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Sample efficient graph classification using binary Gaussian boson sampling
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We present a variation of a quantum algorithm for the machine learning task of classification with graph-
structured data. The algorithm implements a feature extraction strategy that is based on Gaussian boson sampling
(GBS), a near-term model of quantum computing. However, unlike the currently proposed algorithms for this
problem, our GBS setup requires only binary (light or no light) detectors, as opposed to photon-number-resolving
detectors. Binary detectors are technologically simpler and can operate near room temperature, making our
algorithm much less complex and costly to implement physically. We also investigate the connection between
graph theory and the Torontonian matrix function which characterizes the probabilities of binary GBS detection
events.
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I. INTRODUCTION

Graphs are one of the most versatile data structures used
in computing, and developing machine learning methods for
working with graph-structured data has been a growing sub-
field of machine learning research. Graph classification, in
particular, has useful applications in fields such as bioinfor-
matics, network science, and computer vision as many of the
objects studied in these fields can easily be represented as
graphs. However, using graph-structured data with machine
learning models is not a straightforward task. This is because
one of the most common ways of representing a graph for
computational applications, i.e., as an adjacency matrix, can-
not easily be used as an input for machine learning classifiers
which primarily take vector-valued data as their inputs. There-
fore, a common way of working with graph-structured data is
to define a feature map φ that maps a graph G to a vector in a
Hilbert space called a feature space. From there, a function κ ,
called a kernel, is defined that measures the similarity of two
graphs in the feature space. An example of a feature map from
R2 → R3 is shown in Fig. 1.

Kernel methods refer to machine learning algorithms that
learn by comparing pairs of data points using this similarity
measure. In our context we have a set of graphs G, and
we call a kernel κ a graph kernel if it is a function of the
form κ : G × G → R [1,2]. The most common example of a
kernel function is the feature space’s inner product κ (x, x′) =
〈φ(x),φ(x′)〉. The goal of such methods is to construct map-
pings to feature vectors whose entries (the features) relate
to relevant information about the graphs. Using a Gaussian
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boson sampling (GBS) device to construct graph kernels was
an idea first proposed by Schuld et al. [3].

Boson sampling was first proposed by Aaronson and
Arkhipov [4] as a task—generating the photon-counting out-
comes of the “quantum Galton board” constituted by an
M × M optical interferometer fed single photons in some of
its input ports—that is strongly believed to be intractable to
classical computers. The reason for this intractability is that
calculating the probability distribution for generating random
outcomes using Monte Carlo simulations requires calculating
the permanent of an M × M matrix. Calculating the perma-
nent of a general matrix is known to be #P-complete [5],
which is a class of problems comparable to the class of NP-
complete problems in difficulty. Gaussian boson sampling [6]
is a variant of boson sampling in which the single-photon
inputs are replaced with single-mode squeezed states, as
produced, for example, by two-photon-emitting optical para-
metric amplifiers [7]. The GBS probability distribution is
governed by the Hafnian of an M × M matrix. Calculating the
Hafnian of a general square matrix can be reduced to the task
of calculating permanents; therefore, calculating the Hafnian
is also #P-complete. In both cases, a quantum machine im-
plementing boson sampling or GBS can easily sample from
these hard-to-calculate probability distributions just because
they are “wired in,” and this constitutes the “quantum advan-
tage” that was recently demonstrated in optical experiments
[8,9]. Note also that the initial “quantum supremacy” result
obtained by Google on a superconducting qubit array [10] was
a quantum (circuit) sampling result as well.

Beyond these necessary initial steps of demonstrating that
quantum hardware can, indeed, reach regions inaccessible to
classical hardware, a subsequent question is that of the utility
of a sampling task. Whereas the usefulness of sampling in and
of itself is far from established, we know that the histograms
produced by statistically significant sampling constitute
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FIG. 1. In the original input space R2 the data points, which
belong to either the red or blue class, are not separable by a linear
function (the decision boundary), but after mapping the points to
feature vectors in a higher-dimensional space R3, a linear function is
able to separate the two classes. This linear decision boundary can be
calculated by supervised machine learning models such as a support
vector machine. In our case the input space is the set of all undirected
graphs, which we denote as G.

empirical probability distributions that tend toward the true,
classically intractable probability distributions for sample
numbers linear in the number of possible outcomes [11].
The problem is that this very number of possible outcomes
grows exponentially with M in an M-qubit quantum circuit
in general [12] and exponentially or superexponentially
with M in an M-optical-mode boson or Gaussian boson
sampler, which dispels any notion of quantum advantage
for calculating the corresponding quantum probability
distributions.

One direction that has been explored in relation to this co-
nundrum is the binning of GBS measurements, which results
in outcome classes whose cardinality scales favorably (e.g.,
polynomially) with the problem size (the GBS mode number).
The immediate downside of such an approach is the loss of
information it entails, which impacts usefulness. However,
graph classification using feature vectors and coarse-graining
might provide advantageous GBS applications. This was first
pointed out by Schuld et al. [3].

In this paper, we show that a technologically simpler
version of GBS, which we term binary GBS, can achieve
comparable or better performance. This paper is structured
as follows. In Sec. II we give broad reminders about GBS
and graph theory (with details given in Appendix A) and the
current GBS graph kernel from Ref. [3]. We then present our
graph kernel in Sec. III, along with results from numerical
experiments and analyses of its complexity, features, and ad-
vantages.

II. REMINDERS ABOUT GAUSSIAN BOSON
SAMPLING AND GRAPH THEORY

A. Gaussian boson sampling

As mentioned above, an M-mode GBS device comprises
M single-mode-squeezing inputs, an M × M optical inter-
ferometer, and M photon-number-resolving (PNR) detectors;
see Fig. 2 for an example. The latter have come of age in
superconducting devices such as transition-edge sensors [15]
and superconducting nanowire single-photon detectors [16].
Both were recently used to make PNR measurements of as
many as 100 photons [17,18].

FIG. 2. Example of a three-mode Gaussian boson sampler. Mode
i ∈ {1, 2, 3} starts in the vacuum state |0〉, is then squeezed by Ŝ(ri ),
and passes through the network of two beam splitters (the interfer-
ometer) before the number of photons in each mode is measured by
the detectors Di∈{1,2,3}.

An M-mode Gaussian boson sampler prepares a Gaussian
(Wigner function) quantum state using the M squeezers and
the interferometer. The squeezers output squeezed light into
the interferometer, and the photons are then passed through
the interferometer, after which the M detectors detect what
modes the photons end up in, resulting in a detection event.
We denote a detection event as n = (n1, . . . , nM ), where ni
is the photon count in the ith mode and the total number of
photons is n =

∑M
i=1 ni.

We now consider binary detectors, such as single-photon
avalanche photodiodes, which are single photon sensitive but
are not PNR and give the same signal regardless of how
many photons were absorbed. In this case, we have ni ∈ {0, 1},
where ni = 0 indicates zero photons were detected in that
mode and ni = 1 indicates that at least one photon was de-
tected. When using binary detectors, we no longer know the
total photon number n, so we use N to denote the number of
detectors that detect photons leading to

∑M
i=1 ni = N ! M.

An M-mode Gaussian state is fully described by a
covariance matrix ! ∈ R2M×2M and a displacement vector
d ∈ R2M [19].

B. Graph theory

In this paper we define a graph G = (V, E ) as a set
of vertices V = {v1, v2, . . . } and a set of edges E =
{(v1, v1), (v1, v2), . . . , (vi, v j ), . . . } that connect vertices if
the edge value is not zero. A graph can be unweighted, with
all nonzero edge weights equal to 1, or weighted, for exam-
ple, with real edge weights in GBS. For undirected graphs,
which is what we will exclusively work with in this paper,
(vi, v j ) = (v j, vi ) ∀ i, j. The size of a graph is equal to the
cardinality |V | of its vertex set. The degree of a vertex v is
the number of edges that are connected to it. The maximum
degree of a graph is the largest degree of a vertex in its
vertex set.

Graphs can be represented in a number of ways, such
as a diagram [Fig. 3(a)] or a more computationally useful
adjacency matrix [Fig. 3(b)]. The adjacency matrix of an
undirected graph G with |V | vertices is a |V | × |V | symmetric
matrix A with entries ai j , where ai j is the weight of the edge
connecting vertices i and j.

A substantial amount of work has been done on the connec-
tion between graph theory and Gaussian boson sampling with
PNR detectors [20–22]. In Appendix A, we summarize some
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FIG. 3. Four-vertex graph and its corresponding adjacency ma-
trix. (a) Undirected weighted four-vertex graph with four edges.
(b) Adjacency matrix of the graph.

details of this work, namely, how a given graph adjacency
matrix can be encoded in a GBS experiment.

C. Sample complexity of GBS

1. The problem with using GBS beyond sampling

The sample complexity of a machine learning algorithm
refers to the number of samples or amount of data required to
learn some target function. In the case of GBS applications it
refers to the number of samples we need to generate from the
GBS device to learn or approximate a probability distribution
over some set of the photon detection events. This complexity
type is extremely important to examine for any applications of
GBS because it could potentially render certain applications
of GBS intractable for larger problem sizes.

For example, it was shown that the GBS device utilizing
PNR detectors can encode the graph isomorphism problem
[21]. This is done by encoding two graphs into two GBS
devices and sampling each S times. The S samples could then
be used, in principle, to reconstruct the probability distribution
over all possible detection events n for a given M and n.
However, this cannot be done efficiently enough to provide
a quantum advantage. Indeed, we know from Refs. [11,23]
that to reconstruct a probability distribution D over a discrete
finite set # of cardinality |#| from an empirical distribution D̂
constructed from samples from D we require

S =
⌈

2
(
ln(2)|#| + ln

( 1
δ

))

ε2

⌉

(1)

samples to guarantee that

p(||D − D̂||1 " ε) ! δ, (2)

where ||D − D̂||1 denotes the L1 distance between D and D̂.
In other words we require

O

(
|#| + ln

( 1
δ

)

ε2

)

(3)

samples to ensure with a probability of at most δ that the sum
of the absolute values of the errors on the empirical probability
distribution is ε or greater.

This means that the number of samples we need to approxi-
mate a probability distribution scales linearly with the number
of elements in its sample space, i.e., the number of outcomes.

In the case where D is the probability distribution over the
set of all possible PNR detection events, the number of such
events for a given number of modes M and maximum number
of photons n is

|#| =
(

n + M − 1
M − 1

)
= (n + M − 1)!

n!(M − 1)!
, (4)

which in number theory is also known as the formula for the
number of weak compositions of an integer n in M parts. As
shown in Appendixes B and C, under the assumption that the
number of modes scales quadratically with the number of pho-
tons, M ∈ O(n2), this quantity grows superexponentially with
M and, in general, scales as O((n + M − 1)M−1), meaning
that as the size of the graphs increases, and therefore as the
number of modes of the GBS device increases, we require
an exponential number of samples to ensure the algorithm
can give us the correct result within a certain probability.
Therefore, while the algorithm may, in principle, be able to
decide graph isomorphism, it is sample inefficient to an expo-
nential degree, making it intractable to implement even with a
fault-tolerant quantum computer.

2. Coarse graining of sample distributions

However, a method was suggested in [21] to coarse grain
the probability distribution by combining outcomes in groups
called orbits. Coarse graining in this sense means constructing
a new probability distribution over the set of these groups,
the cardinality of which is less than the original set of all
possible detection events. An orbit On consists of a detection
event n and all of its permutations. For example, the orbit
that contains the detection event n = (1, 2, 2) also contains
the detection events (2,1,2) and (2,2,1). The number of orbits
for a four-mode GBS device is equal to the number of ways
one can write n1 + n2 + n3 + n4 = n, where the order of the
summands does not matter. This is called the number of par-
titions of integer n into M parts, and from the number-theory
literature [24] it is known to behave asymptotically as

|#| ≈ eπ
√

2(n−M )
3

4
√

3(n − M )
, M ! n ! 2M. (5)

If we assume the number of photons grows linearly with
the number of modes, n ∈ '(M ) → n = 2M, we have the
following asymptotic bound on the number of orbits:

1

4
√

3M
eπ

√
2M
3 ∈ O

(
eπ

√
2M
3

M

)

. (6)

This means the number of orbits, which is now the number of
outcomes |#| from Eq. (1), grows as M−1eπ

√
2M/3, meaning

we would have a sample complexity of

O

(
M−1eπ

√
2M/3 + ln

( 1
δ

)

ε2

)

, (7)

which is subexponential but still intractable for large M.

3. Sample complexity of previously proposed GBS graph kernels

The first GBS-based graph kernel proposed in [3]
maps a graph G to feature vectors in a feature space
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φ : G → f = ( f1, f2, . . . , fD) ∈ RD, where fi = p(Oi
n) is

the probability of detecting a detection event from the orbit
Oi

n. This kernel was shown to perform well against three of
the four classical kernels we use as benchmarks in this paper.
However, a shortcoming of this method is that the sample
complexity is O(M−1eπ

√
2M/3).

The second GBS kernel is of the form φ : G → f =
( f1, f2, . . . , fD) ∈ RD, with fi = p(Mi

n,(s
), where p(Mi

n,(s
)

is the probability of detecting a detection event that belongs
to the “metaorbit” Mi

n,(s
. A metaorbit Mn,(s is uniquely

defined by a total photon number n and (s, which is defined as

(s =
{

n :
∑

i

ni = n ∧ ∀ i : ni ! s

}

. (8)

Therefore a metaorbit consists of all detection events in
which the total photon number is equal to n, where no
detector counts more than s photons. It is claimed that this
strategy partitions the set of all PNR detection events into a
polynomial number of subsets in n [25].

III. THE ALGORITHM

A. GBS with binary detectors and its relation to graph theory

While the relationship between GBS with PNR detectors
and graph theory has been thoroughly explored, there has
been little exploration of how GBS with binary detectors fits
into the picture. In this section we shed some light on the
relationship between the two. As stated before, when using bi-
nary detectors, the detection outcomes are of the form nbin =
(n1, . . . , nM ), where ni ∈ {0, 1} ∀ i and ni = 1 indicates the
ith detector detected one or more photons. The probability
of detecting a detection outcome with binary detectors is
characterized by a matrix function called the Torontonian, to
which the same arguments for classical intractability as for
the Hafnian can be extended [26]. The probability of a given
binary detection event nbin is given by

p(nbin) = Tor(Onbin )√
det(Q)

= Tor(XÃnbin )√
det(Q)

, (9)

where

Ã = (A ⊕ A), (10)

X =
[

0 I
I 0

]
, (11)

Q = (I2M − XÃ)−1, (12)

O = I − Q−1 (13)

and Tor(·) is the Torontonian of a 2N × 2N matrix A, defined
as

Tor(A) =
∑

Z∈P([N])

(−1)|Z| 1√
det(I − AZ )

, (14)

where P([N]) is the power set, the set of all possible subsets,
of the set [N] = {1, 2, . . . , N}. The probability of a PNR
detection event n can be written in terms of the matrix O as

p(n) = 1√
det(Q)

Haf(Ãn)
n!

= 1√
det(Q)

Haf(XOn)
n!

. (15)

The probability of a binary GBS detection event is sim-
ply the sum of all probabilities of the corresponding PNR
detection events. A useful example to illustrate this is a
four-mode Gaussian boson sampler programed according to
some adjacency matrix A of a graph G. Suppose we use
binary detectors and measure the detection event nbin =
(1, 0, 1, 0). The corresponding detection events when us-
ing PNR detectors would be of the form n = (n1, 0, n3, 0),
where n1, n3 > 0 and n1 + n3 is even. We will define N to
be the set of all possible four-mode PNR detection events
with zeros in the second and fourth indices; that is, only
the second and fourth detectors detect no photons. From this
we have

p(1, 0, 1, 0) = Tor(XÃ(1,0,1,0))√
det(Q)

=
∑

n∈N
p(n) =

∑

n∈N

Haf2(An)
n!

√
det(Q)

. (16)

This means that the Torontonian of XÃ is proportional to an
infinite sum of Hafnians because there are an infinite number
of integer lists of the form (n1, 0, n3, 0) where n1, n3 > 0.
In a real GBS experiment, however, the energy is finite, and
therefore, the measured probabilities of these events would
be equal to a finite version of this sum in which all detection
events with a total photon number greater than some cutoff
photon number vanish from the series.

In terms of graph theory this means the probability of
detecting nbin = (1, 0, 1, 0) is proportional to the sum of
the squared Hafnians of all possible subgraphs of G of un-
bounded and even size with their second and fourth vertices
removed. But again, in practice, the maximum size of the
subgraphs will always be bounded by some maximum pho-
ton number for a real GBS experiment. More generally, we
have

p(nbin) =
Tor

(
Onbin

)
√

det(Q)
=

Tor
(
XÃnbin

)
√

det(Q)
=

∑

n∈N

Haf2(An)
n!

√
det(Q)

,

(17)

where N is the set of all PNR events that correspond to the
binary detection event nbin [27].

B. Constructing the feature vectors

Once the GBS device is programmed, we generate S
samples from the device. For our algorithm we use binary
detectors, so each sample is a list of length M with entries
being either 0 or 1. Once we have these samples, we use
them to construct the feature vector, for which we have two
definitions based on two coarse-graining strategies.

The first is based on what we call the µ coarse-graining
strategy in which we group together detection events that
contain exactly i detector “clicks” or ones. For example,
the detection events (1,0,0) and (0,0,1) would be grouped
together since they both contain exactly one detector click.
These groups can also be thought of as “binary orbits” since
they contain a detection event and all its permutations. This
strategy partitions the set of all binary detection events into a
linear number of disjoint subsets in N . Using this strategy, we
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TABLE I. Graph dataset statistics after preprocessing. A more detailed description of these datasets can be found in Appendix B of Ref. [3].

Dataset No. of graphs No. of classes Average No. of vertices Average No. of edges

AIDS 1723 2 11.11 11.29
BZR_MD 257 2 20.10 197.69
COX2_MD 118 2 23.90 274.40
ENZYMES 204 6 18.56 36.30
ER_MD 357 2 19.27 185.15
FINGERPRINT 1080 3 10.58 9.10
IMDB-BINARY 806 2 15.98 63.32
MUTAG 179 2 17.48 19.23
NCI1 1853 2 19.77 21.27
PROTEINS 515 2 15.77 29.37
PTC_FM 284 2 13.64 13.99

can define the feature map as φ : G → f = ( f0, f1, . . . , fN ) ∈
RN , where N is the maximum number of detector clicks
and fi = Si

S , with Si being the number of samples which
contain exactly i ones. Equivalently, this is the probabil-
ity of detecting an event where exactly i detectors detect a
photon.

The second feature map is based on what we call the ν
coarse-graining strategy. For a five-mode boson sampler uti-
lizing binary detectors with a maximum click number of 5
there are |#| = 32 possible detection outcomes. This coarse-
graining strategy groups together detection events whose first
five modes are one of these 32 outcomes. For example,
the detection event nbin = (0, 1, 0, 0, 1, 0, 1) belongs in the
group associated with the detection event (0,1,0,0,1) since
they are equal if one is only concerned with the first five
modes. This strategy partitions the set of all detection events
of five or more modes into a constant number of subsets,
i.e., 32. The feature map based on this strategy is defined
as φ : G → f = ( f[0,0,0,0,0], f[1,0,0,0,0], . . . , fn) ∈ R32, where
fn is the probability of detecting an event where the first
five modes correspond to one of the 32 possible detection
outcomes. For example, f[1,0,0,0,0] is the probability that the
first detector detects photons and the following four detectors
detect vacuum.

Once we construct the feature vector for each graph in
the dataset (Table I), we input them into a machine learning
classifier such as a support vector machine.

C. Complexity analysis

In this section we discuss, in addition to the time and space
complexity, the sample complexity of our algorithm.

1. Sample complexity

Since ni for binary detection events can be either 0 or 1,
we can think of the detection outcomes as binary strings of
length M with at most M ones. The number of binary strings
of length M with exactly i ones is

(M
i

)
. So the number of

possible binary detection events, the number of binary strings
of length M with at most M ones, is given by

|#| =
M∑

i=0

(
M
i

)
. (18)

We can show this function grows like 2M using the binomial
expansion

2M = (1 + 1)M =
M∑

i=0

(
M
i

)
1M−i1i =

M∑

i=0

(
M
i

)
. (19)

Therefore, we could not simply use the probability of the
individual detection events as features without coarse grain-
ing even when using binary detectors because we would
still need a prohibitively large number of samples to ap-
proximate their probabilities to within a constant error. This
was the reason for introducing the ν and µ coarse-graining
strategies.

Since the number of outcomes of the µ distribution scales
linearly with N , which is ! M, the sample complexity of
approximating the µ coarse-grained probability distribution is

O

(
M + ln

( 1
δ

)

ε2

)

, (20)

which reduces to O(M ) for constant ε and δ. The sample
complexity of approximating the ν coarse-grained probability
distribution is

O

(
32 + ln

( 1
δ

)

ε2

)

, (21)

which reduces to O(1) for constant ε and δ.

2. Space complexity

The size of the ν feature vectors is constant with respect
to the graph size, so the space required is O(1), and for the µ
feature vectors the size grows linearly with N , which is ! M,
so the space required is O(M ). However, storing the adjacency
matrix of the graphs requires O(M2) space complexity.

3. Time complexity

The time complexity is determined by the most computa-
tionally time intensive step of the algorithm, which is encod-
ing the adjacency matrix in the GBS device. This is the case
because the encoding process requires taking the Takagi de-
composition of matrix A, which for an M × M matrix has time
complexity O(M3) because it is a special case of the singular-
value decomposition [28]. However, quantum algorithms for
computing the singular-value decomposition of a matrix with
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TABLE II. Average test accuracies of the support vector machine with different datasets and graph kernels. The values in bold in the
top and bottom sections of the table are the best accuracies obtained for that section. The values in parentheses are the standard deviations
across the 10 repeats of double cross validation. GS, RW, SM, and SP refer to the graphlet-sampling, random-walk, subgraph-matching, and
shortest-path kernels, respectively. GBSbin

ν and GBSbin
µ denote our GBS kernel with binary detectors that use the ν and µ coarse-graining

strategies to construct the feature vectors, respectively. GBSbin+
ν indicates that the feature associated with detecting vacuum [0,0,0,0,0] in the

first five modes was dropped from all feature vectors. GBSPNR and GBSPNR+ refer to the original GBS kernels with PNR detectors that use
orbit and metaorbit probabilities as features, respectively, with a displacement of d on each mode.

Dataset GBSbin+
ν GBSbin

ν GBSbin
µ GS RW SM SP

AIDS 98.47 (0.10) 98.74 (0.20) 99.53 (0.05) 99.30 (0.07) 53.11 (11.90) 77.85 (2.44) 99.34 (0.09)
BZR_MD 60.14 (1.28) 61.73 (0.89) 58.79 (1.17) 51.42 (3.51) 64.54 (0.36) time outa 50.82 (1.76)
COX2_MD 51.62 (2.76) 50.18 (2.96) 51.30 (3.86) 49.01 (3.18) 48.98 (4.78) time outa 48.11 (4.30)
ENZYMES 48.10 (1.18) 41.75 (2.35) 19.83 (1.43) 34.59 (2.54) 19.50 (2.29) 37.38 (1.60) 22.15 (1.88)
ER_MD 67.74 (0.94) 69.19 (0.33) 68.84 (0.50) 48.88 (4.53) 70.32 (0.02) time outa 45.23 (4.35)
FINGERPRINT 64.45 (0.78) 65.53 (0.86) 63.56 (0.67) 65.25 (1.30) 33.63 (3.57) 46.89 (0.56) 46.22 (1.02)
IMDB-BINARY 60.69 (0.84) 61.35 (0.98) 67.34 (0.38) 68.49 (0.63) 67.78 (0.38) time outa 65.50 (0.27)
MUTAG 84.63 (0.91) 85.94 (0.98) 81.37 (0.90) 80.80 (0.91) 83.22 (0.04) 83.24 (1.27) 82.74 (1.65)
NCI1 63.45 (0.57) 56.99 (1.69) 59.09 (1.02) 50.34 (3.22) 50.96 (3.58) time outa 53.40 (2.25)
PROTEINS 65.95 (1.03) 63.38 (0.73) 63.11 (0.55) 65.75 (0.94) 56.91 (1.39) 62.93 (0.83) 63.63 (0.41)
PTC_FM 52.63 (3.95) 57.47 (2.72) 59.17 (1.58) 60.74 (1.48) 50.95 (3.68) 56.36 (2.66) 55.38 (4.04)

Dataset GBSPNR (d = 0) GBSPNR (d = 0.25) GBSPNR+ (d = 0) GBSPNR+ (d = 0.25)

AIDS 99.60 (0.05) 99.62 (0.03) 99.58 (0.06) 99.61 (0.05)
BZR_MD 62.73 (0.71) 62.13 (1.44) 62.01 (1.43) 63.16 (2.11)
COX2_MD 44.98 (1.80) 50.11 (0.97) 57.84 (4.04) 57.89 (2.62)
ENZYMES 22.29 (1.60) 28.01 (1.83) 25.72 (2.60) 40.42 (2.02)
ER_MD 70.36 (0.78) 70.41 (0.47) 71.01 (1.26) 71.05 (0.83)
FINGERPRINT 65.42 (0.49) 65.85 (0.36) 66.19 (0.84) 66.26 (4.29)
IMDB-BINARY 64.09 (0.34) 68.71 (0.59) 68.14 (0.71) 67.60 (0.75)
MUTAG 86.41 (0.33) 85.58 (0.59) 85.64 (0.78) 84.46 (0.44)
NCI1 63.61 (0.00) 62.79 (0.00) 63.59 (0.17) 63.11 (0.93)
PROTEINS 66.88 (0.22) 66.14 (0.48) 65.73 (0.69) 66.16 (0.76)
PTC_FM 53.84 (0.96) 52.45 (1.78) 59.14 (1.72) 56.25 (2.04)

aRun time > 7 days.

complexity that is polylogarithmic in the size of the matrix
do exist [29]. In particular, the quantum singular-value esti-
mation algorithm for an m × n matrix presented in [30] has
complexity O(polylog(mn)/ε), where ε is an additive error.

IV. NUMERICAL EXPERIMENTS

A. Implementation details

We used THE WALRUS PYTHON library to classically sample
from the GBS output distribution when running our experi-
ments and the GRAKEL PYTHON library to fetch the datasets
and simulate the classical graph kernels [31,32]. Classically
sampling from a GBS output distribution is very time inten-
sive even when using binary detectors, so we choose to follow
the choice made in [3] and discard graphs with greater than
25 and fewer than 6 vertices for each dataset. Before sampling
from the GBS device we have four parameters we can set: the
maximum number of detector clicks allowed N , the average
photon number n̄, the displacement on each mode of the
GBS device d , and, last, the number of samples generated
by the GBS device S. We set N = 6, n̄ = 5, and d = 0 for
our results reported here, leading to a probability distribution
of 32 outcomes using the ν coarse-graining strategy and 7
outcomes using the µ coarse-graining strategy. Using Eq. (1)

with δ = 0.01 and ε = 0.06, we require about S = 15 000
samples for the ν feature vectors and about S = 6000 samples
for the µ feature vectors.

For the machine learning classifier we use a support
vector machine with an radial basis function (RBF) ker-
nel κrbf. We obtain the accuracies in Table II by running
a double 10-fold cross validation 10 times. The inner fold
performs a grid search through the discrete set of values
[10−4, 10−3, . . . , 102, 103] on the C hyperparameter of the
SVM which controls the penalty on misclassifications. Last,
due to the class imbalance present in some of the benchmark
datasets we use class weights to assign more importance to
training examples from classes that appear less frequently in
the data, which is standard procedure in such cases.

B. Numerical results from GBS simulation
and subsequent classification

We tested our graph kernel on the same datasets used
in [3]. We also ignored vertex labels, vertex attributes, and
edge attributes and converted all adjacency matrices to be
unweighted.

Four classical graph kernels were used as a benchmark
for our algorithm’s classification accuracy: the subgraph-
matching kernel with time complexity O(kMk+1), where M
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FIG. 4. Distribution of graph sizes according to class for each dataset.

is the number of vertices and k is the size of the subgraphs
being considered [33]; the graphlet-sampling kernel with
the worst-case time complexity O(Mk ), which can be
optimized to O(Mdk−1) for graphs of bounded degree with
the restriction that k ∈ {3, 4, 5}, where k is the graphlet
size and d is the maximum degree of the graph [34]; the
random-walk kernel with time complexity O(M3) [35]; and
the shortest-path kernel with time complexity O(M4) [36]. For
the graphlet-sampling kernel we set maximum graphlet size
to k = 5 and draw 5174 samples; for the random-walk kernel
we use fast computation and a geometric kernel type with
the decay factor set to λ = 10−3. For the subgraph-matching
kernel we set maximum subgraph size to k = 5, and for the
shortest-path kernel we used the Floyd-Warshall algorithm to
calculate shortest paths. The accuracies of all four classical
kernels and our kernel are shown in the top part of Table II.
The values in the bottom part of Table II are the accuracies
of the original GBS graph kernels and are taken from [3],
where the feature vectors were constructed with n = 6. Some

accuracies for the subgraph-matching kernel are not reported
due to its O(M6) time complexity for k = 5, which required
longer than 7 days of computation time for datasets with a
high average number of vertices.

We can see from Table II that our kernel is very competitive
with both the classical and PNR-based GBS graph kernels
and, in fact, achieves the highest accuracy for the ENZYMES
dataset. The PNR-based kernel obtains a test accuracy signif-
icantly higher than random guessing (≈16%) for ENZYMES
only when displacement is applied. Our kernel can be seen as
even more feasible in this regard since we do not require the
extra operation of displacement to reach our level of accuracy.
From Fig. 4 we see that for some datasets such as AIDS and
MUTAG there is a strong size imbalance among graphs of
different classes. For the AIDS dataset graphs belonging to
class 1 are much smaller in size than those in class 0, while for
MUTAG the converse is true. This size imbalance also exists
to a lesser extent for the ER_MD, BZR_MD and PTC_FM
datasets, and for the FINGERPRINT dataset class 1 has a
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FIG. 5. Results of the principal component analysis (PCA) of the ν feature vector entries for the ENZYMES, MUTAG, IMDB_BINARY,
and FINGERPRINT datasets. The heat maps show the weight or coefficient associated with each feature with regard to the first four principal
components.

graph size distribution significantly different from the other
two. Both our GBS kernel and the PNR-based kernel perform
well on these size-imbalanced datasets, which indicates that
graph size is a property that GBS-based kernels are sensitive
to and that this sensitivity persists even when binary detectors
are used.

C. Feature analysis

Figure 5 shows the results of performing a principal com-
ponent analysis of the feature vectors generated using the
ν coarse-graining strategy for various datasets. The analysis
shows that the feature associated with vacuum [0,0,0,0,0]
contributes by far the most in support of the first principal
component. The analysis also suggests that in some cases the
first 10 or so features contribute the most to the support of all
of the first four principal components, but in other cases, such
as that for FINGERPRINT, most features contribute more or
less equally.

D. Comparison to classical kernels

Our graph kernel has a time complexity that is equivalent
to the random-walk kernel and better than the shortest-path
kernel by a factor of M while outperforming both on most
datasets. Furthermore, the time complexity of our kernel is not
exponential in the size of the subgraphs we are probing like

the subgraph-matching kernel. The graphlet-sampling kernel
does have a more favorable complexity of O(Mdk−1) for
graphs with maximum degree d . However, it is important to
note that many real-world graphs are what are called scale-
free networks, and from the network-science literature [37]
the maximum degree of these graphs grows polynomially with
the graph size. Therefore, it is possible that the maximum
degree of these graphs grows linearly with the graph size,
i.e., d ∈ O(M ), which would lead to a complexity of O(Mk )
for the graphlet-sampling kernel. What is also interesting is
that GBS kernels seems to provide more distinguishing power
than some classical kernels for graphs with no vertex and edge
labels like those used in our simulations. Take, for example,
the ENZYMES dataset, for which the binary GBS kernel
achieves a classification accuracy of ≈48% while the shortest-
path kernel reaches about 23%. If we instead choose not to
ignore vertex labels, we find the shortest-path kernel gives a
classification accuracy of about 50%. Since the GBS features
are related to Hafnians, this suggests that features related to
the number of perfect matchings of a graph could be more
useful for distinguishing graphs of different classes when one
has no information about the attributes of the graph nodes.

V. CONCLUSION

We proposed a variation of an algorithm for the machine
learning task of classification with graph-structured data that
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uses a Gaussian boson sampler utilizing only binary detec-
tors. We showed that our algorithm outperforms four classical
graph kernels in the task of graph classification on many
datasets. This is most evident with regard to the ENZYMES
dataset, for which our ν feature map outperforms all methods.
The feature corresponding to detecting vacuum in the first five
modes plays a particularly important role, as shown by the
principal component analysis, because it is related to the Haf-
nian of all possible subgraphs of G with their first five vertices
removed. We also showed that the kernel is sample efficient, a
major issue for applications of GBS, and has a time complex-
ity that is comparable to those of the classical strategies.

The fact that a GBS kernel using only binary (light or
no light) detectors produces such accuracies was a sur-
prise to us, as it was far from intuitive and/or expected
that binary detection could ever achieve a performance
level comparable to—and, in some cases, better than—
photon-number-resolving detection. Moreover, the binary
photodetection approach relies on the technology of single-
photon avalanche photodiodes, a technology which is well
established, near room temperature, and cheap and can
be extended to the near-infrared wavelengths compatible
with low-loss integrated optics, thereby enabling compact
on-chip implementations. This stands in stark contrast to
photon-number-resolving detection, which requires expensive
cryogenic superconductor-based systems.

A number of questions remain open for investigation such
as how vertex and edge labels can be encoded in the GBS
device. Also, as stated earlier, it is known that the existence
of a polynomial-time classical algorithm for exact sampling
from the output probability distribution of a boson sampling
or Gaussian boson sampling device would imply the collapse
of the polynomial hierarchy to the third level, and thus, the
existence of such an algorithm is believed to be very unlikely
[38]. This result can also be extended to GBS with binary
detectors [26]. However, it is not known, even though some
work has been done in this area [25], whether such arguments
exist for algorithms that sample from coarse-grained versions
of these probability distributions such as those defined in [3]
or our work. It is important to know whether such arguments
exist because they would imply these quantum kernels are also
likely hard to simulate classically.

ACKNOWLEDGMENTS

We thank M. Schuld, K. Brádler, S. Aaronson, I. Cirac,
M. Eaton, N. Quesada, A. Blance, and S. Maereg for useful
advice and discussions. We thank Research Computing at the
University of Virginia for providing access to, and support for,
the Rivanna computing cluster. This work was supported by
National Science Foundation under Grant No. PHY-2112867.

APPENDIX A: REMINDERS ABOUT STANDARD GBS

1. GBS with PNR detectors

Substantial work has been done already on the connection
between graph theory and Gaussian boson sampling with PNR
detectors [20–22]. Here we present the important concepts.
Any undirected graph G with no self-loops and |V | = M ver-
tices can be encoded in an M-mode GBS setup consisting of

FIG. 6. (a) The complete graph of four vertices and (b) the three
corresponding perfect matchings of the complete four-vertex graph.

a set of M squeezers followed by an interferometer of beam
splitters according to its adjacency matrix A. Once the graph
is encoded in the GBS device, the probability of detecting a
specific detection event n = (n1, . . . , nM ) is equal to

p(n) = 1√
det(Q)

Haf(Ãn)
n!

= 1√
det(Q)

Haf2(An)
n!

, (A1)

with

Q = (I2M − XÃ)−1, X =
[

0 I
I 0

]
, (A2)

n! = n1! × · · · × nM!, Ã = (A ⊕ A), and Haf(·) denoting the
Hafnian of a 2M × 2M matrix. The Hafnian is a matrix func-
tion defined mathematically as

Haf(A) =
∑

π∈SM

∏

(u,v)∈π

Au,v, (A3)

where SM is the partition of the set {1, 2, . . . , 2M} into un-
ordered disjoint pairs. For example, if M = 2, then SM =
({(1, 2), (3, 4)}, {(1, 4), (2, 3)}, {(1, 3), (2, 4)}). If A is the ad-
jacency matrix of an unweighted graph, then the Hafnian is
equal to the number of perfect matchings of the vertices of
the graph. A perfect matching is a partition of the vertex set
of a graph into pairs such that each vertex is connected to
exactly one edge from the edge set. All perfect matchings of a
complete four-vertex graph are shown in Fig. 6.

An is the n × n submatrix of A induced according to the
photon detection event n. An is obtained by repeating the ith
row and column according to the measurement pattern n. If
ni = 0, then the ith row and column are deleted from A, but
if ni > 0, then the ith row and column are repeated ni times.
For example, the probability of detecting the event where
each mode has exactly one photon n = (1, 1, . . . , 1) would
be proportional to the Hafnian of the original matrix A since
An = A. What this means in terms of the graph is that vertex
i and all its edges are either deleted if ni = 0 or duplicated ni
times if ni > 0. Therefore, the probability of a detection event
n is proportional to the squared Hafnian of the subgraph Gn
corresponding to the induced adjacency matrix An. Examples
of different detection events and their corresponding induced
subgraphs are shown in Fig. 7.

These induced subgraphs are of even size since the number
of photons detected is always even due to the fact that the
inputs are squeezed states. However, when displacement is ap-
plied to the modes of the GBS, the probability of detecting an

062411-9



AMANUEL ANTENEH AND OLIVIER PFISTER PHYSICAL REVIEW A 108, 062411 (2023)

FIG. 7. Different photon detection events n and the correspond-
ing subgraphs Gn they induce and the value of the squared Hafnians
of those subgraphs. The probability of the detection event where each
detector detects one photon corresponds to the Hafnian of the graph
encoded in the GBS. We can see in the third graph from the top that
when a detector detects two photons, the corresponding vertices and
their respective edges are duplicated.

odd number of photons is, in general, not zero anymore, and
the probability of individual detection events is characterized
by the loop Hafnian lHaf(·) as opposed to the Hafnian [40,41].
We do not apply displacement for the numerical experiments
done in this paper.

2. Encoding a graph into a GBS device

To map a graph to a feature vector we must first pro-
gram the GBS device by setting the squeezing parameters and
beam-splitter angles of the device according to the adjacency
matrix A of the graph. Any adjacency matrix A ∈ RM×M of an
undirected graph of M vertices can be mapped to a symmetric,
positive-definite 2M × 2M covariance matrix ! of a pure
Gaussian state of M modes via the following procedure. First,
a doubled adjacency matrix Ã is constructed,

Ã = c
[

A 0
0 A

]
= c(A ⊕ A), (A4)

where c is a rescaling constant chosen such that 0 < c <
1/λmax, where λmax is the maximum singular value of A [3].
We use Ã because, unlike A, it is guaranteed to map to a
covariance matrix of a pure Gaussian state, which is easier
to prepare than a mixed one [20]. This also has the advantage
of allowing us to utilize the identity Haf(A ⊕ A) = Haf2(A) to
relate Ã to A. To map Ã to a covariance matrix ! we use the
following matrix equations:

! = Q − I2M/2, Q = (I2M − XÃ)−1, X =
[

0 I
I 0

]
.

(A5)

To program the GBS device to sample from the probabil-
ity distribution corresponding to the covariance matrix ! of

the pure Gaussian state we need the unitary matrix U that
characterizes the interferometer of the device as well as the
squeezing parameters r1, . . . , rM of each of the M squeezers.
We can obtain these values by taking the Takagi decomposi-
tion of A, which is of the form

A = Udiag(λ1, . . . , λM )U T . (A6)

The squeezing parameters are determined by the singular val-
ues λ1, . . . , λM and c via the relationship ri = tanh−1(cλi ).
The singular values and c also uniquely determine the mean
photon number n̄ of the device according to

n̄ =
M∑

i=1

(cλi )2

1 − (cλi)2
=

M∑

i=1

sinh2(ri). (A7)

The rescaling constant c can be used to adjust n̄ because
multiplying A by c scales its singular values without changing
the structure of the graph other than scaling all edge weights
by c. The matrix U can be decomposed to give the parameters
of the beam-splitter gates of the interferometer [42].

The GBS device, if we are using PNR detectors, now
samples from the probability distribution

p(n) = 1√
det(Q)

Haf(Ãn)
n!

= 1√
det(Q)

Haf2(An)
n!

. (A8)

APPENDIX B: SUPEREXPONENTIAL GROWTH OF GBS
DETECTION EVENTS FOR M ∈ O(n2 )

Lemma 1. (n+M−1)!
n!(M−1)! ∈ ω(-

√
M.-

√
M.) for n = -

√
M..

Proof.

(n + M − 1)!
n!(M − 1)!

n = -
√

M.−−−−−→ (-
√

M. + M − 1)!

(-
√

M.)!(M − 1)!
,

(-
√

M. + M − 1)!

(-
√

M.)!(M − 1)!
=

[∏-
√

M.
i=1 (M − 1 + i)

]
(M − 1)!

[∏-
√

M.
i=1 i

]
(M − 1)!

=

[∏-
√

M.
i=1 (M − 1 + i)

]

[∏-
√

M.
i=1 i

]

=
-
√

M.∏

i=1

[
M − 1

i
+ 1

]

>

-
√

M.∏

i=1

[
M − 1

-
√

M.
+ 1

]

=
(

M − 1

-
√

M.
+ 1

)-
√

M.

=
(

M

-
√

M.
+ 1 − 1

-
√

M.

)-
√

M.

" -
√

M.-
√

M.
.

Therefore, (n+M−1)!
n!(M−1)! ∈ ω(-

√
M.-

√
M.) for n = -

√
M.. !.
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APPENDIX C: INDUCTION PROOF FOR
(n

k

) ∈ "(nk )

Lemma 2.
(n

k

)
∈ '(nk ).

Proof. For the base case k = 2,
(

n
2

)
= n(n − 1)

2!
,

lim
n→∞

n(n−1)
2!

n2
= 1

2!
,

0 <
1
2!

< ∞,

∴
(

n
2

)
∈ '(n2).

Assume the result holds up to k = ,:
(

n
,

)
= n(n − 1)(n − 2) · · · (n − , + 1)

,!
∈ '(n,).

In the inductive step, k = , + 1:
(

n
, + 1

)
= n(n − 1)(n − 2) · · · (n − ,)

(, + 1)!
,

lim
n→∞

n(n−1)(n−2)···(n−,)
(,+1)!

n,+1

= lim
n→∞

n(n−1)(n−2)···(n−,+1)
,!

n,

(n−,)
,+1

n

= lim
n→∞

n(n−1)(n−2)···(n−,+1)
,!

n,
lim

n→∞

(n−,)
,+1

n

≡ 1
,!

1
, + 1

= 1
(, + 1)!

, 0 <
1

(, + 1)!
< ∞,

∴
(

n
, + 1

)
∈ '(n,+1).

!
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