2306.13135v3 [hep-ph] 11 Mar 2024

arxiv

PREPARED FOR SUBMISSION TO JHEP

CMB Spectral Distortions from an Axion-Dark
Photon-Photon Interaction

Anson Hook,” Gustavo Marques-Tavares,® Clayton Ristow?

® Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742,
U.S.A.

E-mail: hook@umd.edu, gusmt@umd.edu, cristow@umd.edu

ABSTRACT:

The presence of a plethora of light spin 0 and spin 1 fields is motivated in a number of
BSM scenarios, such as the axiverse. The study of the interactions of such light bosonic fields
with the Standard Model has focused mostly on interactions involving only one such field,
such as the axion (¢) coupling to photons, ¢F F , or the kinetic mixing between photon and
the dark photon, F'Fp. In this work, we continue the exploration of interactions involving two
light BSM fields and the standard model, focusing on the mixed axion-photon-dark-photon
interaction ¢FFp. If either the axion or dark photon are dark matter, we show that this
interaction leads to conversion of the CMB photons into a dark sector particle, leading to a
distortion in the CMB spectrum. We present the details of these unique distortion signatures
and the resulting constraints on the ¢FFp coupling. In particular, we find that for a wide
range of masses, the constraints from these effect are stronger than on the more widely studied
axion-photon coupling.
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1 Introduction

In the past several decades, overwhelming gravitational evidence for the existence of dark
matter (DM) has been collected [1, 2]. However, we have yet to observe non-gravitational
dark matter interactions with standard model particles. This has led to a wide range of
models for particles that could describe dark matter. Of those, a class of very motivated
models are ultralight bosonic dark matter models, where dark matter is an ultralight (m <
eV) scalar or vector field.

Ultralight bosonic particles, such as axions and dark photons, are well motivated from
many points of view. Extra dimensional theories, such as string theory, typically predict
a plethora of light scalars and vectors [3—6]. In fact, already the pioneering work on extra
dimensional models by Kaluza and Klein proposed that the electromagnetic gauge symmetry,
and thus the photon, could be a consequence of extra-dimensions [7, 8]. Even without such
motivations coming from extra dimensional constructions, both the axion and dark photon
are highly motivated candidates for ultralight bosonic dark matter [9-14], and, in addition,
the axion provides an elegant solution to the strong CP problem [15-18]. There are many
instances of dark matter consisting of ultralight dark photons produced non-thermally [19-
24]. One such method for non-thermal production of dark photons is from axions via the
coupling in Eq. 1.1 [25], providing extra motivation to carefully consider this interaction.

Given the expectation that there might be many light bosons, one of which can play the
role of dark matter, one expects interactions between these light particles themselves, as well
as interactions between them and the Standard Model. In this paper, we consider models
with two new particles; an axion and a dark photon with a coupling to the standard model
of the form

LD ;}aFﬁFW where FM = %eﬂ"aﬁFag . (1.1)
Where ¢ is the axion and F'(Fp) is the photon (dark photon) field strength tensor.

Generically, in models with axions and dark photons, interactions of the form ¢F F and
¢FFp, as well as kinetic mixing between the photon and dark photon (FFp) would be
present, and could be more relevant for detecting the light bosons. However, if one demands
that there is a dark charge conjugation symmetry C'p under which the axion and dark photon
are odd, these other couplings are absent, or highly suppressed, if there is a small breaking
of the symmetry. In Appx. A we present a simple model that exhibits such a symmetry and
show that the coupling given in Eq. 1.1 is the leading one. This coupling has been studied in
a variety of scenarios [26-37].

Even if one considers models with the ¢ F'F interaction, we show the bounds placed from
the ¢ F Fp interaction can be stronger. To see this, note bounds placed on a ¢F F interaction
from the Cosmic Microwave Background (CMB) in the presence of an axion dark matter
background are placed from polarization measurements [38]. Conversely, as we will see in
this work, bounds on the interaction in Eq 1.1 are placed from measurements of the CMB



frequency spectrum. The CMB spectrum has been measured more precisely than the CMB
polarization, implying that the constraints on ¢FEp will be stronger than those on ¢FF.
Thus, if one considers both interactions to have similar strength, the bounds placed on ¢F Fp
will be stronger.

The goal of this paper is to investigate how this coupling affects the CMB when either
the axion or the dark photon is dark matter. In the early universe, before redshift of z ~
1100, the universe was hot and dense enough that photons, electrons and protons were all
in thermal equilibrium with one another. Once the universe cooled to redshift z = 1100,
effectively all electrons were bound to nuclei forming neutral atoms, making the universe
transparent to photons, in an era called recombination. As the number of free electrons
decreased with the lowering temperature, the mean free path of photons ), increased. Around
the time of recombination (z ~ 1100), A, ~ H and the photons transitioned from being
trapped in the electron-baryon plasma to being free streaming. Afterwards, these photons
could propagate freely until being detected by CMB experiments. Due to the early thermal
equilibrium of these photons, their power spectrum follows that of a blackbody. In the early
1990’s, the Cosmic Background Explorer (COBE) [39] satellite equipped with Far Infrared
Absolute Spectrophotometer (FIRAS) performed the most accurate measurement of the CMB
monopole power spectrum. They found it matched a blackbody with temperature 2.7255 K
to agree to about 1 part in 1,000 to 10,000 [40], making the CMB monopole power spectrum
one of the most precisely measured cosmological observables. Any phenomena that would
distort this spectrum is then highly constrained by COBE-FIRAS. Constraints on kinetic
mixing [41] and dark matter interactions [42-47] from the COBE-FIRAS data have been
placed using these spectral distortions!.

The interaction given in KEq 1.1 can cause CMB spectral distortions. In the presence
of an axion dark matter background, this interaction allows photons to be converted into
dark photons. Likewise, in a dark photon dark matter background, it allows photons to be
converted to axions (see Ref. [35] for an early study of this effect in the resonant regime).
These dark sector particles are invisible to us and thus the effect of Eq. 1.1 in both cases is
to remove photons from the CMB spectrum. This removal of photons naturally distorts the
observed CMB spectrum. In Sec. 2, we will show how the time at which these photons are
removed gives rise to different types of distortions and argue that the size of these distortions
depends on the probability of removing a photon from the spectrum. In Sec. 3, we will
compute this probability from the interaction in Eq. 1.1 and in Sec. 4 use it to compute the
various types of distortions. In Sec. 5 we place constraints on the coupling 1/ f, by comparing
these distortions to the COBE-FIRAS data and briefly comment on the possible shapes of
the distortions. We conclude in Sec 6.

! Constrains on interactions can also be placed using CMB anisotropies as was done for kinetic mixing in [48]



2 CMB Spectral Distortions

In this section, we describe how our interaction gives rise to CMB spectral distortions. The
effect of our interaction, in the presence of dark matter, is to convert photons into a dark
sector particle, X. For example, if the axion constitutes the dark matter, photons will interact
with the axions and convert into dark photons so that X is the dark photon. Conversely if
the dark photon is dark matter, the photon will convert into axions and, in this case, X is
the axion. In order to speak generally about either axion or dark photon dark matter, we will
refer to the particle the photon converts to as X throughout this paper. The implications for
the CMB spectral distortion are the same in either scenario since the important effect is that
the photons convert to an invisible dark sector particle X and are removed from the photon
spectrum.

The removal of any photons from the bath can lead to a deviation from the blackbody
spectrum. We can quantify that change by a frequency dependent distortion §(w) defined in
Eq. 2.1.

f@) = — (1 — () . (2.1)

/T -1 " ew/T -1

The exact frequency dependence of the distortion will depend on when in cosmic history the
photons were removed from the photon spectrum.

As shown in Figure 1, we can define 5 different eras, the T era, the u era, the u —y
transition era, the y era, and the free streaming era, in which the injection or removal of
photons gives rise to different distortions. In the remaining of this section, we briefly review
these different eras and discuss the characteristic effect of photon removal in each. As we will
discuss, the final distortion to the blackbody spectrum can be parameterized by the impacts
coming from different eras as

5Tot(w) = (/j + ﬁt)M(w/T) + (y + yt)Y(w/T) + 5Dopple7“(w) + 5Free(w)' (22)

We see there are 4 different types of distortions. The u and y distortions have distinct shapes
and are insensitive to the details of the model generating the distortion, while dpoppier and
d tree have a model dependent shape. The contribution of all the pre-recombination distortions
are computed using the Green’s function method described in Ref. [49], using the rate at which
photons are converted into particle X, I'y_, x(w), as discussed in Sec. 4 and Appx. D.2. In
computing this rate, we will need to calculate is the conversion probability Py, x(w). We
also show that the distortion due to the post-recombination free streaming era distortion is
directly related the the conversation probability P,_,x (w). Thus, the central quantity we will
need to compute all spectral distortions is the conversion probability.
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Figure 1. A timeline of the types of relevant distortion eras. The timeline is presented with time
described by decreasing temperature 7T'.

Compton Double Compton Bremsstrahlung

Figure 2. A sample diagram for each of the processes holding photons in equilibrium with the
electrons.

2.1 7T Era

In the very early universe, at temperatures T' 2> 0.5 keV (redshifts z > 2 - 10°), a number
of scattering processes involving photons are very efficient at driving the photon distribution
towards an equilibrium distribution with zero chemical potential. The main processes, shown
in Fig. 2, are Compton scattering, which can quickly redistribute the photon energy and
equilibrate the electron and photon temperatures, as well as number changing processes, such
as double Compton and bremsstrahlung. Due to these processes, in this era, even if photons
are lost due to conversion into X, the distribution would be quickly driven back to that of a
blackbody and the only effect would be a small change in the blackbody temperature. Since
we don’t know a priori the temperature of the CMB, injections in this era would not lead
to a bound from the CMB spectrum (there could be bounds by studying the anisotropies or
comparing to Big Bang Nucleosynthesis predictions which we will not explore in this work).

2.2 u Era

Once the universe has cooled past T ~ 0.5 keV (z =~ 2 -10%), the higher order processes
like double Compton scattering and bremmstrahlung are no longer efficient at setting the
chemical potential to zero (although they can still be efficient for absorbing/emitting very
low frequency photons). In this era, Compton scattering is still efficient at redistributing
the energy, which drives the spectrum towards an equilibrium distribution. Because photon
number is now conserved, any removal of energy will result in a small effective chemical
potential term [

F@) = s > o ® oy (1= AM/T)). (23)




This distortion has a fixed shape, M (w/T), given in Appx. D.2. The size of this distortion
is captured by the effective chemical potential, fi, which can be calculated from I',_, x, the

rate at which photons are being converted to dark sector particles X as shown in Appx. D.2.
COBE-FIRAS placed a bound of || < 91075 [40].

2.3 y Era

At temperatures lower than 3 eV (z a~ 10%), Compton scattering is still efficient enough to
trap photons, but is now inefficient at changing photon energy, and transferring energy be-
tween photons and electrons. This leads to two effects. Firstly, some small amount of energy
can be still exchanged with the electrons, leading to a difference in the photon and electron
temperatures. Subsequent scatterings of photons with an electron fluid at a different tem-
perature, lead to a y-distortion via the Sunyaev-Zeldovich (SZ) effect [50]. Secondly, energy
injections/removals in a given frequency, can still be smeared due to Doppler broadening via
Compton scattering, even if the process is no longer efficient at thermalizing the spectrum.
This leads to two separate distortions: a y-distortion and a Doppler smeared distortion,

1 1

F@) = g = 7 L= 9V @/T) = Sappter () (2.4)

The y-distortion has a fixed shape, Y (w/T), given in Appx. D.2 and a size determined by the
small parameter y which can be computed from the photon loss rate I'y_, x as described in
Appx. D.1. COBE-FIRAS placed a constraint |y| < 1.5-107° [40]. On the other hand, the
shape of the Doppler smeared distortion is model dependent, so we instead place a bound by
comparing directly to the COBE-FIRAS data.

2.4 u —y Transition Era

Once the temperature decreases below T ~ 70 eV (z ~ 3 - 10°), Compton scattering, while
still efficient at trapping photons, begins to become inefficient at redistributing energy for
certain frequency modes of the photon spectrum. This signals the end of the u era and the
start of the 1 — y transition era which lasts until 7'~ 3 eV (z ~ 10%). In this transition era,
higher energy modes still redistribute energy efficiently through Compton scattering, while
energy redistribution is inefficient for lower energy modes. At intermediate modes, energy
redistribution is not efficient but is non-negligible. In order to exactly treat this very frequency
dependent behavior, one would need to simulate the distortion numerically [49]. However,
as noted in Ref. [49], for the range of photon frequencies we are interested in, the distortion
can be modeled to good accuracy as a pure energy injection as described in Ref. [51]. The
resulting spectral distortion is a combination of a u distortion M (x) and a y distortion Y (x)
the shapes of which are given in Appx. D.2.

1 1

F@) = o =~ (L= it M(@/T) =y Y (/T)). (25)




The subscripts ¢ on the coefficients iy and y; denote that these coeflicients are calculated
differently from g in Eq. 2.3 and y in Eq. 2.4. They still however are calculated from the
photon conversion rate I',_, x as shown in Appx. D.2.

2.5 Free Streaming Era

Around 7' = 0.25 eV (z = 1100), most electrons have been captured to form neutral hydrogen,
and the universe becomes transparent to photons. From this point on, the photons become
free streaming and can travel unimpeded across the universe, giving rise to the CMB we
observe today. However, the presence of our interaction leads to a probability P,_,x(w)
that a CMB photon with frequency w will convert to an invisible dark sector particle X
before reaching us. Because the photons are free streaming, there is no thermalization, or
redistribution of energy. So, the resulting spectrum is the original spectrum multiplied by
the survival probability of a photon to reach us without converting to X,

1 1

f(w):6w/T_1—>€w/T_1<1_P7_>X(w)) . (26)

We can see that the distortion is simply the conversion probability P,_,x(w). The frequency
dependence of this distortion is model dependent and as such we will have compute it and
then constrain it directly with the COBE-FIRAS data to obtain a bound.

3 Transition Probability

As described in the previous section, to compute the distortions we will need to compute the
probability, P(w,t,ty), of converting photons of frequency w produced at time ¢y into dark
sector particles X at some later time ¢. Because our dark matter is made of bosons of mass
m < meV, the number density is large enough to treat dark matter as a classical background
field. Therefore, these probabilities can be computed using Feynman diagrams like the one
shown in Fig. 3.
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Figure 3. Diagrams for the probability of a photon produced at time ¢y to have converted to a dark
photon or axion by a time t. The vertex indicates the interaction with the background dark matter
field. A and )\ represent the polarizations of the relevant particles.

In many instances the time interval ¢ — ty will be of cosmic scale. For example, when
applied to the free streaming distortion, t — ¢y will be the time between recombination and



the present. As a consequence, we will need to compute these Feynman diagrams in a curved
FRW background. We will work in conformal coordinates, described by the metric

dr? = a?(n) (dn2 - dac2) : (3.1)

In a slowly expanding universe (mpar, Tomp > H), we can easily expand any general scalar
field ¢ and vector field A, in terms of ladder operators by solving their equations of motion
using the WKB approximation. The details of this process are given in Appx. B.1 and the

result is
d3k ; M A5 C
b(z) = / age " At k) —kex) g o (3.2)
(27m)3a(n)y/2we(n) ( )
Ay(z) = / Z ake _z(fn dii (k) k@) 4 p , (3.3)
27)3/2w(n )\ 1oL ( )
where ay, (a3) are the ladder operators of the scalar(vector) field, w®(n, k) = /|k[2 + a%(n)m?

A
I

We will also need to include plasma effects on the photon due to its impact on photon

is the conformal energy, and the polarizations €, (k) are given in Eq. B.6.

propagation and mixing. At all times of relevance, electrons are non-relativistic and lead to
a plasma frequency, wy(n), given by

4o

wy(n) = e, (3.4)
where a, is the fine structure constant and ne(n) is the number density of electrons which
changes as the universe expands. We are working in the limit where w,(n) is much smaller
than the frequency of the CMB photons w ~ Toasp - In this limit, the effects of the plasma
can be reduced to the photons acquiring a small mass m.(n) = wy(n) < Tcmp. Despite
the plasma frequency giving rise to an effective mass for transverse modes, at such large
frequencies there are no longitudinal modes of the photon (plasmons) [52]. We use the redshift
dependent plasma frequency from [41].

Due to the non-trivial time dependence of the fields given in Eq. 3.2 and Eq. 3.3, we will
only Fourier transform the diagrams in space. In this regime, our diagrams are transition
amplitudes with a time dependent interaction and so we can expand our amplitudes to leading

order using a Dyson series,

n
(X, K'\U(n,n0) |7, k') ~ —i/ dnf (X, K'|Vi(n) |, k'), (3.5)

70



Vi(n') is our interaction potential given by

VI(U/) = _/dgm [’int = _/d3 ¢ FMVFMV (36)
2fa
Note the momentum eigenstates in Eq. 3.5 are normalized such that (k'|k) = (27)35(k — k')
which differs from the usual Lorentz invariant normalization by a factor of 2w.
We can simplify Vi(n') by using the fact that our dark matter field is nonrelativistic to
ignore gradients in favor of time derivatives which simplifies the interaction to

Axion DM: V;b(n') = /d3:l: a}l(bAD -B
¢ (3.7)
Dark Photon DM:  V{”( / Bz —8 Ap-B

Next we insert the expansion of the fields for the photon’s magnetic field B (Eq. 3.3) and the
outgoing particle field X (either Eq. 3.3 for an outgoing dark photon or Eq. 3.2 for an outgoing
axion) in terms of creation and annihilation operators. As discussed earlier, we will treat the
dark matter as a classical background field. These potentials can be inserted in Eq. 3.5 to
compute the transition probability. After some simplifications described in Appx. B.1, this
probability takes the form,

2 t
P(k:,to,t):%z AME, t,tg)|  where A*(k,t,to)—/ dt’ Mt k), (3.8)
A to
with
(é(t/’j(t/)) UD(kvt,) i [t di(wp (D) —w- (T
M (1) = o, e ) (3.9
M (k) = Ap(t', 2(t)) - ex(k) /0o (K, ) i 1Y (o (6)-r (1) (3.10)

2a(t") fa ’

where the first (second) equation corresponds to the axion (dark photon) dark matter scenario.
In the above equations, &(t') is the position of the photon at time t', the dots represent time
derivatives with respect to comoving time t, and v(k,t) represents the velocity of a given
particle. We have approximated v, = 1. The w’s are now the physical energies defined as:

LS
a?(t)

Finally, we must determine what form our dark matter background takes. By solving the

w(k,t,m) = +m? (3.11)

equations of motion for the dark matter fields (Eq. B.3 and Eq. B.4) in the non-relativistic



limit, keeping terms up to O(vpys), and demanding that the energy density is p%,,/a’(t),
where ,o% u 1s the energy density of dark matter of the universe at the present time, we find

; SN 2PODM -
opm (T, t) = ) cos(mpumt + () (3.12)
A ~ i 2P%M ~ ~
pym (&, t) = €(x) cos(mpyt + B(X)). (3.13)

a(t)

Both fields get a spatially dependent phase, 5(&), while the vector dark matter field gets an
additional spatially dependent polarization unit vector (). Both of these quantities vary
spatially on the scale of the dark matters de Broglie wavelength (mpavp M)*1 with vpy < 1.
Additionally, they vary in time, on timescales (mppv%,,) . Since the time dependence is
suppressed by a factor vpys relative to the spatial dependence it will be ignored. In Appx. B.3,
we show that for all distortions, we average & over many de Broglie wavelengths of the dark
matter field, which means that we can average all of these spatially dependent quantities.
We will leave the averaging over the phase for later in the computation, but in Appx. B.3 we
show that we can effectively replace
k T L 3.14
(k) (&) + (3.14)
Physically, this factor % is reflecting the fact that the interaction ey (k) - Ap in Eq. 3.10
is picking out one particular polarization of the vector dark matter. After averaging over &,
this particular polarization must make up 1/3 of the total dark matter by isotropy, effectively
sending p%,, — p%,,/3. Using Eqgs. 3.12-3.14 to simplify Egs. 3.8-3.10, we can write the
transition probabilities as

0
P’y~>’yD (k) to, t) = [)2?]\24 Lg(mqbv mp, k, to, t) (315)
a
PO 2
P’y—>¢(k>t07t> = GL}A;L (mD7m¢a k>t07t>7
a

where L is a length scale defined as

L(m k,to,t) = Cap | XL 1kD t 4 B¢ 3.16
DM, MXx, R, 10, ) = . ag(t/) COS(’I?’LDM + ﬁ( )) ( : )
0

2>
B

where Aw,_, x is the change in energy from a photon converting into particle X at momentum

ot dibw, x (ER)

,10,



Awyx(t k) =wx(t, k) —wy(t, k). (3.17)
The () indicates the remaining average over the dark matter phase 3(t') = 8(Z(t')) which is
handled for pre-recombination and free streaming distortions separately in Appx. D.1 and C
respectively. From Eq. 3.15, we can see that the only difference between scalar dark matter
and vector dark matter is the overall factor of 1/3 in the conversion probability from the
effect described above. This means that the coupling to dark photon matter is effectively
1/4/3 that of the coupling to axion dark matter and so the bounds placed on the coupling in
the dark photon dark matter will be weaker than the bounds for the axion dark matter by a
factor /3 . For simplicity, we will only consider axion dark matter going forward, knowing
that we can translate any result to dark photon dark matter by multiplying by 1/+/3.

4 Computing the Distortions

In this section, we will use Eq. 3.15 to determine the strength of the distortions arising from
the various eras. This will be very different for distortion generated pre-recombination versus
in the free streaming regime, so we consider them separately.

4.1 Free Streaming Distortion

In Sec. 2.5, we showed that the free streaming distortion, ..., is equal to the probability
of converting the photon to dark sector particle X between recombination, tg and today, t.
Thus, we need to compute

0
Opree(|k]) = K;L}?ﬁ(mDM,mx,k,to,t). (4.1)

From Eq. 3.16, it is clear that we can write L? = <‘#‘2>6, where

Lo [ g JPXW) g dE (At mpn -6 (4.2)
=Y @) | |

The remaining integral is an oscillatory integral with frequency

Qs (t) = Aw(t) = (mpar — B(1). (4.3)

Notice that all of the time dependent quantities change on the Hubble scale H(t) due to the

expansion of the universe?

2Stri(:tly speaking, ,B(t) changes on the scale mpynvpymOvDM ~ mDMUQDM where dvpas is the size of the
dark matter velocity dispersion. However, in the full computation one can work in Fourier space and treat each
mode of the dark matter field independently before summing over all modes at the end, effectively removing
effects from the time dependence from /3(t).

— 11 —



There are two limits in which this integral can be computed. The first is the fast oscillation
limit where the oscillation frequency €4 (t) is approximately constant over many oscillations.
This is the limit where

Qu(t) > H(1). (4.4)

In this limit, all of the time dependent quantities in Eq 4.2 become approximately constant
up to corrections of order H/Q1 and the integral can be computed analytically. The second
limit is the resonant limit. In this limit, there is a time (or possibly multiple times), t,, where
there is a stationary phase in the exponential (Q+(t,) = 0). Since A(t) < mpas to a good
approximation these resonant times can be found by solving the equation

Aw(t,«) + mpm = 0. (4.5)

Physically, this corresponds to times in which the dark matter particle being absorbed/emitted
by the photon is on shell, leading to an enhancement in the conversion probability. The
stationary phase approximation is used to compute the integral in this limit. Appx. C contains
the details of computing the distortions in both of these limits. In the end, we find,

dfree(|K]) Poar [L+* + L h ILy|? agmw”{cﬁ(ﬁﬁwp no resonances(4 N
= where = '
" 4 2 - > _2mox(az) - pegonances.

ax a3 |9 Aw(as)]

Here, a+ are all solutions to Eq. 4.5, and a, = (1090)~! is the redshift at recombination.

2
Notice that the resonant distortion is enhanced by a factor of |A“’5¢$3M\ ~ TBM with

respect to the non-resonant distortion. Even for the smallest possible dark matter masses,

mpnr ~ 10720, this is an enhancement by a factor of ©@(108). Thus, we expect our bounds
on the coupling 1/f, to be enhanced by orders of magnitude in regions of parameter space
where these resonances happen.

4.2 Pre-Recombination Distortions

The application of Eq. 3.15 to pre-recombination distortions is not as straightforward as for
the free streaming distortions. The distortions can be computed via the Green’s function
method outlined in Ref. [49] where the distortion, §(z) is given by

/ da / /
d(z) = /daz /aH(a)G(x,x,a)FvﬁX(x ,a), (4.7)

where z is the dimensionless frequency * = w/T(a) and I'y_x(z',a) is the rate at which
photons of frequency z/T are converted to dark sector particle X. The Green’s function
G(z, ', a) describes how photons injected into mode 2" at time when the scale factor is a are
redistributed to mode x. G(x,2’,a) is given for the various eras in Appx. D.2. In this section

- 12 —



we will describe how to compute the rate Iy, x (', a) appearing in Eq. 4.7.

We can compute I'(a, k) from P(k,to,t) as follows. Consider a photon that scatters off
of an electron at time ¢y and travels some time 7 before scattering off of another electron.
P(k,tg, to+7) is then the probability of the photon converting to X between these scatterings.
For an ensamble of photons scattering with time 7 between scatterings, the rate at which those
photons are converted to X is then

Pk, ty, to+ 7
C(to, 7, k) = <T) (4.8)
Since the photon is traveling through a very dense medium of electrons, it has a certain
probability p(7) of traveling a distance 7 characterized by its mean free path A, given by

6—7'/)\,y
o) =5 (49)
ol
In order to find the average rate for all photons, we average I'(to, 7, k) over this path length
distribution

% e7T/M Pk, to,t
F(a(to),k):/ ar 0 Pk to,to+ 7). (4.10)

0 )\’Y T

Because this era is before recombination, we have H\, < 1. In this limit, we can treat space
as static and all parameters that change due to the expansion of the universe as constant in
the integral, and Eq. 4.10 can be computed analytically. The details are given in Appx. D.1,
and the end result is

_ Phuvx(a, |k|)

[(a,|k|) = WLgff(a,|k|)a (4.11)

where

1 [ In[1 4+ X2(a)(mpr + Aw(a))?]
Lgff(a, |k|) = 2{ (mpar + Aw(a))?

N In[1 + A2(a)(mpy — Aw(a))?]
(mpyr — Aw(a))?

(4.12)

This rate can be plugged into Eq. 4.7 and integrated numerically using the Green’s functions
given in App D.2 find the distortion from the various pre-recombination eras.

5 Results

The total distortion for a given set of masses mx and mpys and coupling 1/f, is given by
Eq. 2.2. As described in Sec. 2, temperature shift distortions are undetectable by COBE-
FIRAS. Therefore we should add an arbitrary temperature shift, 7 (z) (defined in App. D.2),
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to the distortion and do a best fit to COBE-FIRAS data [40] with both the coupling, 1/f,
and the size of the temperature shift, «, as free parameters.

dror(w) = (1 + ) M(w/T) + (y + y)Y (w/T) + dpoppter (W) + Oree(w) — aT (w/T). (5.1)

However we can simplify this by demanding that the number density of CMB photons be the
the same as that of a perfect blackbody at the measured temperature Toyp = 2.35 - 1074
eV. This is exactly the procedure that is commonly done for p and y distortions as described
in [53]. This constraint fixes the size of the temperature distortion . For fixed mp and mg,
we do a x? fit of our distortion to the COBE-FIRAS data with a single free parameter, 1/ f,.
By demanding that the distorted spectrum matches the measured spectrum to within 20, we
obtain bounds for the coupling as a function of the dark photon and axion masses mp and
mg. Fig. 4 shows a contour plot of these bounds as a function of the axion and dark photon
masses. We show contours for both axion dark matter and dark photon dark matter. These
bounds are plotted against the leading best bound on this coupling from red giant cooling
constraints. Ref. [37] shows that this coupling leads to a novel cooling mechanism in red
giants due to plasmon decay and deduced that the cooling from this coupling is equivalent to
the cooling from a neutrino magnetic dipole moment p, = i Then using the bound placed
on neutrino magnetic dipole moments found in [54] from red giant cooling they were able to
place a bound 1/f, < 7.1-107!% GeV on the axion-photon-dark photon coupling. As seen
in Fig. 5, in a large portion of parameter space, roughly mx < 1072 eV and mpy; < 1078
eV, our bounds beat this red giant bound by several orders of magnitude. It is worth noting
that while the red giant bound is the most stringent bound in this region of parameter space
(aside from the bounds placed in this work), there have been numerous other constraints
placed on the coupling in this region of parameter space. The bounds placed on this coupling
from stellar evolution [29], Horizontal Branch stars [35], and white dwarfs [36] are all with in
an order of magnitude of those from red giants. For simplicity, we only include the red giant
bound in our plots.

Fig. 5 shows our bounds as a function of the axion dark matter mass (mpys) for selected
values of the dark photon mass (mx) and shows the contribution to these bounds from each
distortion era. While the bounds in Fig. 5 are shown for axion dark matter, the equivalent
bounds for dark photon dark matter can be found by scaling the bounds up by a factor of v/3
as discussed at the end of section 3. As can be seen from the colored dashed lines in Fig. 5
each constraint from each distortion has roughly the same behavior: constant for small mpas
and increasing linearly in mpys for large mpys with an enhanced region in between. We can
understand why the bounds have this behavior. Firstly, the enhanced region is the region of
parameter space where photons during that particular era are able to resonantly convert. The
other two limits can be understood by considering the integral L? defined in Eq. 3.16 in the
non-resonant regime. Here L2, the effective oscillation length, is the square of an oscillatory
integral and thus should scale as L? ~ Q™2 where € is the fastest oscillation frequency in the
integral. For sufficiently small mpas, the coherent oscillation of dark matter is unimportant.
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Figure 4. Bounds on the coupling 1/f, (GeV~!) plotted as a contour plot as a function of the dark
photon mass (mp) and the axion dark matter mass (m,). The plot on the left shows the bounds for
the axion dark matter case and the plot of the right shows the dark photon dark matter case. The
grey region represents the region where the previous best bound on the coupling derived from red
giant cooling [37] is stronger.

As such, the oscillation length is the standard Aw,_,x present for well known systems such
as neutrino oscillations. For larger mps, the fast oscillation of dark matter dominates and
the oscillation frequency is mpys. This combined with Eq. 3.15, shows that the conversion
probability P,_,x ?% for small mpys and Py, x f% for large mpys. Since the
distortions all scale with the conversion probability, its clear that the bounds at low MDM
are independent of mpjs and linearly proportional to mpys for large mpyy.

Given that the COBE-FIRAS data was collected over 30 years ago, current technology
could measure the CMB spectrum to higher precision. In fact, there are proposals for exper-
iments, like PIXIE [55], that aim to measure the spectrum to within a factor of 1078 — 1077,
an improvement of around a 3 to 4 orders of magnitude from COBE-FIRAS. These future
experiments could potentially measure a distortion in the CMB frequency spectrum and thus
it is interesting to ask what such a measured distortion could tell us about our dark matter
models.

Specifically, we will discuss qualitatively whether a distortion produced from our dark
matter model(s) could potentially be distinguished from other distortion sources. Energy in-
jection or removal into or from the background electron plasma before recombination produces
primarily a p and/or y distortion and thus these types of distortions which are essentially
model independent. However, because of their non-thermal origin, the Doppler distortion
arising pre-recombination, and free streaming distortion post-recombination have model de-
pendent spectral shapes and do provide a distinctive signature. For simplicity, we can focus
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Figure 5. Bounds on the coupling 1/f, as a function of the axion dark matter mass mpys plotted
for various values of the dark photon mass, myx. The purple, blue, green and orange dashed lines
are the individual u, y, Doppler and free streaming bounds respectively while the solid black line is
the total bound from all distortions. The grey line represents the current best bound on the coupling
derived from red giant cooling [37]. The bounds shown here are for the axion dark matter case, but
the bounds for the dark photon dark matter case can be obtained by scaling the bounds up by a factor

mpw (eV)

of /3. The bounds for mx < 10~ eV are exactly those given in the upper-left plot.

on the free streaming distortion to get a sense of the various types of shapes this distortion can
take. To start, one can take the large and small mpys limits (mpy > Aw and mpy < Aw

respectively) of Eq. 4.6 and see that

Small mpys limit:  § ~ w?

,16,

Large mpys limit: 0 ~ Constant.



Figure 6 shows these quadratic and constant distortions plotted against the p and y dis-
tortions. The amplitudes of these distortions in Fig. 6 are chosen so that each distortion
disagrees with COBE-FIRAS at 2¢. In this sense we can think of these distortions as being
of equal strength. We can see that the large mpys matches very well with the p-distortion
and the small mpys distortion, matches well with a gy distortion making them difficult to
distinguish from the generic u and y distortions respectively.

0.0010

0.0008}
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Al 0.0004f
I 0.0002}
0.0000

-0.0002¢

0.0005 0.0010 00015 00020 00025 0.005 00010 00015 00020 0.0025
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Figure 6. Shown here are shapes of the various types distortions d(w) = %W Each
ackbody

distortion is plotted with an amplitude such that it disagrees with the COBE-FIRAS data at 2o.
Thus all the distortions are effectively the same strength. The purple and blue lines are p and y
distortions respectively while the dashed green and orange lines depict Doppler and free-streaming
distortion shapes for different choices of masses mpy; and mx. On the left, we show the distortions
in the non-resonant limits given in Eq. 5.2. On the right, we show two of the many possible shapes
the distortions can take when there is a resonance in either the Doppler or free distortions. These
resonant distortions have shapes distinct from the p and y distortions. It is also worth noting that
the differences in shape between the Doppler and free distortion in the right-hand plot are due to the
difference in choice of parameters, mp); and my, rather than a difference in distortion type.

The shapes of the free streaming distortion get more interesting if we consider the resonant
region of parameter space (mpy ~ Aw). Here the distortion depends on the time of the
resonance a+ which is found by solving Eq. 4.5. Because Aw depends of the frequency of
the photon, so does the resonant time through Eq. 4.5. Thus different frequency modes can
have different resonance times which can lead to very distinctive frequency dependencies in
the distortion easily distinguishable from the standard p/y-distortion. In particular, it is
possible that some frequency modes undergo resonance, while other modes don’t. This leads
to especially unique distortions, where some frequency modes are distorted while others,
effectively, are not. Such extreme distortions are shown in the orange and green dashed
lines in figure Fig. 6. As can be seen, lower frequency photons never resonate, and thus are
effectively undistorted while higher frequencies do experience a distortion due to resonance.
Additionally, the frequency dependence of the resonant piece of the distortion is not a simple
power law of w due to the dependence of the resonant time on the frequency and in turn
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the non-trivial dependence of the distortion on the resonant time. It is also important to
note that these these qualitative features can also arise from the Doppler distortion. From
Eq. 4.11 and 4.12 one can derive the same small and large mpys behavior and show similar
types of resonant behavior are possible. The green dashed line in Fig. 6 shows one such
distinctive resonant shape for the Doppler distortion. This makes the prospect of observing
these unique distortions even more likely since, as shown in Fig. 5, there are significant regions
of parameter space where the Doppler distortion leads to the strongest bound, which shows
that in such regions of parameter space it is the most observable effect. It is worth pointing
out that difference in shape and severity of the jumps of the Doppler and free distortions in
Fig. 6 is not due to an inherent difference between the free and Doppler distortion, but rather
a difference in the parameters mpjys and mx at which these distortions are evaluated. These
set of parameters were chosen to highlight the difference in distortion shapes achievable by
either the free or Doppler distortions rather than an inherent difference between them.

6 Conclusion

In this paper, we studied the effects from an axion-photon-dark-photon coupling to the Cosmic
Microwave Background if either the axion or the dark photon is dark matter. This interac-
tion, in a dark matter background, induces mixing of the photon with a new light boson, and
can remove photons from the universe either before or after recombination. Removing pho-
tons from the baryon-photon plasma before recombination produces the well known, model
independent, p distortion or y distortion, as well as a model dependent distortion due to
Doppler broadening. The size of the distortion is determined by the rate at which photons
are removed from the spectrum. Removing photons after recombination naturally changes
the frequency spectrum of the CMB and thus produces a distortion with a new spectral shape.
We computed these individual distortions and the corresponding total distortion that would
be produced by an interaction of this type in the presence of either axion or dark photon dark
matter.

The distortion produced in the presence of dark photon dark matter is smaller than
that produced by axion dark matter by a factor of 1/3, but otherwise identical in terms of
dependence on the model parameters. This is due to the energy of dark matter being spread
over the 3 polarizations of dark photon dark matter, as opposed to the single polarization for
axion dark matter. The interaction we study only couples a photon of given polarization to a
single polarization of dark photon dark matter. Thus, a given photon effectively only couples
to 1/3 of the total dark matter background. This effectively leads to an interaction strength
for dark photon dark matter that is 1/3 of that for axion dark matter.

By comparing our computed distortions with the COBE-FIRAS data measuring the CMB
frequency spectrum, we were able to place very restrictive bounds on our coupling 1/ f,. These
bounds are a significant improvement of several orders of magnitude over the previous best
bound on this coupling from red giant cooling constraints [37] as shown in Fig. 5. Additionally
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one can compare these bounds to those placed on the ¢FF coupling in [38] and see that our
bounds are several orders of magnitude stronger.

We also briefly considered the possibility for future measurements of the CMB frequency
spectrum to detect distortions produced by this model. While the p and y distortions are
produced by any mechanism that adds or removes energy from the photon spectrum before
recombination, the distortions generated in the free streaming era when the resonance condi-
tion is met lead to much more distinctive spectral features. Thus, such resonant distortions
offer a promising avenue to single out the axion-photon-dark-photon interaction interaction
if the next generation experiments measures distortions on the CMB spectrum.
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A A Model

Here we summarize a simple model containing an axion, photon and dark photon where the
leading interaction is that given in Eq. 1.1. This model contains a dark sector with a complex
scalar ® a dark sector U(1) gauge boson Ap and two sets of two left handed Weyl fermions
&, €% x and x°. These fermions are charged under both electromagnetism and the dark
U(1) gauge group with charges shown in Table 1. The scalar ® is uncharged under both
electromagnetism and the dark U(1).

| [ Qem | Qb |
X 2 2
x°¢ -2 -2
¢ 2 | =2
el 2 )

Table 1. The charges for our dark sector fermions. Qg is the particles electric charge in units of
the fundamental electric charge and similarly, @ p is the particles charge in units of the fundamental
dark charge.

In addition to these charges we demand that our model obey a dark charge conjugation
symmetry C'p defined by

Cp: A— A Ap — —Ap X & X© &€ o — o* (A.1)
and a Zg symmetry defined by
Zg : y = e /Ay £ — e/ D — /1. (A.2)

This Zg, which is a subgroup of the would be U(1)pg associated with the axion, may seem
troublesome since it corresponds to a chiral rotation of the x and £ by —m/4 and 7/4 respec-
tively and thus should generate an anomalous term through the chiral anomaly. However,
with the charges defined in Table 1, one can show that this is equivalent to a rotation of a
single Weyl fermion with charges Qryr = Qp = 1 by an angle of 2. Our theory should be
consistent with the addition of a Dirac fermion with fundamental electric and dark charge
and so a chiral rotation of this fermion by 27 must leave the theory invariant. Thus the
Zg symmetry is nonanomalous. Additionally, this Zg symmetry forbids any operators in the
potential V(®) that could give the axion a mass up to dimension 8.

With these symmetries in mind, we write all possible terms in our Lagrangian up to
dimension 4,

L= Lsn + Liinetic — V(P) + y(Pxx© + P*EE) + hec. (A.3)

where V is the scalar potential, the last term is a Yukawa coupling for the fermions to the
scalar and Lpinetic contains all of the kinetic terms for the fermions, ®, and Ap with the
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gauge couplings packaged in covariant derivatives.
Now let us suppose that ® under goes symmetry breaking and obtains a VEV,

®(x) = (v + h(x))e @/, (A.4)
Amongst other changes, the Yukawa piece becomes
Y(@XX© + D7EET) = y(v + h) (e xx® + e eee). (A-5)
These phases can be eliminated by a chiral rotation,
X — xe /S € — et (A.6)

which naturally generates anomalous terms in the Lagrangian due to the chiral anomaly. It
is a simple exercise to show that these terms are

¢ (x)
1672 f

( (@b B + 2ec0Qbn @Sl + eoQbPFEFS)  (A)
— ((eQorr) 2P P + 200 Qs Q5 Fru P + (@5, FLFL' ) >

We get two terms, one for each rotation. Plugging in the charges given in Table 1 we can
easily see that the F'F and FpFp terms vanish while the F Fp term remains

eep

22 f

X 4
Y ¥p 14 ¥b £ £
+ « QiuQp +QpuQp=1-1=0
X 4

Figure 7. At 1-loop order, it is easy to see that the diagrams for kinetic mixing exactly cancel due
to the x and £ particles having opposite charges.

LD OF,, FhY. (A.8)

A similar cancellation happens in the kinetic mixing term. At one loop, as shown in
Fig. 7, there are two diagrams for the kinetic mixing term which exactly cancel due to the yx
and & particle’s opposite dark charges but identical masses from the ® VEV. At the heart of
this cancellation is the dark charge conjugation symmetry, Cp. This symmetry can easily be
seen to forbid the generation of a kinetic mixing terms, which shows the cancellation observed
at 1-loop occurs to all orders in perturbation theory.
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B Computation of the conversion probability

In this appendix we summarize the details of our conversion probability computation.

B.1 Quantized FRW Fields

Here we give a brief description of general massive scalar and vector fields in an expanding
FRW background metric dr? = a?(n)(dn?—dx?). We can expand the fields in ladder operators
with mode functions u(n, k) for the scalar and v (1, k) for the vector where \ is a polarization
index.

3 .
P(x) = /(;l::)gu(n, k)age®® 4 h.c. (B.1)

3 .
A(a) = / (ZW’; ZA: (s R)ade™= + he). (B.2)

The mode functions u(n, k)e?*® and vﬁ‘(k:)eik'w satisfy the equations of motion for scalar and
vector fields respectively. The equations of motion are,

(0,0" + 2H(1)9y, +m?a*(n))¢p =0 (B.3)

O Fyy +m2a®(n)A, = 0. (B.4)

To simplify, we make use of the fact that rate at which the universe is expanding (H =
Oy In(a(n))) is much slower than the rate at which our fields are oscillating, which is roughly
the comoving CMB temperature Topsp. In this limit one can show that up to corrections of

O(k/H),

—i [ dijw® (n,k) Ak, m)e—t " diw(n.k)
U(k?,’f]) = S and ’Uﬁ(k,?]) = GM( n>e
a(n)+/2we(n) 2we(n)

(B.5)

The mode functions are normalized by making sure they reduce to the familiar flat space
mode functions in the flat space limit. Here the 6,’) represent the 3 different polarizations for
the vector

1
a(n)m

e = (|k|,wc(n,k:)12:> e’f,g(kz) = (0,e) where k-e=0 (B.6)

which are the usual transverse and longitudinal polarizations with m — a(n)m. Inserting
Eq. B.5 into Eq. B.1 gives Eq. 3.2 and 3.3.

B.2 The Interaction Potential

Here we simplify the interaction potentials given in Eq. 3.7. We begin as described, by
inserting field operators for the incoming photon and outgoing X particle, and a classical
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field background for the dark matter field, leading to

o) = - [ telely (B.7)
(2m) 62\/wC p)wh(n',p')

Guotz) Z (aT a) e (') - (ip x ex(p)) e~ (=) 4 ) ,

fa AN

3$d3 d3/
VP (') = d’xd’pd”p (B.8)
o / (2ﬂ)62a(n’)\/wfy(n’,p)%(n’,p’)

9,A | e
n fj(fﬂ) Z}\:( L¢ al \ (ip x ex(p)) e (» p)_i___) :

where x - (p — p’) is a short hand notation for

!

vop=1) = [ di(@50p) - w08 — 2 (08, (B.9)

and recalling that V¢ (V) is the interacting potential when the axion (dark photon) is dark
matter.

The terms not explicitly written in Eqgs. B.7 and B.8 represent different combinations of
the ladder operators that will be irrelevant for us since we only wish to consider photons as the
initial state and outgoing axions/dark photons in the final state. In the regions of parameter
space we will be interested in, the dark matter mass will be smaller than the CMB tempera-
ture. Since dark matter is also non-relativistic, this means that the momentum transfer from
the dark matter, ¢ = p — p/, must be small with respect to the photon momentum,

lg| < mpym < Toms ~ |pl, (B.10)

so we can do an expansion in small |g|. To lowest order, this means setting p = p’ everywhere.
However, we must keep ¢ to linear order in the x - (p — p’) order since q - x is not necessarily
small since we will be integrating over all x.

/

r (o)~ / 477 (S (7, p) — % (7,0)) — 4 - (& — prf). (B.11)

Now, the only q dependence is in the exponent and we can shift variables d®>p’ — d>q. After
integrating over d®q we get a delta function §%(z — &) where & = pn. 3 This can then be

3Note that, within the approximations we are using, # is effectively the position of the photon. This is in
agreement with the intuition that the transition probability of a photon at a given location depends on the
dark matter field at that same location.
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used to eliminate the d®zx integral.

3
V) = / Tp __ Ond (B.12)

273 Qf\/i

Zei’(p) - (ip x €x(p)) elf d"(‘*’f:)(ﬁ) (77)) 'YD 'y .
AN

/ d3 32f 0, AD(U x) ) (B.13)

(') /ws (0 )wp (')
Z ip X €x(p ifnl i () 5 (”))a;"ﬁa;,)\ + ...
A

Now, in order to simplify the cross products, we work in the helicity basis for photon
polarizations where the following identities hold.

ip x ex(p) = Alplex €} -ex =y, (B.14)

where A = £1 is the helicity of the photon. This helps simplify the expressions to

Alp|0,8(n', i 7 dij(w, (7)—ws
v,¢(n’):—/ 32 PIONO, 2) i (s () () alPal \ +... (B.15)
x 2fa ( ’)w%(n’)

VID(U/) :/ )3 Z APIOyAp(r. %) - e\(P) eifn/ dﬁ(wé(ﬁ)*wﬁ(ﬁ))alﬁal),x +.... (B.16)
(2m)% 52 2 f,a(n') | Jws () ()

Next, we can look at V7’s matrix elements with momentum eigenstates. After some simplifi-
cation, it is easy to see these matrix elements take the form,

(K, (X)|Vi(n) ke, A) = ia(n) M (1, k)(2m)? 6% (k — k) (53 r), (B.17)

where, the (\) and (d)y/) are meant to be included if the final state is a dark photon and
M (1, k) are given by Eq. 3.9 and 3.10. After dropping the factor (2m)363(k—E') due to state
normalization, Eq. B.17 can then be inserted into Eq. 3.5 and squared to yield Eq. 3.8-3.10
for the conversion probability.

B.3 Spatial Averages

In this section, we argue that in all distortions we are averaging the interaction position &
over many de Broglie wavelengths of the dark matter field. This can be easily justified given
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that we are interested in the monopole spectrum, and thus will average distortions over all
directions. This effectively means we will be averaging over many de Broglie wavelengths
of the dark matter field. For the pre-recombination distortions, we are interested in the
averaged conversion rate as a function of redshift, which depend on the conversion probability
between photon scatterings. Thus, we average over all possible photon trajectories, and thus
x everywhere in space.

For the free streaming case, one can make a more general argument, which shows that
even if one is interested in anisotropies, this averaging is justified. First note that the smallest
dark matter mass we consider is 10722 eV, and so the largest de Broglie wavelengths we
must consider are < 10 kpc, which is much smaller than the horizon size today. Because the
probability conversion depends on the dark matter density, it is dominated at larger redshifts.
This means that for photon conversions happening at similar times by directions separated
by 60 ~ 1, the distance between the transition points is ~ H(;l xa; > 10 kpc, where a; is the
redshift of the transition.

Finally, let us average the dark photon dark matters polarization €(x) over & and derive
the replacement given in Eq. 3.14. To start notice that when plugging Eq. 3.10 into Eq. 3.8,
There will be a factor that looks like

P %Z k) - @) = Vel (@)e (3). (B.18)
A

If we call the k direction the z direction, then this is simply,
%Z (k) - (&)[2 = 1|€2(‘”)|2 (B.19)
A
Now we average over all possible z-compontents of the dark photons polarization which gives,
%Z (k) - e(&)2 = 1/3. (B.20)
A

Thus the effect of averaging is simply to send €*(k) - (&) — 1/+/3 as described in Eq. 3.14.

C Free Distortion Computation

In this section we will detail the computation of the integral L? defined in Eq. 3.16 which we

2 t t ro
where L4 = dt’ LX( )ei It diQs(t) (C.1)
:l: a3 (t/) . .
8 fo

showed can be written as

o

Ly+L_
2
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The strategy to computing this integral is to break it into intervals in which we can use either
the fast oscillation limit or the stationary phase approximation. By choosing the boundaries
of this regions appropriately, we can piece these intervals together to get the full result. We
first identify any resonant times ¢, by solving Eq. 4.5 for ¢.. We can then break up the time
interval into sub intervals as shown in Fig. 8.

c’l"
L I .Y 1
1§ A ) | J
to t, — At t, + At t

Figure 8. Breaking the time interval between ¢ and tg into subintervals that either contain or do not
contain a resonance. Note that this is easily extended to the case of multiple resonances. The size of
the intermediate integral is greatly exaggerated so that it is visible.

We will choose the endpoints of these intervals ¢, £ At so that the following 3 conditions
are true.

1. The stationary phase approximation should be valid everywhere inside the interval
(t, — At, t, + At) such that we can expand the phase of the exponential to second order

At?

/t i Q4 (F) z/tr A7) + Qe (1) = (C.2)

In order for this approximation to be valid, we must be able to ignore the third order
term. This means we need

Q:t(tr) _
At < Bt ™ H(t,). (C.3)

2. In order to match regions where the stationary phase approximation is valid to regions
where the fast oscillation condition is valid, we want both the fast oscillation condition,
Eq. 4.4, and the stationary phase approximation to be valid at the endpoints ¢, + At.
Given that the stationary phase approximation is valid, we can write

Q(t, + At) = £Q(t,)At. (C.4)
Then since we are near resonance Q(tr) ~ mpyH and we find that Eq. 4.4 requires

1 < mpyAt. (05)
3. Finally for computational ease, in the stationary phase integrals, we want to be able to

take the limit At — oo. More precisely this will require that A¢ is much larger than
the spread of the Gaussian integrand, 4/ Qi ~vmpyuH. We are then able to take the
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At — oo limit as long as,
1 < \/H(t;)mpaAt. (C.6)

It is easy to see that all 3 conditions are satisfied if

H(tr)

1> H(t,)At >
mpm

(C.7)

Using mpys > 10722 eV and H < 1072Y eV, this translates to 1 > H(t,)At > 10~% which
is easily satisfied. This shows that we are able to choose endpoints that satisfy all of the 3
conditions. Then from the first and second condition, as shown in Fig. 8, the total L4+ can be
broken into a series of alternating resonant and fast contributions. However, as we will see,
the resonant pieces will always dominate over the fast contributions. We will find that these
terms take the form

e:FifB(tO)LiaSt(to) if there are no resonances
L= (C.8)

>t eFBr) [7es(t,)  if there are resonances.

Where Li‘wt(tg) and L'°*(t,) do not depend on the dark matter phase 5. This allows us to
square and average over the phase which simply eliminates any terms that get a non-trivial
phase. This eliminates not only cross terms between the L, and L_ pieces, but any cross
terms between different resonances. The end result is

_ |Lo |2+ |L_J? |5 (1) |2 if there are no resonances

12
4

where |Li|? = { (C.9)

> |LIES(t,)|?  if there are resonances.

Note that L and L_ have different sets of resonant times. Finally, we must compute the
fast and resonant integrals to find \Lia‘gt\ and |L1°*].

C.1 Fast limit

In the limit of fast oscillations we assume €2+ > H for the entire integral. Then we can

t t’) 1 d P -
I ,Jvx( i QD) 1
- /to PN By Ly i (C.10)

This can then be integrated by parts

rewrite Eq. C.1 as

_ o jux(®) 1 giay
L=\ a0y i ©

t t ’ /
B it diaL@ 4 ox(¥) 1
. /to dt'e = ( 0 . ) (¢
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Since the time derivative in the second term is hitting quantites that change on the Hubble
scale, this second term represents an O(H /€)1 ) correction and can be ignored. In the first
term, the piece evaluated at ¢ can be ignored due to the scale factor in the denominator.
Finally, since 8 < mpys we can ignore this term in the denominator, leaving

fast _ _Fif(to) vx (to) —1 i [0 di(Aw(@)Empas)
Ly e \/ a3(t0) Aw(to) £ mpnr e . (C.12)

We see we get the exact § dependence predicted in Eq. C.8. We find then

fast) UX(tO) 1
L2 =1 ko) TBwtte) Zmom| (C.13)

Now we look at the resonant integral.

C.2 Resonant Limit

tr+AL AR ,
L;";’sz/ at' | X0 i dins ) (C.14)
tr—At a’(t')

Expanding the integrand to leading order about the resonance time ¢, gives

r+A :
Lhes = UX(tr)ez‘f“ dt Q4 (t') /t * tdtleiﬂ%w(t’—tr)2‘ (C.15)
a3(t,) tr—At

This is simply a gaussian integral and can be easily computed in the limit At — +o0.

pres = eFiter) |20 0x() it df (Awld)mpnn). (C.16)
iﬂi(tr) ag(tr)

To leading order, Qi(tr) = Aw(tr). The only remaining 8 dependence is in the phase. We
then find

2 t
LS| = (] ”)?f( ). (C.17)
|Aw(t,)| a*(tr)
Combining this result with Eq. C.13 and Eq. C.9 and inserting into Eq. 3.15 yields 4.6.

D Pre-recombination Distortion Computation

Here we give some of the details of the pre-recombination distortion. First, we describe how
to use the probabilities given in Eq. 3.15 to compute the rate of photon conversion in Eq. 4.11.
Second we describe the Green’s function method for using this rate to compute the distortions
in different eras.
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D.1 Photon Conversion rate

Here we will give the details of computing the conversion rate for photons into particle X
given in Eq. 4.10. Because the photons are not free streaming, our integral is over a small
time interval, 7, with respect to the expansion rate H. Therefore, quantities which depend on
time through the expansion of the universe are approximately constant. We then can write,

0 2
Ppuvx (a(to))
P(kathtO ‘|’7_) = Dé\fl]qas(to)

This can be easily integrated.

O +0

where éi:/T dte?t(ato)(tHt0) (D 1)
0

: in(Qy7/2
0y = 26 (to+7/2) Sm(QiT/ ). (D.2)

Now we will square this and average over the dark matter phase 5 as discussed in Ap-
pendix B.3. From the Q4 in the exponential we get a factor of eF#(0+7/2)  Everywhere else
we can ignore 8 because it is sub-leading. Then just as for the free streaming distortion, the
phase averaging eliminates the cross terms between ¢4 and ¢_. This gives,

(Plk, to,to + 7))y = ’W (D.3)
<sin2((Aw +mpnr)T/2) n sin?((Aw — mDM)T/2)>
(Aw+mDM)2 (Aw—mDM)2 ’

Finally, one can plug this into Eq. 4.10 and evaluate that integral analytically to get Eq. 4.11.

D.2 Green’s Function Method

Here we present the Green’s function for the different eras used in Eq. 4.7 and explain how
to compute the parameters [, i, y: and y in Eq 2.2. The Green’s functions used are taken
from Ref. [49] for the u and y era and from Ref. [51] for the u — y transition era and modified
by absorbing and moving a few factors to fit with the definition in Eq 4.7. To start let us
define the temperature shift function 7 (x), the u distortion shape M (x), and the y distortion
shape Y (z)

xe®

@D M(z) = T(z) <a,, — > Y(z) =T(z) (9«“

T(x) =

where o, = ((2)/3¢(3) ~ 0.456

u Era

— 929 —



For the p era, the Green’s function takes the form

Gu(a, 2’ a) = 1.4 (1 - %) 5(z")J* () M () (D.5)

Where zg = %(23)) ~ 3.6, and p(z') = %efil is the unit-normalized blackbody energy spec-
trum. J*(a) is called the visibility function and captures how inefficient bremsstrahlung and
double Compton scattering are at changing the number density. J*(a) goes to 0 for a < 1076
and quickly goes to zero at early times. Its analytic form can be found in Eq. 13 of Ref. [49].

Note that the M (x) factors out completely and we can write the distortion as

da
aH (a)

0(x) = pM(x) where p= 1.4/d:1:’ J*(a) (1 - %) p(@ Ty x (2 a), (D.6)

where the a integral runs from 0 to a = 3.3 - 1076.

p~y Transition Era
The Green’s function for the transition era is similar to that of the p era with the addition
of a y-distortion piece.

Gi(x,2',a) = (1 - %) o(z') (1.4J*(a)J#(a)M(as) + in(a)Y(:c)) . (D.7)

The additional factors .J,, and .J, smoothly transition the Green’s function from having mostly
u distortion at early times in the era to mostly y- distortions late in the era. Their analytical
form can be found in Eq. 5 of Ref. [51]. Much like in the p era we can write this distortion as

6(x) = M (z) + yY (2), (D.8)

where
iy = 1.4/da;'a;?a) J*(a)Ju(a) (1 — %) p(a )Ty x (2, a) (D.9)
= i / '~ g?a) Jyta) (1= o)1 x (') (D.10)

and the a integral runs over the whole transition era from a = 3.3-107% to a = 2-107°.

y Era
The Green’s function for the y era contains two terms. One to describe the Doppler smearing
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of the removed photons, and another to describe the pure y-distortion.

(OZ“Fﬂ)y ((l) _(ln($(1+z’y (a))/z’)—ay (0»))2/451/
Gy(w,a',a) = p(a’) <<1 o, ) ) e : . ) ,

Tiran@) 4 Nz o)

where y,(a) is the Compton y parameter defined as

1 a a’
yla) = / a’;—lI(a’) mi(v(l/) (D-11)

and a and [ are defined as

3—2f(z) . 1
V14 2y, (a) 1+ 2"y, (a)(1 — f(2'))
By definition y, quantifies the efficiency of Compton scattering to redistribute energy and is

thus O(1) at the start of the y era and quickly falls to be much less than 1. We can write the
distortion as

12
where f(z') = e <1 + x2> (D.12)

6(1') = yY(J:) + 5Doppler(l')a (D.13)
where
1 / da _ , e(a+ﬁ)yw(a) ,
=7 BETTIRY l-——+——~|T D.14
Yy 4 /dw aH(a)p(x) ( 1 +$/y7(a) 7—>X(x >a) ( )

da e n(@(1+a'y,(a))/2") oy (a) /4Byy

5Doppler‘(x) - /dl’ aH(a) x’\/‘m

Here the a integral runs from a = 2 - 107° to the time of recombination at a,.

I x (2, a). (D.15)
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