
Sheridan Perry
Department of Mechanical Engineering,
Embry-Riddle Aeronautical University,

1 Aerospace Blvd.,
Daytona Beach, FL 32114

e-mail: perrys8@my.erau.edu

Matthew Folkman
Pediatric Orthopedics,

Rainbow Babies and Children’s Hospital,
2101 Adelbert Road,
Cleveland, OH 44106

e-mail: matthew.folkman@uhhospitals.org

Takara O’Brien
Department of Aerospace Physiology,
Embry-Riddle Aeronautical University,

1 Aerospace Blvd.,
Daytona Beach, FL 32114

e-mail: obrient8@my.erau.edu

Lauren A. Wilson
Department of Aerospace Physiology,
Embry-Riddle Aeronautical University,

1 Aerospace Blvd.,
Daytona Beach, FL 32114

e-mail: wilsol29@my.erau.edu

Eric Coyle
Department of Mechanical Engineering,
Embry-Riddle Aeronautical University,

1 Aerospace Blvd.,
Daytona Beach, FL 32114
e-mail: coylee1@erau.edu

Raymond W. Liu
Pediatric Orthopedics,

Rainbow Babies and Children’s Hospital,
2101 Adelbert Road,
Cleveland, OH 44106

e-mail: raymond.liu@uhhospitals.org

Charles T. Price
International Hip Dysplasia Institute,

Orlando Health,
3160 Southgate Commerce Blvd.,

Orlando, FL 32806
e-mail: charles.price@orlandohealth.com

Unaligned Hip Radiograph
Assessment Utilizing
Convolutional Neural Networks
for the Assessment of
Developmental Dysplasia
of the Hip1

Developmental dysplasia of the hip (DDH) is a condition in which the acetabular socket
inadequately contains the femoral head (FH). If left untreated, DDH can result in
degenerative changes in the hip joint. Several imaging techniques are used for DDH
assessment. In radiographs, the acetabular index (ACIN), center-edge angle, Sharp’s angle
(SA), and migration percentage (MP) metrics are used to assess DDH. Determining these
metrics is time-consuming and repetitive. This study uses a convolutional neural network
(CNN) to identify radiographic measurements and improve traditional methods of
identifying DDH. The dataset consisted of 60 subject radiographs rotated along the
craniocaudal and mediolateral axes 25 times, generating 1500 images. A CNN detection
algorithm was used to identify key radiographic metrics for the diagnosis of DDH. The
algorithm was able to detect the metrics with reasonable accuracy in comparison to the
manually computed metrics. The CNN performed well on images with high contrast margins
between bone and soft tissues. In comparison, the CNNwas not able to identify some critical
points for metric calculation on a few images that had poor definition due to low contrast
between bone and soft tissues. This study shows that CNNs can efficiently measure clinical
parameters to assessDDHon radiographswith high contrastmargins between bone and soft
tissues with purposeful rotation away from an ideal image. Results from this study could help
inform and broaden the existing bank of information on using CNNs for radiographic
measurement and medical condition prediction. [DOI: 10.1115/1.4064988]
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1 Introduction

Developmental dysplasia of the hip (DDH) is widely known to be
the most common etiology for the development of osteoarthritis of
the hip. DDH occurs when the ball-and-socket hip joint is
underdeveloped, in which the acetabulum (socket) is too shallow
for the ball (femoral head) to be secure in the joint. This can lead to
subluxation and, inmore severe cases, complete hip joint dislocation
[1]. Additionally, extraneous tension of connective tissue and
tendons surrounding the joint can lead to long-term overcompensa-
tion during dislocation [2]. Current diagnostic imaging options
include radiographs, ultrasound, computed tomography (CT), and
magnetic resonance imaging [3,4]. The use of imaging can be limited
according to factors such as interobserver variability, false positives
and negatives, and limited reproducibility in follow-up examinations
[2–4].
Machine learning has become an increasingly viable means to

reduce human error in DDH diagnosis. Machine learning detection
algorithms such as You Only Look Once (YOLO) train a neural
network and teach the algorithm to process data to make predictions
inspired by human input [5]. This has the potential to limit user
subjectivity, predict developmental gaps between age progression,
and reduce false positives and negatives [6]. Several studies have
used neural networks for DDH assessment in radiography [7–11].
One approach utilizes probability predictions through classic
machine learning to identify DDH from two- and three-
dimensional ultrasounds [12,13]. Other studies have shown
improvements in efficiency by implementing a machine-learning
network to assist in diagnosis [6,14,15].However, these studies have
not investigated the prediction accuracy on radiographs with poor
definition due to low contrast between bone and soft tissues, nor
have they used rotated pelvic images that were not perfectly aligned
with anatomical planes.
Misaligned radiographs are not designed for the standard

assessment metrics, as the metrics are designed to be computed on
aligned images. Additionally, the computation is inherently limited
because the pelvic structure is a complex three-dimensional shape
being represented using a two-dimensional image slice. Reference
lines that are meant to be approximately horizontal on an aligned
image can be significantly altered or distorted in misaligned images.
This can adversely affect the standard deviation and variance of the
computed assessment metrics. Few studies analyze misaligned
images, but those that do show significant increases in measurement
variation in angles, such as lateral center edge angle and Sharp’s
angle [16]. This increase in variation can be in part attributed to the
change of the reference lines. Additionally, these metrics can be
further influenced by the obfuscation of overlapping features.
Compounding these limiting factors by computing these metrics by
hand is not ideal as it adds significant additional risk of intra- and
interobserver variability factors. This makes automating the
assessment metrics an ideal solution.
Radiographs are typically used for children older than 6months,

and the ACIN, MP, lateral center-edge angle (CEA), and SA are
used to assess DDH. The ACINmeasures the lateral coverage of the
FH by the acetabulum [17]. The MP measures the displacement of
the femoral head to the center of the acetabulum [18]. Conversely,
both the SA and CEA represent the acetabulum’s depth and capacity
to cover the FH [19].
This study prioritized the accuracy of the CEA due to its ability to

account for variations in the shape and size of the FHand acetabulum

compared to the SA. The CEA has a higher rate of reproducibility
and is less affected by variations in patient positioning compared to
the SA [20]. CEA also possesses the capability to monitor hip
plasticity in adaptive changes in the shape and position of the
acetabulum with respect to the FH over time [20]. The CEA is a
strong indicator for the assessment of DDH and thus is critical for a
neural network to identify accurately. The other goal of the study
was to determine how the neural network would handle rotated
pelvic images that were not perfectly aligned with anatomical
planes.
The detection of DDH using medical metrics can be straightfor-

ward for an experienced radiographer. However, DDHdiagnosis is a
time-consuming and repetitive process, which can be detrimental.
The purpose of this studywas to use a neural network to predictDDH
metrics in radiographic images and address the limitations in DDH
assessment, providing tools for practitioners by increasing the
accuracy of DDH diagnosis.

2 Material and Methods

Aset of de-identifiedCT scanswere collected from60 subjects for
use in this Institutional Review Board (IRB) approved study by
RainbowBabies and Children’s Hospital and CaseWestern Reserve
University under study number 20211382. The subject set included
30 males and 30 females, with three subjects at each year of age
ranging from 8 to 17 years. CT scans with fractures, hip dysplasia,
retained hardware, and known intravenous or oral contrast studies
were excluded. All CT scans contained healthy osseous structures
without apparent deformity.
The 60-subject CT scans were first converted into three-

dimensional (3D) models using the hospital’s Picture Archiving
and Communication System (PACS). These 3D models were
subsequently converted to two-dimensional simulated radiographs
by reducing the observable slab length to reflect the natural opacity
and viewing dimensions of radiographic imaging. This process is
displayed in Fig. 1.
The base position of eachCT scanwas set by aligning the superior

aspect of the femoral heads, rotating the pelvis to display symmetric
obturator foramina, and centralizing the tip of the coccyx between
the pubic tubercles. The simulated radiographs were then manip-
ulated in 3D space to predetermined set points. Each subject’s pelvis
was rotated along the mediolateral and craniocaudal axes in set
increments. There were five specific increments along each axis,
leading to a total of 25 pelvic images per subject, as shown in Fig. 2.
Around the craniocaudal axis, the five positions were the coccyx

centered between the pubic tubercles, the coccyx rotated to the
medial edge of the obturator foramen (each side), and the coccyx
rotated midway between these two points (each side). Around the
mediolateral axis, the five positions were the tip of the coccyx
centered between the pubic tubercles, the superior and inferior pubic
rami superimposed, the distance midway between these two points,
the pubic tubercles in line with the sacrococcygeal line, andmidway
between this point and the centered pubic tubercle point.
Images were subsequently saved in each position. Upon

collecting the 25 radiographs, each image was adjusted for uniform
brightness and contrast, and a standard sharpness of 35% was
applied to allow for visualization of radiographic landmarks used in
measurements. Therefore, a total of 1500 images were available for
training. Two hundred and fifty of the 1500 images were split off the
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set to function as testing samples to assess the trained algorithm. The
remaining 1250 images were used to teach, validate, and test the
algorithm. Before training the network, the images were prepro-
cessed to optimize the data.

2.1 Preprocessing Images. The first step in this process was to
resize the images sincemany of themwere not uniformly sized. Note
that this study used MATLAB (MathWorks, Natick,MA) to perform all
programming and implement a neural network. The images were
resized to JPEG images that were 1564 pixels wide by 940 pixels tall
with a resolution of 96 dots per inch. Additionally, the photos were
filled with extraneous data (e.g., patient information and camera
zoom percentage) that was not a part of the hip and could, therefore,
be removed based on the consistent location of this data within the
image, as shown in Fig. 3. Although the removal process worked
well formost of the images, a small number of processed images still
had a nominal amount of text. This was due to initial inconsistent

sizing, which, when resized, stretched the extraneous text to be
inconsistent with the majority of the data samples. This nominal
amount of text did not influence the algorithm prediction.

2.2 Labeling Procedure. The processed images were then
labeled utilizing MATLAB R2022B’s image labeling tool (image
processing toolbox). The previously described metrics (ACIN,
CEA, SA, MP) were analyzed, and unique locations were
determined to be used to create the ground truth metrics [21]. These
locations are the femoral head, the lateral acetabular roof, the
triradiate cartilage, and the pelvic teardrop (K€ohler teardrop) [22].
Example images of these points were created by medical

specialists; the locations were labeled as 6, 1, 2, and 5, respectively,
in Fig. 4(a). Note that 3 and 4 refer to the centers of the femoral head
and will be computed from the label of 6. Fig. 4(b) describes the
labels of the key locations replicated, and some of these locations are
abbreviated as follows: Sourcil Sharps MP (SSMP), Sourcil T€onnis

Fig. 1 Visualization of CT conversion process showing the 2-step process to convert CT scans to
radiographs with (a) the original CT scan, (b) the converted 3D model, and (c) the final simulated
radiograph

Fig. 2 A collage of images depicting the variation along craniocaudal and mediolateral axes for a single subject
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P2 (STP2), and FH. The locations shown in Fig. 4(b) were labeled
throughout the training set of 1250 images, with the labeling process
being reviewed by medical experts. At the end of the procedure, the
labeling was reviewed for consistency.

2.3 Algorithm Setup. The labels were exported and subse-
quently split into a training and testing set, further subdivided as

shown in Fig. 5. Additionally, to reduce computational demand, the
images and corresponding label coordinates were uniformly shrunk
by a factor of 4 to 391! 234. Tiny-yolov4-coco was the base
network for the algorithm, which possesses 2 detection heads and is
trained on the coco dataset. Csp-darknet53-coco was considered;
however, despite being the generic base network for YOLOv4, the
increase in computational cost coupled with marginal improvement
in results prevented it from being used in this study [5]. Four anchor
boxes were assigned per detection head. It is important to note that
YOLOv4 requires images with pixel length and width that are
multiples of 32. This necessitated a slight augmentation performed
by a MATLAB transform function to increase the images and labels to
the network input size of 416! 256, which can increase errors in the
network. This increase in image and label size was strictly for
training, and the network fed the 391! 234 images for assessment
purposes. The data were augmented by flipping and randomly
scaling the image to increase the available training data and improve
algorithm accuracy. Color change augmentation was ignored due to
the images being monochromatic. An example of augmented data is
shown in Fig. 6.
Table 1 depicts the pertinent training options used on the network.

Three network optimizer algorithms were considered, which were
stochastic gradient descent with momentum (SGDM), root-mean-
squared propagation (RMSProp), and adaptive moment estimation
(Adam). The optimizer algorithm utilized is Adam due to it utilizing
adaptive learning benefits from optimizers like RMSProp as well as
the benefits of a gradient descent from optimizers such as SGDM
[23]. Adam converged to excellent results without overtraining
within a period of 25 training epochs; note that the learning rate was

Fig. 3 Cropping of image artifacts (a) image prior to cropping and (b) image after cropping

Fig. 4 Labelingprocess (a) depicts locations assessedbymedical professionals and (b) depicts boundingboxes
chosen by the engineering team (blue is SSMP, orange is STP2, purple is FH, pink is pelvic teardrop, and green is
the center of the femoral head). (Color version online.)

Fig. 5 Flowchart depicting the usage of subject data
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unchanged for each epoch as the network converged appropriately,
as illustrated in Fig. 7. The bounding box loss was trained using a
mean square error loss function, and cross-entropy was used to
calculate the classification loss. The network was trained using a
multi-GPU setup in parallel on an RTX A4000 and RTX4000
(NVIDIA Corp., Santa Clara, CA).

2.4 Postprocessing Setup. The network outputs had to be
filtered through amultistage process to provide a similar comparison
to the ground truth values. The process is shown in flowchart form in
Fig. 8, with the input being 250 sets of predicted bounding boxes
from the unlabeled testing set. The first step to postprocessingwas to
check if enough labels were found for each label category. After this
stage, the predictions were converted from boxes into center point
locations. The center point locations were run through a K-means
clustering algorithm that was set using squared Euclidean distance
as defined in the following equation:

d x, cð Þ ¼ x% cð Þ x% cð Þ0 (1)

where x is the specific observation and c is the centroid for Eq. (1).
The clustering algorithmwasused to separate the left and right hips to

facilitate the correct identification for the computation of the metrics.
Occasionally, multiple predictions were made on each side, which
required the use of aweighted average shown in the following equation:

W ¼

Xn

i¼1

xiXi

Xn

i¼1

xi

(2)

Fig. 6 Augmented training data for use in increasing algorithm accuracy ((a) is the original
figure, (b) is the horizontal mirror of a, (c) is awith warped boundary boxes, and (d) is awith a
different warp on the boundary boxes)

Table 1 Optimal training settings for network training

Training setting Setting chosen

Maximum epochs 25
Learning rate 0.001
Mini-batch size 25
Batch normalization statistics Moving
Network output Best validation loss

Fig. 7 Plot depicting the training and validation losses of the
Adam, SGDM, and RMSprop

Fig. 8 Postprocessing flowchart showing filtering setup used on the network predictions
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where n is the number of observations, xi is the weight for the
corresponding observation, andXi is the corresponding observation.
The weighted average used the algorithm-computed scores as the
weights and the center point coordinates for the observations.
Finally, the last step of postprocessing is to check and make sure a
single observation exists on each side of the hip.

3 Results and Discussion

The network efficacy can be analyzed using a combination of
machine learning- and result-based metrics. The machine learning
metrics provide insight into the network’s accuracy and showwhere
training deficiencies relative to the labeling may occur. In contrast,
analyzing the results compared to expected values from surrounding
literature helps determine the effectiveness of the labeling and
network. Statistical analysis was also performed to assist in
diagnosing sources of error within the network. Using both metrics
in tandem will provide an overview of the general effectiveness of
the network chosen and help inform future work.

3.1 Machine Learning Metrics. Numerous machine learning
metrics are used to determine a trained network’s accuracy and
precision. These include precision, recall, F-measure, and mean
intersection over union (IoU). The mean IoU is the average of the
IoU. The IoU statistically gauges the similarity between two data
sets shown in the following equation:

IoU ¼ Area of Overlap

Area of Union
¼ jA \ Bj

jA [ Bj (3)

A andB are different sets, with the IoU being the distance between
the sets. Precision is defined as a proportional quantity that
determines what percentage of identifications are correct and is
defined in the following equation:

Precision ¼ TP

TPþ FP
(4)

where TP is true positive, and FP is false positive. The recall is
defined as the proportion of true positives that were identified
correctly and is defined in the following equation:

Recall ¼ TP

TPþ FN
(5)

where TP is true positive, and FN is false negative. Combining the
precision and recall into a single metric can be done by calculating a
metric known as the F-score. The F-score or F-measure is a metric
that utilizes both precision and recall. The F-score is able to verify
the accuracy of a model on a particular dataset and is defined as the
harmonicmean of the precision and recall, as shown in the following
equation: [24].

F% Score ¼ 2' P'R
Pþ R

(6)

where P is precision, and R is recall. The F-score is a generally
accepted metric for use in analyzing networks, but it does possess
limitations. The F-score has the primary limiting factor that it does
not use the true negative in the calculations when used in a confusion
matrix. This makes it ideal for situations where distinguishing
whether measurements are correctly identified in the appropriate
class is not a priority. However, for situations such as facial
recognition, predictive analytics, and medical diagnoses, it is less
suitable to rely on the F-score, as accurately classifying the
appropriate locations is a crucial component to ensuring that the
algorithm functions properly [25].

3.2 Medical Metrics. The results from the algorithm must be
compared to known health metric values. The ranges for healthy

radiographicmetrics are not universally agreed upon as the frame for
each metric changes with respect to numerous biological factors. In
general, the range for dysplasia grows narrower as the age of the
subject increases [26]. This general framework for analysis is
tabulated in Table 2. Since the simulated radiographs are for healthy
patients, ideally, the predicted metrics should fall within these
expected values with a very small tolerance. However, accounting
for the rotated images requires a degree of additional tolerance to
compensate for the degree of misalignment. In this case, recall that
the images were postprocessed utilizing the tolerances outlined in
Sec. 2.4 and Table 3.

3.3 Statistical Analysis. A method to analyze the results is to
compare the standard deviation of the predictions to the standard
deviation of the ground truth data. If the network predictions possess
similar standard deviations to the results, then it can be concluded
that the outputs are not gaining a significant increase in variance
error from the network. The formula for standard deviation is shown
in the following equation:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi % lð Þ2

N

s

(7)

where r is the standard deviation, xi is each value in the set, l is the
arithmetic mean, and N is the size of the set. The size of N for this
analysis is the number of subject images in each corresponding set
(e.g., 25 for ground truth).While the standard deviation is a powerful
statistical indicator, another statistic will be useful in comparing the
sets of data, namely, the Z-score. The z-score determines the number of
standard deviations a measurement in a particular set is from the
arithmetic mean, and its formula is defined in the following equation:

Z ¼ x% l
r

(8)

where Z is the z-score, x is the observed value, l is the arithmetic
mean, and r is the standard deviation related to the set that the
observed value is a member. Utilizing these statistical metrics in
tandem will allow for a greater understanding of the limitations of
the network. Note that the metrics will be normalized using a
probability density function that follows the formula defined in the
following equation:

vi ¼
ci

N'wi
(9)

where ci is the number of elements in the bin, N is the number of
elements of the input data, and wi is the width of the bin.

Table 2 General metric ranges for healthy, borderline, and
dysplastic hips

Metric Healthy Borderline Dysplastic Sources

SA 33(–38( 39(–42( >42( [22]
CEA 25(–42( 20(–25( <20( [21,22]
ACIN <¼ 13( N/A >13( [21,22]
MP <33% N/A >33% [27]

Table 3 Outlier limits developed to allow for realistic values
given the inherent limitations of misaligned radiographs

Measurement Limit References

Sharps angle 60( [22,28]
Center-edge angle 60( [21,22,29]
Acetabular index 25( [21,22,30]
Migration percentage 40% [27,31]
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3.4 Machine Learning Metric Outputs. The YOLOv4 net-
work training outputs were compared to ground truths using the
equations discussed in Sec. 3.1 and subsequently tabulated in
Table 4. For reference, the mean IoU of the network was 0.80. The
precision and recall were calculated using the computer vision
toolbox function “evaluateDetectionPrecision.” The IoU threshold
for the functionwas set to the value of 0.5, which required half of the
box output from the network to overlap with the bounding boxes
from the ground truth data to count as an overlap. As seen in Fig. 9,
while most of the labels were acceptably accurate, the two most
accurate labels were the femoral head and lateral acetabular roof. This
is excellent as those two locations are critical to measuring the center
edgeangle.The averageprecision andF-measure for those classeswere
also significantly higher than the remaining classes, as seen in Table 4.
This discrepancy can be attributed to the fact that the other 4 labels

have a large degree of variability in shape, size, and location, and
thus, due to the wide range, the algorithm struggles to identify points
correctly. To rectify this, additional data could be used to improve
training for these classes. Alternatively, these locations may
necessitate a different algorithm type, such as a segmentation
algorithm, to correctly identify these specific locations.

3.5 Machine Learning Image Evaluation. The raw ground
truth values were used to judge the algorithm’s accuracy. This was
done by feeding the label locations into a MATLAB program and
coding functions to calculate the angles for both hips.Additionally, a
code was developed to show the calculation line locations on the
image. Figure 10 shows an example output calculating themigration
percentage. Note that the left and right hips are from the subject
perspective, not the viewing perspective. The associated metrics in
Fig. 10 can be seen in Table 5.
The ground truth calculations from Table 5 are compared to the

machine learning algorithm predictions to determine the degree of
variation in outputs and assist with characterizing the effectiveness

Table 4 Machine learning metrics are broken down by class
showing deficiencies in two classes and high accuracy in two
classes

Class Avg. precision Avg. F-measure

FH 0.9743 0.6899
SSMP 0.9291 0.6651
STP2 0.6105 0.5117
SO 0.5422 0.4913

Fig. 9 Precision and recall plots broken down by class showing
that the femoral head and lateral acetabular roof were located
most accurately

Fig. 10 Ground truth image used for migration percentage calculations (blue line is pelvic teardrop
reference, pink represents FH, light blue SSMP, green dots are centers of the FH, red and green lines are
distance markers for migration percentage calculations). (Color version online.)
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of the network. Figure 11 depicts the same image as shown in Fig. 10
using the machine learning outputs, and Table 4 (highlighted in
yellow) shows the new calculated values based on the machine
learning outputs. As seen in both Figs. 11 and 10, the outputs are
close to the ground truth data shown in Fig. 10. Note that the
shrunken ground truth images (391! 234) were used as inputs, and
thus the boundary boxes had to be resized by a factor of 4 to calculate
and display the metrics on the higher-quality images. For this study,
radiographs with high contrast margins between bone and soft tissue
were defined as high-quality while radiographs with low contrast
margins were defined as low-quality images. While the network
produced reasonably accurate results for high-quality radiographs, it
struggled to find certain points on low-quality radiographs. This is
reflected in Fig. 12 and supported by the metric calculations in
Table 6. These differences are unacceptably high and are heavily
influenced by the pelvic teardrop locations beingmisidentified aswell as
the small shifts in the locations of the femoral head of the left hip. This
shows that while the algorithm can locate the general points for analysis,
itwill need refinement to identify themetrics on rotated images properly.
In some cases, the network has difficulty distinguishing critical

locations from background noise. This results in it not being able to
find some of the requisite prediction locations, such as the acetabular
teardrop and the medial head of the acetabulum, as illustrated in

Fig. 13. This, in turn, prevents most of the metrics from being
calculated since the teardrop reference line locations are not
calculated. The teardrop reference line is used as the orthogonal
reference to draw the vertical lines for theCEAandMP calculations.
Overall, the network can consistently identify key locations on

high-quality, nonrotated grayscale images. This is of key impor-
tance as it proves that it is indeed possible to automate metric
analysis using a traditional computer vision detection approach on
misaligned radiographs through the automation of this process.
While limitations exist, such as when the radiograph is rotated
significantly, features are obscured, or contrast is poor, the network
will still converge to a solution for most of the requisite network
outputs. Steps can be taken to help overcome the limitations which
are outlined in Sec. 3.7.

3.6 Statistical Analysis Results. In order to provide the best
assessment of the trends, it is necessary to remove outliers from both
the ground truth and fully processed network outputs. However,
using the recommended values for healthy metrics from Table 2
does not give regard to the fact that rotated images can be accurately
calculated to have larger angles due to an increase in variation from
themisalignment [29]. A rule for calculatingmost of themetrics is to
compute them with respect to a teardrop reference line drawn
between bothKohler teardrops. The vertical lines to compute factors
such as CEA and MP are defined to be orthogonal to the teardrop
reference line. As such, if the Kohler teardrops are rotated in a
misaligned image, the variation in the results can significantly
increase. Taking these factors into account, along with referencing
relevant articles for physically measured values, yields an outlier
limit table, as shown in Table 3. All values computed to be greater
than these were ignored.
The standard deviation and Z-scores for the four metrics between

the ground truth and network predictions were compared. For the
standard deviation, as shown in Fig. 14, the network prediction
variance for each metric stayed within the boundaries of the

Table 5 Medical metrics comparison between the ground truth
and high-quality image

Metric Ground truth High quality image

Abbrev. Left hip Right hip Left hip Right hip

SA 40.01( 34.68( 34.28( 36.37(

CEA 32.38( 41.91( 37.76( 40.95(

ACIN 8.42( 8.62( 6.93( 10.87(

MP 17.17% 2.87% 14.61% 9.18%

Fig. 11 Preliminary output results showing correlation to ground truth approximations (blue line is
pelvic teardrop reference, pink represents FH, light blue SSMP, green dots are centers of the FH, red and
green lines are distance markers for migration percentage calculations). (Color version online.)
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manually labeled ground truth data. In particular, the network
predictions possessed less variance for the acetabular index than the
ground truth. The network did not increase the variance of the
predictions in comparison to the given ground truth data. This shows
that the network has converged to a solution and eliminates concerns
of the network being overtrained.
The Z-scores can be seen in Fig. 15, which shows an excellent

correlation between the true measures and the estimated ones. It is
key to note that the standard deviations used to compute the Z-scores
are themanual hand-labeled standard deviations for the correspond-
ing image sets. This is key to understanding as it relates the network
observations to the ground truth. The arithmetic mean values used
were computed from the prediction sets. The Z-scores were plotted
up to five standard deviations off of themean; however, themajority
remained within 3 standard deviations. Additionally, most of the
observations lay within 1 standard deviation of the arithmetical
mean. This is excellent, given the high precision shown in Fig. 14;

this means that a majority of the labeling was consistent from both
the hand and network predictions.

3.7 Limitations. The current limitations of the network stem
from its inability to accurately locate some of the labels. Addition-
ally, while 1500 images appear to be a large number in terms of
machine learning, it is relatively small. When broken down, it only
permits 60 images of each rotation, which may be insufficient to
train the network to locate the less distinct points, such as the pelvic
teardrop. There are also concerns regarding the fact that most
detection algorithms were designed to identify color photographs
rather than monochrome images. The addition of color assists in
delineating key features of images. Overcoming these limitations
will require modification of the approach for calculating the metrics
and potentially require replacing and shifting the network layers
and learning scheme. This network utilized a transfer learning
scheme as it loaded a pretrained network that was subsequently
retrained. Replacing the pretrained network with one more suited
for medical imagerymay improve results. Alternatively, switching
the training method to change the weights in all layers of the
network fully could potentially improve results. Additionally, it
may become necessary to redefine the method of computing the
assessment metrics if the orthogonality condition yields inaccurate
results.

4 Conclusion

The goal of this study was to use a neural network to predict DDH
metrics in radiographic images and address the limitations of DDH
assessment. One of the key results noted is that the network
responses are precise and statistically correlate with the ground truth
labeling using standard deviation and Z-score analysis. Addition-
ally, it was found that image quality plays a key role in whether the
network will be capable of predicting the required locations to

Fig. 12 Misaligned pelvic image showing networks strugglewith locating certain locations such as the
pelvic teardrop when rotated images are shown (blue line is pelvic teardrop reference, pink represents
FH, light blue SSMP, green dots are centers of the FH, red and green lines are distance markers for
migration percentage calculations). (Color version online.)

Table 6 Medical metrics predicted from nonaligned images
show deficiencies in some of the calculations, specifically the
ACIN and CEA this is corroborated by the percentage error
between nonaligned predicted medical metrics and ground truth
data

Metric Ground truth Low quality image

Abbrev. Left hip Right hip Left hip Right hip

SA 38.78( 51.92( 28.55( 56.68(

CEA 45.33( 37.40( 50.12( 32.76(

ACIN 4.59( 1.28( 5( 2.38(

MP 6.94% 9.86% 4.90% 13.52%
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Fig. 13 Image depicting network limitations, particularly with not being able to locate the critical
points for the teardropandacetabular index reference lines,whicharecritical forcalculatingmetrics

Fig. 14 Standard deviation comparison for the four medical metrics comparing ground truth and network outputs
showing a correlation between input standard deviation variance and the output variance
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compute the medical diagnostic metrics. High-contrast images that
were rotated along a single axis produced accurate results with
predictions that converged. Lower-contrast images rotated along
multiple axeseitherproducedunsuitable results orwerenot capable of
producing predictions. The network has significant difficulties with
locating the pelvic teardrop andmedial head of the acetabulum,which
affects themeasurements that relyon those locations.Overcoming the
limitations will be required to proceed to the next phase of this study,
which can be done by performing refinement as outlined in Sec. 3.7.
The applications of this neural network, once refined, can be

extended to investigating radiographs where information is missing
or corrupted, such as hemipelvic radiographs. Analyzing and
correctly quantifying the metrics on datasets with nonideal or
omitted information is of significant value. A key point to note is that
the radiographic measurements of the values in this initial
investigation are directly defined. This is to say that there were no
attempts to correct the metrics to a value on an aligned radiograph. A
future goal would be to have a machine learning network learn how to
identify the bias in the values based on rotations according to the aligned
image frame. This type of task is not easy for a human to perform, but a
machinecouldpotentiallydoso.Theability toautomatically identify the
radiographicmetrics for use on longitudinal data is of extreme interest in
understanding conditions that affect hipmorphology and growth,which
is of vital importance to treating conditions such as DDH.
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Nomenclature

ACIN ¼ acetabular index
CEA ¼ lateral center-edge angle
CT ¼ computed tomography

CNN ¼ convolutional neural network
DDH ¼ developmental dysplasia of the hip
FH ¼ femoral head
FN ¼ false negative
FP ¼ false positive
IoU ¼ intersection over union
MP ¼ migration percentage
P ¼ precision
R ¼ recall

RMSProp ¼ root-mean-squared propagation

Fig. 15 Z-score comparison for the 4 medical metrics comparing ground truth and network outputs showing higher
correlation between input variance and output variance than standard deviation
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SA ¼ sharp’s angle
SGDM ¼ stochastic gradient descent with momentum
SSMP ¼ sourcil sharps migration percentage
STP2 ¼ sourcil T€onnis P2
TN ¼ true negative
TP ¼ true positive

YOLO ¼ you only look once
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