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ABSTRACT: The causal tail of stochastic gravitational waves can be used to probe the energy
density in free streaming relativistic species as well as measure g,(7") and beta functions 5(T)
as a function of temperature. In the event of the discovery of loud stochastic gravitational
waves, we demonstrate that LISA can measure the free streaming fraction of the universe down
to the the 1072 level, 100 times more sensitive than current constraints. Additionally, it would
be sensitive to O(1) deviations of g, and the QCD S function from their Standard Model value
at temperatures ~ 10° GeV. In this case, many motivated models such as split SUSY and
other solutions to the Electroweak Hierarchy problem would be tested. Future detectors, such
as DECIGO, would be 100 times more sensitive than LISA to these effects and be capable
of testing other motivated scenarios such as WIMPs and axions. The amazing prospect of
using precision gravitational wave measurements to test such well motivated theories provides
a benchmark to aim for when developing a precise understanding of the gravitational wave
spectrum both experimentally and theoretically.
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1 Introduction

With the discovery of gravitational waves by LIGO, we have added a new window with
which to view the universe [1]. Due to its extremely weak coupling, gravitational waves
(GWs) provide an almost unperturbed view of the universe. As such, they represent a unique
opportunity with which to learn about early universe cosmology. Additionally, many new
gravitational wave detectors are expected to be built in the future, such as LISA [2], BBO [3],
MAGIS [4] and DECIGO [5], which will enhance our ability to observe GWs by many orders
of magnitude.

If observed, stochastic gravitational waves would be the gravitational equivalent of the
Cosmic Microwave Background (CMB), and thus, much could be learned from their detection.
Similar to the CMB, the first thing we would likely learn is the mechanism by which GWs
were generated. In the case of the CMB, it was black body radiation, while for GWs there
exist a vast number of possibilities for production mechanisms [6-26]. Aside from having
many different possible sources, the theories that give rise to stochastic GWs are also well
motivated [27-36]. As with the CMB, angular anisotropies would encode information about



primordial fluctuations and could be used to learn more about inflation [37]. For example,
the lack of a correlation between stochastic GWs and the CMB could indicate the presence
of an additional light particle present during inflation.

Famously, propagation effects also leave an imprint on a cosmic background. For the
CMB, this allowed a precise determination of the dark energy density and also gives sensitive
to the matter power spectrum at lower redshift through lensing effects. In addition, future
probes of the 21 ¢m absorption line can be used to determine other properties of the early
universe. In the case of stochastic GWs, there are two main propagation effects that can
change the GW spectrum coming from the equation of state of the universe (w(7")) and from
relativistic free-streaming particles (frs(T") = prs/ptotal). Both w(T") and frs(T'), as well as
changes to them, can be in principle observed from the frequency spectrum of a stochastic
GW background [16, 17, 29, 30, 35, 37-54].

The expected sensitivity of 21 c¢cm experiments is due to knowing that the CMB follows
a blackbody spectrum ahead of time, so that deviations from this predicted spectrum can
be attributed to propagation effects. In contrast, the stochastic GW spectrum is completely
unknown. Even if observed, it will be a highly non-trivial task to make a postdiction for what
different parts of the spectrum should look like in the absence of propagation effects. As such,
it would appear that propagation effects would be impossible to disentangle from the source
generating the spectrum. However, there is an important case where we do know the shape
of the spectrum ahead of time, the low frequency limit of causally produced GWs [38, 54, 55].

If the source producing GWs is only active for a short time period, this source is neces-
sarily uncorrelated on distance scales longer than the time it took to produce the GWs (e.g.
distances longer than the Hubble size are necessarily uncorrelated). This fact determines the
shape of the GW spectrum at large wavelengths completely independent of the details of how
the GW was generated. As an example, the low frequency tail of GWs generated by phase
transitions is universal regardless of the details of the phase transition itself. In contrast, the
low frequency tail of inflationary GWs is model dependent and cannot be predicted a priori.
Thus, by studying the low frequency tail of stochastic GWs generated by a time localized
source, one can learn about early universe dynamics through propagation effects on the GW
spectrum.

In this paper, we study how sensitive future experiments, such as LISA and DECIGO,
will be to propagation effects and provide well-motivated benchmark models to illustrate
what can be achieved with varying levels of sensitivity. We find that in the event of a large
stochastic GW background, LISA could measure w(7T) and frg with an accuracy of ~ 1073
over a temperature range of 10* — 10% GeV. This demonstrates that LISA’s sensitivity to frg
can be 10—100 times more sensitive than even CMB S4 experiments. Future experiments such
as DECIGO can measure w(T) and frs with an accuracy of 107% and extended sensitivity
to an even higher temperature range of 10* — 10% GeV.

In the case of a radiation dominated universe, being able to measure w(7T) at the
107% — 1073 level is a complete game changer. While one might think that w = 1/3 at
high temperatures, due to the scale anomaly w(T) —1/3 ~ B(T")/g+(T) where 3 is a combina-



tion of Standard Model (SM) beta functions with the QCD beta function giving the largest
contribution. For the SM, w(T) — 1/3 ~ 5 x 107%. Thus LISA could, in principle, test the
SM prediction that w # 1/3 in a radiation dominated universe.

Aside from the possible spectacular confirmation of a SM prediction, these measurements
can test some of the most well motivated particle physics models related to the Electroweak
Hierarchy problem [56, 57] and dark matter [58]. Dimensional analysis predicts that the
physics responsible for the mass of the Higgs boson should be at the TeV scale. Solutions
to this problem often require doubling the number of particles in the SM. At temperatures
above the TeV scale, this would double g, and/or § and hence change the predicted value of
w(T > TeV) by O(10~* — 1073), something testable by LISA.

There is also strong reason to expect the mass of dark matter to be below the 100 TeV
scale. If what is responsible for dark matter was ever in thermal contact with the SM, then
modulo some mild assumptions, unitarity requires that the energy scale of dark matter be
below 100 TeV [59]. A classic motivated example of such a dark matter particle is the famous
weakly interacting massive particle (WIMP). WIMPs have a TeV scale mass whose precise
value depends on their representation under SU(2). In the early universe, at temperatures
T = 100 TeV, dark matter would be in thermal equilibrium and change g, by ~ 1. WIMP
dark matter would thus be guaranteed to change w(T) by O(107°). While LISA cannot
reach this sensitivity, future detectors such as DECIGO could potentially test all thermal
dark matter candidates.

Precision measurements of frg in the early universe are equally important. It is worth
prefacing the discussion of frg by noting that we have no direct observations of the radiation
domination epoch with frg < 0.3. Thus even a negative measurement would indicate a phase
of the universe that we have never observationally seen before. One important benchmark
is frg ~ 1072, which is the value of a single new degree of freedom that was in thermal
equilibrium but has since left equilibrium. In many motivated models, such as the QCD
axion [60—63], there is at least one new particle of this sort and reaching sensitivities of the
order of O(1072) would constitute an important test of these theories. Additionally, as GWs
are themselves free streaming, one could even measure the backreaction of GWs on themselves
if the stochastic GW signal was loud enough. Like the neutrinos, new free streaming particles
beyond the Standard Model may become non-relativistic after going out of equilibrium with
the SM bath. We also explore how this behavior changes the effect of free streaming particles
on GWs.

In Sec. 2, we discuss the sensitivity of GW detectors to w(T') and frpg(T'). In Sec. 3, we
discuss the impact of these measurements on well motivated models. In Sec. 4, we discuss in
more detail how massive free streaming particles change the GW spectrum. We finish with
concluding remarks in Sec. 5



2 Sensitivity of future experiments to the causal tail of stochastic GWs

In this section we discuss the sensitivity of GW experiments to the low frequency tail of
causally produced GWs. It is well known that the low frequency tail of any time localized,
causally produced GW has a fixed form regardless of how it was produced [55]. The fixed
form of this low frequency tail depends on details such as the equation of state w(T') in the
era following the production of the GW [38, 54]. Different values of w(T") give the function
form for the gravitational wave power spectrum

1—3w)

Qaw (k) oc k320550 (2.1)

where w is the equation of state when the mode with wave-number k£ entered the horizon.
Aside from the equation of state, the low frequency tail is also sensitive to the free-streaming
fraction

frs(T) = m :

Weinberg first showed that free streaming particles can dampen inflationary gravitational

(2.2)

waves [64] and similar effects were shown to be present for non-inflationary GWs [38]. As a
GW travels, it imparts a quadropole moment on any ambient free streaming particles that
subsequently backreacts and suppresses the GW in much the same way that a dielectric sup-
presses electric fields. Assuming radiation domination and relativistic free-streaming particles,
the dependence is of the form

Qaw (k) o k3T5rs (2.3)

in the limit where fpg < 1 [38]. The explicit form for arbitrary frg , including the case
where frg 2 5/32 when Qg develops an oscillatory pattern, must be calculated numerically
(see Eq. 2.20 for its approximate analytical form). We can see from Eq. 2.1 the famous fact
that in a radiation dominated era (w = 1/3) with no relativistic free streaming particles, the
spectrum is predicted to scale exactly as k3. Any deviation from k2 scaling would be evidence
of free streaming particles or that w # 1/3.

A transfer function can be used to take into account the effects of w or frg on the GW
spectrum. Given a GW spectrum that was calculated /numerically simulated in a radiation
dominated universe (Qy(k)), we can take into account w # 1/3 and/or frg # 0 using

QG"/[/(k? 9) = QOGW<C(0) k) F(C(@) k.0), (2'4)

where 0 = w or frg, and c(f) is a re-scaling of frequencies that arises due to the change in
the redshift at which the GWs were produced (since the temperature will evolve differently as
a function of redshift for different w(7T))*. Q%y; (k) is the spectrum for w = 1/3 and frs = 0,

!This is equivalent to a rescaling of the frequency and does not affect the shape of the spectrum. As the
shape of the spectrum will be the main focus of our analysis, and because a shift in the frequency scales is



while F(k,0) is a transfer function that encapsulates how the spectrum depends on these
additional parameters and will be specified in their respective subsections. When estimating
the sensitivity of GW detectors to 6, we need to specify Q0y (k).

We will take Q%;(k) to be the gravitational wave spectrum coming from the sound
waves of a phase transition, but the results of this paper will apply for any causal source
of gravitational waves. For simplicity, we will use an analytical approximation of numerical
results [65]?

st =00 () (25 (5) 7 (F) (i)
h20%, = 1.19 x 10 ( 7)) 7)) sone) (2.5)
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where f, is the peak frequency of the spectrum, Tpr (Hpr) is the temperature (Hubble

scale) at which the phase transition took place, & = ppr/piotal i the ratio of the energy
released by the PT to the total energy density, the time scale of the transition is 1/3, and
ky = a/(0.73 + 0.083y/a + «) is the fraction of the latent heat which gets converted into the
bulk motion of the fluid. In the last expression, we are also assuming a large wall velocity
Vy ~ 1.

2.1 SNR and Fisher matrix

The visibility of a stochastic GW background is typically encapsulated by its signal-to-noise
ratio (SNR). In a detector like LIGO, with two (or more) independent interferometers, a
stochastic GW signal is searched for by comparing the power in two different GW detectors,
1 and 2. The SNR is [68-70]
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where

U(f) = Cia(f), (2.8)
W(f) = Cu1(f)C2n(f) + Cra(f)N2(f) + Coa(f)N1(f) + N1(f)Na2(f). (2.9)

also achieved by rescaling the unknown temperature of the PT, we will neglect this rescaling of frequency from
now on.

2The dependence of the spectral shape of the sub-horizon modes on the physics of the PT is still an active
topic of investigation, for some recent discussion see e.g. [16, 66, 67]




The functions C and N are defined as

Cuatitt) = [ TSOF. 20, (2.10)
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where the indices I, J represent the different detectors used to capture the signal, and Fr; is
the antenna pattern function [70], which characterizes the overlap in the detectors response
to the signal. 7 is the noise while & is the GW signal. Indices A, A’ represent polarization of
the GW signal, f is the frequency of the GW while €2 is the direction it is coming from. For
simplicity we assume that the signal is isotropic so that

_ 8aG dpgw 4 f2Su(f)
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(2.13)

Here Hj is the value of the Hubble parameter today. As an additional simplification, we also
take the various overlap factors between detectors to be identical, F19 = F11 = Fa2, and the
noise of the two detectors to be the same, N7 = No. As a result the SNR simplifies to

QQ
SNR2=T [ d GW 2.14
/ fQQéW + 206w Qnoise + Q2. ( )

noise

where T is the runtime of the experiment and 4ise is the noise power spectrum (normalized
to the critical density as in Eq. 2.13). While for future space-base missions this approach
is not exactly justified, it recovers the usual SNR expression in the small signal limit (see
e.g. [47]) (which to our knowledge is the only case that has been widely studied), and at least
incorporates some of the important effects of the large signal limit.

We can obtain an intuitive understanding of Eq. 2.14 by using the fact that the signal is
a measurement of the cross correlation between detectors, schematically

S=pu= <(h—|—n1)(h—|—n2)> x Qaw - (2.15)
Meanwhile, the noise is schematically

N? = 8 = ((h+n1)*(h+n2)%) = ((h+nm1)(h+n2))?
x 20w + 226w noise + Lioises (2.16)
where we have taken the usual approximation that the GW signal is approximately Gaussian.

Taking SNR = S/N for each frequency bin and summing in quadrature over all of the
frequency bins gives Eq. 2.14.3

3These expressions will also play a role in forecasting the sensitivity of future space based experiments,



In this article, we will be usually working in the optimistic limit where the signal is
large. As can be seen in Eq. 2.14, under this approximation the magnitude of the noise is
less important than the runtime and the frequency range under consideration. Thus, for us,
the main difference between experiments when it comes to measuring w(7T') or frg(T) is the
difference in frequency ranges that they are sensitive to.

To estimate the sensitivity of an experiment to w(T') or frg(T), we will use the Fisher
information matrix (for recent studies forecasting LISA sensitivity to spectral information
of GW signals see e.g. [71, 72]), and assume that we will be able to subtract contamination
from astrophysical foregrounds . The Fisher matrix is useful because it determines the optimal
sensitivity of any unbiased estimator. Assuming gaussian distributions, the Fisher information
matrix can be found from the covariance matrix ¥ and mean p using

o 1 0p 1 0¥ ;0%
Fos=—%Y —+-Tr( X — — 2.1
0T 90, 90, T2 \" 9. 005 (2.17)
402 2Qcaw Qnoise + Q2
=T / df agg’w agg WS Gw G Cnoise T Fnoise (2.18)

noise

where 6, are the parameters describing the GW spectrum. For example, if we let w be
quantity of interest, then we can replace 6, 3 — w and the Fisher matrix F' =1/ 02 describes
the variance in how well an experiment could measure w. In later subsections, we will utilize
Eq. 2.17 to calculate the sensitivity of LISA and DECIGO to the equation of state and frg.
For LISA we take Qypise from program PTPlot [16] and for DECIGO we take Qpoise from
Ref. [73]. In both cases, we take the runtime of the experiment to be T' = 10® seconds.

2.2 Equation of state

When studying the sensitivity of experiments to the equation of state, we first need to fully
specify the GW spectrum, namely we need to determine F'(k,w) shown in Eq. 2.4 assuming
no relativistic free streaming species (frs = 0). In the limit that the phase transition occurred
very rapidly, 5/Hpr 2 1, and for wavelengths that are larger than the spatial correlations of
the source, this function can be analytically shown to be [38]
‘j173w (kTPT) ‘2 + ‘y173w (kTPT) |2
F(k, 9 — w) — 1+3'fv 5 143w 5
jo (kTpr) [* + |yo (k7p7) |

, (2.19)

where 7pp is the conformal time when the phase transition occurred and j, and y, are the
spherical Bessel functions. For simplicity, we will take this to hold even when 5/Hpp ~ 1.
With the full GW spectrum in hand, we can use Eq. 2.17 to find the sensitivity of any
given experiment to the equation of state of the universe. For simplicity we will express our
sensitivity to dw = w — 1/3 in the form of the variance o,,. In principle, the phase transition

even though, as mentioned earlier, they are technically only valid for a LIGO like setup. One can show that
they lead to expressions for the fisher matrix that match the literature [47] both in the small signal limit and
in the signal much larger than noise limit, and thus will be used in our analysis.
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Figure 1. A graphical representation of how the gravitational wave spectrum changes for various
w(T) compared to the LISA sensitivity curve assuming a runtime of 10® s. For simplicity we are only
showing how the shape changes and neglecting the rescaling of frequencies due to differing expansion
histories. The dashed line indicates modes that were sub-horizon at the time the phase transition
took place and their shape is unaffected by the change in expansion history. The solid lines indicate
modes that were super-horizon at the time when the phase transition took place and have their shape
distorted by the different expansion history.

parameters («, 8, Tpr, ---) can all be determined from the peak of the distribution and
thus we will take them to be fixed while studying the sensitivity to dw. * In order to show
how o, depends on various phase transition parameters, we first fix all parameters except for
Tpr and a single other parameter and show how o, varies as a function of a Tpr for a few
values of the other parameter. Motivated by one of the louder phase transition models from
Ref. [44], we will take « = 1, § = 3 and v,, = 1 unless otherwise stated.

To show visually how w(T') affects the GW spectrum, in Fig. 1 we show how the GW
spectrum changes as one changes w(7). We will be interested in small changes around
w = 1/3. Due to the similar scaling of the background noise and the signal, the signal
remains above background for a large range of frequencies, leading to sensitivity over a wide
range of frequencies (and thus a wide range of temperatures in the early universe). We will
first study the sensitivity o,, to constant deviations in the equation of state before studying
the sensitivity to frequency/temperature dependent changes to the equation of state.

We first show how o, depends on « in Fig. 2. Varying « changes the amplitude of
the signal. As can be seen from the SNR (Eq. 2.14) and the Fisher matrix (Eq. 2.17),
the magnitude of the signal is not particularly important if the signal is larger than the
background. This can be seen explicitly in Fig. 2 for the DECIGO sensitivity (for LISA
the signal is only above the noise for a narrow range of parameters). For smaller Tpp, the

4 As discussed earlier, we are also ignoring the shift in frequencies due to the difference in expansion history,
which can in principle be reabsorbed by changing the phase transition parameters.
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Figure 2. The projected sensitivity, calculated using the Fisher matrix, of LISA (left) and DECIGO
(right) to a constant equation of state near w = 1/3 as a function of the temperature at which the
phase transition occurred for various a. « controls the amplitude of a GW. For reference we show
matter domination (dw = —1/3) as well as the SM and SM plus doublet dark matter predictions for
dw versus temperature.

sensitivity is the same for « = 1 and 0.1. At higher Tpr, eventually the signal falls below the
background and larger « results in better sensitivity. For a = 0.01, background is important
for all temperatures and thus the sensitivity is always worse than larger values of a.

Next, we show how o, depends on 3 in Fig. 3. Effectively, 8 is a measurement of how
sub-horizon the physics that generates the GWs is. As such, while it has an impact on
the peak of the spectrum, it does not have a large effect on the low frequency tail that we
are interested in. The main effect of 8 is thus very similar to «, where it just changes the
amplitude of the low frequency tail. As such, the qualitative behavior is quite similar. For
the DECIGO sensitivity in Fig. 3, one sees that at low Tpr where the signal is much larger
than noise, 0y, is insensitive to £, while at for high Tpp, o, is larger for smaller amplitudes
(larger B).

In the previous two examples, we assumed that dw was temperature independent. One
of the most exciting prospects would be if it is possible to measure w(7T) as a function
of temperature. Assuming radiation domination from the temperature of Tpr to matter-
radiation equality gives a one-to-one mapping between the measured frequency dependence
and the desired temperature dependence (ignoring the small correction due to dw # 1/3
which can be easily included). As such, we separated frequency space into bins logarithmically
spaced from f/3 to f. For each bin, we obtain the sensitivity to o, using Eq. 2.17 limiting
the integration to be only over the corresponding frequency bin. The expected sensitivity for
such analysis is shown in Fig. 4. From this we see the remarkable result that in the advent
of a loud GW signal generated at large temperatures, a precise measurement of w(7') can be
made over a large range of temperatures.
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Figure 3. The projected sensitivity, calculated using the Fisher matrix, of LISA (left) and DECIGO
(right) to a constant equation of state near w = 1/3 as a function of the temperature at which the
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" 5 )

100 10 10 . 10° 10° 107 108
MD \ \ \ 10 MD \ \ \ '

\ 10—1

Tpr = 3 x 10° GeV

1072
& 1072F 5 =10 Hy

5
-3
B =5 Hpy 10
1074 ‘
nggsino‘SM
, , 10 DECIGO . .
1074 1073 1072 1073 102 107! 100
f[Hz7] f[Hz

Figure 4. The projected sensitivity, calculated using the Fisher matrix, of LISA (left) and DECIGO
(right) to the equation of state near w = 1/3 as a function of frequency for various Tpy. The sensitivity
was obtained by binning the data logarithmically between a frequency fo and fo/3.

2.3 Free-streaming fraction

The small free-streaming fraction limit and the small Jw limit are similar in that, in both
cases, the main observable effect is the change in the slope away from the k3 scaling. As
such, the results of the previous sub-section can be applied to non-zero frg by using the
substitution o, — 16 0,4/15 to obtain the sensitivity to free-streaming particles. If the free-
streaming fraction frg < 1073, then at that point there is necessarily “background” coming
from the SM predicting dw ~ 1073, In the small dw and frg limit, the similarity of these
two signals leads to the unfortunate degeneracy that GW detectors are only sensitive to the

,10,
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Figure 5. The regions of phase transition parameter space for which the well motivated value of
frs ~ 1072 can be reached at LISA (left) and DECIGO (right). For a given value of Tpr, as long as
the phase transition parameters o and /3 are to the right of the line, then a sensitivity of frg ~ 1072
can be obtained.

linear combination éw + 16 04, /15.

As we will see in Sec. 3, there is a well motivated benchmark of frg ~ 1072. Given this
a well defined benchmark target, we will characterize for what values of the phase transition
parameters this benchmark sensitivity can be achieved assuming that dw = 0. In Fig. 5,
we show contours of fixed phase transition temperature Tpp versus the phase transition
parameters o and . For a given Tpp, if the phase transition parameters are to the right of
the line, then a sensitivity of frg ~ 1072 can be achieved.

Aside from the small free streaming fraction limit, there is a unique behavior of free-
streaming particles that manifests itself for large free streaming fractions. When the free
streaming fraction is large, frg > 5/32, it induces oscillations in the GW spectrum. The
precise form of the transfer function has to be computed numerically by solving an integro-
differential equation (see Sec. 4), but for small frequencies it is well approximated by [38]

2
14 C'sin <log(kTpT) \/%fpg -1 —|—5>

where C' and ¢ are k independent functions of frg.

F(k, frs > 5/32) oc k! , (2.20)

We now determine how accurately one can measure frg in the large frg limit. The signal
of large frg comes in the form of oscillations on top of a k% fall off. The amplitude, phase
and periodicity of the oscillation informs one about the value of frg. To get an understanding
of LISA’s sensitivity to frg in the large frequency limit, we consider the example frg = 0.4.
Fixing frg to this value, we obtain the maximal sensitivity to frg using the Fisher analysis
shown in Eq. 2.17. As before, we will take « = 1, 8 = 3 and v,, = 1. The spectrum is shown
visually in Fig. 6. Using Eq. 2.17, we find that a sensitivity of of., ~ 1.1 X 1073 can be
reached.
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Figure 6. Qgw (f) versus frequency for a free-streaming fraction of frg = 0.4. The dashed line
indicates the sub-horizon modes, the solid line are the super-horizon modes, and the dotted line is the
f* fall off on top of which oscillations occur. The small oscillations are what allows one to distinguish
between various large values of frg. For this particular example, a sensitivity of of,, = 1.1 x 1073
can be obtained.

3 Implications for well motivated models

When making precision measurements of dw and frg, there are several benchmark points
that are of great interest. For dw, the first benchmark is at dw ~ 10~3 (achievable at LISA)
while the second benchmark is w ~ 107> (achievable at DECIGO). For frg the benchmark
value is frg ~ 1072 (achievable at LISA).

The reason why there are any benchmarks at all for Jw, is because, as reviewed in the
Appendix, for the SM in a radiation dominated universe

T 100
TH=p—3p, 6wl =10°GeV) =L~ -3x107" ( ) Bgff . (3.
3p g« /BQCD

The dependence of dw on the total number of degrees of freedom in the universe is what
makes measuring dw so appealing. Many motivated models predict a doubling of the SM [
functions and/or the number of degrees of freedom, resulting in a change in dw of ~ 1073,
giving the benchmark. Meanwhile, if the SM is augmented by a single degree of freedom,
dw changes by around 1077, giving the second benchmark. A simple well motivated example
which has this feature is the famous WIMP dark matter candidate.

A measurement of frg to the order of 1072 is important because that is the contribution
one gets from a single new particle that freezes-out while relativistic, like the neutrinos do in
the SM. Aside from the fact that it happens in the SM, there is good reason to expect that
something similar could occur in the early universe as well. As an example, in many axion
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Figure 7. The region of axion parameter space that can be probed as a deviation from the equation
of state or as a free streaming fraction. The black line, Tyec(gay~y), gives the decoupling temperature
of the axion as a function of the coupling to photons. In the blue region, axions in equilibrium with
the SM predict dw ~ 10~5 while in the green region, free streaming axions predict frs ~ 1072 so long
as the reheating temperature, Try, satisfies Try > Tgec(gayy)-

models, axions are in thermal equilibrium with the SM before freezing out. After freezing
out, they become free-streaming particles and lead to frpg ~ 1072

As one particularly well motivated models for both dw and frg are axions, we show
how different regions of axion parameter space can be probed with gravitational waves in
Fig. 7. The black line is Tyec(gayy) and gives the decoupling temperature of the axions from
the thermal bath as a function of the axion coupling to photons (assuming this is the largest
coupling). The region of parameter space in blue predicts dw ~ 10~°. Meanwhile, the region
of parameter space in green predicts frg ~ 1072 as long at the reheating temperature obeys
Try > Tdec(gawv)~

Finally it is worth noting, that a non-zero measurement of dw or frg can very easily
prevent a clean measurement of the other. So while it would be extremely exciting to measure
one or the other non-zero, it is unlikely that everything mentioned in this section can be
realized simultaneously.

31 o,51073

The strongest motivation for TeV scale physics lies within the electroweak hierarchy problem.
Many solutions to this problem involve a large number of degrees of freedom. Perhaps the most
famous of these solutions is supersymmetry (SUSY), for a review see Ref. [74]. Supersymmetry
doubles the number of degrees of freedom and predicts

Sw(T = 10°GeV) = —4 x 1074, (3.2)
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From Fig. 2, one can see that it is possible that LISA (DECIGO) would be able to measure
Sw(T) at this accuracy for phase-transition temperatures between ~ 10476 GeV (~ 10410
GeV). As a result, both low scale and high scale SUSY can be tested at GW detectors.
Because w(T') is being measured at such a large temperature, as long as supersymmetry is
present at temperatures below 10476 GeV, LISA could be able to test it.

Aside from supersymmetry, other models such as Twin Higgs [75] and Composite Higgs [76]
also introduce a large number of degrees of freedom and predict deviations at the 1073 level
or larger. Meanwhile, models where the SM is UV completed into a conformal sector give a
striking signature. Conformal sectors have T}y = 0 and thus predict dw = 0, unlike the SM
prediction. As a result, we see that testing dw at the level of 10~3 probes almost all solutions
to the electroweak hierarchy problem.

Almost all solutions to the hierarchy problem point to new physics at the TeV scale, while
LISA tests if they are present below the 105 GeV scale. As a result, LISA has the potential
to make a conclusive statement about our understanding of naturalness. DECIGO would be
able to push these statements to the extreme and reach even the 100 GeV scale.

32 o0,S107°

~

Another benchmark for a measurement of dw is 107°. At this level, one can test even the
addition of a single degree of freedom to the SM bath at high temperatures, even if it is not
free-streaming. There are many reasons to expect at least a single new particle in thermal
equilibrium with the SM, a primary one being dark matter related. One of the simplest ways
of producing dark matter is the process of thermal freeze-out. The fact that TeV scale weakly
interacting particles undergoing the process of freeze-out gives the correct relic abundance is
the famous “WIMP miracle”.

Dark matter models where the abundance is set through thermal freeze-out, in general
require that the dark matter’s mass must be below 100 TeV. This is because if it were any
heavier, then the cross section needed to reproduce the observed dark matter density would
violate the unitarity bound. As such, most dark matter model which involves thermal freeze-
out would be tested by a o, < 1075 measurement. The possibility of testing the most
motivated mechanism of producing dark matter, rather than testing any model specifically,
is what makes this limit appealing.

Another motivation for expecting at least a single new particle in thermal equilibrium is
the axion. Axions are ubiquitous in UV complete models such as string theory and can solve
problems such as the strong CP problem as well as be dark matter. For the sake of simplicity,
we will focus on the axion coupling to photons, g.y. For a large range of parameters, the
axion will be in thermal equilibrium with the SM after the GWs are generated. In this case,
there will be a prediction of dw ~ 107°. The region of axion parameter space where this
prediction is realized is shown in blue in Fig. 7.
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3.3 o S1072

The last benchmark value to explore is when frg ~ 1072. A free streaming fraction of 1072
is present whenever there was a particle in thermal equilibrium that subsequently freezes out
while still relativistic, much like what happens to the neutrinos. Aside from the fact that this
exact process happened for neutrinos, there are other reasons to expect something similar
could have happened in even earlier stages of the universe.

As in the previous example, one of the best motivated models that have free streaming
particles is the axion. For large g,y,, the axion was in thermal equilibrium giving dw ~
10~°. However for small Jaryy the axion will have been in thermal equilibrium at early times
and then have decoupled and become a free streaming particle in the sensitivity window of
LISA/DECIGO. Thus a sensitivity to frs ~ 1072 would allow one to probe much of the
parameter space of the axion, namely the region of parameter space shown in green in Fig. 7.

A final reason why a non-zero value of frg is motivated is that GWs themselves are free
streaming particles. The current best bounds on GWs, independent of their frequency, comes
from ANeg constraints. A measurement of frg < 1072 is a sensitivity comparable to future
constraints on GWs coming from CMB S4 experiments. Thus as long as LISA/DECIGO
achieve a constraint better than this, they would be the strongest bound on new free streaming
particles. A generic value to expect for frg due to GWs themselves can be seen using the
total energy in GWs due to sound waves. This energy normalized to the total energy at the
time of the phase transition is given by Ref. [65]

Qaw _4 (100Hpr 402
> ~hHhx1 .
frs > 59 5 x 10 ( ! )((1 o) (3.3)

where we are taking the bubble wall velocity to be 1 and 100% conversion of the vacuum
energy into kinetic energy. In most models, a ~ 1 but 8/Hpp ~ 100, though some models
can obtain smaller values of 3. As a result, a reasonable value of the free streaming fraction
to expect due to gravitational waves is frg > 1073. Thus it is quite reasonable to expect
that GWs themselves might be loud enough to comprise an observable value of frg. The
example given above is simply one source of GWs. Different GW sources have different
natural expectations for the value of frg.

4 Massive free streaming particles

The presence of relativistic free streaming particles affects the propagation of gravitational
waves, since the energy momentum tensor of such particles develops an anisotropic stress
in the presence of gravitational waves [38, 64]. In this section, we generalize this result by
considering what happens when free streaming particles have a mass in order to study the
impact of free streaming particles transitioning from being relativistic to non-relativistic. For
the CMB, the fact that neutrinos are becoming non-relativistic around the time when the
CMB is being generated leads to important imprints. For stochastic GWs, we find that as
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free streaming particles become non-relativistic, their damping effect on the GW spectrum
vanishes. The more e-foldings that the free streaming particles are relativistic after GW
generation, the more they dampen the GWs.

4.1 Derivation of the damping
We start with the metric for tensor perturbations in an isotropic background, which is given

by

Gur = () B+ o (3.1), (11)
hOl/ = 07

where a(7) is the scale factor and h,, is a perturbation of the metric. We make a standard
choice of transverse-traceless gauge (TT), meaning that h;;; = 0 and ht = 0. The evolution
of the remaining components of h;; is governed by the linearized Einstein equation

1. .
— ih’»y = 87TGHZ']' , (42)

ijiv

where II;; is the anisotropic part of the energy-momentum tensor 7;; = pg;; —|—a2H¢j. Knowing
the form of the metric, defined in Eq. (4.1), we can unwrap covariant derivatives leading to
the well-known equation

/
//<,k(7_) + Q%hl)\’k(’r) -+ k'Zh)\’k(T> = 167TGCL2H)\,]€. (4.3)

Here, the metric perturbations, h;;, and anisotropic energy-momentum tensor, II;;, have been
written in the momentum k and polarization A space as

3 .
hij(T,l’) = Z /‘(;lﬂl;gh)\,k(T)elkxeg‘j’ (44)

A=+, X
ey = 3 [ E e (45)
() 9 - (27T)3 )\,k 17 .
A=+, X
where e;-;’x are the polarization tensors. Our aim now is to determine the form of II,; to

linear order in the perturbations. The energy-momentum tensor is given by

P;P;
PO

Tij = P) (4.6)

1
——— | #PF(&,T,
\/detg/ (@7
= dzt

where F (2%, 7, P;) is the phase space density and P* = o+ Switching to comoving momen-
tum, ¢, defined by

hi
P= (0 ) (@)
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with ¢; = ¢;, where y; are the directional cosines, and doing a perturbative expansion for the
phase-space distribution F(Z,7,q,7) = Fo(7,q) + F1(Z,7,q,7) + ..., one finds at first order

2
ILj = a~(r) /d3q (%, T,q,%)%. (4.8)
VvV q°+ am

For simplicity, we will assume that free streaming particles were once in thermal equilib-
rium and at some point decoupled from the rest of the bath. While this assumption is not
necessary, it is the case for many motivated examples of free streaming particles. When a
given particle species is in thermal equilibrium, its Oth order phase-space density is given by

the thermal distribution in a homogeneous background

—1
N 2 2a(7)2
F(Z,1,q,9) = [eXp< ¢+ ma(r) )il

: (4.9)

(2m)3 a(T)kT

where N is the number of degrees of freedom in that species. Assuming that a given species
x decouples at 7 = 74, the evolution of the phase space density freezes

N ¢% + m2a(7y)? SN g -
Fo(r > 7a,q) = (27)3 [exp ( a(tq)kTy ) =1 T (2m)3 [exp <a(7d)de> * 1]
(4.10)

where we assume that y decouples when Ty > m.
We can compute the evolution of the perturbation F (%, 7, ¢",7) by expanding the Boltz-
mann equation

dF _9F da' OF dqOF  dy' OF _

o7 - 4 A = 4.11
dr or + dr 0zt  dr Oq dr 0v* ( )
To leading order in h, the Boltzmann equation simplifies to
oF, o 1, 0Fy
or + ’Yﬂ)% = ihijViquTqa (4.12)

where v = q/+/q* + a®m?. Going to Fourier space and using the polarization vectors we can
decompose the perturbation Fj into

L Bk s
R(E7,0,7) = ) /(%)36”“””fk(T,u,q)E?ﬂm, (4.13)
A=+,X

where u = k - ¥, leading to

O fr.x
or

_ 90 10hyk
— 4 dq 2 Ot

+ Z'Uk,ufk;’)\ (4.14)

Assuming that there were no tensor perturbations in the free streaming radiation before the
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gravitational waves were generated, we have

1 OF p —i]dT"v(T”)ku
-2 8@; 'k ()e . (4.15)

TPT

fk,)\ (Ta q, /‘L)

Plugging the above result into Eq. 4.8, one finds after some algebra

T

- b 01 2(u (7/)_“(7)
Mye=a"[d d 0 /dT'h’ 7’ 47r‘72 1 2 ) 4.16
M q\/ q2 + a?m? dq ( ) (Uq(7 /) - Uq(7 ))2 ( )

Td
where j is the spherical Bessel function, and with u, defined by
uq(7) = k‘/ dr'v(r"). (4.17)
TPT

Combining results from Eq. (4.3) and Eq. (4.16) we get the general equation for how
massive free streaming particles affect gravitational waves:

a

' Un frs(t) (d\? [ dg 7 OFy
1 (7) + 25 o (7) + K2R (r) = —IEST) — X
Ak (T) 2R (7) M) == ar i+ a2m2 Oq

/dT’h/(T/)jQ(uq(Tl) — UQ(T))

(ug(77) = ug(7))?

(4.18)

Td

where prg is the average energy density in free streaming particles and frg(7) is the free
streaming fraction, Eq. 2.2. Note that in the massless limit, uy(7) = k7, from which follows
that in a radiation dominated universe Eq. (4.18) reduces to the previously known expres-
sion [38, 64]

/ o\ 2 7 k(! —
e(T) + 2%hl)\,k(7—) + kP har() = —24frs <a) /dT’h’(T’)”M . (4.19)

Td
4.2 Numerical results

In this subsection, we present numerical solutions to the integro-differential equation 4.18
for different values of the free streaming particle’s mass. Massive free streaming particles
modify the gravitational wave spectrum via two effects, by changing the equation of state of
the universe when they become non-relativisitic, and by causing a suppression due to their
free streaming nature. When the free streaming particles transition from being relativistic
to non-relativistic, the change in the equation of state can drastically affect the expansion
history (e.g., if these free streaming particles where stable and didn’t annihilate they could
lead to a period of early matter domination).
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Figure 8. The fractional suppression of GWs due to massive free streaming particles as compared to
massive interacting particles. We fix the free streaming fraction to be frg(rpr) = 1073 and let the
mass vary m/Tpr = 1071,1072,1073,0, shown in orange, red, green and black respectively. When
the free streaming particles becomes non-relativistic, they cease to suppress the gravitational waves
leaving only the suppression that resulted from back when they were relativistic.

In order to isolate the effects on the GW spectrum due to particles free streaming from
the ones coming from changes in the expansion history, we will compare ratios of the GW
spectrum between two scenarios with the same expansion history. We include a new species
that starts off relativistic and later transitions to the non-relativistic regime. In the first case
this component is free streaming, h(frg,m), while in the second case it is not, ho(m). In
Fig. 8, we show the suppression h(frs,m)/ho(m) taking frs(rpr) = 1073 for several masses
m/Tpr =1071,1072,1073, 0 in orange, red, green and black respectively.

In the massless case, the suppression is larger for smaller frequencies, causing a change in
the shape of the GW spectrum as explored in the previous sections. For the massive case, at
high frequencies that enter the horizon while the free streaming particles are relativistic, the
suppression tracks the massless case. For low frequencies that enter the horizon after the free
streaming particles are non-relativistic, the suppression asymptotes to a constant value at
low frequencies. For the low frequency part of the spectrum, the majority of the suppression
is from when the modes were super horizon and slow rolling in the potential generated by the
relativistic free streaming particles, as discussed in Ref. [38].

5 Conclusion

In this article, we have demonstrated that LISA (DECIGO) can potentially measure the
equation of state of the universe (w) and/or the fraction of free streaming particles (frg)
down to an accuracy of 1074 (1076). This measurement is analogous to 21-cm measurements
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in that a deformation to a known frequency distribution is used to infer propagation effects. To
illustrate the physics potential of such a precise measurement, we presented several benchmark
models that predict deviations from an equation of state of 1/3 at varying levels. The Standard
Model itself predicts a w —1/3 ~ 1073 deviation, well motivated solutions to the electroweak
hierarchy problem predict different w—1/3 > 1073 deviations and dark matter models predict
w—1/3 ~ 107°. Many of these same models also predict a large frg ~ 1072, If LISA were to
see stochastic GWs and were able to make this precision measurement, it would revolutionize
our understanding of early universe physics.

The possibility of reaching these exciting benchmark values at LISA pushes for an under-
standing of all signals and noises at the 10~# level, including contamination from astrophysical
foregrounds, which would likely be significant for mid-band detectors like DECIGO. In this
article, we assumed that the GW signal was generated in a short sub-horizon timescale and
thus the shape of the frequency spectrum is fixed, e.g. sounds waves can be sub-horizon [77]
or super-horizon [78]. It is possible that some of the source of GWs may persist for longer
than a Hubble time and thus contaminate the precise measurement of the equation of state.
Our results thus motivate an improved understanding of all sources of GWs and their low
frequency behavior. For example in a radiation dominated universe, Qgw o k3PGW(k)
with Pgw (k) being the Fourier transform of the two point function of the source of GWs.
For a causal source, there exists a radius R such that Pgw(x > R) = 0 implying that
Pow(k < 1/R) ~ ¢p + c1k®>R? for some constants cg and ¢;. There is thus necessarily a
model dependent k° correction to the k2 scaling that needs to be accounted for.

If LISA were to discover stochastic GWs, GW physics could instantly become a precision
science. It is exciting to see that in this case, that LISA would be able to teach us about the
early universe to an unprecedented precision.
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A Calculation of w(T)

In this section, we show how one calculates dw(7) = w(T") — 1/3 in various theories. For
the sake of simplicity, we will work in the limit where all particles are massless. Our starting
point is the first law of thermodynamics dU = T'dS — pdV'. We can express the total energy
(entropy) in terms of the energy (entropy) density using U = p(T)V (S = s(T')V'). Equating
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Figure 9. The eight leading order diagrams contributing to the free energy that lead to w(T') # 1/3.
F 2.3 involve gauge bosons and/or ghosts and are present for any non-abelian gauge theory. Fy s
(Fg) are present whenever there is a scalar (fermion) charged under a gauge group. Fy is the leading
diagram for Yukawa couplings while Fy is the leading diagram for quartic couplings.

the dT" and dV terms on both sides of the first law of thermodynamics, we arrive at

p+p dp

8=~ p=T—F7—p (A.1)

Pressure can be exchanged with the free energy density using f = p — T's = —p. After a bit
of algebra, we find

Td(f/T*)

dw(T) =

=5, doaT (A.2)

Expressing the free energy as a Taylor series in terms of coupling constants, we see that the
right hand side is proportional to beta functions and inversely proportional to g,. Connected
vacuum diagrams give the log of the partition function, and hence up to a minus sign give
the free energy density ( F' = —T'log Z). The leading contribution to dw can thus be found
by calculating all connected 2-loop vacuum diagrams and taking the appropriate derivatives.

The 2-loop vacuum diagrams that we are interested in are shown in Fig. 9. There are
eight diagrams that can all be calculated and their high temperature/low mass results are
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most easily expressed in terms of

17 - T
1= ﬁ I= SETR (A.3)
The first three diagrams are present in any non-Abelian gauge theory and evaluate to
_ a2 2 _ 9, 2 _ 1y 2
Fy =3g°Co(G)d(G)] FB=-19 Co(G)d(G)I Fs =79 Co(G)d(G)I7,  (A.4)

where d(G) is the dimension of the group and C3(G) is its quadratic casmir. The next two
diagrams are present in any gauge theory with charged scalars

Fy =4g°Cy(R)d(R)I?  F5 = —=g°Cy(R)d(R)I?, (A.5)
where as before d(R) (C2(R)) is the dimension (quadratic casmir) of the representation. For

)
abelian theories C3(R) = Q2. Diagram Fg is present for theories with charged Weyl fermions
and evaluates to

Fo = g>Cs(R)d(R) (ﬁ . 2f1) . (A.6)

If there are Yukawa couplings involving a complex scalar ¢ and two Weyl fermions ¢ and ¢
of the form £ = yPy©, diagram F; will be present

Fy = 2 (f2 - 2f[> . (A7)

Finally if there are scalar quartic couplings, then Fg will be present. For a quartic coupling
of the form, £ = A\(H;H] )2, we have

Fy = ANg(1 + Ny)I? (A.8)

where Ny is the number of scalars that the index ¢ runs over. For a different quartic coupling,
e.g. those present in SUSY, the combinatorics factor, Ny (1 + Ny ), will be different.

We can now use the previous results to find the free energy density (f = > F;) and
combine it with Eq. A.2 and beta functions to find dw for various theories and at various
temperatures.

The Standard Model : When calculating dw in the SM, we only take v;, \,g,¢" and gs
to be non-zero and ignore all other couplings. The dominant contribution to dw comes from
the QCD beta function because of both the abundance of colored particles and the size of the
beta function. The top Yukawa beta function is the next most important contribution and
contributes only about 5% of the final result. More explicitly, we find that at leading order

! ( 55 5

ow=-" B ﬁg” 6ng 288

> \ 17287 * 576 sl t m) (4.9)
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Figure 10. The deviation of equation of state from 1/3 of the Standard Model (black) and the MSSM
(blue) as a function of temperature.

where [ are the beta functions defined as )y = d\/dlog p. The value of dw(T") for the SM is
shown as the black line in Fig. 10.

The Minimal Supersymmetric Standard Model : The MSSM contains many more
particles and interactions, but its QCD beta function is smaller than the SM value. As a
result of these effects partially canceling, the MSSM value of dw is not very different from
the SM value.

Because the Higgs quartic coupling is determined by gauge couplings, we only consider
contributions from v, g,¢" and gs. As with the SM, the dominant contribution again comes
from the QCD beta function with all other couplings playing an even smaller role than before.
We find that at leading order

T* /33 69 21 9
ow = 7 <6459/2 + @ﬁgz + gﬁgg + 32@13) . (A.10)

The value of dw(T') for the MSSM is shown as the blue line in Fig. 10.

The Standard Model with doublet dark matter : The next model we consider is
dark matter as a vector-like fermion with the quantum numbers of the Higgs boson. This is
a particularly appealing version of WIMP dark matter as it makes the SM gauge couplings
unify better [79]. Direct detection constraints imply that this WIMP necessarily mixes with
an additional singlet, but this singlet can be much heavier than the WIMP and thus we will
neglect it. As before, we only consider the couplings v, A, g, ¢’ and gs. As the doublet is not
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Figure 11. The difference in the equation of state of the Standard Model with and without a vector-
like doublet dark matter.

color charged, it does not change the result by much. We find that

T (5 1 7
Sw=" (2Bt B+ —
e (144692+12692+36593+

=

1
seg it 72@) . (A.11)

The difference between this result and the SM is shown in Fig. 11.
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