reactions where they are consumed
and converted into two new signals corresponding to the inputs
and targets for the main and shadow networks. Reactions are
provided to duplicate both the positive and negative dual-
rail components of these input species, and these are all
driven by clock signal C1 as they are the first thing that
must occur in each training round. For example, the two
reactions that handle the fan-out of the X1 input signal are
as follows:

1) C1+X1p L c1 +X0lp+X11p+X01p' +X11p’

2) C1+X1m LA Cl1+X0lm+X11m+X01lm'+X11m"'.
Note that each species is duplicated twice for both for main
and shadow networks, because the X1 signal serves as an
input to neuron NO as X01 and to neuron N1 as X11. The
reactions for X2 are similar, and those for BIAS duplicate the
signal three times for each network, as this signal (always
having value —1) is fed into all three neurons as the bias
term. In short, execution of the fan-out reactions prepares both
the main and shadow networks to carry out computations in
parallel on their own copies of the input signals.
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G. Computing Weighted Sums

The first step of computing the output signal for a given
neuron is to compute the weighted sum of its inputs. Here,
we use an approach inspired by previous work [17], [21].
The weight and input species together catalyze production of
the output species, and the input degrades with the same rate
constant value. Thus, if the weight species is W, the input
species is X, and the output species is Y, the basic scheme is
as follows:

) W+X 5 WHx+v

2) x5,

Following our previous work [17], solving the differential
equations at steady state gives the final concentration of ¥
as the product of the concentrations of W and X, as required.
Importantly, the input signal X is consumed in this process.
We use this basic reaction motif to scale all the input signals
by their corresponding weights. For example, for neuron NO,
the input BIASO is scaled by weight W00, the input X01 is
scaled by weight W01, and input X02 is scaled by weight
WO02. The initial weight values are set in the initial conditions
of the CRN, as outlined below, and are updated in response to
training data. The input signals are provided as perturbations
at the start of each training round, as outlined below. We use
clock species C3 as a catalyst for all of the input weighting
reactions, for neurons NO and N1. Similar reactions are
included for the output layer neuron, N2, catalyzed by clock
species C7 so they occur after the hidden layer neurons have
finished computing their outputs (see Table I).

H. Computing Nonlinear Transfer Function

Having computed the net value for each neuron, we must
then pass it through a nonlinear transfer function. Here,
we choose the hyperbolic tangent (tanh) function. Previous
experimental implementations of neural networks using DNA
strand displacement [2] have used threshold-based nonlinear-
ities, and previous proposals for learning CRNs [14] have
used other nonlinearities that do not correspond to a well-
understood transfer function. Furthermore, the hyperbolic tan-
gent is relevant in mainstream machine learning research.
Here, we draw inspiration from the work of Fages ef al. [22]
to compute the exact value of the hyperbolic tangent for each
input net value.

In previous work, Fages ef al. [22] observed that the
derivative of tanh(f) with respect to ¢ can be expressed in
terms of tanh(t) itself, as follows:

d tanh(t)
dt
They then noted that a CRN could be created whose cor-
responding set of ODEs gives (1), since if we consider the
following abstract chemical reactions:
H 57
HT+T ST
with k = 1.0, then we get (dT /dt) = 1— T?. Therefore, when
initialized with [T'] = 0 at time 0, the timecourse of [T'] traces
out the tanh function, so [T'] at time ¢ is equal to tanh(f).

1 — tanh? (7). (1)
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However, we wish to convert an input concentration signal
into a transformed output concentration signal at steady state.
Our contribution in this regard is to note that we can, in effect,
“freeze” the above reaction at the corresponding time point by
providing the input signal as the concentration of an additional
species that catalyzes the two reactions shown above. Then,
if that catalyst can also degrade, the initial quantity of the
catalyst present determines, in effect, how far along the tanh
timecourse can be reached before the catalyst runs out. In the
case of the neuron NO, we use NETO (the output from the
weight computation step) as the catalyst and the species HO
to represent the output. We include the clock signal C5 as
an additional catalyst for all of these reactions to ensure that
these reactions execute after the weighting reactions (in clock
phase 3) have finished, giving the following reactions for the
positive arm of the tanh transfer function:

1) C5+NETOp 5 s + HOp + NETOp

2) C5+NETOp+ HOp+ HOp 5 s + HOp + NETOp

3) C5+NET0p - Cs.

This works because the value of the H0 signal is zero initially.
Furthermore, this output signal will be consumed by the
downstream reactions, thereby resetting it to zero for the next
training round.

Since tanh is an odd function, that is, tanh(—x) =
—tanh(x), similar reactions involving NETOm and HOm
implement the negative arm of the transfer function. The
HO output signal then serves as one of the inputs to the
output neuron, N2. We replicate these reactions to compute
the nonlinear transfer functions for the other two neurons,
N1 and N2, producing output signals H'1 and Y, respectively.
Y is the overall output signal from the neural network and the
input to the loss computing module, outlined below.

I. Computing Loss Function

The goal of our learning circuit is to minimize the loss
(error) between the output signal ¥ from the neural network
and a “target” output value T, which is provided as a dual-
rail signal at the start of each training round. The module
of the CRN controlled by clock signal C11 computes this
loss, which we compute as L = Z? where Z = Y — T. The
subtraction operation (Z = ¥ —T) is carried out by transferring
the dual-rail species corresponding to the output signal ¥ and
the target signal T into a dual-rail signal Z, with the signs
paired appropriately, as follows:

1) Cll+Yp 5 c11+2zp
2) Cl1+¥m %5 €11+ Zm
3) C11+Tp 5 Cl1 + Zm
4) C11+Tm 5 C11+ Zp.
Then, drawing on the approach of Buisman ef al. [21], we set

the value of the signal L to be Z?2, using the following three
reactions in the main network:

1) Cl1+Zp+2Zp 5> Cll+Zp+2Zp+Lp

2) Cll+Zm+Zm % C11+Zm+Zm + Lp

3) Cl1+Lp 5 Cl11.
Note also that, unlike most species in our circuit design, the
concentration of Z will persist after these reactions are finished
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executing; we deal with this in the later “reset” phase discussed
in Section II-L.

J. Approximating Loss Derivative

To determine the appropriate amount by which to update
a particular weight, our learning CRN must approximate the
first derivative of the loss with respect to that weight. Here,
we describe a version of the learning CRN in which a single
weight is updated during each training round.
The fundamental equation to calculate the loss derivative
with respect to weight Wi is
oL _ L(Wi+ AWi) — L(Wi) 2
owi AWi @
which uses quadrature to approximate the derivative by com-
puting the loss when weight Wi is perturbed by AWi. The
true value of the derivative is approached as AWi tends to
zero. The exact nature of this dependence will depend on the

details of the loss function landscape. The weight update rule
is then

oL
Wi=Wi—ax — 3)
oWi

which we can rewrite, using (2), as

Wi:=Wi—_2
AW

; x (L(Wi + AWi) — L(Wi)). (4)
Our learning CRN uses (4) to approximate the loss derivative
with respect to a chosen weight by computing the loss in both
the main and shadow networks, as described above, and then
simply subtracting them and scaling the result. The “learning
rate,” a, is a small constant factor that limits the rates of
change of the weights by scaling our first-order approximation
to the true gradient value.

As a practical matter, the value L(Wi + AWi) — L(Wi)
would typically be quite small before it is scaled by (a/A Wi),
meaning that it could get lost in the numerical errors intro-
duced by ODE integration. Therefore, we actually multiply the
concentration [ Lp] (which represents L(Wi), computed by the
main network) and the concentration [Lp '] (which represents
L(Wi + AWi), computed by the shadow network) by this
factor before carrying out the subtraction. The corresponding
reactions for scaling the loss from the main network are as
follows:

1) C13+SCALE+Lp LA C13+SCALE+ Lp+LScaledp

2) C13+Lp 5 c13

3) C13+SCALE+Lm % C13+SCALE+Lm+LScaledm

4) C13+Lm 5 C13.

The concentration of SCALE represents the value of
(a/AWi), which we fix by leaving the learning rate and
weight perturbation value unchanged throughout. The value
of the weight increment is then calculated according to (4) by
the following reactions:

1) C13 + LScaledp’ > C13 + Deltap
2) C13 +LScaledm’ > C13 + Deltam
3) C13 + LScaledp = C13 + Deltam
4) C13 + LScaledm - C13 + Deltap

7739

which puts the corresponding value into the dual-rail signal
Delta. The signs are flipped in the last two reactions so as to
correctly implement the subtraction operation.

K. Weight Updates via Feedback

The last step of the learning process is to update the
weights by feeding the value of Delta back to one of the
weights. In this version of the learning CRN, we perturb a
single weight in each training round. Therefore, only one
weight can be updated at a time. To achieve this, in the
next clock phase (C15) we use a series of reactions cat-
alyzed by “selector” species to route the signal from Delta
to increment or decrement the correct weight. This structure
is a “demultiplexer” because it redirects one input to one
of multiple potential outputs. There are nine weights in our
neural network, and therefore, there are nine different selec-
tor species: SELECTW00, SELECTWOLI, ..., SELECTW22.
These catalyze the conversion of Delta into the corresponding
weight species. In order to keep the weight values stored in
the main and shadow networks in sync, there is a fan-out that
transfers the value into both the main network and shadow
network weight species. Since (3) requires the value of the loss
derivative to be subtracted from the corresponding weight, the
demultiplexer reactions must also flip the polarity of the dual-
rail signal, by translating negative Delta signals into positive
weight signals, and vice versa. For example, the reactions for
updating weight W00 are as follows:

1) C15+SELECTWO00+Deltap LA C15+SELECTWO00+
WO00m + W00m'
2) C15 —I—SELECTWOO—%DeltamL C15+SELECTWO00+
Wo0p + Woop'
and we include similar reactions for all the other eight weights.
After this clock phase has ended, both the main and shadow
network weights will have been updated by the amount cal-
culated according to the learning rule.

L. Resetting for the Next Training Round

At the end of each round, the system must be reset to leave
it in the correct state to initiate the next training round. This
takes place in clock phase C17. As mentioned above, the dual-
rail signal Z that is used to carry out the squaring operation
when computing the error will persist after that operation is
completed, and therefore we degrade those species in this
clock phase

1) Cl17+2p 5 C17

2) C17+2zZm 5 c17
with similar reactions included for the Z signal from the
shadow network. We also include similar reactions to degrade
the various “selector” species, as otherwise they would persist
and we will probably want to perturb a different weight in the
next training round.

Finally, as part of the resetting process, a compensatory
negative addition of the perturbed shadow weight signal must
be added to reset its value to match the corresponding weight
in the main network at the end of the training round, so that
other weights can subsequently be perturbed.
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M. Initial Conditions

The clock signals C19 and C20 are initially set high, with
a concentration of 1.0, and all other clock signals are initially
set low, with a concentration of 106. The concentration of the
species representing the weights are set to the initial values of
those weights. It is important that the weight values in the main
and shadow networks are both set to the same value initially.
Finally, we initialize the concentration of SCALE to the value
of the ratio (a/AWi), as outlined above. In the simulations
presented here, we use a = 1 and AWi = 0.1, so we initialize
SCALE with concentration 10.

N. Training Examples

In the first version of our learning CRN, we perturb one
weight at a time. Therefore, each training instance consists
of the following: a set of perturbations at the start of the
round (i.e., at the start of clock phase C1) that provides
values for the three input signals via the concentrations of
three dual-rail species: BIAS (which is always set to —1),
X1, and X2. The target output value is presented as the
concentration of the TARGET species. Depending on the
weight that was chosen to be perturbed, an increment of AWi
is provided by adding more of the shadow network version of
that weight. To ensure that the demultiplexer feeds back to the
correct weight, a concentration of 1.0 of the correct “selector”
signal is provided. Importantly, by queueing up multiple such
perturbation sets, we are able to simulate multi-round training
of our learning CRN.

0. Single Weight Training Results

We began by implementing the abstract CRN for a circuit
that learns by perturbing, and thus modifying, one weight in
each training round. Example timecourses of key species in the
“main network™ over the course of a single training round are
presented in Fig. 3. These illustrate the division of reactions
between different clock phases, as outlined in Table 1. (See
Fig. S2 for the corresponding plot for the “shadow network.”)

We developed a collection of training schemes that could
train the CRN from a single set of initial weights (see
Table S1) to implement any one of the 16 two-input Boolean
functions. Importantly, because our CRN faithfully implements
a mathematically well-defined learning algorithm, we were
able to write a “reference” implementation in Python and
use this to rapidly screen training procedures (see Methods,
Fig. S1, Tables S2 and S3). We used input values of 1 and
—1 to represent true and false inputs, respectively, and labeled
any output value within 0.1 of the corresponding correct truth
value as being correct (see Table S5).

For this learning CRN, the percentage errors in the weights
(see Fig. S9) are almost all 0.25% or below, though since only
one weight is updated at a time, the error for each weight
is precisely zero until it is first updated. To demonstrate that
each CRN had learned the corresponding Boolean function, we
created an “evaluator” CRN that simply evaluates the neural
network in a feedforward manner, without any weight update,
and preloaded it with the learned weights corresponding to

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

each of the 16 learned functions. By providing inputs between
—1 and 1 for each of the two input signals, we produced
heatmaps of the learned decision surface that confirm that they
successfully learned to implement the Boolean function when
presented with inputs whose values are +1. Fig. 4 illustrates
example heatmaps for the “X1 NOR X2” and “X1 XOR X2”
functions; all 16 heatmaps are presented in Figs. S3—S5. The
“XOR” function is of particular interest [23] because it is
not linearly separable [24] and therefore requires a multilayer
network of the kind constructed here. This demonstrates
the correct realization of learning in a multilayer, nonlinear
artificial neural network as implemented by our abstract CRN
approach.

P. Extension to Perturb All Weights in Parallel

While the version of our CRN that learns by updating one
weight at a time can learn binary functions correctly, such
a learning algorithm is more prone to getting stuck in local
minima and may require a large amount of training rounds to
make progress, because updating just one weight means that
the system is not moving in the optimal direction in weight
space.

We address this potential problem and demonstrate a gen-
eralization of our initial approach, by creating an extension of
the learning CRN described above that perturbs not just one
weight at a time, but all nine. This is essentially an extension
of the architecture from Fig. 2 in which there is not just one
shadow network but rather nine, each of which perturbs a
different weight by the same, fixed, amount. Here, we briefly
present the differences and expansions between this version
and the single weight version discussed above.

First, as there are nine shadow networks, the inputs must
be copied into all nine of these shadow networks, and into the
main network. These are named by appending them not just
with the prime symbol, but also with a code indicating the
weight that is perturbed in that particular shadow network,
such as X00’, X01’, ..., X22'. Second, as each of the
shadow networks will compute its own loss value, there will
be nine different subtraction and scaling operations to carry
out. This means that the loss value computed by the main
network must be put through another fan-out operation to copy
it nine times, so that these distinct species can then be used to
compute the weight update values for each of the nine weights.
Third, since every weight is updated at each step, some of the
machinery for determining which weight is to be perturbed
and controlling the feedback loop can be dispensed with.
Specifically, each of the shadow networks can be “perturbed”
by the addition of a fixed amount of the corresponding weight
species in the initial conditions, and by simply updating the
weight along with the others, it will remain perturbed by the
desired amount relative to the “true” value of that weight
as stored in the main network. This means that a weight
perturbation does not need to be supplied with every training
round and also does not need to be “undone” at the end of
the round. It also removes the need for the demultiplexer
and the “selector” species, as the feedback can just take
each calculated weight update and pass it through a fan-out
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Fig. 3. Time-course of selected dual-rail signals illustrating the operation of the

single weight training CRN through a single training round. (a) Input fan-out

(clock phase C1) and generation of HO output signal from neuron NO (clock phases C3 and C5). (b) Input fan-out (clock phase C1) and generation of H1
output signal from neuron N1 (clock phases C3 and C5). (c) Generation of overall ¥ output signal from neuron N2 (clock phases C7 and C9). (d) Conversion
of ¥ signal into a Delta signal (clock phases C11 and C13), leading to subsequent modification of the W01 weight value via the feedback mechanism (clock

phase C15).

reaction to copy it to the main network and all of the shadow
networks, while inverting the polarity of the dual-rail signal
as before.

These changes produce a CRN that is larger in terms of the
number of species and reactions that the single weight version
outlined above, because of the additional duplicated versions
of the neural network. This version of the CRN is substantially
larger than the first version (583 species and 1213 reactions,
when compared to 144 species and 286 reactions). It also
takes longer to simulate (see Table S4). However, as outlined
above, it is actually simpler in some respects. This CRN
can theoretically learn in fewer training rounds than the
single weight version, and furthermore, it should learn more
reliably since it follows the optimal path in weight space that

leads to the greatest decrease in the computed loss at each
step.

Q. Learning Two-Input Binary Functions

Following the approach outlined above, we similarly trained
the version of our CRN that perturbs all weights in parallel
using a pre-selected set of 10-round training procedures, so it
could be trained to learn any of the 16 two-input Boolean
functions. The difference in this version was that each weight
could potentially be updated in each training round (see
Table S6 for results).

As before, we created heatmaps from an evaluator CRN to
visualize the learned output surface of the network. Example
output heatmaps for the “X1 AND (NOT X2)” and “X1 XNOR
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Fig. 4. Example heatmaps showing the learned decision surfaces for selected binary functions: “X1 NOR X2” (left) and “X1 XOR X2 (right). Weights were
learned using the CRN that perturbs one weight at a time. Each heatmap was produced from the results of evaluating the learned weights using a non-learning
version of the CRN that simply computes the output signal from the network for each of the input combinations.
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Example heatmaps showing the learned decision surfaces for selected binary functions: “X1 AND (NOT X2)” (left) and “X1 XNOR X2 (right).

Weights were learned using the CRN that perturbs all weights in parallel. Each heatmap was produced from the results of evaluating the learned weights
using a non-learning version of the CRN that simply computes the output signal from the network for each of the input combinations.

X2” functions are presented in Fig. 5; all 16 heatmaps are
presented in Figs. S6-S8. The “XNOR” function is another
example of a function that is not linearly separable, thereby
further demonstrating the power of our multilayer neural
network. The percentage errors of the weights learned by this
CRN over the course of the training procedures relative to
the reference implementation (see Fig. S9) are higher than
for the first version, because more weights change in each
round. In summary, these results demonstrate that we can
successfully, and accurately, implement a nonlinear, multilayer
training algorithm that is relevant to mainstream machine
learning research and can be trained via computationally pre-
screened training protocols.

III. DISCUSSION

To summarize, we have presented a design for an abstract
chemical reaction network (CRN) that implements a math-
ematically well-defined training algorithm for a multilayer,

nonlinear artificial neural network. The reactions in this
CRN scheme are orchestrated by an autonomous molecular
clock [19] and we draw upon previous work on implement-
ing certain arithmetic functions in chemical reactions [21].
We have presented a novel mechanism for implementing a
nonlinear transfer function (the hyperbolic tangent) in a math-
ematically accurate manner by exploiting particular properties
of its derivatives. We use a non-standard learning algorithm
based on direct approximation of partial derivatives of network
loss with respect to particular weights that is based on explicit
perturbation of those weights [18]. Finally, we demonstrate
correct training of these learning networks by training them to
implement all 16 of the two-input Boolean functions, both by
perturbing a single weight at a time and by perturbing all of the
weights in parallel. This includes functions such as “XOR” that
are not linearly separable, which provably require a multilayer
network to learn correctly. To our knowledge, this work is
the first to implement a mathematically well-defined training
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algorithm for a multilayer, nonlinear chemical neural network.
Our key contribution is the design and implementation of the
learning CRN rather than the detail of the learning algorithm
itself. Importantly, the experimental realization of the networks
proposed here, or similar networks, would lead to the first
adaptive and trainable chemical neural networks.

A. Modularity of the Learning Algorithm

A crucial aspect of our network design is that the learning
algorithm is agnostic to the details of the network being
trained, such as the transfer function used and even the
network architecture itself. This is because the learning algo-
rithm simply takes two or more loss values as inputs and
uses their difference to compute a loss derivative estimate.
This means that the learning algorithm implemented here can
be applied unchanged to a wide range of neural networks,
thereby providing a general-purpose mechanism for training
of chemical neural networks and demonstrating the broad
applicability of our approach.

B. Implementation of Nonlinear Transfer Function

An additional contribution to CRN design is our construc-
tion for computing the hyperbolic tangent of the weighted
sums of the inputs to our neurons. Driven by a desire to
implement a continuous, nonlinear, everywhere-differentiable
transfer function, we developed a simple reaction motif that
precisely computes the value of the hyperbolic tangent. Our
approach builds on previous work by Fages et al. [22] who
used a “change of variables™ construction to achieve what we
accomplish by just adding an extra reactant as a “counter”.
To our knowledge, our particular construction is novel. How-
ever, it does rely on the ability to express the derivative of
the function in terms of itself, and it cannot be applied if
the derivative in question is zero when the input is zero.
Other approaches to this problem include computing estimates
of transcendental functions, including sigmoids, in terms of
truncated polynomial series expansions [25]. The advantage of
our approach is that it computes the hyperbolic tangent exactly,
whereas truncated series expansions are only a reasonable
approximation in the vicinity of the value around which they
are expanded. Our approach also uses a small number of
chemical reactions.

C. Potential Issues With Use of Autonomous Molecular Clock

The different phases of our CRN implementation are orches-
trated by the oscillation of an autonomous molecular oscilla-
tor which serves as a clock signal, an approach previously
explored elsewhere [19], [26]. Some of the reactions, such as
those that implement weighting and fan-out, do not necessarily
need to be staged in this way. Others, such as the reactions
that calculate the hyperbolic tangent transfer function, would
seem to require that their inputs have reached a stable state
beforehand. The use of such a clock also relies on the
deterministic nature of the ODE semantics, because stochastic
fluctuations might cause the clock signal to die if any of the
clock species fluctuate to zero during a “low” phase. However,
the clock species concentrations in the low phases are required
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to be low to minimize errors due to background activation of
reactions out of their specified clock phase.

We used a relatively large number of clock phases in this
system in large part to enable easier testing and debugging of
the CRN design. However, in principle, fewer clock phases
could be used. For example, clock phases C1 and C3 could
be combined into a single phase, as could phases C5 and C7.
Similarly, phases C9, C11, C13, and C15 could be combined
into one. The initial phase in each set is one where the
reactions must wait until their input species are at steady
state, for example, the reactions that compute the tanh nonlin-
earity. Furthermore, in this design, we only used every other
clock phase as a catalyst, to reduce overlap in the catalyzed
reactions.

However, the use of an autonomous clock signal might not
necessarily be required at all for a practical implementation:
the corresponding clock species could, at least in principle,
be added manually into an open reactor implementation of our
scheme, with addition controlled by a computerized microflu-
idic device. Furthermore, in our simulations, we assume that
the addition of chemical species after time f = 0 causes no
dilution of the reaction volume. This could be approximated by
adding small volumes of highly concentrated input, although
this would be prone to pipetting error in practice. Future
work could assess the effects of dilution on the accuracy of
learning circuits such as our overextended rounds of training.
Other approaches, such as the use of absence indicators to
separate reactions into discrete phases [27], could also be
used with our system. The extent to which the clock signal,
or other sequencing primitives, is required for correctness of
our system, and similar molecular programs, is an interesting
question for future research.

D. Learning Performance of the Circuits

The heatmaps of the decision surfaces for our two learning
CRNs (Figs. S3-88) indicate that they learn all 16 two-
input Boolean functions correctly when presented with inputs
that are exactly 1.0 for “true” and —1.0 for “false,” with
an allowable error threshold of 0.1. However, the decision
surfaces show that the trained networks may not give sensible
answers for some intermediate values (e.g., the “X1 NOR X2”
heatmap in Fig. S7), because we only trained the networks
with input values that were exactly 41, to simplify and shorten
the training process. Therefore, the algorithm has no need
to adjust the decision surface for these intermediate input
values. By training the networks with additional intermedi-
ate input values, it should be possible to produce decision
surfaces that behave more reasonably for intermediate input
values. However, this could require longer training procedures.
In addition, while we used a fresh “evaluator” network to
test the outputs produced by the learning circuits, in principle
this could be achieved in a single circuit by the inclusion
of a molecular “switch” to disable the learning and feedback
components [16].

Furthermore, the errors between our CRN implementation
and the reference implementation would compound if longer
training sequences were attempted. Some of these errors
may be attributed to intrinsic inaccuracy in the numerical
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integrator that solves the ODEs, but there are also inherent
errors in the CRN computing framework. For example, the
arithmetic modules that implement weighting are only accurate
at equilibrium, and the molecular clocks do not completely
shut off reactions catalyzed by the “low” clock signals, since
they are never exactly zero. Reducing such computational
errors is likely to be an important area of future research in
molecular programming.

To study the extent to which the characteristics of the
molecular clock affect circuit performance, we carried out
some additional simulations with clocks where the OFF state
is less perfect. The effect of this change is to enable reactions
to occur at faster rates outside their designated clock phases.
To simplify the setup of these simulations, here we used a
square wave clock signal generated via model perturbations
rather than using an autonomous molecular clock. The results
of these simulations are reported in the electronic supplemen-
tary material (Figs. S10-S14). These show that the OFF state
of the clock can be increased by several orders of magnitude
before the results of the learning simulation are affected,
thereby demonstrating that our system is relatively robust
to the use of an imperfect molecular clock to schedule the
reactions.

E. Other Possible Extensions and Improvements

Other possible extensions and improvements to our learning
scheme include alternative transfer functions (such as rectified
linear units, which are in widespread use in mainstream
machine learning research) and different network architectures.
Modifying the network architecture would be relatively easy,
given the modular nature of our learning algorithm. As we saw
when we extended our CRN to perturb all of the weights in
the network in parallel, the weight perturbation learning circuit
design does not scale gracefully with the size of the network,
as the entire network must be duplicated once per weight in
that variant of the CRN (this could be viewed as scaling as
O(n, x n,), where n,, is the number of weights and n, is a
measure of overall network size). This could be circumvented
by implementing an alternative learning algorithm such as
backpropagation, which does not require the entire network to
be reevaluated for each weight that is to be updated. However,
if only one weight is perturbed in each training cycle, the size
of the feedback system in our design would remain constant
and the enlarged network would only need to be duplicated
once (and thus scales as O(n,) only). This would thus provide
better scaling of network size, although more training rounds
would be needed to learn the target weights, given that only
one weight can be updated per round. In both cases, the
number of rate constants required scales as O(1), as we have
shown that a fixed number of rate constants suffices for our
design. Applying similar techniques to larger neural network
architectures would enable more sophisticated behaviors to be
learned by our CRN systems.

E. Possible Chemical Implementations

Abstract CRNSs, such as those used here, are a powerful pro-
gramming language for molecular computing systems because
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they can be compiled into actual chemical implementations.
In particular, it has been shown that any abstract CRN can
be implemented as a network of DNA strand displacement
reactions [8], in which the abstract species from the original
CRN are represented by distinct DNA strands and additional
DNA complexes mediate transformations between free strands
corresponding to the kinetics of the abstract CRN. That result
also applies to the higher-order reactions posited here, some
of which involve three or more reactants. Thus, our learning
circuit design could, at least in principle, be realized as an
actual biochemical circuit. It is worth noting, however, that
the undesired side reactions known as “leak™ would likely
reduce the accuracy of a practical DNA strand displacement
implementation of our circuit, although recent advances toward
gate designs with drastically reduce leak rates [28] could help
to mitigate such problems.

Another important issue for practical implementations
would be the construction of multiple, parallel, non-interfering
“shadow” networks that is required by our construction. In the
context of DNA strand displacement reactions, this can be
achieved via careful design of the DNA sequences to create
distinct species of DNA circuit components that function
similarly but do not interact with each other because their
nucleotide sequences are sufficiently distinct. Indeed, previous
work has used exactly this technique in the context of DNA
strand displacement circuits [29]. In that work, the shadow
network was created for the purpose of “shadow cancellation,”
which aims to reduce leak by canceling the output from the
main network with that from the shadow network. However,
a similar approach could be applied, at least in principle,
to create multiple non-interacting shadow networks in a learn-
ing CRN implementation.

By way of comparison, the DNA strand displacement see-
saw gate circuit for computing the square root of a four-bit
binary number that was published in 2011 had “74 initial
DNA species, excluding inputs” [2]. The smaller of our two
learning circuits has 144 species and 286 reactions, and while
these are abstract reactions and not concrete DNA reactions,
this could nevertheless soon be within the plausible range if
the tools and technologies available to molecular programmers
continue to advance at the rapid pace that they have during
the last decade. Thus, our work advances the state of the art
toward a world in which molecular circuits have non-trivial
learning capabilities which can be deployed for scientific as
well as practical applications in the real world, such as long-
term health monitoring applications for biomedicine.

REFERENCES

[1] G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Winfree, “Enzyme-free
nucleic acid logic circuits,” Science, vol. 314, no. 5805, pp. 1585-1588,
2006.

[2] L. Qian and E. Winfree, “Scaling up digital circuit computation with
DNA strand displacement cascades,” Science, vol. 332, pp. 1196-1201,
Jun. 2011.

[3] D.Y. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree, “Engineering
entropy-driven reactions and networks catalyzed by DNA,” Science,
vol. 318, no. 5853, pp. 1121-1125, 2007.

[4] Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli,
D. Soloveichik, and G. Seelig, “Programmable chemical controllers
made from DNA,” Nature Nanotechnol., vol. 8, pp. 755-762, Sep. 2013.

Authonzed licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on October 09,2023 at 22:13:18 UTC from IEEE Xplore. Restrictions apply.



ARREDONDO AND LAKIN: SUPERVISED LEARNING IN MULTI-LAYER, NONLINEAR CHEMICAL NEURAL NETWORK

[5] G. Chatterjee, N. Dalchau, R. A. Muscat, A. Phillips, and G. Seelig,

(6]

(71

[8

91

[10]

(11

[12]

[13]

[14]

[15]

[16]

(7

[18]

[19]

[20]

[21]

[22]

“A spatially localized architecture for fast and modular DNA comput-
ing,” Nature Nanotechnol., vol. 12, pp. 920-927, Jul. 2017.

N. Srinivas, J. Parkin, G. Seelig, E. Winfree, and D. Soloveichik,
“Enzyme-free nucleic acid dynamical systems,” Science, vol. 358,
no. 6369, Dec. 2017, Art. no. eaal2052.

B. Groves et al., “Computing in mammalian cells with nucleic acid
strand exchange,” Nature Nanotechnol., vol. 11, no. 3, pp. 287-294,
Mar. 2016.

] D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal substrate

for chemical kinetics,” Proc. Nat. Acad. Sci. USA, vol. 107, no. 12,
pp. 5393-5398, Mar. 2010.

D. Y. Zhang and G. Seelig, “Dynamic DNA nanotechnology using
strand-displacement reactions,” Nature Chem., vol. 3, pp. 103-113,
Jan. 2011.

Y. Xiang and Y. Lu, “Using personal glucose meters and functional
DNA sensors to quantify a variety of analytical targets,” Nature Chem.,
vol. 3, no. 9, pp. 697-703, Sep. 2011.

C. Jung and A. D. Ellington, “Diagnostic applications of nucleic acid
circuits,” Accounts Chem. Res., vol. 47, no. 6, pp. 1825-1835, 2014.
L. Qian, E. Winfree, and J. Bruck, “Neural network computation with
DNA strand displacement cascades,” Nature, vol. 475, pp. 368-372,
Jul. 2011.

K. M. Cherry and L. Qian, “Scaling up molecular pattern recognition
with DNA-based winner-take-all neural networks,” Nafure, vol. 559,
pp. 370-376, Jul. 2018.

D. Blount, P. Banda, C. Teuscher, and D. Stefanovic, “Feedforward
chemical neural network: An in silico chemical system that learns XOR.”
Artif. Life, vol. 23, no. 3, pp. 295-317, 2017.

P. Banda, C. Teuscher, and M. R. Lakin, “Online learning in a chemical
perceptron,” Artif. Life, vol. 19, no. 2, pp. 195-219, Apr. 2013.

M. R. Lakin, A. Minnich, T. Lane, and D. Stefanovic, “Design of a
biochemical circuit motif for learning linear functions,” J. Roy. Soc.
Interface, vol. 11, no. 101, 2014, Art. no. 20140902.

M. R. Lakin and D. Stefanovic, “Supervised learning in adaptive
DNA strand displacement networks,” ACS Synth. Biol., vol. 5, no. 8,
pp. 885-897, Aug. 2016.

M. Jabri and B. Flower, “Weight perturbation: An optimal architecture
and learning technique for analog VLSI feedforward and recurrent
multilayer networks,” Neural Comput., vol. 3, no. 4, pp. 546-565,
Dec. 1991.

M. Vasié, D. Soloveichik, and S. Khurshid, “CRN++: Molecular pro-
gramming language,” Natural Comput., vol. 19, no. 2, pp. 391407,
Jun. 2020.

B. Yordanov, J. Kim, R. L. Petersen, A. Shudy, V. V. Kulkarni, and
A. Phillips, “Computational design of nucleic acid feedback control
circuits,” ACS Synth. Biol., vol. 3, no. 8, pp. 600-616, Aug. 2014.

H. J. Buisman, H. M. M. ten Eikelder, P. A. J. Hilbers, and
A. M. L. Liekens, “Computing algebraic functions with biochemical
reaction networks,” Artif. Life, vol. 15, no. 1, pp. 5-19, 2009.

F. Fages, G. L. Guludec, O. Bournez, and A. Pouly, “Strong Turing
completeness of continuous chemical reaction networks and compilation
of mixed analog-digital programs,” in Proc. CMSB, vol. 10545, J. Feret
and H. Koeppl, Eds. Cham, Switzerland: Springer, 2017, pp. 108-127.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

7745

R. Bland, “Learning XOR: Exploring the space of a classic prob-
lem,” Dept. Comput. Sci. Math., Univ. Stirling, Stirling, Scotland,
Tech. Rep. 148, 1998.

M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry, 2nd ed. Cambridge, MA, USA: MIT Press, 1972.

S. A. Salehi, K. K. Parhi, and M. D. Riedel, “Chemical reaction networks
for computing polynomials,” ACS Synth. Biol., vol. 6, no. 1, pp. 76-83,
Jan. 2017.

R. A. Brittain, N. S. Jones, and T. E. Ouldridge, “Biochemical szilard
engines for memory-limited inference,” New J. Phys., vol. 21, no. 6,
Jun. 2019, Art. no. 063022.

H. Jiang, S. A. Salehi, M. D. Riedel, and K. L. Parhi, “Discrete-
time signal processing with DNA;” ACS Synth. Biol., vol. 2, no. 5,
pp. 245-254, 2013.

B. Wang, C. Thachuk, A. D. Ellington, E. Winfree, and D. Soloveichik,
“Effective design principles for leakless strand displacement systems,”
Proc. Nat. Acad. Sci. USA, vol. 115, no. 52, pp. E12182-E12191,
Dec. 2018.

T. Song et al., “Improving the performance of DNA strand displace-
ment circuits by shadow cancellation,” ACS Nano, vol. 12, no. 11,
pp. 11689-11697, Nov. 2018.

David Arredondo received the B.A. degree in
physics from the University of Denver, Denver,
CO, USA, in 2014. He is currently pursuing the
M.S. degree in computer science and the Ph.D.
degree in nanoscience and microsystems engineering
with The University of New Mexico, Albuquerque,
NM, USA.

His research interests include statistical physics,
molecular robotics, and the design of adap-
tive chemical automata using abstract chemical
reaction networks.

Matthew R. Lakin (Member, IEEE) received the
Ph.D. degree in computer science from the Univer-
sity of Cambridge, Cambridge, U.K., in 2010.
From 2009 to 2011, he was at Microsoft
Research Cambridge, Cambridge, UK. In 2011,
he moved to The University of New Mexico (UNM),
Albuquerque, NM, USA, and became a tenure-track
Assistant Professor with the UNM Department of
Computer Science in 2017. His research interests
include DNA nanotechnology, synthetic biology, and
biological modeling languages and software tools.

Authonzed licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on October 09,2023 at 22:13:18 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


