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Author summary

Bacterial infections are a leading cause of crop yield reduction worldwide. Plants utilize an
intricate immune system to prevent invading microbes from establishing an infection.
Part of this plant immune response results in changes in the metabolite composition that
impact the ability of microbes to produce disease. To study these complexities, we created
iPst19, an ensemble of 100 metabolic models of the bacterial pathogen Pseudomonas syrin-
gae. iPst19 can predict conditional metabolic differences in P. syringae exposed to naïve
plants, where infections progress rapidly, versus pre-immunized plants, where infections
are significantly restricted by plant immunity. iPst19 growth simulations predicted
branched-chain amino acid metabolism as a key factor that contributes to regulating the
expression of bacterial virulence, a necessary condition to produce infections. We have
corroborated predictions made by iPst19 with in vivo experiments by supplementing
plants with amino acids to reduce the infectivity of P. syringae, revealing another critical
aspect of pathogen-induced defense mechanisms. Importantly, we have created a new
computational tool to allow a deeper understanding of the Arabidopsis thaliana–P. syrin-
gae interactions, the most studied plant-pathogen interaction system.

Introduction

Pseudomonas syringae is a pathogenic bacterium that can infect a wide range of plant species,
often in a species-specific interaction [1]. Based on its host range, more than 60 different
pathovars have been identified [2]. In addition to causing disease in tomatoes, Pseudomonas
syringae pv. tomato DC3000 (Pst DC3000) can infect the model plant Arabidopsis thaliana [3].
The genetic tractability of the Pst DC3000-Arabidopsis pathosystem has facilitated the discov-
ery of molecular mechanisms underlying plant defense and bacterial disease that have been
translated to distant plant species, including crops [1].

Pst DC3000 is an endophytic pathogen that colonizes the leaf apoplast (LA), the intercellu-
lar spaces of the leaf mesophyll. The LA is partially filled with an aqueous solution rich in pro-
teins, sugar polymers, free hexoses, free amino acids, and other plant-synthesized metabolites
that can regulate Pst DC3000 growth [4]. The concerted activity of membrane transporters
and LA resident enzymes regulate the concentration of each metabolite in basal conditions
and in response to stress [5,6].

Once inside the LA, Pst DC3000 subverts early inducible plant defense responses that
would otherwise restrict its growth and prevent the onset of disease [7–9]. To suppress plant
immunity, Pst DC3000 uses the Type-3 Secretion System (T3SS) to inject effector proteins into
host cells. The expression of T3SS genes is modulated by the transcriptional regulator hrpL. In
addition, the phytotoxin coronatine, whose synthesis requires the enzyme coronafacate ligase
(cfl), is a key element in the Pst DC3000 virulence repertoire [7,10,11]. The modulation of the
expression of virulence factors depends on nutritional and environmental cues that quickly
change during leaf colonization due to the activation of plant immunity.

Plants perceive invading microbes via the recognition of conserved molecules generically
known as Microbe-Associated Molecular Patterns (MAMPs). This recognition is mediated by
Pattern-Recognition Receptors (PRRs) at the plasma membrane. PRRs can be activated with
purified synthetic MAMPs to elicit plant immunity prior to bacterial infection. Such activation
of plant immunity elicits changes in the metabolite composition of the LA [12], which in turn,
suppress the expression of Pst DC3000 T3SS and coronatine biosynthesis genes, thus
compromising Pst DC3000 virulence and infectivity [12–14]. Altogether, these studies
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demonstrate that plant defense responses drive changes in the composition of LA metabolites
that inhibit Pst DC3000 growth and prevent the onset of plant disease. Notwithstanding the
relevance of these discoveries, they likely represent only a glimpse of the contribution of LA
metabolites to plant immunity.

The complex composition of the LA and the dynamic changes in the concentration of
metabolites that take place during the course of infections [15–17] have hindered efforts to
define which plant metabolites, and at which concentrations, would have a positive or a nega-
tive impact on Pst DC3000 infections. Nevertheless, amino acids and sugars present in the LA
are emerging as important regulators of Pst DC3000 virulence within the LA. This seems espe-
cially true for Pst DC3000, as bacterial supplementation with glutamine, serine, or valine,
decreased bacterial virulence and leaf colonization [12], while aspartate had the opposite effect
[13,14]. Like aspartate and other organic acids, glucose was reported to have a positive impact
in bacterial virulence gene expression and leaf colonization [14].

Recently published studies have used bacterial gene expression profiling to understand
how the LA environment affects Pst DC3000 growth and virulence on a global scale [8,9].
These studies showed that MAMP-elicited immunity could suppress the expression of bac-
terial virulence genes through metabolite deprivation, as previously reported by Anderson
and colleagues [13] for aspartate and other organic acids. In addition, Nobori and col-
leagues [9] found that plant immunity also suppresses the expression of genes encoding bac-
terial ribosomal proteins, suggesting that MAMP-treated plants may broadly impact Pst
DC3000 protein synthesis as well. While both studies provided evidence of Pst DC3000 vir-
ulence suppression, they reached dissimilar conclusions regarding the plant metabolites
that may restrict Pst DC3000 infections. It may be the case that relying solely on transcrip-
tomics data may not fully capture Pst DC3000 metabolic adaptations to the plant
environment.

To overcome these potential limitations, we have generated an ensemble of genome-scale
network reconstructions (GENREs) and hypothesize that metabolic modeling could inform of
yet undescribed metabolic shifts that multi-omics alone cannot contextualize. GENREs, and
their corresponding modeling counterpart called genome-based models (GEMs), have
emerged as a powerful tool for predicting metabolic phenotypes and gene essentiality [18].
GENREs are originally built from genome annotations and are curated with various forms of
evidence, including in vitro metabolic demands, protein homology, and literature research
[19]. To fill pathway gaps and increase the predictive power of metabolic models, Medlock
et al developed AMMEDEUS [20], an algorithm that creates several slightly different models
and calculates the likelihood of each model to produce growth. Overall, AMMEDUES lowers
the uncertainty in the predictions made by each single model.

Gene expression data can be overlaid on a GENRE blueprint to make integrative predic-
tions of metabolic activity. Multiple algorithms for integrating gene expression data with
GEMs have been developed, each of which makes assumptions about the relationship between
gene expression and reaction activity [21]. While algorithms like GIMME [22] only assess met-
abolic flux by overlaying gene expression on to the network, RIPTiDe also considers the overall
cost and feasibility of including a reaction based on gene expression [23].

Here we present a metabolic model of Pst DC3000, iPst19, using the well-annotated and
characterized genome originally assembled by Buell and colleagues [24]. Through literature
mining, sequence homology comparisons, and ensemble gap-filling [20], we have iteratively
curated the draft reconstruction to be more akin to Pst DC3000 biology. Leveraging the unbi-
ased systems-level view, iPst19 made new and insightful predictions that were confirmed
experimentally in vitro and in planta.
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Results

iPst19, an ensemble of genome-scale metabolic models

A draft reconstruction of the Pst DC3000 GENRE was generated using ModelSEED [25] and
genome data from Buell and colleagues [24]. We added additional reactions and correspond-
ing gene-protein-reaction rules (GPRs) to the draft reconstruction using homologous compar-
ison with the published Pseudomonas GEMs iPae1146 and iPau1129 representative of
Pseudomonas aeruginosa strains PAO1 and PA14, respectively. The draft reconstruction of
iPst19 comprised 519 genes to which 355 homologous genes were added based on the interspe-
cies comparison (see Fig 1A step 1: initial reconstruction). The draft was further curated
through ensemble gap-filling (Fig 1A). An approach called Automated Metabolic Model
Ensemble-Driven Elimination of Uncertainty with Statistical learning (AMMEDEUS) was
used to fill the gaps in the original GEM [20]. Briefly, AMMEDEUS incorporates traditional
gap-filling of metabolic models based on in vitro growth data on single carbon sources (SCS),
identifying reactions that collectively carry the minimal amount of flux necessary to produce
biomass in silico in each condition. AMMEDEUS captures more potential solutions to the
objective function (biomass production) by creating an ensemble of metabolic networks that
all satisfy the objective function. Because there are little increased capabilities for solving the
objective function beyond 100 unique networks [20], we have used 100 networks to form an

Fig 1. Construction and validation of iPst19. (A) Depiction of the steps followed to construct iPst19, including the
initial reconstruction from gene annotations, comparison to other Pseudomonas models, integration of single carbon
source growth data, and iterations of gap-filling and manual curation. (B) Pst DC3000 grown in 190 single carbon
source media over 60 hours with constant agitation. Shown in color are metabolites found in the leaf apoplast of
Arabidopsis plants. (C) In silico growth simulations output obtained with iPst19 when the indicated metabolites are
used as a single carbon source. (D) Comparison of the size of well-curated models and the corresponding genomes.
Genome information for Escherichia coli (a) Pseudomonas aeruginosa (c) and Pseudomonas syringae (c) were obtained
from publicly available genome assemblies. The E. coli (b) and P. aeruginosa models were obtained from the BiGG
Models platform at the University of California, San Diego (http://bigg.ucsd.edu). (E) Number of shared and unique
reactions within metabolic network reconstructions for P. aeruginosa strains PA01 (iPae1146) and PA14 (iPau1129),
and P. syringae DC3000 (iPst19).

https://doi.org/10.1371/journal.pcbi.1011651.g001
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ensemble of networks called iPst19. To create a carbon utilization list for AMMEDEUS, we
performed SCS growth phenotyping using Biolog phenotype microarrays PM1 and PM2a
plates (Hayward, CA). We grew Pst DC3000 in each of 190 SCS in quadruplicate and recorded
the optical density at 600nm (OD600) at 0, 12, 24, 36, 48, and 60 hours (Fig 1B and S1 Dataset).
To only include high-confidence growth conditions for gap-filling, we only considered condi-
tions that resulted in a max OD600 greater than 0.3 after subtracting the 0-hour baseline. Most
of the metabolites found in the LA that Pst DC3000 is known to be unable to use as a SCS (e. g.
isoleucine) fell below the 0.3 threshold. As false positives could be more detrimental than false
negatives to the overall predictive power of the model, the rather conservative value of 0.3
OD600 ensures that no false positives would be included. Following AMMEDEUS, gap-filled
reactions that presented the most uncertainty for producing flux through the biomass function
in rich medium were assessed for literature support in Pst DC3000 and other Pseudomonads.
Reactions with literature evidence were added to the reconstruction. This iterative process was
completed three times and rendered 15 genes that were added to the 874 metabolism genes
that currently form the 100-member ensemble iPst19 (Fig 1D). Several amino acids and sugars
produced significant growth over 60 hours of incubation (Fig 1B). Of special interest were
plant metabolites previously shown to have an impact on Pst DC3000 infections [4,12,13,26].
GABA, a highly abundant amino acid in the LA of tomato plants, produced robust growth, as
did L-glutamine, sucrose, and D-glucose (Fig 1B). We then assessed the in silico biomass pro-
duction on SCS to preliminarily validate the ensemble. Of the highlighted substrates in Fig 1B,
all in silico simulations were able to predict that they support Pst DC3000 growth in vitro (Fig
1C). The resulting ensemble of models comprises 1517 unique reactions and 1224 unique
metabolites, while each individual member of the ensemble contains 1330 +/- 7 reactions,
1215 +/- 2 metabolites, and 889 GPRs. iPst19 is similar in size to the well-curated Pseudomonas
aeruginosa GEM for strain PA01 [27], and it is smaller than the gold-standard E. coli W GEM
[28], likely due to the depth of experimental support available for E. coli (Fig 1D). We pro-
duced a draft model with 519 genes obtained from Pst DC3000 annotated sequences and
added 355 homologous genes based on the interspecies comparison. Of the total 1517 reac-
tions carried out by the 889 GPRs, 826 were unique to iPst19, and 690 were shared with both
iPae1146 and iPau1129 model for P. aeruginosa strains PA01 and PA14 strains, respectively.
While iPst19 shared 1 reaction with iPau1129, none was shared with iPae1146 only (Fig 1E
and S2 Dataset). The large number of unique reactions present in iPst19 compared to
iPae1146 and iPau1129 correlates well with the large number of unique genes in Pst DC3000
compared to all members of the Pseudomonas genus. Indeed, genome complexity and vari-
ability in protein coding sequences across all Pseudomonas species likely explains the com-
plexity and diversity of metabolic plasticity found in the entire group [29].

Gene expression-constrained metabolic flux highlights the role of leucine
catabolism under growth-restrictive conditions imposed by plant
immunity

Integration of transcriptomic profiles into a GEM can contextualize complex relationships
between genes and corresponding metabolic pathways [18]. To study the metabolic changes
that Pst DC3000 experiences in the LA, we use the RIPTiDe transcriptomic integration
method [23] to constrain iPst19 metabolic flux. To this end, we used a previously published in
planta gene expression dataset of Pst DC3000 obtained 5h post-inoculation into leaves of Ara-
bidopsis plants that have been mock-treated or pre-immunized with MAMPs 24 hours earlier
[9]. Of the 889 genes included in iPst19, 250 were significantly up or downregulated in Pst
DC3000 between the two contrasting plant environments (S3 Dataset). The contextualized
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members in each model had the same number of reactions regardless of the condition
(Fig 2A), yet the average biomass flux across all 100 members was significantly different
between the two conditions tested (Fig 2B). We then used non-metric multidimensional scal-
ing (NMDS) to assess overall differences in flux variability analysis (FVA) solutions. There was
a large degree of overlap within the ordination plot at the center top area. However, there were
also distinct patterns of reaction flux between ensemble members constrained with each tran-
scriptomics dataset. While a cluster of reactions associated with bacteria recovered from
mock-treated plants can be appreciated on the top right quadrant of the plot, the lower left
quadrant mostly contains enzymatic reactions associated with bacteria recovered from pre-
immunized plants (Fig 2C). With the gene expression-constrained metabolic flux, we identi-
fied reactions that carried the most disparate flux between the two contrasting conditions ana-
lyzed: mock-treated plants, where Pst DC3000 grows aggressively, and pre-immunized plants,
where Pst DC3000 grows modestly. Random forest analysis revealed that reactions involving
glutamate, aspartate, GABA, and BCAA metabolism, ranked among the twenty reactions with

Fig 2. Gene expression-constrained iPst19 highlights the relevance of amino acid metabolism. RNAseq datasets
were integrated into iPst19 to constrain fluxes of reactions using the RIPTiDe integration algorithm. In blue or red are
shown data obtained from bacteria recovered from mock-treated (Mock) or pre-immunized (PI) plants 5h post
inoculation. P-value derived from Wilcoxon test. (A) Reactions within each constrained ensemble member, separated
by condition. (B) Average biomass for each constrained member, derived from 1000 flux variability analysis solutions
for the biomass reaction per ensemble member. (C) Non-metric multi-dimensional scaling plot of 100 sub-sampled
flux variability analysis fluxes from each reaction shared across all conditional and constrained ensemble members.
The centroids for each condition are shown as a blue circle and a red triangle. (D) Twenty most influential reactions
assessed as mean decrease accuracy (as a percent) of a random forest analysis. The flux difference is highlighted in the
bar to the left of the plot. Breiman and Cutler data perturbation method was used as measure of importance.

https://doi.org/10.1371/journal.pcbi.1011651.g002
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those with 10% of a second substrate included fewer genes than either single substrate
(Fig 3C). The essentiality of genes was not a binary output immediately alleviated by the intro-
duction of the second metabolite. Instead, there is a predicted threshold at which leucine alle-
viates the need for glucose-only essential genes and vice versa (Fig 3D). Since these genes are
predicted to be essential only when leucine content reaches 99% of the carbon source in the
medium, our results suggest that the concentration of leucine alone would not explain the
expression patterns of liuA and liuD in planta (S3 Dataset). In addition, the data suggest that
BCAA degradation may not contribute significant amounts of acetyl-CoA to the tricarboxylic
acid (TCA) cycle. Instead of supporting bacterial growth, liuA and liuD may play a regulatory
role during the infection process by modulating the levels of leucine and other BCAA that
serve as signals to adjust bacterial growth to changing environmental conditions in the LA.

BCAAs impact virulence gene expression in vitro and in planta
P. aeruginosa controls leucine levels by a feedback loop where high leucine concentration sup-
presses leucine biosynthesis and induces leucine degradation, while low leucine concentration
has the opposite effect [31,33,37]. The in planta expression of liuA and liuD (S3 Dataset), as
well as the iPst19 gene expression-constrained metabolic flux (Fig 2), suggests that leucine,
and potentially other BCAAs whose synthesis and degradation are controlled by similar mech-
anisms [38], accumulate to higher levels in bacterial cells that have been inoculated into pre-
immunized plants compared to those inoculated into mock-treated plants. To understand
how an excess of BCAA could impact Pst DC3000, we supplemented minimal medium with
BCAAs, individually or combined, and assessed bacterial growth and gene expression. Supple-
mentation with 0.13% w/v of either leucine, isoleucine, valine, or the three BCAAs combined,
induced the expression of both liuA and liuD compared to non-supplemented bacteria (Fig 4A
and 4B). These data support the in silico essentiality pattern depicted in Fig 3. While we have
not tested the essentiality of the genes directly, both are highly induced in a BCAA-rich
medium. liuA and liuD transcriptional responses were specific to BCAAs, as supplementation
with 0.15% w/v Gln and Ser had the opposite effect on their expression (S2 Fig). While leucine
had a positive impact on Pst DC3000 growth, shortening the doubling time by half, both iso-
leucine and valine inhibited bacterial growth (Fig 4C). When combined, however, the growth-
promoting activity of leucine relieved the growth inhibitory effect of isoleucine and valine
(Fig 4D), suggesting that the three BCAAs serve coordinated functions controlling bacterial
metabolism. This is consistent with previous studies showing that changing levels of BCAAs
play a regulatory role in bacterial growth and virulence in several gram-positive and gram-neg-
ative pathogenic bacteria [39].

As the onset of bacterial virulence is significantly delayed in pre-immunized plants, we
sought to test potential connections between BCAAs metabolism and virulence in Pst
DC3000. To that end, we assessed the expression of virulence marker genes in BCAAs supple-
mented minimal medium. While BCAAs induced the expression of liuA and liuD, both of
which were previously shown to be more represented in Pst DC3000 isolated from pre-immu-
nized plants (Fig 4A and S3 Dataset), the same amino acids suppressed the expression of the
T3SS master regulator gene hrpL and the coronatine biosynthesis gene cfl when supplemented
individually (Fig 5A) or combined (Fig 5B) in vitro. A similarly low hrpL and cfl expression
was observed at 3 h post inoculation (HPI) when Pst DC3000 was co-infiltrated with BCAAs
in naïve plants (Fig 5C). In line with mounting evidence suggesting that virulence expression
plays an essential role in the early stages of infection [8,9,12], naive plants that are otherwise
susceptible to Pst DC3000 infections were able to significantly suppress bacterial growth 72
HPI when co-infiltrated with BCAAs (Fig 5D). Importantly, the number of viable bacteria
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operon are functionally equivalent and that both contribute to leucine catabolism. Mutant
strains for accC and accD showed attenuated growth on citrus plants, suggesting that leucine
catabolism in X. citri is important for virulence expression and pathogenicity in planta [45].
The modulation of virulence gene expression exerted by BCAAs on Lrp is both ways, positive
on certain genes and negative on others [47]. In the plant pathogen Erwinia amylovora, Lrp is
necessary to express virulence genes that control motility and synthesis of exopolysaccharides,
a function that becomes apparent when BCAA levels are low [46]. Similarly, in the corn patho-
gen Pantoea stewartia, Lrp is necessary to induce disease symptoms in the plant, indicative of
successful virulence expression [48]. The evidence contributed by Tomassetti et al. [45],
Schachterle and Sundin [46], and Bartholomew et al. [48] suggest that leucine degradation,
and more broadly, BCAAs degradation, plays a positive role in virulence induction by lower-
ing intracellular levels of BCAAs and allowing Lrp to transcribe virulence genes. The molecu-
lar mechanisms by which BCAAs impact gene expression in Pst DC3000 remain unknown. It
would be expected, however, that BCAAs bind Lrp and directly modulate its activity on gene
expression as previously described for other bacterial species [42]. The data presented in this
study (Fig 5) show that the supplementation of Pst DC3000 with BCAAs was sufficient to sup-
press the expression of hrpL (Figs 4A and 5A) suggesting that high BCAAs levels could inter-
fere with the Lrp-mediated transcription of virulence genes. Conversely, these data suggest
that low concentrations of BCAAs could allow Lrp to express virulence genes. Since high
BCAAs levels suppress Pst DC3000 virulence gene expression (Fig 5) and induce liuA and
liuD, lowering intracellular BCAAs levels could contribute to re-directing Lrp activity toward
the expression of virulence genes to counteract the overall virulence-suppressing environment
imposed by inducible plant immunity. The levels of BCAA co-infiltrated with Pst DC3000 into
the leaf apoplast (Fig 4) are higher than the endogenous levels found in Arabidopsis [12]. How-
ever, as shown previously for other amino acids [12], it would be expected that most of the sup-
plemented BCAAs will quickly be taken up by plant cells, lowering the effective concentration
to which bacteria are exposed. In addition, as BCAAs need to be transported into Pst DC3000
to impact gene expression likely via modulating Lrp activity, a high extracellular concentration
is necessary to produce an increase in effective intracellular levels. Whether the increased con-
centration of BCAA detected in the leaf apoplast of pre-immunized plants [12] translates into
an increased in BCAAs intracellular concentration and changes in Lrp transcriptional activity
is unknown.

In E. coli and several other bacterial species, BCAAs biosynthesis is controlled by negative
feedback inhibition, with valine and isoleucine having a major effect, and leucine a minor to
no effect [49–51]. The data presented in this study (Fig 4) show that both isoleucine and valine
inhibit bacterial growth in vitro, suggesting that feedback inhibition could holt BCAAs biosyn-
thesis, protein synthesis, and eventually cell division. Leucine not only did not inhibit bacterial
growth but also relived isoleucine and valine mediated inhibition, suggesting that an excess of
isoleucine and valine may primarily inhibit the synthesis of leucine, which is rescued by adding
leucine to the milieu. Cell division arrest is often associated with increased levels of (p)ppGpp,
which in turn induces virulence gene expression in Pst DC3000 [52]. Thus, if valine and isoleu-
cine were able to arrest protein synthesis, we would have expected a positive impact on the
expression of virulence genes, which was not the case (Fig 5). In addition, since the combina-
tion of the three BCAAs shortened the doubling time in liquid medium (Fig 4D) it would be
unlikely that the three BCAAs have a direct growth suppressing effect in leaves (Fig 5D).
Whether these responses to BCAAs are mediated by the transcriptional regulator Lrp is still
unknown. Further studies will be necessary to understand how intracellular levels of BCAAs
impact the expression of virulence genes.
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BCAAs catabolism relieves plant immunity-mediated suppression of
virulence gene expression

In P. putida, the bkd operon contributes a set of reactions that produce substrates for the
enzymes encoded by the liu operon (S1 Fig). Notwithstanding that Pst DC3000 lacks a bkd
operon and possesses a re-arranged liu operon, Pst DC3000 is still able to grow when leucine is
supplied as a SCS (Figs 1B and 4). These data suggest that other enzymes compensate for the
loss of the branched-chain ketoacid-dehydrogenases (BCKDH) encoded by the bdk operon. In
P. aeruginosa and P. putida, the pyruvate dehydrogenase complex (PDC) and the oxoglutarate
dehydrogenase complex (ODHC), share significant homology with the BCKDH enzymes
[35,36,53]. In Pst DC3000, PSPTO_3860, PSPTO_5005, PSPTO_5006, and PSPTO_2201
encode the PDC enzymes, while PSPTO_2199, PSPTO_2200, and PSPTO_2201 encode the
ODHC enzymes. Importantly, enzymes in these two complexes show a degree of promiscuity
in substrate utilization, suggesting that they could also contribute to BCAAs catabolism in the
absence of a canonical bkd operon [54]. Indeed, ODHC enzymes encoded by Pst DC3000
showed the highest identity to those encoded by the bkd operon in P. putida (S1 Fig and
S1 Table). It is likely through these enzymes that Pst DC3000 still metabolizes leucine as a SCS
(Fig 1B).

Importantly, Pst DC3000 likely synthesizes BCAAs via enzymes encoded by the ilv and leu
operons [24]. Notwithstanding the role of BCAAs on virulence gene expression, Pst DC3000
still responds to changes in the extracellular levels in BCAAs (Fig 4) and hence is susceptible to
environmental perturbation. In a previous study, we have shown that pre-immunized plants
delay the onset of Pst DC3000 virulence via the accumulation of virulence-suppressing amino
acids, especially glutamine, serine, and valine [12], suggesting that the induced expression of
liuA and liuD (S3 Dataset) would be part of a mechanism that counteracts the suppression of
virulence gene expression.

Like Pst DC3000, P. aeruginosa uses BCAA levels to adjust the expression of virulence
genes [55]. Under low iron conditions that mimic the infection of animal hosts, P. aeruginosa
induces BCAAs catabolism and virulence [55]. This enhanced catabolism leads to a drop in
intracellular concentrations of BCAAs that, interestingly, is not compensated by enhanced
uptake of BCAAs from the environment [55], suggesting that P. aeruginosa relies more on
BCAAs synthesis than on uptake to better control virulence expression and growth. Iron dep-
rivation was a major signature that emerged from the global gene expression analysis of Pst
DC3000 inoculated in pre-immunized plants [9]. Several iron-responsive genes were included
in iPst19 (S3 Dataset), yet through the gene expression-constrained flux analysis, reactions
associated with iron metabolism did not rank in the top twenty most determinant reactions
shared across all 100 constrained members of iPst19 (Fig 2 and S3 Dataset).

Several factors, including iron deficiency and the increased availability of certain amino
acids in the LA of pre-immunized plants [12] could induce BCAAs degradation to overcome
the plant immunity-mediated suppression of virulence. Further studies will be necessary to
elucidate how the plant environment influences intracellular levels of BCAAs in Pst DC3000.

The power of computational models to uncover the molecular
underpinnings of plant-bacteria interactions

The integration of transcriptomic data to constrain iPst19 metabolic flux revealed no signifi-
cant differences in the size of condition-constrained models, yet clear differences in optimal
FVA-derived biomass solutions with mock-constrained members producing larger biomass
fluxes (Fig 2A and 2B). NMDS of all shared reaction fluxes revealed a shared metabolic state
between the conditions with outlying differences. In particular, amino acid metabolism
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seemed to play a disproportionate role in differentiating between conditions (Fig 2C and 2D).
Among 1294 Pst DC3000 genes differentially expressed in mock-treated or pre-immunized
plants [9], 250 were metabolic genes present in iPst19 (S3 Dataset). Yet, the constrained meta-
bolic flux analysis indicated that the associated reactions contributed by most of these 250 met-
abolic genes were not contrasting enough to warrant further study (Fig 2D). Importantly,
iPst19 rendered a hierarchy of contrasting metabolic reactions that do not correlate with the
magnitude of gene expression changes (Fig 2D) and allows us to draw further conclusions
from existing data. In other words, iPst19 predictions are, to some extent, influenced by gene
expression, yet gene expression is not the only contributing factor when assessing differences
between conditions. Rather, the overall architecture of each of the 100 members, and thus the
architecture of the iPst19 ensemble, plays a major role in determining the importance of meta-
bolic differences.

Importantly, we have also presented a new method for assessing gene essentiality. By
leveraging the differential architecture across the 100 members of the iPst19 ensemble gener-
ated by AMMEDUES, we can now generate an essentiality probability score that could, more
accurately, predict gene essentiality (Fig 3). Furthermore, the gene expression integration and
the gene essentiality screen predicted the relevance of specific bacterial genes and pathways
that were overlooked in previous studies. Owed to the relatively conservative OD600 of 0.3
used as a cutoff to build a list of growth-producing metabolites (Fig 1B), and the approach
used for gap-filling the models with AMMEADUES, which eliminates complexity to generate
robust networks, it seems plausible that bacterial metabolic genes that play important but
more subtle roles in infections may have been overlooked in this study. While gene expression
analysis reveals important facets of the Pst DC3000-Arabidopsis interactions, our findings
demonstrate the power of using metabolic computational models to contextualize transcrip-
tomic data. Integration of in planta Pst DC3000 transcriptomics has highlighted the role of the
BCAAs on virulence gene expression. These predictions were tested and confirmed experi-
mentally, lending support to the strong predictive power of iPst19. In depth genetic and
molecular studies will be needed to address the role of the liu operon and lrp in the regulation
of virulence gene expression. In addition, other transcriptomics datasets could be similarly
contextualized using iPst19 to further understand how Pst DC3000 metabolism contributes to
infecting host plants.

Materials and methods

Pst DC3000 genome annotations and cross-species comparison

The Pst DC3000 genome assembly used was generated by Buell and colleagues [24]. The draft
GENRE was generated using ModelSEED v2.1 [25] and the RAST database [56], and further
optimized using the COBRApy toolbox [57]. The Pst DC3000 GENRE was refined using
cross-species homologous comparisons with two Pseudomonas aeruginosa models, iPau1129
and iPae1146. Protein alignments between Pst DC3000 features and P. aeruginosa features
included in their respective GENREs were made with DIAMOND [58]. Comparisons that
yielded a significant (e-value < 0.0001) were queried for associated reactions in the P. aerugi-
nosa GENREs and subsequently added to the Pst DC3000 GENRE with the significantly
matching homolog that had functional literature support.

Ensemble generation

A full description of the ensemble process and justification was previously published by Med-
lock and Papin [20]. iPst19 was generated from the cross-species compared draft reconstruc-
tion with integration from single carbon source utilization data (see Biolog growth assays).
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Each substrate that supported Pst DC3000 growth, as defined by significantly different maxi-
mum measured OD600nm from the negative control, was compiled into a randomly ordered
list for use in gap-filling the draft reconstruction using AMMEDEUS. The specific order of
metabolites is essential during the gap-filling process, as only the most parsimonious use of the
metabolite will result in the addition of a given reaction to the model. If a metabolite can be
utilized with the metabolic infrastructure already in place, no new reactions will be added; oth-
erwise, the reactions that add the minimum amount of flux will be added to the model to make
use of the metabolite. Only when the draft reconstruction is gap filled and can satisfy the fixed-
growth constraint of the biomass function and minimize the fluxes through all other reactions
on all in vitro growth-producing metabolites (as empirically assessed with Biolog plates), is it
then considered a member of the ensemble. The process repeats, starting with the draft recon-
struction and a shuffled order of the growth-producing metabolites. As a result of this reshuffl-
ing, every member has a slightly different architecture and may produce different biomass
fluxes on simulated media. Manual curation was conducted during each round of ensemble
gap filling for the most uncertain reactions introduced by AMMEDEUS, where there was dis-
agreement among members regarding whether the reaction should be included. Extensive lit-
erature research was utilized to inform the curation process. This resulted in the addition of 16
reactions and 15 genes of previously high uncertainty with curated literature support for a par-
ticular architecture within the members. The full repository is available at 10.5281/zenodo.
7942779.

Biomass quantification

Pst DC3000 was grown as described below in “bacterial growth conditions”. Liquid cultures
were centrifuged at 3500 RPM for 10 minutes. Growth media was removed, the bacterial pellet
was washed twice using sterile water. The pellet was resuspended in 10 mL sterile water and
immediately frozen and lyophilized. Samples were split for each quantification assay, ensuring
the samples would be matched for the different quantification protocols. Dry weights of each
fraction were recorded. Total protein was quantified using a standard Bradford’s assay on
lysed cells [59]. DNA and RNA were extracted from lyophilized cells using protocols for Gram
negative bacteria [60, 61]. Both RNA and DNA were quantified using spectrophotometry. All
quantifications were normalized to the total dry weight of bacterial cells. Other coefficients
were determined through literature refinement and equations of closely related Pseudomo-
nads. Coefficients for the biomass equation were determined as a percent of 1 unit of biomass.

Ensemble single gene deletions

For each of the 100 members in iPst19, every gene within each member was simulated as a loss
of function. For reactions with only one gene association, the flux of the reaction became zero.
In reactions in which the gene deletion was part of an “and” association, the reaction flux also
became zero. The reaction flux was unaltered for reactions where the deleted gene was in an
“or” association. Final readouts of objective function flux were assessed: if the reaction flux
was zero or near zero (flux<10e-5), the gene was predicted to be an essential gene.

Ensemble multi-carbon growth media gene essentiality

Multi-carbon media simulations were made from L-leucine and D-glucose combinations as a
percent of the total carbon atoms present in the media. Combinations included 100% glucose,
99% glucose:1% leucine, 90% glucose:10% leucine, 50% glucose:50% leucine, 10% glucose:90%
leucine, 1% glucose:99% leucine, and 100% leucine.
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Biolog growth assays

Biolog (Biolog Inc., Hayward, CA) PM1 (Cat #12111) and PM2 (Cat #12112) plates were inoc-
ulated with 100 μL of IF0 per well, in which Pst DC3000 was suspended at 0.07 OD600. Plates
were shaken at 7000 rpm and 28˚C for 60 hours. OD600 measurements were taken every 12
hours. Breath-Easy sealing membrane was secured to the plate to ensure gas exchange and pre-
vent evaporation.

In planta bacterial growth assays

Pst DC3000 was grown as previously described in bacterial growth conditions. Cells were pel-
leted in microcentrifuge tubes spun at 10,000 RPM. Pellets were washed and resuspended in
sterile water to a final inoculation titer of 0.0002 OD600. Six-week-old Arabidopsis thaliana
Colombia-0 plants were pressure-infiltrated with a needleless 1 mL syringe. Infections pro-
ceeded for 72 hours, after which 8 leaf discs were taken with a hole puncher from 4 infected
leaves. Discs were homogenized in 400 μL sterile water, with 2 metal beads in 2 mL round bot-
tom tubes in a QIAGEN Tissue Lyser. Ten-fold serial dilutions were plated on LB agar Omni-
Tray plates. CFUs were counted after 16 hours of incubation at 28˚C under a dissecting
microscope.
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5. Lopez-Millan AF, Morales F, Abadia A, Abadia J, López-Millán AF, Morales F, et al. Effects of iron defi-
ciency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron
and carbon transport. Plant Physiol. 2000; 124: 873–884. https://doi.org/10.1104/pp.124.2.873 PMID:
11027735

6. Sattelmacher B. The apoplast and its significance for plant mineral nutrition. New Phytol. 2001; 149:
167–192. https://doi.org/10.1046/j.1469-8137.2001.00034.x PMID: 33874640

7. Crabill E, Joe A, Block A, van Rooyen JM, Alfano JR. Plant Immunity Directly or Indirectly Restricts the
Injection of Type III Effectors by the Pseudomonas syringae Type III Secretion System. Plant Physiol.
2010; 154: 233–244. https://doi.org/10.1104/pp.110.159723 PMID: 20624999

8. Lovelace AH, Smith A, Kvitko BH. Pattern-Triggered Immunity Alters the Transcriptional Regulation of
Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae
pv. tomato DC3000. Mol Plant-Microbe Interact. 2018; 31: 750–765. https://doi.org/10.1094/MPMI-01-
18-0008-R PMID: 29460676

9. Nobori T, Velásquez AC, Wu J, Kvitko BH, Kremer JM, Wang Y, et al. Transcriptome landscape of a
bacterial pathogen under plant immunity. Proc Natl Acad Sci. 2018; 115: E3055–E3064. https://doi.org/
10.1073/pnas.1800529115 PMID: 29531038

10. Rangaswamy V, Ullrich M, Jones W, Mitchell R, Parry R, Reynolds P, et al. Expression and analysis of
coronafacate ligase, a thermoregulated gene required for production of the phytotoxin coronatine in
Pseudomonas syringae. FEMS Microbiol Lett. 1997; 154: 65–72. https://doi.org/10.1111/j.1574-6968.
1997.tb12625.x PMID: 9297822

11. Guo M, Tian F, Wamboldt Y, Alfano JR. The majority of the type III effector inventory of Pseudomonas
syringae pv. tomato DC3000 can suppress plant immunity. Mol Plant Microbe Interact. 2009; 22: 1069–
80. https://doi.org/10.1094/MPMI-22-9-1069 PMID: 19656042

PLOS COMPUTATIONAL BIOLOGY iPst19 predicts previously overlooked virulence expression control mechanisms

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011651 December 27, 2023 18 / 21

https://doi.org/10.1146/annurev-phyto-082712-102321
https://doi.org/10.1146/annurev-phyto-082712-102321
http://www.ncbi.nlm.nih.gov/pubmed/23725467
https://doi.org/10.3389/fmicb.2017.02422
http://www.ncbi.nlm.nih.gov/pubmed/29270162
https://doi.org/10.1105/tpc.3.1.49
http://www.ncbi.nlm.nih.gov/pubmed/1824334
https://doi.org/10.1094/MPMI-21-2-0269
https://doi.org/10.1104/pp.124.2.873
http://www.ncbi.nlm.nih.gov/pubmed/11027735
https://doi.org/10.1046/j.1469-8137.2001.00034.x
http://www.ncbi.nlm.nih.gov/pubmed/33874640
https://doi.org/10.1104/pp.110.159723
http://www.ncbi.nlm.nih.gov/pubmed/20624999
https://doi.org/10.1094/MPMI-01-18-0008-R
https://doi.org/10.1094/MPMI-01-18-0008-R
http://www.ncbi.nlm.nih.gov/pubmed/29460676
https://doi.org/10.1073/pnas.1800529115
https://doi.org/10.1073/pnas.1800529115
http://www.ncbi.nlm.nih.gov/pubmed/29531038
https://doi.org/10.1111/j.1574-6968.1997.tb12625.x
https://doi.org/10.1111/j.1574-6968.1997.tb12625.x
http://www.ncbi.nlm.nih.gov/pubmed/9297822
https://doi.org/10.1094/MPMI-22-9-1069
http://www.ncbi.nlm.nih.gov/pubmed/19656042
https://doi.org/10.1371/journal.pcbi.1011651


https://doi.org/10.1093/plphys/kiad048
http://www.ncbi.nlm.nih.gov/pubmed/36715647
https://doi.org/10.1073/pnas.1403248111
http://www.ncbi.nlm.nih.gov/pubmed/24753604
https://doi.org/10.1126/science.aah5692
http://www.ncbi.nlm.nih.gov/pubmed/27884939
https://doi.org/10.1111/pce.12770
http://www.ncbi.nlm.nih.gov/pubmed/27239727
https://doi.org/10.1111/j.1365-313X.2010.04254.x
http://www.ncbi.nlm.nih.gov/pubmed/20497374
https://doi.org/10.1007/s004250100632
http://www.ncbi.nlm.nih.gov/pubmed/11855646
https://doi.org/10.3389/fphys.2012.00299
http://www.ncbi.nlm.nih.gov/pubmed/22934050
https://doi.org/10.1038/nprot.2009.203
http://www.ncbi.nlm.nih.gov/pubmed/20057383
https://doi.org/10.1016/j.cels.2019.11.006
https://doi.org/10.1016/j.cels.2019.11.006
http://www.ncbi.nlm.nih.gov/pubmed/31926940
https://doi.org/10.1371/journal.pcbi.1007185
http://www.ncbi.nlm.nih.gov/pubmed/31323017
https://doi.org/10.1371/journal.pcbi.1000082
http://www.ncbi.nlm.nih.gov/pubmed/18483554
https://doi.org/10.1371/journal.pcbi.1007099
http://www.ncbi.nlm.nih.gov/pubmed/32298268
https://doi.org/10.1073/pnas.1731982100
http://www.ncbi.nlm.nih.gov/pubmed/12928499
https://doi.org/10.1038/nbt.1672
http://www.ncbi.nlm.nih.gov/pubmed/20802497
https://doi.org/10.1111/j.1365-313X.2010.04327.x
http://www.ncbi.nlm.nih.gov/pubmed/21070411
https://doi.org/10.1128/JB.01583-07
http://www.ncbi.nlm.nih.gov/pubmed/18192387
https://doi.org/10.1186/1471-2164-12-9
http://www.ncbi.nlm.nih.gov/pubmed/21208457
https://doi.org/10.1111/j.1574-6976.2011.00269.x
http://www.ncbi.nlm.nih.gov/pubmed/21361996
https://doi.org/10.1371/journal.ppat.1008680
http://www.ncbi.nlm.nih.gov/pubmed/32673374
https://doi.org/10.1371/journal.pcbi.1011651
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