
Prepared for submission to JHEP

CMB Spectral Distortions from an Axion-Dark

Photon-Photon Interaction

Anson Hook,
a
Gustavo Marques-Tavares,

a
Clayton Ristow

a

aMaryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742,
U.S.A.

E-mail: hook@umd.edu, gusmt@umd.edu, cristow@umd.edu

Abstract:

The presence of a plethora of light spin 0 and spin 1 fields is motivated in a number of

BSM scenarios, such as the axiverse. The study of the interactions of such light bosonic fields

with the Standard Model has focused mostly on interactions involving only one such field,

such as the axion (�) coupling to photons, �FF̃ , or the kinetic mixing between photon and

the dark photon, FFD. In this work, we continue the exploration of interactions involving two

light BSM fields and the standard model, focusing on the mixed axion-photon-dark-photon

interaction �FF̃D. If either the axion or dark photon are dark matter, we show that this

interaction leads to conversion of the CMB photons into a dark sector particle, leading to a

distortion in the CMB spectrum. We present the details of these unique distortion signatures

and the resulting constraints on the �FF̃D coupling. In particular, we find that for a wide

range of masses, the constraints from these e↵ect are stronger than on the more widely studied

axion-photon coupling.
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1 Introduction

In the past several decades, overwhelming gravitational evidence for the existence of dark

matter (DM) has been collected [1, 2]. However, we have yet to observe non-gravitational

dark matter interactions with standard model particles. This has led to a wide range of

models for particles that could describe dark matter. Of those, a class of very motivated

models are ultralight bosonic dark matter models, where dark matter is an ultralight (m ⌧
eV) scalar or vector field.

Ultralight bosonic particles, such as axions and dark photons, are well motivated from

many points of view. Extra dimensional theories, such as string theory, typically predict

a plethora of light scalars and vectors [3–6]. In fact, already the pioneering work on extra

dimensional models by Kaluza and Klein proposed that the electromagnetic gauge symmetry,

and thus the photon, could be a consequence of extra-dimensions [7, 8]. Even without such

motivations coming from extra dimensional constructions, both the axion and dark photon

are highly motivated candidates for ultralight bosonic dark matter [9–14], and, in addition,

the axion provides an elegant solution to the strong CP problem [15–18]. There are many

instances of dark matter consisting of ultralight dark photons produced non-thermally [19–

24]. One such method for non-thermal production of dark photons is from axions via the

coupling in Eq. 1.1 [25], providing extra motivation to carefully consider this interaction.

Given the expectation that there might be many light bosons, one of which can play the

role of dark matter, one expects interactions between these light particles themselves, as well

as interactions between them and the Standard Model. In this paper, we consider models

with two new particles; an axion and a dark photon with a coupling to the standard model

of the form

L � �

2fa
F

D

µ⌫F̃
µ⌫ where F̃

µ⌫ =
1

2
✏
µ⌫↵�

F↵� . (1.1)

Where � is the axion and F (FD) is the photon (dark photon) field strength tensor.

Generically, in models with axions and dark photons, interactions of the form �FF̃ and

�FF̃D, as well as kinetic mixing between the photon and dark photon (FFD) would be

present, and could be more relevant for detecting the light bosons. However, if one demands

that there is a dark charge conjugation symmetry CD under which the axion and dark photon

are odd, these other couplings are absent, or highly suppressed, if there is a small breaking

of the symmetry. In Appx. A we present a simple model that exhibits such a symmetry and

show that the coupling given in Eq. 1.1 is the leading one. This coupling has been studied in

a variety of scenarios [26–37].

Even if one considers models with the �FF̃ interaction, we show the bounds placed from

the �FF̃D interaction can be stronger. To see this, note bounds placed on a �FF̃ interaction

from the Cosmic Microwave Background (CMB) in the presence of an axion dark matter

background are placed from polarization measurements [38]. Conversely, as we will see in

this work, bounds on the interaction in Eq 1.1 are placed from measurements of the CMB
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frequency spectrum. The CMB spectrum has been measured more precisely than the CMB

polarization, implying that the constraints on �FF̃D will be stronger than those on �FF̃ .

Thus, if one considers both interactions to have similar strength, the bounds placed on �FF̃D

will be stronger.

The goal of this paper is to investigate how this coupling a↵ects the CMB when either

the axion or the dark photon is dark matter. In the early universe, before redshift of z ⇠
1100, the universe was hot and dense enough that photons, electrons and protons were all

in thermal equilibrium with one another. Once the universe cooled to redshift z = 1100,

e↵ectively all electrons were bound to nuclei forming neutral atoms, making the universe

transparent to photons, in an era called recombination. As the number of free electrons

decreased with the lowering temperature, the mean free path of photons �� increased. Around

the time of recombination (z ⇡ 1100), �� ⇠ H and the photons transitioned from being

trapped in the electron-baryon plasma to being free streaming. Afterwards, these photons

could propagate freely until being detected by CMB experiments. Due to the early thermal

equilibrium of these photons, their power spectrum follows that of a blackbody. In the early

1990’s, the Cosmic Background Explorer (COBE) [39] satellite equipped with Far Infrared

Absolute Spectrophotometer (FIRAS) performed the most accurate measurement of the CMB

monopole power spectrum. They found it matched a blackbody with temperature 2.7255 K

to agree to about 1 part in 1,000 to 10,000 [40], making the CMB monopole power spectrum

one of the most precisely measured cosmological observables. Any phenomena that would

distort this spectrum is then highly constrained by COBE-FIRAS. Constraints on kinetic

mixing [41] and dark matter interactions [42–47] from the COBE-FIRAS data have been

placed using these spectral distortions1.

The interaction given in Eq 1.1 can cause CMB spectral distortions. In the presence

of an axion dark matter background, this interaction allows photons to be converted into

dark photons. Likewise, in a dark photon dark matter background, it allows photons to be

converted to axions (see Ref. [35] for an early study of this e↵ect in the resonant regime).

These dark sector particles are invisible to us and thus the e↵ect of Eq. 1.1 in both cases is

to remove photons from the CMB spectrum. This removal of photons naturally distorts the

observed CMB spectrum. In Sec. 2, we will show how the time at which these photons are

removed gives rise to di↵erent types of distortions and argue that the size of these distortions

depends on the probability of removing a photon from the spectrum. In Sec. 3, we will

compute this probability from the interaction in Eq. 1.1 and in Sec. 4 use it to compute the

various types of distortions. In Sec. 5 we place constraints on the coupling 1/fa by comparing

these distortions to the COBE-FIRAS data and briefly comment on the possible shapes of

the distortions. We conclude in Sec 6.
1
Constrains on interactions can also be placed using CMB anisotropies as was done for kinetic mixing in [48]
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2 CMB Spectral Distortions

In this section, we describe how our interaction gives rise to CMB spectral distortions. The

e↵ect of our interaction, in the presence of dark matter, is to convert photons into a dark

sector particle, X. For example, if the axion constitutes the dark matter, photons will interact

with the axions and convert into dark photons so that X is the dark photon. Conversely if

the dark photon is dark matter, the photon will convert into axions and, in this case, X is

the axion. In order to speak generally about either axion or dark photon dark matter, we will

refer to the particle the photon converts to as X throughout this paper. The implications for

the CMB spectral distortion are the same in either scenario since the important e↵ect is that

the photons convert to an invisible dark sector particle X and are removed from the photon

spectrum.

The removal of any photons from the bath can lead to a deviation from the blackbody

spectrum. We can quantify that change by a frequency dependent distortion �(!) defined in

Eq. 2.1.

f(!) =
1

e!/T � 1
! 1

e!/T � 1
(1� �(!)) . (2.1)

The exact frequency dependence of the distortion will depend on when in cosmic history the

photons were removed from the photon spectrum.

As shown in Figure 1, we can define 5 di↵erent eras, the T era, the µ era, the µ � y

transition era, the y era, and the free streaming era, in which the injection or removal of

photons gives rise to di↵erent distortions. In the remaining of this section, we briefly review

these di↵erent eras and discuss the characteristic e↵ect of photon removal in each. As we will

discuss, the final distortion to the blackbody spectrum can be parameterized by the impacts

coming from di↵erent eras as

�Tot(!) = (µ̄+ µ̄t)M(!/T ) + (y + yt)Y (!/T ) + �Doppler(!) + �Free(!). (2.2)

We see there are 4 di↵erent types of distortions. The µ and y distortions have distinct shapes

and are insensitive to the details of the model generating the distortion, while �Doppler and

�free have a model dependent shape. The contribution of all the pre-recombination distortions

are computed using the Green’s function method described in Ref. [49], using the rate at which

photons are converted into particle X, ��!X(!), as discussed in Sec. 4 and Appx. D.2. In

computing this rate, we will need to calculate is the conversion probability P�!X(!). We

also show that the distortion due to the post-recombination free streaming era distortion is

directly related the the conversation probability P�!X(!). Thus, the central quantity we will

need to compute all spectral distortions is the conversion probability.

– 4 –



Figure 1. A timeline of the types of relevant distortion eras. The timeline is presented with time
described by decreasing temperature T .

Figure 2. A sample diagram for each of the processes holding photons in equilibrium with the
electrons.

2.1 T Era

In the very early universe, at temperatures T & 0.5 keV (redshifts z & 2 · 106), a number

of scattering processes involving photons are very e�cient at driving the photon distribution

towards an equilibrium distribution with zero chemical potential. The main processes, shown

in Fig. 2, are Compton scattering, which can quickly redistribute the photon energy and

equilibrate the electron and photon temperatures, as well as number changing processes, such

as double Compton and bremsstrahlung. Due to these processes, in this era, even if photons

are lost due to conversion into X, the distribution would be quickly driven back to that of a

blackbody and the only e↵ect would be a small change in the blackbody temperature. Since

we don’t know a priori the temperature of the CMB, injections in this era would not lead

to a bound from the CMB spectrum (there could be bounds by studying the anisotropies or

comparing to Big Bang Nucleosynthesis predictions which we will not explore in this work).

2.2 µ Era

Once the universe has cooled past T ⇡ 0.5 keV (z ⇡ 2 · 106), the higher order processes

like double Compton scattering and bremmstrahlung are no longer e�cient at setting the

chemical potential to zero (although they can still be e�cient for absorbing/emitting very

low frequency photons). In this era, Compton scattering is still e�cient at redistributing

the energy, which drives the spectrum towards an equilibrium distribution. Because photon

number is now conserved, any removal of energy will result in a small e↵ective chemical

potential term µ̄

f(!) =
1

e!/T � 1
! 1

e!/T+µ̄ � 1
⇡ 1

e!/T � 1
(1� µ̄M(!/T )) . (2.3)
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This distortion has a fixed shape, M(!/T ), given in Appx. D.2. The size of this distortion

is captured by the e↵ective chemical potential, µ̄, which can be calculated from ��!X , the

rate at which photons are being converted to dark sector particles X as shown in Appx. D.2.

COBE-FIRAS placed a bound of |µ̄| < 9 · 10�5 [40].

2.3 y Era

At temperatures lower than 3 eV (z ⇡ 104), Compton scattering is still e�cient enough to

trap photons, but is now ine�cient at changing photon energy, and transferring energy be-

tween photons and electrons. This leads to two e↵ects. Firstly, some small amount of energy

can be still exchanged with the electrons, leading to a di↵erence in the photon and electron

temperatures. Subsequent scatterings of photons with an electron fluid at a di↵erent tem-

perature, lead to a y-distortion via the Sunyaev-Zeldovich (SZ) e↵ect [50]. Secondly, energy

injections/removals in a given frequency, can still be smeared due to Doppler broadening via

Compton scattering, even if the process is no longer e�cient at thermalizing the spectrum.

This leads to two separate distortions: a y-distortion and a Doppler smeared distortion,

f(!) =
1

e!/T � 1
! 1

e!/T � 1
(1� yY (!/T )� �Doppler(!)) . (2.4)

The y-distortion has a fixed shape, Y (!/T ), given in Appx. D.2 and a size determined by the

small parameter y which can be computed from the photon loss rate ��!X as described in

Appx. D.1. COBE-FIRAS placed a constraint |y| < 1.5 · 10�5 [40]. On the other hand, the

shape of the Doppler smeared distortion is model dependent, so we instead place a bound by

comparing directly to the COBE-FIRAS data.

2.4 µ� y Transition Era

Once the temperature decreases below T ⇡ 70 eV (z ⇡ 3 · 105), Compton scattering, while

still e�cient at trapping photons, begins to become ine�cient at redistributing energy for

certain frequency modes of the photon spectrum. This signals the end of the µ era and the

start of the µ� y transition era which lasts until T ⇡ 3 eV (z ⇡ 104). In this transition era,

higher energy modes still redistribute energy e�ciently through Compton scattering, while

energy redistribution is ine�cient for lower energy modes. At intermediate modes, energy

redistribution is not e�cient but is non-negligible. In order to exactly treat this very frequency

dependent behavior, one would need to simulate the distortion numerically [49]. However,

as noted in Ref. [49], for the range of photon frequencies we are interested in, the distortion

can be modeled to good accuracy as a pure energy injection as described in Ref. [51]. The

resulting spectral distortion is a combination of a µ distortion M(x) and a y distortion Y (x)

the shapes of which are given in Appx. D.2.

f(!) =
1

e!/T � 1
! 1

e!/T � 1
(1� µ̄tM(!/T )� yt Y (!/T )) . (2.5)
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The subscripts t on the coe�cients µ̄t and yt denote that these coe�cients are calculated

di↵erently from µ̄ in Eq. 2.3 and y in Eq. 2.4. They still however are calculated from the

photon conversion rate ��!X as shown in Appx. D.2.

2.5 Free Streaming Era

Around T = 0.25 eV (z = 1100), most electrons have been captured to form neutral hydrogen,

and the universe becomes transparent to photons. From this point on, the photons become

free streaming and can travel unimpeded across the universe, giving rise to the CMB we

observe today. However, the presence of our interaction leads to a probability P�!X(!)

that a CMB photon with frequency ! will convert to an invisible dark sector particle X

before reaching us. Because the photons are free streaming, there is no thermalization, or

redistribution of energy. So, the resulting spectrum is the original spectrum multiplied by

the survival probability of a photon to reach us without converting to X,

f(!) =
1

e!/T � 1
! 1

e!/T � 1
(1� P�!X(!)) . (2.6)

We can see that the distortion is simply the conversion probability P�!X(!). The frequency

dependence of this distortion is model dependent and as such we will have compute it and

then constrain it directly with the COBE-FIRAS data to obtain a bound.

3 Transition Probability

As described in the previous section, to compute the distortions we will need to compute the

probability, P (!, t, t0), of converting photons of frequency ! produced at time t0 into dark

sector particles X at some later time t. Because our dark matter is made of bosons of mass

m . meV, the number density is large enough to treat dark matter as a classical background

field. Therefore, these probabilities can be computed using Feynman diagrams like the one

shown in Fig. 3.

Figure 3. Diagrams for the probability of a photon produced at time t0 to have converted to a dark
photon or axion by a time t. The vertex indicates the interaction with the background dark matter
field. � and �

0 represent the polarizations of the relevant particles.

In many instances the time interval t � t0 will be of cosmic scale. For example, when

applied to the free streaming distortion, t � t0 will be the time between recombination and
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the present. As a consequence, we will need to compute these Feynman diagrams in a curved

FRW background. We will work in conformal coordinates, described by the metric

d⌧
2 = a

2(⌘)
�
d⌘

2 � dx2
�
. (3.1)

In a slowly expanding universe (mDM , TCMB � H), we can easily expand any general scalar

field � and vector field Aµ in terms of ladder operators by solving their equations of motion

using the WKB approximation. The details of this process are given in Appx. B.1 and the

result is

�(x) =

Z
d
3k

(2⇡)3a(⌘)
p
2!c(⌘)

⇣
ake

�i(
R ⌘

d⌘̃!
c(⌘,k)�k·x) + h.c.

⌘
(3.2)

Aµ(x) =

Z
d
3k

(2⇡)3
p
2!c(⌘)

X

�=1,2,L

⇣
a
�

k✏
�

µ(k)e
�i(

R ⌘
d⌘̃!

c(⌘,k)�k·x) + h.c.

⌘
, (3.3)

where ak (a�k) are the ladder operators of the scalar(vector) field, !
c(⌘,k) ⌘

p
|k|2 + a2(⌘)m2

is the conformal energy, and the polarizations ✏�µ(k) are given in Eq. B.6.

We will also need to include plasma e↵ects on the photon due to its impact on photon

propagation and mixing. At all times of relevance, electrons are non-relativistic and lead to

a plasma frequency, !p(⌘), given by

!
2
p(⌘) =

4⇡↵e

me

ne(⌘) , (3.4)

where ↵e is the fine structure constant and ne(⌘) is the number density of electrons which

changes as the universe expands. We are working in the limit where !p(⌘) is much smaller

than the frequency of the CMB photons ! ⇠ TCMB . In this limit, the e↵ects of the plasma

can be reduced to the photons acquiring a small mass m�(⌘) = !p(⌘) ⌧ TCMB. Despite

the plasma frequency giving rise to an e↵ective mass for transverse modes, at such large

frequencies there are no longitudinal modes of the photon (plasmons) [52]. We use the redshift

dependent plasma frequency from [41].

Due to the non-trivial time dependence of the fields given in Eq. 3.2 and Eq. 3.3, we will

only Fourier transform the diagrams in space. In this regime, our diagrams are transition

amplitudes with a time dependent interaction and so we can expand our amplitudes to leading

order using a Dyson series,

⌦
X,k0|U(⌘, ⌘0)|�,k0↵ ⇡ �i

Z
⌘

⌘0

d⌘
0 ⌦
X,k0|VI(⌘

0)|�,k0↵
, (3.5)
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VI(⌘0) is our interaction potential given by

VI(⌘
0) = �

Z
d
3xLint = �

Z
d
3x

�

2fa
Fµ⌫F̃

µ⌫

D
. (3.6)

Note the momentum eigenstates in Eq. 3.5 are normalized such that hk0|ki = (2⇡)3�(k � k0)

which di↵ers from the usual Lorentz invariant normalization by a factor of 2!.

We can simplify VI(⌘0) by using the fact that our dark matter field is nonrelativistic to

ignore gradients in favor of time derivatives which simplifies the interaction to

Axion DM: V
�

I
(⌘0) =

Z
d
3x

@⌘�

fa
AD ·B

Dark Photon DM: V
D

I (⌘0) = �
Z

d
3x

�

fa
@⌘AD ·B.

(3.7)

Next we insert the expansion of the fields for the photon’s magnetic field B (Eq. 3.3) and the

outgoing particle fieldX (either Eq. 3.3 for an outgoing dark photon or Eq. 3.2 for an outgoing

axion) in terms of creation and annihilation operators. As discussed earlier, we will treat the

dark matter as a classical background field. These potentials can be inserted in Eq. 3.5 to

compute the transition probability. After some simplifications described in Appx. B.1, this

probability takes the form,

P (k, t0, t) =
1

2

X

�

����A
�(k, t, t0)

����
2

where A�(k, t, t0) =

Z
t

t0

dt
0M�(t0,k) , (3.8)

with

M�

�!�D
(t0,k) =

�̇(t0, x̃(t0))
p

vD(k, t0)

2fa
e
i
R t0

dt̃(!D(t̃)�!�(t̃)) (3.9)

M�

�!�
(t0,k) =

ȦD(t0, x̃(t0)) · ✏�(k)
p
v�(k, t0)

2a(t0)fa
e
i
R t0

dt̃(!�(t)�!�(t)) , (3.10)

where the first (second) equation corresponds to the axion (dark photon) dark matter scenario.

In the above equations, x̃(t0) is the position of the photon at time t
0, the dots represent time

derivatives with respect to comoving time t, and v(k, t) represents the velocity of a given

particle. We have approximated v� = 1. The !’s are now the physical energies defined as:

!(k, t,m) =

s
|k|2
a2(t)

+m2 (3.11)

Finally, we must determine what form our dark matter background takes. By solving the

equations of motion for the dark matter fields (Eq. B.3 and Eq. B.4) in the non-relativistic
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limit, keeping terms up to O(vDM ), and demanding that the energy density is ⇢
0
DM

/a
3(t),

where ⇢
0
DM

is the energy density of dark matter of the universe at the present time, we find

�̇DM (x̃, t) =

s
2⇢0

DM

a3(t)
cos(mDM t+ �(x̃)) (3.12)

ȦDM (x̃, t) =

s
2⇢0

DM

a(t)
✏(x̃) cos(mDM t+ �(x̃)). (3.13)

Both fields get a spatially dependent phase, �(x̃), while the vector dark matter field gets an

additional spatially dependent polarization unit vector ✏(x̃). Both of these quantities vary

spatially on the scale of the dark matters de Broglie wavelength (mDMvDM )�1 with vDM ⌧ 1.

Additionally, they vary in time, on timescales (mDMv
2
DM

)�1. Since the time dependence is

suppressed by a factor vDM relative to the spatial dependence it will be ignored. In Appx. B.3,

we show that for all distortions, we average x̃ over many de Broglie wavelengths of the dark

matter field, which means that we can average all of these spatially dependent quantities.

We will leave the averaging over the phase for later in the computation, but in Appx. B.3 we

show that we can e↵ectively replace

✏�(k) · ✏(x̃)!
1p
3
. (3.14)

Physically, this factor 1p
3
is reflecting the fact that the interaction ✏�(k) · ȦD in Eq. 3.10

is picking out one particular polarization of the vector dark matter. After averaging over x̃,

this particular polarization must make up 1/3 of the total dark matter by isotropy, e↵ectively

sending ⇢
0
DM
! ⇢

0
DM

/3. Using Eqs. 3.12-3.14 to simplify Eqs. 3.8-3.10, we can write the

transition probabilities as

P�!�D(k, t0, t) =
⇢
0
DM

2f2
a

L
2(m�,mD,k, t0, t) (3.15)

P�!�(k, t0, t) =
⇢
0
DM

6f2
a

L
2(mD,m�,k, t0, t),

where L is a length scale defined as

L
2(mDM ,mX ,k, t0, t) ⌘

*����
Z

t

t0

dt̃
0

s
vX(t0, |k|)
a3(t0)

cos(mDM t
0 + �(t0)) (3.16)

⇥ei
R t0

dt̃�!�!X(t̃,k)

����
2
+

�

,

where �!�!X is the change in energy from a photon converting into particle X at momentum
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k,

�!�!X(t̃,k) = !X(t̃,k)� !�(t̃,k) . (3.17)

The hi
�
indicates the remaining average over the dark matter phase �(t0) = �(x̃(t0)) which is

handled for pre-recombination and free streaming distortions separately in Appx. D.1 and C

respectively. From Eq. 3.15, we can see that the only di↵erence between scalar dark matter

and vector dark matter is the overall factor of 1/3 in the conversion probability from the

e↵ect described above. This means that the coupling to dark photon matter is e↵ectively

1/
p
3 that of the coupling to axion dark matter and so the bounds placed on the coupling in

the dark photon dark matter will be weaker than the bounds for the axion dark matter by a

factor
p
3 . For simplicity, we will only consider axion dark matter going forward, knowing

that we can translate any result to dark photon dark matter by multiplying by 1/
p
3.

4 Computing the Distortions

In this section, we will use Eq. 3.15 to determine the strength of the distortions arising from

the various eras. This will be very di↵erent for distortion generated pre-recombination versus

in the free streaming regime, so we consider them separately.

4.1 Free Streaming Distortion

In Sec. 2.5, we showed that the free streaming distortion, �free, is equal to the probability

of converting the photon to dark sector particle X between recombination, t0 and today, t.

Thus, we need to compute

�free(|k|) =
⇢
0
DM

2f2
a

L
2(mDM ,mX ,k, t0, t) . (4.1)

From Eq. 3.16, it is clear that we can write L
2 =

D��L++L�
2

��2
E

�

, where

L± =

Z
t

t0

dt
0

s
vX(t0)

a3(t0)
e
i
R t0

dt̃ (�!(t̃)±(mDM��̇(t̃))
. (4.2)

The remaining integral is an oscillatory integral with frequency

⌦±(t) ⌘ �!(t)± (mDM � �̇(t)). (4.3)

Notice that all of the time dependent quantities change on the Hubble scale H(t) due to the

expansion of the universe2

2
Strictly speaking, �̇(t) changes on the scale mDMvDM�vDM ⇠ mDMv2DM where �vDM is the size of the

dark matter velocity dispersion. However, in the full computation one can work in Fourier space and treat each

mode of the dark matter field independently before summing over all modes at the end, e↵ectively removing

e↵ects from the time dependence from �̇(t).
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There are two limits in which this integral can be computed. The first is the fast oscillation

limit where the oscillation frequency ⌦±(t) is approximately constant over many oscillations.

This is the limit where

⌦±(t)� H(t). (4.4)

In this limit, all of the time dependent quantities in Eq 4.2 become approximately constant

up to corrections of order H/⌦± and the integral can be computed analytically. The second

limit is the resonant limit. In this limit, there is a time (or possibly multiple times), tr, where

there is a stationary phase in the exponential (⌦±(tr) = 0). Since �̇(t) ⌧ mDM to a good

approximation these resonant times can be found by solving the equation

�!(tr)±mDM = 0. (4.5)

Physically, this corresponds to times in which the dark matter particle being absorbed/emitted

by the photon is on shell, leading to an enhancement in the conversion probability. The

stationary phase approximation is used to compute the integral in this limit. Appx. C contains

the details of computing the distortions in both of these limits. In the end, we find,

�free(|k|) =
⇢
0
DM

4f2
a

|L+|2 + |L�|2
2

where |L±|2 =

8
<

:

vX(a⇤)
a3⇤|�!(a⇤)±mDM |2 no resonances
P

a±
2⇡vX(a±)

a
3
±|@t�!(a±)| resonances.

(4.6)

Here, a± are all solutions to Eq. 4.5, and a⇤ = (1090)�1 is the redshift at recombination.

Notice that the resonant distortion is enhanced by a factor of |�!±mDM |2
@t�!

⇠ mDM
H

with

respect to the non-resonant distortion. Even for the smallest possible dark matter masses,

mDM ⇠ 10�20, this is an enhancement by a factor of O(108). Thus, we expect our bounds

on the coupling 1/fa to be enhanced by orders of magnitude in regions of parameter space

where these resonances happen.

4.2 Pre-Recombination Distortions

The application of Eq. 3.15 to pre-recombination distortions is not as straightforward as for

the free streaming distortions. The distortions can be computed via the Green’s function

method outlined in Ref. [49] where the distortion, �(x) is given by

�(x) =

Z
dx

0
Z

da

aH(a)
G(x, x0, a)��!X(x0, a), (4.7)

where x is the dimensionless frequency x = !/T (a) and ��!X(x0, a) is the rate at which

photons of frequency x
0
T are converted to dark sector particle X. The Green’s function

G(x, x0, a) describes how photons injected into mode x
0 at time when the scale factor is a are

redistributed to mode x. G(x, x0, a) is given for the various eras in Appx. D.2. In this section
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we will describe how to compute the rate ��!X(x0, a) appearing in Eq. 4.7.

We can compute �(a,k) from P (k, t0, t) as follows. Consider a photon that scatters o↵

of an electron at time t0 and travels some time ⌧ before scattering o↵ of another electron.

P (k, t0, t0+⌧) is then the probability of the photon converting to X between these scatterings.

For an ensamble of photons scattering with time ⌧ between scatterings, the rate at which those

photons are converted to X is then

�(t0, ⌧,k) =
P (k, t0, t0 + ⌧)

⌧
. (4.8)

Since the photon is traveling through a very dense medium of electrons, it has a certain

probability p(⌧) of traveling a distance ⌧ characterized by its mean free path �� , given by

p(⌧) =
e
�⌧/��

��

. (4.9)

In order to find the average rate for all photons, we average �(t0, ⌧,k) over this path length

distribution

�(a(t0),k) =

Z 1

0
d⌧

e
�⌧/��

��

P (k, t0, t0 + ⌧)

⌧
. (4.10)

Because this era is before recombination, we have H�� ⌧ 1. In this limit, we can treat space

as static and all parameters that change due to the expansion of the universe as constant in

the integral, and Eq. 4.10 can be computed analytically. The details are given in Appx. D.1,

and the end result is

�(a, |k|) = ⇢
0
DM

vX(a, |k|)
4f2

aa
3��(a)

L
2
eff

(a, |k|), (4.11)

where

L
2
eff

(a, |k|) =
1

2

(
ln[1 + �

2
�(a)(mDM +�!(a))2]

(mDM +�!(a))2
(4.12)

+
ln[1 + �

2
�(a)(mDM ��!(a))2]

(mDM ��!(a))2

)
.

This rate can be plugged into Eq. 4.7 and integrated numerically using the Green’s functions

given in App D.2 find the distortion from the various pre-recombination eras.

5 Results

The total distortion for a given set of masses mX and mDM and coupling 1/fa is given by

Eq. 2.2. As described in Sec. 2, temperature shift distortions are undetectable by COBE-

FIRAS. Therefore we should add an arbitrary temperature shift, T (x) (defined in App. D.2),
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to the distortion and do a best fit to COBE-FIRAS data [40] with both the coupling, 1/fa
and the size of the temperature shift, ↵, as free parameters.

�Tot(!) = (µ̄+ µ̄t)M(!/T ) + (y + yt)Y (!/T ) + �Doppler(!) + �Free(!)� ↵T (!/T ). (5.1)

However we can simplify this by demanding that the number density of CMB photons be the

the same as that of a perfect blackbody at the measured temperature TCMB = 2.35 · 10�4

eV. This is exactly the procedure that is commonly done for µ and y distortions as described

in [53]. This constraint fixes the size of the temperature distortion ↵. For fixed mD and m�,

we do a �
2 fit of our distortion to the COBE-FIRAS data with a single free parameter, 1/fa.

By demanding that the distorted spectrum matches the measured spectrum to within 2�, we

obtain bounds for the coupling as a function of the dark photon and axion masses mD and

m�. Fig. 4 shows a contour plot of these bounds as a function of the axion and dark photon

masses. We show contours for both axion dark matter and dark photon dark matter. These

bounds are plotted against the leading best bound on this coupling from red giant cooling

constraints. Ref. [37] shows that this coupling leads to a novel cooling mechanism in red

giants due to plasmon decay and deduced that the cooling from this coupling is equivalent to

the cooling from a neutrino magnetic dipole moment µ⌫ = 1
2fa

. Then using the bound placed

on neutrino magnetic dipole moments found in [54] from red giant cooling they were able to

place a bound 1/fa < 7.1 · 10�10 GeV on the axion-photon-dark photon coupling. As seen

in Fig. 5, in a large portion of parameter space, roughly mX < 10�2 eV and mDM < 10�8

eV, our bounds beat this red giant bound by several orders of magnitude. It is worth noting

that while the red giant bound is the most stringent bound in this region of parameter space

(aside from the bounds placed in this work), there have been numerous other constraints

placed on the coupling in this region of parameter space. The bounds placed on this coupling

from stellar evolution [29], Horizontal Branch stars [35], and white dwarfs [36] are all with in

an order of magnitude of those from red giants. For simplicity, we only include the red giant

bound in our plots.

Fig. 5 shows our bounds as a function of the axion dark matter mass (mDM ) for selected

values of the dark photon mass (mX) and shows the contribution to these bounds from each

distortion era. While the bounds in Fig. 5 are shown for axion dark matter, the equivalent

bounds for dark photon dark matter can be found by scaling the bounds up by a factor of
p
3

as discussed at the end of section 3. As can be seen from the colored dashed lines in Fig. 5

each constraint from each distortion has roughly the same behavior: constant for small mDM

and increasing linearly in mDM for large mDM with an enhanced region in between. We can

understand why the bounds have this behavior. Firstly, the enhanced region is the region of

parameter space where photons during that particular era are able to resonantly convert. The

other two limits can be understood by considering the integral L2 defined in Eq. 3.16 in the

non-resonant regime. Here L
2, the e↵ective oscillation length, is the square of an oscillatory

integral and thus should scale as L2 ⇠ ⌦�2 where ⌦ is the fastest oscillation frequency in the

integral. For su�ciently small mDM , the coherent oscillation of dark matter is unimportant.
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Figure 4. Bounds on the coupling 1/fa (GeV�1) plotted as a contour plot as a function of the dark
photon mass (mD) and the axion dark matter mass (ma). The plot on the left shows the bounds for
the axion dark matter case and the plot of the right shows the dark photon dark matter case. The
grey region represents the region where the previous best bound on the coupling derived from red
giant cooling [37] is stronger.

As such, the oscillation length is the standard �!�!X present for well known systems such

as neutrino oscillations. For larger mDM , the fast oscillation of dark matter dominates and

the oscillation frequency is mDM . This combined with Eq. 3.15, shows that the conversion

probability P�!X / ⇢DM
f2
a�!2 for small mDM and P�!X / ⇢DM

f2
am

2
DM

for large mDM . Since the

distortions all scale with the conversion probability, its clear that the bounds at low mDM

are independent of mDM and linearly proportional to mDM for large mDM .

Given that the COBE-FIRAS data was collected over 30 years ago, current technology

could measure the CMB spectrum to higher precision. In fact, there are proposals for exper-

iments, like PIXIE [55], that aim to measure the spectrum to within a factor of 10�8 � 10�9,

an improvement of around a 3 to 4 orders of magnitude from COBE-FIRAS. These future

experiments could potentially measure a distortion in the CMB frequency spectrum and thus

it is interesting to ask what such a measured distortion could tell us about our dark matter

models.

Specifically, we will discuss qualitatively whether a distortion produced from our dark

matter model(s) could potentially be distinguished from other distortion sources. Energy in-

jection or removal into or from the background electron plasma before recombination produces

primarily a µ and/or y distortion and thus these types of distortions which are essentially

model independent. However, because of their non-thermal origin, the Doppler distortion

arising pre-recombination, and free streaming distortion post-recombination have model de-

pendent spectral shapes and do provide a distinctive signature. For simplicity, we can focus
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Figure 5. Bounds on the coupling 1/fa as a function of the axion dark matter mass mDM plotted
for various values of the dark photon mass, mX . The purple, blue, green and orange dashed lines
are the individual µ, y, Doppler and free streaming bounds respectively while the solid black line is
the total bound from all distortions. The grey line represents the current best bound on the coupling
derived from red giant cooling [37]. The bounds shown here are for the axion dark matter case, but
the bounds for the dark photon dark matter case can be obtained by scaling the bounds up by a factor
of
p
3. The bounds for mX < 10�13 eV are exactly those given in the upper-left plot.

on the free streaming distortion to get a sense of the various types of shapes this distortion can

take. To start, one can take the large and small mDM limits (mDM � �! and mDM ⌧ �!

respectively) of Eq. 4.6 and see that

Small mDM limit: � ⇠ !
2 Large mDM limit: � ⇠ Constant. (5.2)
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Figure 6 shows these quadratic and constant distortions plotted against the µ and y dis-

tortions. The amplitudes of these distortions in Fig. 6 are chosen so that each distortion

disagrees with COBE-FIRAS at 2�. In this sense we can think of these distortions as being

of equal strength. We can see that the large mDM matches very well with the µ-distortion

and the small mDM distortion, matches well with a y distortion making them di�cult to

distinguish from the generic µ and y distortions respectively.
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Figure 6. Shown here are shapes of the various types distortions �(!) = I(!)�IBlackbody(!)
IBlackbody(!) . Each

distortion is plotted with an amplitude such that it disagrees with the COBE-FIRAS data at 2�.
Thus all the distortions are e↵ectively the same strength. The purple and blue lines are µ and y

distortions respectively while the dashed green and orange lines depict Doppler and free-streaming
distortion shapes for di↵erent choices of masses mDM and mX . On the left, we show the distortions
in the non-resonant limits given in Eq. 5.2. On the right, we show two of the many possible shapes
the distortions can take when there is a resonance in either the Doppler or free distortions. These
resonant distortions have shapes distinct from the µ and y distortions. It is also worth noting that
the di↵erences in shape between the Doppler and free distortion in the right-hand plot are due to the
di↵erence in choice of parameters, mDM and mX , rather than a di↵erence in distortion type.

The shapes of the free streaming distortion get more interesting if we consider the resonant

region of parameter space (mDM ⇠ �!). Here the distortion depends on the time of the

resonance a± which is found by solving Eq. 4.5. Because �! depends of the frequency of

the photon, so does the resonant time through Eq. 4.5. Thus di↵erent frequency modes can

have di↵erent resonance times which can lead to very distinctive frequency dependencies in

the distortion easily distinguishable from the standard µ/y-distortion. In particular, it is

possible that some frequency modes undergo resonance, while other modes don’t. This leads

to especially unique distortions, where some frequency modes are distorted while others,

e↵ectively, are not. Such extreme distortions are shown in the orange and green dashed

lines in figure Fig. 6. As can be seen, lower frequency photons never resonate, and thus are

e↵ectively undistorted while higher frequencies do experience a distortion due to resonance.

Additionally, the frequency dependence of the resonant piece of the distortion is not a simple

power law of ! due to the dependence of the resonant time on the frequency and in turn
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the non-trivial dependence of the distortion on the resonant time. It is also important to

note that these these qualitative features can also arise from the Doppler distortion. From

Eq. 4.11 and 4.12 one can derive the same small and large mDM behavior and show similar

types of resonant behavior are possible. The green dashed line in Fig. 6 shows one such

distinctive resonant shape for the Doppler distortion. This makes the prospect of observing

these unique distortions even more likely since, as shown in Fig. 5, there are significant regions

of parameter space where the Doppler distortion leads to the strongest bound, which shows

that in such regions of parameter space it is the most observable e↵ect. It is worth pointing

out that di↵erence in shape and severity of the jumps of the Doppler and free distortions in

Fig. 6 is not due to an inherent di↵erence between the free and Doppler distortion, but rather

a di↵erence in the parameters mDM and mX at which these distortions are evaluated. These

set of parameters were chosen to highlight the di↵erence in distortion shapes achievable by

either the free or Doppler distortions rather than an inherent di↵erence between them.

6 Conclusion

In this paper, we studied the e↵ects from an axion-photon-dark-photon coupling to the Cosmic

Microwave Background if either the axion or the dark photon is dark matter. This interac-

tion, in a dark matter background, induces mixing of the photon with a new light boson, and

can remove photons from the universe either before or after recombination. Removing pho-

tons from the baryon-photon plasma before recombination produces the well known, model

independent, µ distortion or y distortion, as well as a model dependent distortion due to

Doppler broadening. The size of the distortion is determined by the rate at which photons

are removed from the spectrum. Removing photons after recombination naturally changes

the frequency spectrum of the CMB and thus produces a distortion with a new spectral shape.

We computed these individual distortions and the corresponding total distortion that would

be produced by an interaction of this type in the presence of either axion or dark photon dark

matter.

The distortion produced in the presence of dark photon dark matter is smaller than

that produced by axion dark matter by a factor of 1/3, but otherwise identical in terms of

dependence on the model parameters. This is due to the energy of dark matter being spread

over the 3 polarizations of dark photon dark matter, as opposed to the single polarization for

axion dark matter. The interaction we study only couples a photon of given polarization to a

single polarization of dark photon dark matter. Thus, a given photon e↵ectively only couples

to 1/3 of the total dark matter background. This e↵ectively leads to an interaction strength

for dark photon dark matter that is 1/3 of that for axion dark matter.

By comparing our computed distortions with the COBE-FIRAS data measuring the CMB

frequency spectrum, we were able to place very restrictive bounds on our coupling 1/fa. These

bounds are a significant improvement of several orders of magnitude over the previous best

bound on this coupling from red giant cooling constraints [37] as shown in Fig. 5. Additionally
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one can compare these bounds to those placed on the �FF̃ coupling in [38] and see that our

bounds are several orders of magnitude stronger.

We also briefly considered the possibility for future measurements of the CMB frequency

spectrum to detect distortions produced by this model. While the µ and y distortions are

produced by any mechanism that adds or removes energy from the photon spectrum before

recombination, the distortions generated in the free streaming era when the resonance condi-

tion is met lead to much more distinctive spectral features. Thus, such resonant distortions

o↵er a promising avenue to single out the axion-photon-dark-photon interaction interaction

if the next generation experiments measures distortions on the CMB spectrum.
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A A Model

Here we summarize a simple model containing an axion, photon and dark photon where the

leading interaction is that given in Eq. 1.1. This model contains a dark sector with a complex

scalar � a dark sector U(1) gauge boson AD and two sets of two left handed Weyl fermions

⇠, ⇠
c, � and �

c. These fermions are charged under both electromagnetism and the dark

U(1) gauge group with charges shown in Table 1. The scalar � is uncharged under both

electromagnetism and the dark U(1).

QEM QD

� 2 2
�
c -2 -2

⇠ 2 -2
⇠
c -2 2

Table 1. The charges for our dark sector fermions. QEM is the particles electric charge in units of
the fundamental electric charge and similarly, QD is the particles charge in units of the fundamental
dark charge.

In addition to these charges we demand that our model obey a dark charge conjugation

symmetry CD defined by

CD : A! A AD ! �AD � ! ⇠ �
c  ! ⇠

c �! �⇤ (A.1)

and a Z8 symmetry defined by

Z8 : �! e
�i⇡/4

� ⇠ ! e
i⇡/4

⇠ �! e
i⇡/4�. (A.2)

This Z8, which is a subgroup of the would be U(1)PQ associated with the axion, may seem

troublesome since it corresponds to a chiral rotation of the � and ⇠ by �⇡/4 and ⇡/4 respec-

tively and thus should generate an anomalous term through the chiral anomaly. However,

with the charges defined in Table 1, one can show that this is equivalent to a rotation of a

single Weyl fermion with charges QEM = QD = 1 by an angle of 2⇡. Our theory should be

consistent with the addition of a Dirac fermion with fundamental electric and dark charge

and so a chiral rotation of this fermion by 2⇡ must leave the theory invariant. Thus the

Z8 symmetry is nonanomalous. Additionally, this Z8 symmetry forbids any operators in the

potential V (�) that could give the axion a mass up to dimension 8.

With these symmetries in mind, we write all possible terms in our Lagrangian up to

dimension 4,

L = LSM + Lkinetic � V (�) + y(���c + �⇤
⇠⇠

c) + h.c. , (A.3)

where V is the scalar potential, the last term is a Yukawa coupling for the fermions to the

scalar and Lkinetic contains all of the kinetic terms for the fermions, �, and AD with the
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gauge couplings packaged in covariant derivatives.

Now let us suppose that � under goes symmetry breaking and obtains a VEV,

�(x) = (v + h(x))ei�(x)/f . (A.4)

Amongst other changes, the Yukawa piece becomes

y(���c + �⇤
⇠⇠

c)! y(v + h)(ei�/f��c + e
�i�/f

⇠⇠
c). (A.5)

These phases can be eliminated by a chiral rotation,

�! �e
�i�/f

⇠ ! ⇠e
i�/f (A.6)

which naturally generates anomalous terms in the Lagrangian due to the chiral anomaly. It

is a simple exercise to show that these terms are

L � �(x)

16⇡2f

✓ ⇣
(eQ�

EM
)2Fµ⌫F̃

µ⌫ + 2eeDQ
�

EM
Q

�

D
Fµ⌫F̃

µ⌫

D
+ (eDQ

�

D
)2FD

µ⌫F̃
µ⌫

D

⌘
(A.7)

�
⇣
(eQ⇠

EM
)2Fµ⌫F̃

µ⌫ + 2eeDQ
⇠

EM
Q

⇠

D
Fµ⌫F̃

µ⌫

D
+ (eDQ

⇠

D
)2FD

µ⌫F̃
µ⌫

D

⌘◆
.

We get two terms, one for each rotation. Plugging in the charges given in Table 1 we can

easily see that the FF̃ and FDF̃D terms vanish while the FF̃D term remains

L � eeD

2⇡2f
�Fµ⌫F̃

µ⌫

D
. (A.8)

Figure 7. At 1-loop order, it is easy to see that the diagrams for kinetic mixing exactly cancel due
to the � and ⇠ particles having opposite charges.

A similar cancellation happens in the kinetic mixing term. At one loop, as shown in

Fig. 7, there are two diagrams for the kinetic mixing term which exactly cancel due to the �

and ⇠ particle’s opposite dark charges but identical masses from the � VEV. At the heart of

this cancellation is the dark charge conjugation symmetry, CD. This symmetry can easily be

seen to forbid the generation of a kinetic mixing terms, which shows the cancellation observed

at 1-loop occurs to all orders in perturbation theory.
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B Computation of the conversion probability

In this appendix we summarize the details of our conversion probability computation.

B.1 Quantized FRW Fields

Here we give a brief description of general massive scalar and vector fields in an expanding

FRW background metric d⌧2 = a
2(⌘)(d⌘2�dx2). We can expand the fields in ladder operators

with mode functions u(⌘,k) for the scalar and v
µ

�
(⌘,k) for the vector where � is a polarization

index.

�(x) =

Z
d
3k

(2⇡)3
u(⌘,k)ake

ik·x + h.c. (B.1)

Aµ(x) =

Z
d
3k

(2⇡)3

X

�

⇣
v
�

µ(⌘,k)a
�

ke
ik·x + h.c.

⌘
. (B.2)

The mode functions u(⌘,k)eik·x and v
�
µ(k)e

ik·x satisfy the equations of motion for scalar and

vector fields respectively. The equations of motion are,

(@µ@
µ + 2H(⌘)@⌘ +m

2
a
2(⌘))� = 0 (B.3)

@
µ
Fµ⌫ +m

2
a
2(⌘)A⌫ = 0. (B.4)

To simplify, we make use of the fact that rate at which the universe is expanding (H ⌘
@⌘ ln(a(⌘))) is much slower than the rate at which our fields are oscillating, which is roughly

the comoving CMB temperature TCMB. In this limit one can show that up to corrections of

O(k/H),

u(k, ⌘) =
e
�i

R ⌘
d⌘̃!

c(⌘,k)

a(⌘)
p

2!c(⌘)
and v

�

µ(k, ⌘) =
✏
�
µ(k, ⌘)e

�i
R ⌘

d⌘̃!
c(⌘,k)

p
2!c(⌘)

. (B.5)

The mode functions are normalized by making sure they reduce to the familiar flat space

mode functions in the flat space limit. Here the ✏
�
µ represent the 3 di↵erent polarizations for

the vector

✏
µ

L
=

1

a(⌘)m

⇣
|k|,!c(⌘,k)k̂

⌘
✏
µ

1,2(k) = (0, ✏) where k · ✏ = 0 (B.6)

which are the usual transverse and longitudinal polarizations with m ! a(⌘)m. Inserting

Eq. B.5 into Eq. B.1 gives Eq. 3.2 and 3.3.

B.2 The Interaction Potential

Here we simplify the interaction potentials given in Eq. 3.7. We begin as described, by

inserting field operators for the incoming photon and outgoing X particle, and a classical
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field background for the dark matter field, leading to

V
�

I
(⌘0) = �

Z
d
3xd3pd3p0

(2⇡)62
q
!c
�(⌘

0,p)!c

D
(⌘0,p0)

(B.7)

@⌘�(x)

fa

X

�,�0

⇣
a
†,�D
p0,�0a

�

p,�✏
⇤
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@⌘AD(x)

fa
·
X

�

⇣
a
†,�
p0 a

�

p,� (ip⇥ ✏�(p)) e
�ix·(p�p
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,

where x · (p� p
0) is a short hand notation for

x · (p� p
0) ⌘

Z
⌘
0

d⌘̃
�
!
c

�(⌘̃,p)� !
c

X(⌘̃,p0)
�
� x · (p� p0) , (B.9)

and recalling that V � (V D) is the interacting potential when the axion (dark photon) is dark

matter.

The terms not explicitly written in Eqs. B.7 and B.8 represent di↵erent combinations of

the ladder operators that will be irrelevant for us since we only wish to consider photons as the

initial state and outgoing axions/dark photons in the final state. In the regions of parameter

space we will be interested in, the dark matter mass will be smaller than the CMB tempera-

ture. Since dark matter is also non-relativistic, this means that the momentum transfer from

the dark matter, q ⌘ p� p0, must be small with respect to the photon momentum,

|q|⌧ mDM ⌧ TCMB ⇠ |p| , (B.10)

so we can do an expansion in small |q|. To lowest order, this means setting p = p0 everywhere.

However, we must keep q to linear order in the x · (p� p
0) order since q · x is not necessarily

small since we will be integrating over all x.

x · (p� p
0) ⇡

Z
⌘
0

d⌘̃
�
!
c

�(⌘̃,p)� !
c

X(⌘̃,p)
�
� q · (x� p̂⌘0). (B.11)

Now, the only q dependence is in the exponent and we can shift variables d3p0 ! d
3q. After

integrating over d
3q we get a delta function �

3(x � x̃) where x̃ = p̂⌘. 3 This can then be

3
Note that, within the approximations we are using, x̃ is e↵ectively the position of the photon. This is in

agreement with the intuition that the transition probability of a photon at a given location depends on the

dark matter field at that same location.
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used to eliminate the d
3x integral.

V
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Now, in order to simplify the cross products, we work in the helicity basis for photon

polarizations where the following identities hold.

ip⇥ ✏�(p) = �|p|✏� ✏⇤
�
· ✏�0 = ���0 , (B.14)

where � = ±1 is the helicity of the photon. This helps simplify the expressions to

V
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Next, we can look at VI ’s matrix elements with momentum eigenstates. After some simplifi-

cation, it is easy to see these matrix elements take the form,

⌦
k0
, (�0)|VI(⌘

0)|k,�
↵
= ia(⌘0)M�(⌘0,k)(2⇡)3�3(k � k0)(��0�), (B.17)

where, the (�0) and (���0) are meant to be included if the final state is a dark photon and

M�(⌘0,k) are given by Eq. 3.9 and 3.10. After dropping the factor (2⇡)3�3(k�k0) due to state

normalization, Eq. B.17 can then be inserted into Eq. 3.5 and squared to yield Eq. 3.8-3.10

for the conversion probability.

B.3 Spatial Averages

In this section, we argue that in all distortions we are averaging the interaction position x̃

over many de Broglie wavelengths of the dark matter field. This can be easily justified given
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that we are interested in the monopole spectrum, and thus will average distortions over all

directions. This e↵ectively means we will be averaging over many de Broglie wavelengths

of the dark matter field. For the pre-recombination distortions, we are interested in the

averaged conversion rate as a function of redshift, which depend on the conversion probability

between photon scatterings. Thus, we average over all possible photon trajectories, and thus

x̃ everywhere in space.

For the free streaming case, one can make a more general argument, which shows that

even if one is interested in anisotropies, this averaging is justified. First note that the smallest

dark matter mass we consider is 10�22 eV, and so the largest de Broglie wavelengths we

must consider are . 10 kpc, which is much smaller than the horizon size today. Because the

probability conversion depends on the dark matter density, it is dominated at larger redshifts.

This means that for photon conversions happening at similar times by directions separated

by �✓ ⇠ 1, the distance between the transition points is ⇠ H
�1
0 ⇤ at � 10 kpc, where at is the

redshift of the transition.

Finally, let us average the dark photon dark matters polarization ✏(x) over x and derive

the replacement given in Eq. 3.14. To start notice that when plugging Eq. 3.10 into Eq. 3.8,

There will be a factor that looks like

P / 1

2

X

�

|✏�(k) · ✏(x̃)|2 = �ij � k̂ik̂j

2
✏
i(x̃)✏⇤j(x̃). (B.18)

If we call the k̂ direction the z direction, then this is simply,

1

2

X

�

|✏�(k) · ✏(x̃)|2 = 1� |✏z(x̃)|2
2

. (B.19)

Now we average over all possible z-compontents of the dark photons polarization which gives,

1

2

X

�

|✏�(k) · ✏(x̃)|2 = 1/3. (B.20)

Thus the e↵ect of averaging is simply to send ✏�(k) · ✏(x̃)! 1/
p
3 as described in Eq. 3.14.

C Free Distortion Computation

In this section we will detail the computation of the integral L2 defined in Eq. 3.16 which we

showed can be written as

L
2 =

*����
L+ + L�

2

����
2
+

�

where L± =

Z
t

t0

dt
0

s
vX(t0)

a3(t0)
e
i
R t0

dt̃⌦±(t0)
. (C.1)
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The strategy to computing this integral is to break it into intervals in which we can use either

the fast oscillation limit or the stationary phase approximation. By choosing the boundaries

of this regions appropriately, we can piece these intervals together to get the full result. We

first identify any resonant times tr by solving Eq. 4.5 for tr. We can then break up the time

interval into sub intervals as shown in Fig. 8.

Figure 8. Breaking the time interval between t and t0 into subintervals that either contain or do not
contain a resonance. Note that this is easily extended to the case of multiple resonances. The size of
the intermediate integral is greatly exaggerated so that it is visible.

We will choose the endpoints of these intervals tr ±�t so that the following 3 conditions

are true.

1. The stationary phase approximation should be valid everywhere inside the interval

(tr��t, tr +�t) such that we can expand the phase of the exponential to second order

Z
t
0

dt̃⌦±(t̃) ⇡
Z

tr

dt̃⌦±(t̃) + ⌦̇±(tr)
�t

2

2
. (C.2)

In order for this approximation to be valid, we must be able to ignore the third order

term. This means we need

�t⌧ ⌦̇±(tr)

⌦̈±(tr)
⇠ H

�1(tr). (C.3)

2. In order to match regions where the stationary phase approximation is valid to regions

where the fast oscillation condition is valid, we want both the fast oscillation condition,

Eq. 4.4, and the stationary phase approximation to be valid at the endpoints tr ±�t.

Given that the stationary phase approximation is valid, we can write

⌦(tr ±�t) ⇡ ±⌦̇(tr)�t. (C.4)

Then since we are near resonance ⌦̇(tr) ⇠ mDMH and we find that Eq. 4.4 requires

1⌧ mDM�t. (C.5)

3. Finally for computational ease, in the stationary phase integrals, we want to be able to

take the limit �t ! 1. More precisely this will require that �t is much larger than

the spread of the Gaussian integrand,
q
⌦̇± ⇠

p
mDMH. We are then able to take the
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�t!1 limit as long as,

1⌧
p

H(tr)mDM�t. (C.6)

It is easy to see that all 3 conditions are satisfied if

1� H(tr)�t�

s
H(tr)

mDM

. (C.7)

Using mDM � 10�22 eV and H  10�29 eV, this translates to 1 � H(tr)�t � 10�4 which

is easily satisfied. This shows that we are able to choose endpoints that satisfy all of the 3

conditions. Then from the first and second condition, as shown in Fig. 8, the total L± can be

broken into a series of alternating resonant and fast contributions. However, as we will see,

the resonant pieces will always dominate over the fast contributions. We will find that these

terms take the form

L± =

(
e
⌥i�(t0)L

fast

± (t0) if there are no resonances
P

tr
e
⌥i�(tr)Lres

± (tr) if there are resonances.
(C.8)

Where L
fast

± (t0) and L
res
± (tr) do not depend on the dark matter phase �. This allows us to

square and average over the phase which simply eliminates any terms that get a non-trivial

phase. This eliminates not only cross terms between the L+ and L� pieces, but any cross

terms between di↵erent resonances. The end result is

L
2 =

|L+|2 + |L�|2
4

where |L±|2 =
(
|Lfast

± (t0)|2 if there are no resonances
P

tr
|Lres

± (tr)|2 if there are resonances.
(C.9)

Note that L+ and L� have di↵erent sets of resonant times. Finally, we must compute the

fast and resonant integrals to find |Lfast

± | and |Lres
± |.

C.1 Fast limit

In the limit of fast oscillations we assume ⌦± � H for the entire integral. Then we can

rewrite Eq. C.1 as

L± =

Z
t

t0

dt
0

s
vX(t0)

a3(t0)

1

i⌦±(t0)

d

dt
e
i
R t0

dt̃⌦±(t̃)
. (C.10)

This can then be integrated by parts

L± =

s
vX(t0)

a3(t0)

1

i⌦±(t0)
e
i
R t0

dt̃⌦±(t̃)

����
t

t0

�
Z

t

t0

dt
0
e
i
R t0

dt̃⌦±(t̃) d

dt

 s
vX(t0)

a3(t0)

1

i⌦±(t0)

!
. (C.11)
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Since the time derivative in the second term is hitting quantites that change on the Hubble

scale, this second term represents an O(H/⌦±) correction and can be ignored. In the first

term, the piece evaluated at t can be ignored due to the scale factor in the denominator.

Finally, since �̇ ⌧ mDM we can ignore this term in the denominator, leaving

L
fast

± = e
⌥i�(t0)

s
vX(t0)

a3(t0)

�i
�!(t0)±mDM

e
i
R t0 dt̃(�!(t̃)±mDM )

. (C.12)

We see we get the exact � dependence predicted in Eq. C.8. We find then

|Lfast

± | =

s
vX(t0)

a3(t0)

1

|�!(t0)±mDM | . (C.13)

C.2 Resonant Limit

Now we look at the resonant integral.

L
res

± =

Z
tr+�t

tr��t

dt
0

s
vX(t0)

a3(t0)
e
i
R t0

dt̃⌦±(t0)
. (C.14)

Expanding the integrand to leading order about the resonance time tr gives

L
res

± =

s
vX(tr)

a3(tr)
e
i
R tr

dt̃⌦±(t0)
Z

tr+�t

tr��t

dt
0
e
i
⌦̇±(tr)

2 (t0�tr)2 . (C.15)

This is simply a gaussian integral and can be easily computed in the limit �t! ±1.

L
res

± = e
⌥i�(tr)

s
2⇡

i⌦̇±(tr)

vX(tr)

a3(tr)
e
i
R tr

dt̃ (�!(t̃)±mDM )
. (C.16)

To leading order, ⌦̇±(tr) = �̇!(tr). The only remaining � dependence is in the phase. We

then find

|Lres

± | =

s
2⇡

|�̇!(tr)|
vX(tr)

a3(tr)
. (C.17)

Combining this result with Eq. C.13 and Eq. C.9 and inserting into Eq. 3.15 yields 4.6.

D Pre-recombination Distortion Computation

Here we give some of the details of the pre-recombination distortion. First, we describe how

to use the probabilities given in Eq. 3.15 to compute the rate of photon conversion in Eq. 4.11.

Second we describe the Green’s function method for using this rate to compute the distortions

in di↵erent eras.
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D.1 Photon Conversion rate

Here we will give the details of computing the conversion rate for photons into particle X

given in Eq. 4.10. Because the photons are not free streaming, our integral is over a small

time interval, ⌧ , with respect to the expansion rate H. Therefore, quantities which depend on

time through the expansion of the universe are approximately constant. We then can write,

P (k, t0, t0 + ⌧) =
⇢
0
DM

vX(a(t0))

8f2
aa

3(t0)

����`+ + `�

����
2

where `± =

Z
⌧

0
dte

i⌦±(a(t0))(t+t0). (D.1)

This can be easily integrated.

`± = 2ei⌦±(t0+⌧/2) sin(⌦±⌧/2)

⌦±
. (D.2)

Now we will square this and average over the dark matter phase � as discussed in Ap-

pendix B.3. From the ⌦± in the exponential we get a factor of e⌥i�(t0+⌧/2). Everywhere else

we can ignore � because it is sub-leading. Then just as for the free streaming distortion, the

phase averaging eliminates the cross terms between `+ and `�. This gives,

hP (k, t0, t0 + ⌧)i
�

=
⇢
0
DM

vX(a)

2f2
aa

3
(D.3)

✓
sin2((�! +mDM )⌧/2)

(�! +mDM )2
+

sin2((�! �mDM )⌧/2)

(�! �mDM )2

◆
.

Finally, one can plug this into Eq. 4.10 and evaluate that integral analytically to get Eq. 4.11.

D.2 Green’s Function Method

Here we present the Green’s function for the di↵erent eras used in Eq. 4.7 and explain how

to compute the parameters µ̄, µ̄t, yt and y in Eq 2.2. The Green’s functions used are taken

from Ref. [49] for the µ and y era and from Ref. [51] for the µ� y transition era and modified

by absorbing and moving a few factors to fit with the definition in Eq 4.7. To start let us

define the temperature shift function T (x), the µ distortion shape M(x), and the y distortion

shape Y (x)

T (x) =
xe

x

(ex � 1)
M(x) = T (x)

✓
↵µ �

1

x

◆
Y (x) = T (x)

✓
x
e
x + 1

ex � 1
� 4

◆
, (D.4)

where ↵µ = ⇣(2)/3⇣(3) ⇡ 0.456

µ Era
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For the µ era, the Green’s function takes the form

Gµ(x, x
0
, a) = 1.4

⇣
1� x0

x0

⌘
⇢̄(x0)J⇤(a)M(x) (D.5)

Where x0 = 4⇣(3)
⇣(2) ⇡ 3.6, and ⇢̄(x0) = 15

⇡4
x
3

ex�1 is the unit-normalized blackbody energy spec-

trum. J⇤(a) is called the visibility function and captures how ine�cient bremsstrahlung and

double Compton scattering are at changing the number density. J⇤(a) goes to 0 for a⌧ 10�6

and quickly goes to zero at early times. Its analytic form can be found in Eq. 13 of Ref. [49].

Note that the M(x) factors out completely and we can write the distortion as

�(x) = µ̄M(x) where µ̄ = 1.4

Z
dx

0 da

aH(a)
J
⇤(a)

⇣
1� x0

x0

⌘
⇢̄(x0)��!X(x0, a), (D.6)

where the a integral runs from 0 to a = 3.3 · 10�6.

µ-y Transition Era

The Green’s function for the transition era is similar to that of the µ era with the addition

of a y-distortion piece.

Gt(x, x
0
, a) =

⇣
1� x0

x0

⌘
⇢̄(x0)

✓
1.4J⇤(a)Jµ(a)M(x) +

1

4
Jy(a)Y (x)

◆
. (D.7)

The additional factors Jµ and Jy smoothly transition the Green’s function from having mostly

µ distortion at early times in the era to mostly y- distortions late in the era. Their analytical

form can be found in Eq. 5 of Ref. [51]. Much like in the µ era we can write this distortion as

�(x) = µ̄tM(x) + ytY (x), (D.8)

where

µ̄t = 1.4

Z
dx

0 da

aH(a)
J
⇤(a)Jµ(a)

⇣
1� x0

x0

⌘
⇢̄(x0)��!X(x0, a) (D.9)

yt =
1

4

Z
dx

0 da

aH(a)
Jy(a)

⇣
1� x0

x0

⌘
⇢̄(x0)��!X(x0, a) (D.10)

and the a integral runs over the whole transition era from a = 3.3 · 10�6 to a = 2 · 10�5.

y Era

The Green’s function for the y era contains two terms. One to describe the Doppler smearing
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of the removed photons, and another to describe the pure y-distortion.

Gy(x, x
0
, a) = ⇢̄(x0)

  
1� e

(↵+�)y�(a)

1 + x0y�(a)

!
· Y (x)

4
+

e
�(ln(x(1+x

0
y�(a))/x0)�↵y�(a))

2
/4�y�

x0
p
4⇡�y�(a)

!
,

where y�(a) is the Compton y parameter defined as

y�(a) ⌘
Z 1

a

da
0

a0H(a0)

T (a0)

me��(a0)
(D.11)

and ↵ and � are defined as

↵ =
3� 2f(x0)p
1 + x0y�(a)

� =
1

1 + x0y�(a)(1� f(x0))
where f(x0) = e

�x
0

 
1 +

x
02

2

!
.(D.12)

By definition y� quantifies the e�ciency of Compton scattering to redistribute energy and is

thus O(1) at the start of the y era and quickly falls to be much less than 1. We can write the

distortion as

�(x) = yY (x) + �Doppler(x), (D.13)

where

y =
1

4

Z
dx

0 da

aH(a)
⇢̄(x0)

 
1� e

(↵+�)y�(a)

1 + x0y�(a)

!
��!X(x0, a) (D.14)

�Doppler(x) =

Z
dx

0 da

aH(a)

e
�(ln(x(1+x

0
y�(a))/x0)�↵y�(a))

2
/4�y�

x0
p
4⇡�y�(a)

��!X(x0, a). (D.15)

Here the a integral runs from a = 2 · 10�5 to the time of recombination at a⇤.
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