'.) Check for updates

) New |
Expression of malic enzyme reveals subcellular carbon
partitioning for storage reserve production in soybeans
Stewart A. Morley" (), Fangfang Ma’ (), Mazen Alazem® (), Cheryl Frankfater"”?, Hochul Yi?,

Tessa Burch-Smith? 2

, Tom Elmo Clemente’®, Veena Veena?, Hanh Nguyen4 and Doug K. Allen!

"United States Department of Agriculture, Agricultural Research Service, 975 N Warson Rd, St Louis, MO 63132, USA; 2Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis,

MO 63132, USA; 3Departmem of Agronomy & Horticulture, University of Nebraska-Lincoln, 202 Keim Hall, Lincoln, NE 68583, USA; “4Center for Plant Science Innovation, University of

Nebraska, N300 Beadle Center, 1901 Vine St., Lincoln, NE 68588, USA

Author for correspondence:
Doug K. Allen
Email: doug.allen@usda.gov

Received: 73 July 2022
Accepted: 9 February 2023

New Phytologist (2023) 239: 1834-1851
doi: 10.1111/nph.18835

Key words: carbon partitioning, central
carbon metabolism, lipid production, malic
enzyme, metabolic flux, soybean seed

composition, subcellular compartmentation.

Summary

¢ Central metabolism produces amino and fatty acids for protein and lipids that establish seed
value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central
intermediates including two essential metabolites, malate, and pyruvate that are linked by
malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning
carbon and reducing equivalents for anabolic and catabolic requirements. Prior studies based
on isotopic labeling and steady-state metabolic flux analyses indicated malic enzyme provides
carbon for fatty acid biosynthesis in plants, though genetic evidence confirming this role is
lacking. We hypothesized that increasing malic enzyme flux would alter carbon partitioning
and result in increased lipid levels in soybeans.

¢ Homozygous transgenic soybean plants expressing Arabidopsis malic enzyme alleles, tar-
geting the translational products to plastid or outside the plastid during seed development,
were verified by transcript and enzyme activity analyses, organelle proteomics, and transient
expression assays. Protein, oil, central metabolites, cofactors, and acyl-acyl carrier protein
(ACPs) levels were quantified overdevelopment.

¢ Amino and fatty acid levels were altered resulting in an increase in lipids by 0.5-2% of seed
biomass (i.e. 2-9% change in oil).

e Subcellular targeting of a single gene product in central metabolism impacts carbon and

reducing equivalent partitioning for seed storage reserves in soybeans.

Introduction

The market value for soybeans (Glycine max) is derived from
high-quality protein and oil seed reserves. Soybeans contain c.
40% protein by weight, the highest of any major crop
(Egli, 1998), and the amino acid profile of soybean meal is the
compositional standard for animal feed (Messina, 1999; Fried-
man & Brandon, 2001). Soybeans also contain ¢. 20% oil by
weight, whereas other legumes such as peas and dry beans pro-
duce a greater percentage of starch. Though protein-enriched
meal is the primary market driver for soybeans, oil has greater
value on a per pound basis because of its utility in cooking appli-
cations and as a raw material for polymers, plastics, surfactants,
and biofuel. In combination, soybean protein and oil are used to
meet many food, feed, and industrial applications, supporting an
annual production in the United States that approaches 100 mil-
lion metric tons (USDA reports; usda.gov/media/agency-
reports). The US soybean exports exceeded $27B in 2021
(https://www.fas.usda.gov/commodities/soybeans), and price per
pound for soybean oil has more than doubled since 2019 (Ates &
Bukowski, 2022). With such large demand, small improvements
in seed protein and oil content have significant impacts on
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agriculture, export markets, and the US and other global econo-
mies (Clemente & Cahoon, 2009).

Improving soybean composition has proved challenging
because oil and protein levels are negatively correlated across gen-
otypes (Hymowitz et al, 1972; Marega et al, 2001; Truong
et al., 2013; Patil et al., 2017; Kambhampati et al., 2020), and
protein is negatively associated with yield (Assefa er al, 2018,
2019; de Borja Reis ez al., 2020). Lipid production in seeds and
leaves has been augmented, for example, altering carbon provi-
sion, fatty acid synthesis, or triacylglycerol assembly by employ-
ing a ‘push’ or ‘pull’ approach (Vanhercke er al, 2019);
modulating the WRINKLED1 (WRI1) transcription factor, or
acetyl-CoA carboxylase (Ye er al., 2020; Wang ez al., 2022), or
diacylglycerol acetyltransferase (DGAT) genes (Cernac & Ben-
ning, 2004; Shen ez 4/, 2010; Vanhercke ez 4/, 2013; Hofvander
et al., 2016; Roesler et al, 2016; Chen et al., 2020; Torabi
et al., 2021; Arias et al., 2022). Strategies to increase oil have also
included ‘protecting’ accumulated lipids by inhibiting lipases
during seed maturation (Kanai et af, 2019; Aznar-Moreno
et al., 2022) or strengthening the oil body packaging structure
and formation through oleosins, seipins, and other lipid droplet
associated proteins in seeds and leaves (Winichayakul er 4/,
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2013; Pyc er al, 2017; Cai er al, 2019; Beechey-Gradwell
et al., 2020; Greer et al., 2020).

Soybean seed storage reserve biosynthesis requires a significant
source of carbon and nitrogen that are supplied as sucrose, glu-
cose, glutamine, and asparagine from vegetative source tissues
(Hsu er al, 1984; Rainbird er al, 1984; Pipolo er al., 2004;
Herndndez-Sebastia ez 4/, 2005; Allen & Young, 2013; Truong
et al., 2013; Kambhampati ez al., 2020, 2021). Imported sugars
and amino acids are converted to other amino and fatty acids for
protein and lipid production. Through isotopic labelling and
metabolic flux analysis in soybeans (Sriram et al, 2004; Iyer
et al., 2008; Allen er al., 2009a; Allen & Young, 2013), differ-
ences in resource partitioning in central metabolism can quantita-
tively explain the final storage reserve composition. The high
protein levels involve the transfer of glutamine and glutamate
nitrogen to other carbon skeletons for amino acid biosynthesis
coproducing 2-oxoglutarate, that is partially used for fatty acid
biosynthesis (Allen, 2016a). The pool of 2-oxoglutarate is con-
verted through multiple steps to acetyl-CoA and results in pro-
duction of reducing equivalents including NADH, NADPH,
and FADH,, some of which are used to make ATP in the mito-
chondria. Two key enzymes, malic enzyme, and pyruvate dehy-
drogenase have been linked specifically to fatty acyl chain
biosynthesis. Evidence from isotopic labeling-based flux maps of
soybean has suggested malic enzyme is the source of a significant
amount of pyruvate that is the precursor of acetyl-CoA used in
lipid biosynthesis. The involvement of this step produces 10—
20% of lipid carbon that originates from glutamine (Fig. 1; Allen
et al., 2009b; Allen & Young, 2013). Hence, increasing the activ-
ity of malic enzyme may be an effective strategy to ‘push’ carbon
into fatty acid synthesis for oil and could additionally impact the
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Fig. 1 Incorporation of U-">C glutamine into malate and fatty acid acetate.
When Glycine max seeds were cultured with U-"3C glutamine nearly 40%
of malate and 10% of carbon in fatty acids became labeled (inspired by
Allen et al., 2009b). + represents 1 SD of measured replicates. OAA,
oxaloacetate.
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‘pull’ of carbon and nitrogen supply from vegetatively supplied
glutamine in soybeans impacting protein content.

In fungi and algae, research has demonstrated that malic enzyme
contributes significantly to lipid accumulation. Mutants of the fun-
gus Aspergillus nidulans lacking malic enzyme activity accumulate
approximately one-half the lipid observed in wild-type (Wynn &
Ratedge, 1997). Lipid levels in filamentous fungi have been
directly correlated with malic enzyme activity (Wynn ez al, 1999;
Zhang et al., 2007) though not other lipogenic enzymes (Wynn
et al., 1999) suggesting that malic enzyme might be a bottleneck or
control point for metabolism. In algae, NADP -dependent malic
enzyme overexpression resulted in ¢ 1.5-fold increase in lipid con-
tent (Zhu ez al., 2018); however, subcellular evaluation of the activ-
ity was not established and it remains less clear which isoforms and
subcellular location in plants are crucial to oilseed metabolism
(Allen et al., 2009a; Allen, 2016a).

In the current study, malic enzyme was enhanced within or out-
side of the chloroplast in soybean. The seed-specific promoter from
the beta-conglycinin storage protein was used to regulate expression
of transgenic alleles, targeting the translational products encoding
the enzymatic activity to the respective organelles. Soybean events
carrying the transgenic alleles were examined over the course of
seed development for effects on metabolism including the produc-
tion of oil and protein. The results indicated changes in lipid levels,
and fatty and amino acid content, dependent on the subcellular
location of expressed proteins. Carbon partitioning was substan-
tally altered indicating a single pathway step in central metabolism
can significantly affect plant storage reserve metabolism in oilseeds
with important consequences for metabolic engineering efforts.

Materials and Methods

Materials

Unless referenced otherwise, solvents, buffers, and chemicals were

obtained from MilliporeSigma, Burlington, MA, USA.

Plant growth and glasshouse conditions

Glycine max (cv Thorne (McBlain ez al, 1993)) was grown in
glasshouses with 14-h photoperiods in one-gallon pots with Ber-
ger BM7 bark soil (10121500; Hummert, Earth City, MO,
USA), watered twice daily, and fertilized three times weekly with
15-16-17 nitrogen—phosphate—potash. Supplemental light was
provided to ensure a 14 h : 10 h, day : night period with corre-
sponding temperatures of 22-25°C : 20-23°C and a relative
humidity of > 40%.

In vivo culturing of G. max seeds with U-">C Glutamine

Metabolites from previously cultured embryos, described in Allen
& Young (2013), were extracted and analyzed with an LC-MS/
MS ion pairing approach using an AB Sciex QTRAP 4000 con-
nected to an LC-20AD XR chromatogram from Shimadzu. Ion
pairing-based metabolite analysis was identical to that of Ma
etal. (2014, 2017).
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Ortholog gene alignment, phylogeny, and structure
comparison

Arabidopsis ME2 and ME4 gene orthologs (referred to as AtME2
and AtME4) were identified in G. max using NCBI BLasT and Soy-
BASE database resources (blast.ncbi.nlm.nih.gov and soybase.org
respectively). Arabidopsis and orthologous G. max genes were aligned
using the MAFFT alignment program (Katoh ez 4/, 2018; Supporting
Information Fig. S1a). The sequence alignment was used to create a
phylogenetic tree with RAXML (Stamatakis, 2006) resulting in an
evolutionary model that was unpartitioned, and based on a LG sub-
stitution matrix, stationary base frequencies, a single gamma mean
category rate for the proportion of invariant sites among-site rate
heterogeneity, and no ascertainment bias correction as described in
the software documentation (Fig. S1b). Analysis parameters includ-
ing topology, branch lengths, and model were optimized with 10
trees for parsimony and randomness. Bootstrapping was performed
by bootstopping with a cutoff of 0.03. AlphaFold protein structures
(Jumper ¢t al., 2021) from Uniprot of Arabidopsis and G. max malic
enzyme were used for structural and active site comparison against
the crystal structures of H. sapiens NAD -dependent and Z. mays
NADP"-dependent orthologs (Tao ez al, 2003; Alvarez et al., 2019)
using the Matchmaker function included in the protein visualization
software CHIMERA (Pettersen ez al., 2004) (Fig. S2).

Vectors construction and plant transformation

AtME2 (At4g00570, GenBank accession no. NP_191966.2)
and AtME4 (Atlg79750, GenBank accession no. NP_178093.1)
sequences were codon-optimized for G. max expression and synthe-
sized by GenScript (Piscataway, NJ USA). The AtME2 and AtME4
expression cassettes were under the control of the G. max seed-
specific beta-conglycinin promoter (Allen ez 2/, 1989), fused to the
tobacco etch virus translational enhancer element (Carrington &
Freed, 1990), and terminated with the 35S cauliflower mosaic virus
polyadenylation signal. Two gene cassettes were assembled into
separate vectors, referred to as pPPTN1062 and pPTN1061 respec-
tively, harboring the bar gene (Thompson ez al., 1987) under con-
trol of the Agrobacterium Pnos promoter for herbicide selection
(Fig. S3). The vectors were mobilized into Agrobacterium tumefa-
ciens strain EHA101 (Hood ez al., 1986) via triparental mating and
transformed into cv Thorne (Zhang ez 4l., 1999; Xing et al., 2000).
Transformants were identified through monitoring the expression
of the bar gene via leaf painting (Zhang et al., 1999) and genomic
DNA isolated following a modified CTAB method (Springer,
2010), which was used for PCR genotyping transgenic plants (pri-
mers used, Table S1). Transgenic allelic insertion numbers were
verified by qPCR Taqman assays with probes designed to anneal to
the bar gene (Grohmann ez al, 2009). Combined with previous
screens, the observation of two allelic insertions confirmed homo-
zygosity in A:ME2 and ArME4 plants.

Digital droplet PCR (ddPCR)

Primers were generated to target a housekeeping gene, Elf1b
(Glyma02g276600) (Jian ez al, 2008; Yim et al, 2015) for

New Phytologist (2023) 239: 1834-1851
www.newphytologist.com

New
Phytologist

normalization, endogenous NAD(P)+-dependent G. max malic
enzyme genes, and transgenic Arabidopsis malic enzyme genes
(Table S2). RNA was harvested from plants at stages R5-R8 of
development, extracted using TRIzol reagent (155960265
Thermo Fisher, Waltham, MA, USA), and quantified by Nano-
drop (Thermo Fisher Scientific, Waltham, MA, USA). Biological
replicates of RNA (1 png) were converted to ¢cDNA using the
SuperScript IV Vilo kit from Thermo Fisher Scientific
(11756050) and qPCR performed to obtain C values and melt
curves using a Bio-Rad CFX384 (Bio-Rad) to optimize cDNA
concentration for ddPCR and verify generation of a single PCR
product. ddPCR was performed on a Bio-Rad QX200 and ana-
lyzed with QUANTASOFT software (v.1.7.4; Bio-Rad). Copy num-
bers were averaged across biological replicates and then
normalized against expression of E/f76. Final expression values
represent each gene compared with the expression of E/f15.

Malate and pyruvate pool size quantitation

Lyophilized tissue obtained over development was spiked with isoto-
pic standards of malate (641049; MilliporeSigma) and pyruvate
(490717; MilliporeSigma) before extraction. Metabolites were
extracted with 7 : 3 methanol : chloroform and phase-separated by
addition of 30% water. Phenylhydrazine derivatization allowed for
more sensitive detection of some metabolites by mass spectrometry
(Zimmermann et al, 2014). Separations were performed with an
Imtakt Intrada Amino Acid column (Imtakt, Portland, OR, USA)
using buffers and gradient conditions as described in Koley
et al. (2022) and Methods S1.

Quantification of oxidized and reduced cofactors

Levels of NAD", NADP", NADH, and NADPH were measured
by mass spectrometry, adapting the method of Lu et 4/ (2018)
for plant tissue. In brief, seed tissue was harvested and weighed
before being homogenized in a solution of 40 : 40 : 20
acetonitrile : methanol : water with 0.1 M formic acid. Samples
were neutralized with 15% NH4HCO3, incubated on ice, and
then centrifuged to remove solid debris. Samples were then ana-
lyzed with mass spectrometry to obtain peak areas for each meta-

bolite. LC-MS/MS details are provided in Methods S2.

Transient expression of AtME2 and AtME4 in Nicotiana
benthamiana

Subcellular predictions of AtME2 and AtMFE4 were made by
uploading amino acid sequences to the TARGETP-2.0 server
(https://services.healthtech.dtu.dk/service.php? TargetP-2.0). A:ME2
and AtMFE4 were cloned by restriction digest/ligation into a bin-
ary vector carrying GFP for C-terminal fusions (pXM82). Leaves
from 4-wk-old N. benthamiana plants were infiltrated with A.
tumefaciens GV3101 strains carrying the fusion constructs at
ODgoo = 0.5. Samples were imaged with a Leica SP8 confocal
microscope (Leica Microsystems, Deerfield, IL, USA) 2 d after
infiltration. Mitotracker Red CMXRos (Cell Signaling Technol-
ogy, Danvers, MA, USA) and chlorophyll autofluorescence were
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used to image mitochondria and chloroplasts, respectively. Leaf
sections were infiltrated with 1 : 1000 dilution of Mitotracker
Red stock solution made with DMSO for 10 min before ima-
ging. Images were captured using A x40 lens (HC PL APO CS2
x40/1.10 water), with bidirectional scanning at a speed of
400 Hz and a resolution of 2048 x 2048. Excitation wavelengths
for GFP and Mitotracker Red were 488 and 580 nm, respec-
tively. Emission wavelengths of 505-515 nm for GFP and 590-
630 nm for Mitotracker Red were collected. Chlorophyll auto-
fluorescence was collected after excitation at 580 nm. The Leica
application suite X (LAsx) package was used to analyze images.

Organelle isolation and proteomic analysis

Mitochondria were purified from AMME2-1, AtME2-2, and
AtME2-3 seeds using a density gradient centrifugation strategy
(Huang er al., 2014). Briefly, c. 50 g of R6 and R7 seeds were
harvested and blended in homogenization buffer (0.4 M sucrose,
5mM EGTA, 50 mM sodium pyrophosphate-KOH, pH 7.5,
0.5% (w/v) BSA, 10 mM ascorbate, and 1% (w/v) PVP-40). Fol-
lowing homogenization, crude lysate was strained through Mira-
cloth and centrifuged to remove cellular debris and enriched for
mitochondria by differential centrifugation. This enriched pellet
was resuspended and layered on top of a Percoll step gradient that
after centrifugation resulted in an isolated mitochondrial band.
Fractions of crude lysate, enriched mitochondria, and purified
mitochondria were collected along the purification process and
proteins were evaluated by proteomics analysis as described in

Methods S3.

Enzyme activity assay

Flash-frozen seeds from R5-R8 stages of development were
homogenized in extraction buffer (100 mM Tris-HCI pH 8,
5mM MgCl,, 2mM EDTA, 10% v/v glycerol, 10 mM f-
mercaptoethanol) by bead mill (MM 400 Mixer Mill; Restch,
Haan, Germany). The combination of ¢. 50 mg of fresh dssue
and 200 pl of extraction buffer produced consistent homogenate
that was clarified by centrifugation at 16 000 g for 15 min, and
supernatant was removed and centrifuged a second time. Enzy-
matic activity was measured immediately, or samples were flash
frozen in liquid nitrogen and stored at —80°C. Malic enzyme
activity was measured spectrophotometrically using a 96-well
microplate reader by recording the change in absorbance at
340 nm over time corresponding to NAD(P)H production as
detailed in Methods S4.

Fatty acid methyl ester analysis for oil content

Four to six seeds from each plant across development were flash
frozen, crushed to a fine powder, and lyophilized. 15-30 mg of
tissue was weighed into 8 ml glass vials with 0.2 and 1 mg of
C15:0 and C17:0 TAG standards (T4257 and T2151; Millipore-
Sigma), respectively. Two milliliters of a mixture of methanol,
concentrated sulfuric acid, and 0.2% w/v butylated hydroxyto-
luene (101162; MP Biomedicals, Irvine, CA, USA) were
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combined by volume (19 : 1 : 0.250, v/v/v) and aliquoted per
tube. Fatty acid methyl esters (FAMEs) were generated by incu-
bating at 110°C for 3 h with hourly vortexing, then cooled, %
0.9 w/v NaCl (3 ml) was added to quench the reaction, and
extracted with hexane. The FAME:s in the hexane organic layer
were quantified by GC-FID (Thermo Fisher Focus GC) with
Thermo Fisher XCALIBUR software (v.4.0; Thermo Fisher) relative
to C15 and C17 standards.

Acyl carrier protein analysis

Acyl carrier proteins (ACPs) were measured by following the
method described by Nam et 4/ (2020). Briefly, fresh G. max
seed tissue was homogenized in a solution of 5% trichloroacetic
acid (TCA). Precipitated proteins were pelleted by centrifuga-
tion, washed with 1% TCA, and resuspended in MOPS buffer
(50 mM, pH 7.6). Proteins were precipitated again by adding
TCA to a concentration of 10%, followed by centrifugation and
washing of the pellet with 1% TCA. Precipitated proteins were
then resuspended in 50 pl of MOPS buffer and digested with
Endoproteinase AspN (P3303; MilliporeSigma). Digestions
were quenched with the addition of 50 pl methanol, centri-
fuged at 15000 g and acyl-ACPs in the supernatant analyzed
using a QTRAP 6500 mass spectrometer from Sciex (Framing-
ham, MA, USA) connected to an LC-20AD XR Shimadzu
liquid chromatography pump with settings as described in Jen-
kins et al (2021).

Total protein and free amino acid analysis

Three methods were employed to measure total protein. NIR
was performed on mature seeds using a Perten DA 7250 (Perki-
nElmer, Waltham, MA, USA). Total protein was estimated using
instrument default settings calibrated for G. max (PerkinElmer).
As a second approach, C : N analysis was performed by the Cen-
ter for Applied Isotope Studies at the University of Georgia,
using the Dumas combustion analysis method (Kirsten, 1983).
Total protein was calculated assuming a Jones factor of 6.25. A
third strategy for protein quantification included acid hydrolysis
that was performed by reacting lyophilized tissue with 4 M
methanesulfonic acid at 110°C for 22 h. Samples contained an
isotope internal standard mixture of amino acids (MSK-A2-1.2;
Cambridge Isotope Laboratories, Andover, MA, USA). Follow-
ing digestion, the acid was neutralized, and the sample concen-
trated to a final concentration of 10 UM internal standard amino
acid mixture. Quantification was performed on a Sciex QTRAP
6500 mass spectrometer connected to an LC-20AD XR Shi-
madzu liquid chromatography pump. Mass spectrometry condi-
tions were the same as described previously (Kambhampati
et al., 2019).

Free amino acids (¢. 20 mg of lyophilized tissue) were quanti-
fied in the presence of an equimolar U-">C internal isotope stan-
dard amino acid mixture (MSK-CAA-1; Cambridge Isotope
Laboratories). Samples were extracted with 7 3 (vlv)
chloroform : methanol using a bead mill (MM 400 Mixer Mill
Restch) then inverted for 2h at 4°C on a rotating platform.
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Water (400 pl) was added, and the aqueous phase concentrated
to a final concentration of 10 uM internal standard amino acid
mixture before analysis using the previously described mass spec-
trometry approach. Quantitation of free amino acids was per-
formed identical to amino acids resulting from protein hydrolysis
with additional m/z transitions for asparagine and glutamine,
using a standard curve isotope dilution strategy (Kambhampati
etal,2019).

Results

Culturing of soybean seeds with U-"3C5 Glutamine
indicates a role for malic enzyme in seeds

Prior flux studies (Allen e af, 2009b; Allen & Young, 2013) with
U-"’Cs-glutamine resulted in labeling in fatty acids and branched-
chain amino acids, but not aromatic amino acids, all of which are
synthesized in the plastid. The investigations inferred that pyruvate
but not phosphoenolpyruvate (PEP) was isotopically enriched;
however, more complicated descriptions including label disequili-
brium across subcellular pool locations could not be exhaustively
ruled out. To more conclusively evaluate the pathway of labeling
that led to labeled lipids, an LC-MS/MS approach (Ma
et al., 2014, 2017) was used to quantify central intermediate isoto-
pologs from U-'’Cs-glutamine cultured soybeans with varied
carbon-to-nitrogen ratios of 13, 21, and 37 (Allen & Young, 2013).
'3C was incorporated into pyruvate at significant levels (15-20%
when the carbon-to-nitrogen ratio was 21) indicating that gluta-
mine carbon supplied up to 1/5™ of the total carbon for this pool
in developing soybeans (Fig. 2; Table S3). PEP and other glycolytic
intermediates including fructose-6-phosphate and dihydroxyace-
tone phosphate were unlabeled, indicating that phosphoenolypyru-
vate carboxykinase (PEPCK) is not actively shuttling carbon during
seed filling stages of metabolism.

Generation of homozygous transgenic soybeans and
expression of transgenes

Transgenic soybean alleles were generated carrying the well-
annotated Arabidopsis Atdg00570 (ArME2, NAD" dependent or
NAD-ME) and Atlg79750 (A:ME4, NADP" dependent or
NADP-ME) seed expression cassettes, noted as mitochondrial
and plastidic, respectively. Arabidopsis genes were chosen based
on available annotations at the time of cloning and subsequently
compared with sequenced soybean genome orthologs. Though it
is possible other nonplant orthologs could have further enhanced
activities, the potential incompatibilities and low throughput of
transgenic studies in soybean precluded consideration of options
with more risk, in this first study in plants. For simplicity, the
beta subunit of NAD-ME that is known to be active was
expressed (Tronconi et al., 2008).

Multiple sequence alignment of Arabidopsis AtME2 and AtME4
with Glycine orthologs indicated 62-81% homology for NAD type
ME and 51-79% for NADP type ME (Fig. Sla). Phylogenetic
analysis revealed distinct clades for each cofactor type with high
similarity between soybean and Arabidopsis orthologs (Fig. S1b).
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Fig.2 Incorporation of "*C-glutamine into pyruvate but not PEP indicated
PEPCK was not active in Glycine max seeds. Nine samples, three from each
of C:N13,C:N21,and C: N 37 were used to inspect labeling of phos-
phorylated sugars from the supply of "3C-glutamine by LC-MS/MS. C : N
21 presented, C: N 13, and 37 in Supporting Information Table S3 with
statistics, labeling corrected for natural abundance. DHAP, dihydroxyace-
tone phosphate; GAP, glyceraldehyde-3-phosphate; GIn, glutamine; Glu,
glutamate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PEPCK, phos-
phoenolypyruvate carboxykinase.

Additionally, multiple sequence alignment of Arabidopsis and G.
max malic enzymes with solved structures of human NAD'-
dependent (Tao er al, 2003) and maize NADP -dependent
(Alvarez et al., 2019) malic enzyme showed high conservation of
residues involved in the active site binding of malate or pyruvate
(Fig. S2a). Structural comparison of solved crystal structures with
predicted structures of Arabidopsis and G. max orthologs also
showed high similarity (e.g. in Fig. S2b,c). Open reading frames
were codon-optimized for soybean. For each transformation event,
at least 18 plants were screened for homozygous patterns of herbi-
cide resistance. After herbicide screening, events were selected for
in-depth analysis. Homozygosity in five events was verified based
on Tagman assays designed to confirm the presence of two allelic
insertions of bar gene (i.e. one per chromosome) per transgenic
plant. The combined assays provided a conclusive screen that
ensured single transgenic insertions in three AZME2 and two
AtME4 homozygous events (Tables 1, S4; Fig. S4).

Gene expression of transgenic malic enzyme was assessed over

seed development with digital droplet PCR (ddPCR). Endogenous
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Table 1 Homozygous transgenic Glycine max selected for study.

Event Gene Predicted localization ~ NAD(P)" dependence
AtME2-1  At4g00570  Mitochondria NAD*

AtME2-2  At4g00570  Mitochondria NAD*

AtME2-3  At4g00570  Mitochondria NAD*

AtME4-1  At1g79750  Plastid NADP*

AtME4-2  At1g79750  Plastid NADP*

NAD-ME genes (Glyma03¢24630 and Glyma07g08110) and endo-
genous NADP-ME genes (Glymal3¢43130 and Glymal5¢02230)
were compared with the expression of the transgenic alleles
(Table S5). Elongation factor 1-beta (EYf16) served as a reference
gene to normalize expression values (Jian er 4/, 2008; Reddy
et al., 2013; Yim et al, 2015). At the R5 stage of development,
neither AtME2 nor AtME4 events displayed differences in expres-
sion relative to endogenous genes; however, peak expression at R6
or R7 (Fig. 3b) was 440 times more than native levels (Table S5).
Transgene expression dropped to wild-type levels near maturity (i.e.

R8 stage).

Transient expression assays indicate chloroplast and
extraplastidic locations

Though genes were chosen based on evidence for subcellular tar-
geting to chloroplast and mitochondria from literature
(Macrae, 1971; Day & Wiskich, 1974; Hatch et al., 1974), par-
tial cytosolic localization for the AtME2 gene product has been
suggested by a more recent study (Ito er al, 2011). TARGETP
v.2.0 software was used to predict subcellular localization of each
gene product (Armenteros ¢t al., 2019). Results supported mito-
chondrial and chloroplast localizations for AtME2 and A:ME4
respectively, with much stronger mitochondrial signals for
AtME2 relative to chloroplast signals for AzME4 (Fig. S5).

Plastidic and extraplastidic subcellular locations for AtME4 and
ATME?2 were further explored through transient expression in V.
benthamiana leaves. Subcellular localization was determined through
confocal fluorescence microscopy by infiltrating N. benthamiana
leaves with Agrobacterium-carrying constructs expressing GFP fused
to the C-terminus of AtME2 or AtMF4 under the control of the
35S CaMV promoter. Mitotracker Red CMXRos and chlorophyll
autofluorescence were used to visualize mitochondria and chloro-
plasts, respectively. Free GFP was also expressed in V. benthamiana
leaves as a positive control and displayed expected nuclear and cyto-
solic localization patterns. AtME2-GFP was detected in the cyto-
plasm and mitochondria but not the chloroplast (Fig. 3¢). AsMF4-
GFP was localized to the chloroplast stroma with a minor fraction
of signal detected in the cytoplasm.

Proteomic evaluation of organelles indicates enriched
expression in subcellular locations

As transient expression with a constitutive promoter in V.
benthamiana leaves may not completely reflect the cells of filling
soybean seeds, organelle proteomic analysis of AZMEZ2’s subcellular
localization was performed with enriched mitochondria from
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AtME2-1, AtME2-2, and AsME2-3 plants. Fractions collected at
three different points along the purification process were analyzed
by proteomics resulting in the identification of 2909 unique pro-
teins. Proteins that were not identified in all three fractions or that
had low false discovery rate confidence were excluded from analy-
sis. Remaining proteins were classified as cytosolic or mitochon-
drial using DEEPLOC2.0 prediction algorithms. Within this group
of proteins, known mitochondrial and cytosolic proteins were spe-
cifically identified from established literature (Millar ez 2/, 2001;
Oechrle ez al,, 2008; Ito et al, 2011) and Uniprot annotations. A
heatmap showing normalized abundances of mitochondrial and
cytosolic proteins from all three fractions indicated an enrichment
of mitochondrial proteins and a dilution of cytosolic proteins
(Fig. 4) through the mitochondrial isolation process. AMME2
abundance increased with isolation of mitochondria. The sequence
differences between the native soybean malic enzyme and the
AtME2 proteomic products avoided potential ambiguity between
identified proteins. Apart from the alpha and beta subunits of
ATP synthase that function as part of the electron transport chain,
AtME2 was the third most abundant protein and greater than
common mitochondrial marker proteins including but not limited
to aconitate hydratase (2.5-fold), NADH ubiquinone reductase
(45-fold), and formate dehydrogenase (400-fold) (Tables S6, S7).
A number of plastid proteins were enriched during mitochondrial
isolation, possibly from thylakoid membranes of broken chloro-
plasts that can co-enrich with the mitochondria. Soybean seed
chloroplasts have storage plastids (Borisjuk ez al, 2005) that can
rupture chloroplasts during purification and result in contami-
nated organelle fractions (Steinmiiller & Tevini, 1985). Nonethe-
less, the combined observations from transient expression and
proteomics confirmed the localization of AtME4 to chloroplasts
and indicated that A#ME2 protein was outside the chloroplast and
some protein was localized to the mitochondria.

Enzyme assays confirm activity of transgenic malic enzyme
in the plastid

To confirm functionality of the malic enzyme transgenic alleles,
NADP-ME, NAD-ME, and NAD-malate dehydrogenase
enzyme activities were measured in wild-type and transgenic
seeds across development. Seeds were collected from multiple
plants for each event of each genotype per developmental stage.
Wild-type levels of NAD-ME, NADP-ME, and NAD-MDH
activity were highest at the R5 stage for all enzymes and decreased
as the seed matured (Fig. 5a; Table S8). Compared with wild-
type, AtME4 events displayed roughly 5-10 times the activity of
NADP-ME beginning at the R6 stage in development and lasting
until maturity. NAD-ME activity could not be reliably deter-
mined due to interference from MDH that favors the generation
of NAD (Guynn et al., 1973; Bowman & lkuma, 1976) and can
be in excess of 100-fold that of NADP-ME (Gerrard Wheeler
et al., 2016). Attempts to inhibit the malate dehydrogenase activ-
ity using historical inhibitors phenol, albendazole, and mebenda-
zole (Henneke & Wedding, 1975; Tejada er al, 1987) were
unsuccessful and not pursued further as they can result in arti-
facts.
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Malate and pyruvate pools changed substantially in
transgenic soybean alleles

The direct substrate and product of malic enzyme, that is, malate
and pyruvate, were quantified during reproductive development
stages in transgenic soybeans. Consistent with other measure-
ments, no changes in malate or pyruvate level were observed at
the R5 stage of development (Fig. 5b); however, beginning at
R6, malate levels were reduced in all transgenic events at all stages
of development. Absolute changes in pyruvate were less pro-
nounced due to the smaller pool size though increased pyruvate
levels were easily visualized at R6 for AsME4 and R6 and R7 for
AtME2.

Seed sink strength was unchanged

Seed mass is a strong indicator of overall sink strength (Ho, 1988).
To determine whether sink strength in the transgenic malic enzyme

New Phytologist (2023) 239: 18341851
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developmental stages confirm expression
differences in Supporting Information

Table S5). (b) Normalized expression of
combined AtME2 (a, n =6, £1 SD) and
AtME4 events (B, n =4, £1 SD) in AtME2 or
AtME4 transgenic plants overdevelopment.
fNormalized expression relative to E/f1b.
**,<0.01; *, <0.05 based on two-tailed ¢-
test assuming unequal variance with n>4
replicates. (c) Confocal imaging of transient
expression of AtME2 and AtME4 in
Nicotiana benthamiana. GFP linked to the C-
terminal end of AtME2 and AtME4 under the
control of the constitutive 355 CaMV
promoter was infiltrated into N.
benthamiana using Agrobacterium
tumefaciens. Mitotracker Red CMXRos and
chlorophyll autofluorescence were used for
mitochondria and chloroplast visualization.
Unlinked GFP was infiltrated as a positive
control of GFP. White arrows in the AtME2-
GFP merge panel indicate instances of
colocalization of GFP and mitotracker signals.

plants was altered, seeds from muldple plants, generations, and
times of year were weighed. Transgenic seed weight did not increase
or decrease relative to wild-type (Fig. 6); though variation of up to
50 mg was observed due to environmental conditions that vary with
seasons.

Enhanced malic enzyme activity in the plastid resulted in
increased seed oil levels and altered fatty acid profiles

Seed oil levels were quantified overdevelopment by transmethyla-
tion that is commonly used for seed oil analysis (Li ez al., 2006).
Changes in AtME2 and AtMF4 events trended similarly; though
AtME?2 events contained less oil at mid-development (Fig. 7a;
Table S9) and were not significantly different from wild-type at
maturity. AtMFE4 events had increased oil levels that were mea-
sured over additional generations (0.5-2% increase as a fraction
of seed biomass, that is 2-9% change as a fraction of total oil;

Fig. 7b; Table S9). FAME analysis indicated AtME4 events
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Fig. 4 Heatmap of normalized protein abundances from purified Glycine max seed mitochondria isolated through Percoll density gradient centrifugation
show AtME2 enrichment. Successive protein fractions were obtained from total lysate, centrifugal enrichment of mitochondria, and mitochondrial
purification via Percoll density gradient centrifugation. Each fraction was analyzed by LC-MS proteomic workflows to determine protein abundances in
each successive fraction of mitochondrial purification. The results show an enrichment of mitochondrial proteins (top section) and a dilution of cytosolic
proteins (bottom section). AtME2 enrichment correlates with overall enrichment of mitochondrial proteins (middle section). Mitochondrial and cytosolic
proteins were identified using DeerLoc2.0 and known mitochondrial and cytosolic proteins from published literature (indicated by black arrows on the right-
hand side of the heat map). Identified mitochondrial and cytosolic proteins are provided in Supporting Information Table S6 with corresponding references

from Millar et al. (2001), Oehrle et al. (2008), and Ito et al. (2011).

contained 10% more oleic acid and 10% less linoleic acid as a
percentage of total lipid content starting at R6 and persisting
until maturity (Fig. 7c). Enhanced malic enzyme activity in
AtME2 events over seed development resulted in slightdy
depressed levels of oleic acid and higher levels of linoleic acid.
The greatest changes in fatty acid profiles for AtME2 and AtMFE4
events coincided with peak gene expression at R7 and R6 stages

respectively (Fig. 3b; Table S5).

Ratios of reduced to oxidized cofactors indicate changes in
seed metabolism

Given the coproduction of NAD(P)H cofactors with malic enzyme
activity, the levels of reduced and oxidized cofactors were measured
by LC-MS/MS. Unlike malate and pyruvate that have a select
number of alternative reactions through which they are produced
or consumed, the production and turnover of reduced and oxidized
forms of cofactors involves many reactions that could reduce the
measurable impact of the genetic changes. Nonetheless, the levels of
reduced cofactors were increased consistent with the function of
malic enzyme (Fig. 8a); though some differences were not statisti-
cally significant and may reflect metabolic homeostasis, malate
shuttles, or the impact of other cofactor-requiring reactions. The
pairwise ratios of reduced to oxidized cofactors enable anabolic pro-
cesses (i.e. NADPH : NADP"), and a currency supply for electron
transport (i.e. NADH : NAD™) (Heldt, 2005) and were calculated
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directly from measured values. The ratio of NADPH : NADP" was
increased ¢. twofold at R6 and R7 in both AtME4 and AtME2 lines
relative to WT and the ratio of NADH : NAD" was increased c.
threefold at R6 and twofold at R7 in A#ME?2 lines relative to WT
(Fig. 8b) comparable to ranges reported in the literature for other
systems (Heineke ez al, 1991; Henry ez al., 2007).

Relative comparisons of acyl-ACP intermediates in
transgenic tissue

Acyl-acyl carrier proteins (ACPs) provide the scaffold for fatty
acid biosynthesis and are an essential component of lipid metabo-
lism. Following methods that were established to quantify abso-
lute levels of acyl-ACPs (Nam et al, 2020; Jenkins et al., 2021),
we assessed whether increases in malic enzyme activity resulted in
changes in ACP levels. Relative ratios of each acyl-ACP were
determined by comparing peak areas from mass spectrometry.
Individual acyl-ACPs have not been previously reported for soy-
bean temporally and could only be measured at R5 and R6, due
to reduced levels with developmental progression. No difference
in acyl-ACP levels was observed between transgenic and WT
plants at R5 or R6; however, longer chain acyl-ACPs, specifically
Cl14 chain length, increased at the RG stage relative to R5
(Fig. 8¢) for all plants. This increase in C14 acyl-ACP may be
unique to soybean and appears to differ from recently quantified
levels in other species (Nam ez @/, 2020; Chu et al., 2022).
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the box. Boxplot whiskers represent +1.5
IQR.

Changes in free amino acid indicated rebalancing of carbon
partitioning in seeds

We hypothesized that malic enzyme might impact amino acid pro-
file by affecting levels of oxaloacetate and pyruvate that are precur-
sors for aspartate and pyruvate-derived amino acids. Free amino
acid levels were measured across development using LC-MS/MS
with inclusion of '*C-labeled internal standards (Tables S10-S12)
and grouped into one of four families based on the origin of meta-
bolic precursors to better assess changes in metabolism. The four
families included amino acids derived from: pentose, triose phos-
phates, and aromatic amino acid precursors, henceforth referred to
as the phosphorylated intermediate family; aspartate; glutamate;
and pyruvate (Fig. 9a). In WT at developmental stage R5, the
aspartate family of free amino acids accounted for over 58% of
total, whereas the phosphorylated intermediate family comprised
17.5%, the glutamate family 21%, and the remaining 3.5% was
associated with pyruvate-derived amino acids.

By R6, the proportion of the pyruvate-derived and phosphory-
lated intermediate-derived amino acids had increased at the expense
of the aspartate family in both A#ME2 and AtME4 but was more
pronounced in AtME2 events. The trends continued to R7 with
further increases in the pyruvate and phosphorylated intermediate
families of amino acids and further reductions in the aspartate
family. The increases in the pyruvate-derived and decreases in

New Phytologist (2023) 239: 1834-1851
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aspartate-derived amino acids were maintained to maturity with
modest rebalancing of glutamate and phosphorylated intermediate
families in later stages of development (Fig. 9b; Table S11). Inspec-
tion of the pyruvate family amino acids indicated that increases in
alanine accounted for the largest proportional change in A:ME2
and are consistent with evidence for alanine production outside of
the chloroplast (Fig. 9¢) (Biekmann & Feierabend, 1982; Miyashita
et al., 2007; Allen ez al., 2012).

In AtME4 events, the differences were more subtle; however,
the branched-chain amino acid leucine was elevated significantly
by R7 (Table S12), consistent with enhanced enzymatic activity
in the plastid where branched-chain amino acids are produced
(Hagelstein ez al., 1997). There was also a large increase in ala-
nine at R6 for all events including WT, however beginning at
R7, the WT levels of alanine dropped. AzME2 events maintained
an elevated level of alanine and AzME4 shifted to more significant
leucine production. Within the aspartate family of amino acids,
aspartate levels were significantly depressed in all transgenic
alleles leading to overall depression of the entire family.

Protein content was unchanged in malic overexpression
events

Given the significant changes in profile of free amino acids, we
questioned whether this could impact final proteinogenic amino
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acid composition. Total protein was measured through a combi-
nation of complementary approaches. Near-infrared spectroscopy
(NIR) indicated a modest, but statistical decrease in total protein
in AsME2-1 and AtMF4-2 events though increases or decreases
were not observed in the other transgenic alleles (Fig. S6). Crude
protein assessed overdevelopment with the Dumas method (Mar-
iotti ez al., 2008; Allen & Young, 2013) did not indicate differ-
ences in total protein between events. Lyophilized tissue was also
subjected to acid hydrolysis using an isotope dilution-based mass
spectrometry approach (Kambhampati ez 4/, 2019) to quantify
total protein and proteinogenic amino acid composition and
similarly indicated no significant differences (Fig. 10;
Table S13). The combination of methods indicated levels of total
protein and amino acids was generally unaltered.

Discussion

Targeted expression of malic enzyme impacts composition
in developing soybean seeds by altering subcellular carbon,
nitrogen, and reducing equivalent provision

Organelles are a hallmark of eukaryotic metabolism (Allen
et al., 2009a, 2012). The current study established the significant
consequences of modulating a single enzymatic step in central
metabolism principally in two subcellular locations (Fig. 11).
The outcomes reflect the impact of spatial considerations on
metabolic engineering efforts (Allen e al, 2009a; Allen, 2016b).
When malic enzyme was localized outside the chloroplast, that is
AtME?2 events, pyruvate-derived amino acid levels increased,
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especially alanine, but did not result in more protein. Dispropor-
tionate production of one amino acid would not be expected to
support an increase in total protein content unless that amino
acid was limiting. To increase protein requires stoichiometric
increases in amino acids corresponding to mRNA templates;
‘pulling’ on central metabolism from many precursors. This is in
contrast to lipids or carbohydrates that are principally derived
two precursors (Allen & Young, 2013;
Allen, 2016b). Fatty acid biosynthesis in plants occurs in the
chloroplast (Ohlrogge er al, 1979; Rawsthorne, 2002) and
requires a balanced supply of carbon and reducing equivalents

from one or

that are provided by the transgenic allele in AtMFE4 events result-
ing in enhanced levels of oleic acid and an overall increase of 0.5—
2% oil in mature seeds (i.e. 2-9% change as a fraction of total
oil).

Malate is intimately tied to the balance of carbon and reducing
equivalents, due to roles in oxidation—reduction reactions and the
shuttling of reducing equivalents across organelles through well-
described malate valves (Selinski, 2019; Dao et 2/, 2021). Thus,
enhanced malic enzyme activity resulted in more pyruvate
(Wedding, 1989) and influenced the cyclic shuttle of malate and
oxaloacetate and altered the subcellular balance of NAD(P)H
available for biosynthetic processes. Malic enzyme and pyruvate
dehydrogenase activities in plastids produce one NADPH, one
NADH, and one acetyl-CoA molecule for fatty acid biosynthesis.
NADPH can further be used to replenish ferredoxin-based redu-
cing equivalents used by the stearoyl-ACP desaturase in the same
location (Nagai & Bloch, 1968; Jacobson ez al., 1974; Ohlrogge
et al, 1979; Schultz et al, 2000) and thus increased

New Phytologist (2023) 239: 1834-1851
www.newphytologist.com

//:sdyy woiy papeoy




1844 Researc

New

Phytologist
(a) (b)
- 27 26 _*::_
< 22 & P A
8 17 Sad{ +— % =
= (=} ol Ky .o
@ 40 @ B T,
£ g 22 7 e
] o o
o 7 2
R5 R6 R7 Rg | @ u" =
> D - 20— ——
- WT & AtME2-1 - AtME2-2 T T T Fig. 7 Lipid profile of transgenic Glycine max
- AtME2-3 -m AtME4-1 - AtME4-2 WT  AtME4-1 AtME4-2 seeds. (a) Lipid production overdevelopment
as a percent of total biomass dry weight
(c) 50 ) x (DW) in transgenic malic enzyme seeds (full
> - Y L statistics Supporting Information Table S9)
40 (b) AtME4-1 and AtME4-2 display 0.5% and
30 *l* *I* *l**g 2% increases in lipid respectively as a percent
20 . d - of biomass (i.e. 2-9% change as a fraction of
= 1| —1 ** total oil). Results significant at o **, <0.01;
& 10 m m ol l—ﬁ *, <0.05 based on two-tailed ¢-test assuming
g 0 TN T unequal variance with n > 64 degrees of
g 16:0 18:0 18:1 18:2 18:3 16:0 18:0 18:1 18:2 18:3 freedom. The box vertical dimensions
5 Palmitic ~ Stearic Oleic LI::|EIC Linolenic Palmitic ~ Stearic Oleic  Linoleic Linolenic represent the interquartile range (IQR)
o L e between upper and lower quartiles with the
8 50 *x N 3 median designated by the thick line within
= 40 ! @ -~ the box. Boxplot whiskers represent +1.5
= IQR. Black circles represent individual
30 observations. (c) Fatty acid profiles
20 IS *l* ' *x - overdevelopment. Error bars represent
10 *x %% L1 ok xx x | sample SD with n = 11 degrees of freedom.
0 m ._|-|.. ix.'. m .l-_. f.“ o **,<0.01; *, <0.05 based on two-tailed ¢-
16:0 18:0 18:1 18:2 18:3  16:0 18:0 18:1 18:2 18:3 test assuming unequal variance with n = 12
Palmitic Stearic  Oleic  Linoleic Linolenic ~ Palmitic ~Stearic ~ Oleic  Linoleic Linolenic replicates. Brackets over adjacent columns

| mWT O AtME2-1 m AtME2-2 B AtME2-3 0O AtME4-1 E AtME4-2 |

denote the same level of statistical
significance.

NADPH : NADP" ratios maintain enhanced desaturation rates
to oleoyl chains that are produced within the chloroplast for the
measured increase in lipid levels. By contrast, the AtME2 events
result in pyruvate and NADH in the cytosol and mitochondria
that can be respired through the electron transport chain for
increased ATP synthesis or used to sustain polyunsaturation of
fatty acids by replenishing cytochrome b5 (Bonnerot ¢t al., 1985;
Kumar et al., 2012).

Amino acid distributions were also impacted by enhancing
organellar malic enzyme (Fig. 9b,c). We hypothesized that aspar-
tate family amino acids would be reduced, and pyruvate-based
amino acids increased, due to the repartitioning of malate carbon
from oxaloacetate to pyruvate. The effect was more pronounced
in the AtME2 events suggesting that aspartate biosynthesis is
more dependent on the mitochondrial or cytosolic supply of oxa-
loacetate and malate. Given that aspartate biosynthesis has been
hypothesized to occur in multiple subcellular locations (Schultz
& Coruzzi, 1995; Miesak & Coruzzi, 2002), efforts to modify
the production of aspartate-derived amino acids, including some
that limit soybean meal quality for animal feed (Fernandez
et al., 1994; Abe et al., 1998), should carefully consider the sub-
cellular source of carbon. Consistent with this thought, increased
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alanine in the AtME2 events, and leucine in the AtMF4 events,
indicated available pyruvate supplies outside and inside the plas-
tid, respectively. The supply of pyruvate generated from subcellu-
lar locations of malic enzyme supported proposed organellar
biosynthetic origins of amino acids (Hagelstein ez al, 1997; Bin-
der et al., 2007).

Acyl-ACP profiles indicate that fatty acid biosynthesis can
accommodate an increased supply of carbon resulting in
gains in lipid content

Whether the additional supply of carbon from malate could trig-
ger a new bottleneck at the point of fatty acid synthesis was
assessed by examining the acyl-ACP pools. The structures, com-
positions, and regulation of acyl-ACPs that are located in the
chloroplast (Ohlrogge ¢t al, 1979) and to a lesser extent in the
mitochondria of plants (Chuman & Brody, 1989) have been stu-
died in oilseeds to better comprehend lipid metabolism (Majerus
& Vagelos, 1967; Post-Beittenmiller et al., 1991, 1992; Jaworski
et al., 1993; Ohlrogge er al, 1995; Andre er al., 2012; Bates
et al., 2014; Kim ez al.,, 2015; Nam ez al., 2020; Msanne ¢t al.,
2021; Chu et al., 2022). Pooled acyl-ACP levels in soybeans from
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enhanced comparison. AtME2 lines display a
much greater increase in NADH : NAD" ratio
compared with AtME4 lines. Results
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significant at o **, <0.01; *, <0.05 based on

Relative peak area

two-tailed t-test assuming unequal variance 0.4
with n>10 degrees of freedom. Error bars 0.3
represent sample SD with n =9 degrees of

freedom. (c) Acyl-ACP levels were measured 0.2
in R5 and R6 developmental stages of seeds. 0.1
Relative levels of each acyl-ACP were made

using the ratio of peak area to initial tissue 0.0

mass (n =6, =1 SD). Later stages of
development did not have quantifiable levels.

enzymatic and immunochemical assays have indicated that ACPs
as a class increase over early development, during fatty acid bio-
synthesis (Ohlrogge & Kuo, 1984). The analyses of individual
acyl-ACPs (Nam e al., 2020) performed here provided a snap-
shot of the specific ACP levels that correlate with the accumula-
tion and leveling off of lipid production. The results indicated
that the ACP levels did not differ significantly between events.
Furthermore, the increased levels of pyruvate and reduction in
malate, driven by increased malic enzyme activity, suggested that
enhancing supplies of central intermediates can lead to a mea-
sured increase in lipid in soybeans (i.e. 0.5-2% of total biomass,
i.e. 2-9% change in total oil) without requiring changes to fatty
acid biosynthetic machinery. Whether further increases in oil
content could be obtained by pairing a malic enzyme line with,
for example, enhanced acetyl-CoA carboxylase activity (Wilson
& Thelen, 2018) or other proteins that increase oil production in
soybean would be intriguing to consider.

Though fatty acid synthesis may provide some flexibility for
increased oil content in soybean, the ACP profile observed in soy-
beans differs from other reports and varied considerably between
R5 and R stages of development. R5 seeds showed higher levels
of short-chain ACPs but upon reaching the R6 stage of
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development there was a larger accumulation of C14 ACP. This
is relevant when considering C14 ACP is the longest acyl-ACP
without a chain-specific thioesterase in soybean (Jones
et al., 1995; Tran et al., 2019; Zhou et al., 2021) and possibly
results from increased nonspecific FATA/B thioesterase activity
when lipid production is starting to decline as seed development
progresses. Total acyl-ACPs and relative level of oil production
dropped concomitantly indicating that the quantites of
these fatty acid intermediates may be a marker for active lipid
production.

Changes in malate partitioning through a single gene effect
impacts subcellular resource availability

Reports of significant changes to seed composition from a single
gene effect in central metabolism are limited because central
metabolism operates in a pliable, context-specific way and pro-
vides multiple routes to get from a substrate to a product (Allen
et al., 2015; Allen & Young, 2020). In addition, metabolic con-
trol analyses suggest that altering a single flux limiting step may
only shift the bottleneck to another enzyme in the same pathway
(Heinrich & Rapoport, 1974; Kacser er al, 1995; de Castro,
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1997). While this latter point likely limits the extent of changes
to storage reserve composition observed here, malic enzyme is
uniquely positioned in the network as a conduit to shuttle
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protein levels as a percent of total biomass.
The box vertical dimensions represent the
interquartile range (IQR) between upper and
lower quartiles with the median designated
by the thick line within the box. Boxplot
whiskers represent £1.5 IQR. Statistical
information provided in Supporting
Information Table S13. (b) Ratios of amino
acids in total protein were similar between
WT and transgenic tissue.

-Arg -GIn
-Glu -Pro

carbon, originating from a vegetative source of glutamine, to seed
oil biosynthesis. This concomitantly affects cofactor distribution
within organelles in the developing seeds. Prior flux studies of
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Fig. 11 Summary of malic enzyme activity in
overexpressing transgenic Glycine max lines.
Changes in the AtME2 and AtME4
transgenics are displayed by purplel and
greenm arrows and describe the network
relationship to malic enzyme. Thick solid lines
emphsize major metabolic pathways and
substrates directly affected by the action of
malic enzyme. Thin solid lines show alternate
routes of pyruvate, alanine, and aspartate
production. Dashed lines show the interplay
of oxaloacetate (OAA), malate, and reducing
equivalents due to malate valve activity.

wild-type soybean seed metabolism indicated that malic enzyme,
not PEPCK, supported fatty acid biosynthesis (Allen
et al., 2009b; Allen & Young, 2013) which was further supported
here by labeling in pyruvate but not in PEP from LC-MS/MS
analysis of U-""C glutamine cultured soybeans. The results are
consistent with recent studies that indicate gluconeogenic path-
ways including PEPCK-based PEP production are only active
late in development when sugar reserves are largely depleted
(Kambhampati ez al., 2021). The current effort provides genetic
confirmation of the impact of subcellular and temporal changes
in expression of malic enzyme, can significantly alter central
metabolism. Malic enzyme alters the partitioning of carbon and
reducing equivalents, that results in enhanced total seed lipid
levels, affecting free amino acids but without negatively impact-
ing total protein in the crop.
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