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Abstract

We prove three results concerning the existence of Bohr sets in threefold sumsets. More precisely, letting G be a
countable discrete abelian group and ¢, ¢>, ¢3 : G — G be commuting endomorphisms whose images have finite
indices, we show that

(1) If A C G has positive upper Banach density and ¢; + ¢ + ¢3 = 0, then @1 (A) + ¢p(A) + ¢3(A) contains a
Bohr set. This generalizes a theorem of Bergelson and Ruzsa in Z and a recent result of the first author.

(2) For any partition G = J_, A;, there exists an i € {1,...,r} such that ¢1(A;) + ¢2(A;) — ¢2(A;) contains a
Bohr set. This generalizes a result of the second and third authors from Z to countable abelian groups.

(3) If B, C c G have positive upper Banach density and G = |J!_, A; is a partition, B+ C + A; contains a Bohr set
for some i € {1,...,r}. This is a strengthening of a theorem of Bergelson, Furstenberg and Weiss.

All results are quantitative in the sense that the radius and rank of the Bohr set obtained depends only on the indices
[G : ¢;(G)], the upper Banach density of A (in (1)), or the number of sets in the given partition (in (2) and (3)).
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1. Introduction

This paper continues the investigation set forth in [33]. Let G be an abelian topological group. If
A,B C G, the sumset and difference set of A and B are A+B .= {a+b : a € A,b € B} and
A—-B:={a-b:ae A b e B}, respectively. For a € G, the translate a + B is {a + B : b € B}.
If s € Z, we define sA := {sa : a € A}. A character of G is a continuous homomorphism from G to
Sl:={zeC:|z] =1}

Many classical results in additive combinatorics state, roughly, that sumsets are more structured than
their summands. Such results often quantify the structure found in sumsets in terms of Bohr sets, which
we define here. For a finite set A of characters of G and a constant > 0, the set

B(A;n) ={xeG:|y(x)—1| <nforally € A}

is called a Bohr set, a Bohrg-set or a Bohr neighborhood of 0 in the literature. In this paper, we use
mostly the first nomenclature. The set B(A;n) is also called a Bohr-(k, 1) set, where k = |A|. We refer
to n as the radius and k as the rank of the Bohr set. By a translate of a Bohr set, or a Bohr neighborhood,
we mean a set of the form a + B(A;n) for some a € G.

After summarizing previous results in Sections 1.1 and 1.2, we state our new results in Section 1.3.

1.1. Previous results in 7

If A C Z, the upper Banach density of A is

ANn{M+1,....M+N
d*(A) = lim sup max | { }|.
Nooo MeZ N

The study of Bohr sets in sumsets started with the following important theorem of Bogolyubov [11].

Theorem A (Bogolyubov). If A C Z has positive upper Banach density, then A — A+ A — A contains a
Bohr set whose rank and radius depend only on d*(A).

While it originated from the study of almost periodic functions, Bogolyubov’s theorem is now a
standard tool in additive combinatorics. It was used in Ruzsa’s proof of Freiman’s theorem [35] and in
Gowers’s proof of Szemerédi’s theorem [22].

Fglner [15] showed that the last two summands in Bogolyubov’s theorem are ‘almost’ redundant by
proving that A — A already contains a set of the form B \ E, where B is a Bohr set and d*(E) = 0.
The exceptional set E is unavoidable: Kriz [32] demonstrated that there exists a set A of positive upper
Banach density for which A — A contains no Bohr sets. The first author [26] showed that there is a set
A having d*(A) > 0 such that A — A contains no Bohr neighborhood of any integer.
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Hegyvéri and Ruzsa [28] generalized Bogolyubov’s theorem in a different direction, showing that
there exist ‘many’ a € Z for which A — A + A — a contains a Bohr set. Bjorklund and the first author
[10, Theorem 1.1] strengthened this result by providing explicit bounds on the rank and radius of such
a Bohr set and generalized the result to all countable amenable discrete groups (and hence all countable
discrete abelian groups).

Regarding more general threefold sumsets, Bergelson and Ruzsa proved the following.

Theorem B [7, Theorem 6.1]. Let 51, 52, 53 be non-zero integers satisfying s1 + sy +s3 =0. If A C Z
has positive upper Banach density, then s1A + syA + s3A contains a Bohr set whose rank and radius
depend only on sy, s, s3 and d*(A).

Since any Bohr set in Z must contain 0, the condition s; + 57 + 53 = 0 is easily seen to be necessary by
taking A = MZ+ 1 for some M > |s{|+|s2| +|s3|. In particular, one cannot expect A + A — A to contain
a Bohr set for every A of positive upper Banach density. When (s, s2,53) = (1,1, -2), Theorem B
generalizes Theorem A since A+ A-2ACA+A-A-A.

While the problem of finding Bohr sets in sumsets where the summands have positive upper Banach
density has attracted much attention, the analogous question concerning partitions was little studied until
recently, and the situation is less well understood. The following question, popularized by Katznelson
[31] and Ruzsa [36, Chapter 5], is a well-known open problem in additive combinatorics and dynamical
systems.

Question 1.1. If Z = | J;_, A;, must one of the difference sets A; — A; contain a Bohr set?

In terms of dynamical systems, Question 1.1 asks if every set of recurrence for minimal isometries
(also known as a set of Bohr recurrence) is also a set of recurrence for minimal topological systems. See
[20] for a detailed account of the history of Question 1.1 and many equivalent formulations. See [27]
for more equivalent formulations and resolution of some special cases.

Regarding three summands, the second and third authors proved the following partition analogue of
Theorem B.

Theorem C [33, Theorem 1.4].

(i) Let 51,50 € Z\ {0}. For any partition Z = \J;_, Ai, there is an i such that siA; + s2A; — $24;
contains a Bohr set whose rank and radius depend only on s1, sy and r.
(ii) For any partition Z = \Ji_, A;, there is an i such that A; — A; + sA; contains a Bohr set for any

s ezZ\{0}.

Rado’s theorem says that an equation Z']‘.:l sjx; = 0 with coefficients s; € Z\ {0} is partition regular
over Z \ {0} if and only if there exists J C {1,...,k},J # @ such that 2jes Sj = 0. Combined with
Theorem B, part (i) of Theorem C gives a complete characterization of tuples (s, ..., sx) € (Z\ {0})*
that guarantee the existence of a Bohr set in 21;:1 sjA;, for some 7, as long as k > 3. They are precisely
tuples satisfying Rado’s condition.! This characterization is a strengthening of Rado’s theorem. As the
integer s in Part (ii) can be arbitrarily large, this suggests that either the answer to Question 1.1 is positive
or the construction of a counterexample must be very delicate.

1.2. Previous results in compact groups

As part of a general program, we aim to study the Bohr sets in sumsets phenomenon in more general
groups. A natural setup is amenable groups, since in these groups there is a natural notion of density,
and Bohr sets can also be defined.? A locally compact group G with left Haar measure m¢ is said to

To see that this condition is necessary, suppose Zle sjA; contains a Bohr set. By giving 0 its own partition class, we may

assume 0 ¢ A;. Since a Bohr set must necessarily contain 0, this implies that there are x; € A; such that Zle sjxj =0, and

Rado’s condition applies. To see that this condition is sufficient, observe that (s + ) A C sA + tA, so the case k > 3 can be
reduced to the case k = 3.

2For non-abelian groups G, Bohr sets can be defined in terms of finite-dimensional unitary irreducible representations of G
(see [10]).
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be amenable if there exists an invariant mean on G, that is, a linear functional A on L*(m¢) that is
nonnegative (i.e., A(f) = 0if f > 0), of norm 1 (i.e., (1) = 1) and left-invariant (i.e., 1(f;) = A(f),
where f;(x) = f(r"'x)). If A c G is a Borel set, we can define its upper Banach density as

d*(A) = sup{A(1,) : A is an invariant mean on G.} )

The supremum is actually a maximum since the set of invariant means on G is weak*-compact, by the
Banach-Alaoglu theorem. It is well known that all locally compact abelian groups are amenable. Fglner
[15, 16] generalized Theorem A to discrete abelian groups, and the results of [10] mentioned above
apply to countable discrete amenable groups which are not necessarily abelian.

Against this backdrop, our objective in this program is threefold. First, we ask for analogues of
Theorems B and C in (a subclass of) amenable groups. Second, in the context of general groups, we
can replace the dilate sA by ¢(A), the image of A under a homomorphism ¢. This point of view leads
to a wider range of applications: we can consider linear maps on vector spaces and multiplication by an
element in a ring (see Corollary 1.6 below). This broader perspective was also adopted in recent works
[2, 3] on Khintchine-type recurrence for actions of an abelian group. Third, we aim for uniformity in
terms of rank and radius of the Bohr set in question (i.e., they are allowed to depend on d*(A) and
other parameters, but not A itself). This is because, in some situations, the existence of Bohr sets is
straightforward (for example, an interval around O in R/Z always contains a Bohr set), but obtaining
uniformity is much harder.

In [33], these objectives were achieved for compact abelian groups. Note that in this case, the only
invariant mean on G is given by m¢ (the normalized Haar measure on G) and d*(A) = mg(A). The
second and third authors proved the following.

Theorem D (Le-L& [33]). Let K be a compact abelian group with normalized Haar measure mg. Let
&1, 62, ¢3 : K — K be commuting continuous endomorphisms such that [K : ¢ ;(K)] < oo for each j.

(1) Ifp1+d2+¢3 =0and A C K is a Borel set withmg (A) > 0, then ¢1(A) + ¢2(A) + ¢3(A) contains
a Bohr-(k,n) set, where k and n depend only on mg (A) and [G : ¢,;(G)].
(i) IfK =Ji_, Aiisapartition of K into Borel sets, then there exists i such that ¢1(A;)+¢2(A;)—d2(A;)
contains a Bohr-(k,n) set, where k and n depend only on r and [G : ¢;(G)].

The finite index condition is necessary and also appears in [2]. However, we do not know if the

assumption that the ¢; commute can be omitted.

1.3. New results in discrete groups

In this paper, we extend many of the preceding results to the setting of countable discrete abelian
groups. Our main results are discrete analogues of Theorem D, and as such, are direct generalizations
of Theorems B and C.

Theorem 1.2. Let G be a countable discrete abelian group. Let ¢y, ¢o, ¢p3 : G — G be commuting
endomorphisms such that ¢1 + ¢2 + ¢3 = 0and [G : ¢;(G)] are finite for j € {1,2,3}. Suppose A ¢ G
has positive upper Banach density, (i.e., d*(A) > 0). Then the set

$1(A) + ¢2(A) + ¢3(A)
contains a Bohr-(k,n) set, where k and n depend only on d*(A) and the indices [G : ¢;(G)].
Remark 1.3.

o In the special case ¢;(x) = s;x, where 5; € Z \ {0}, Theorem 1.2 was proven by the first author [23]
without the conclusion on the uniformity of £ and 7.
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o The conclusion of Theorem 1.2 remains valid if the ¢; do not necessarily commute, but one of them
is an automorphism. Indeed, assume that ¢, is an automorphism. We observe that

B1(A) + 92(A) + 63(A) = 91 (A + 67" 0 62(4) + 67" © 63(4)).
Consider the endomorphisms /d, ¢l“ o ¢ and ¢I‘ o ¢3. They add up to O since
Id+¢7 odo+ ¢y 03 =1d+¢7" o (g2 +¢3) = Id+ ;' o (=¢1) =0.

They also commute* and have finite index images. Theorem 1.2 implies A + ¢1’1 ogr(A)+ ¢l’1 o¢3(A)
contains a Bohr set, and the image of a Bohr set under an automorphism is easily seen to be a Bohr
set of the same rank and radius (see Lemma 2.2).

o The hypothesis ¢ + ¢2 + ¢3 = 0 cannot be removed as demonstrated in the remark after Theorem B.

o Similarly, the condition that each index [G : ¢;(G)] is finite cannot be omitted. For example, take
G =7Z, ¢1(x) =x, ¢p2(x) = —x, and ¢3(x) = 0 for x € Z. Then ¢;(A) + ¢2(A) + ¢3(A) = A — A,
and the Kriz example [32] shows that there exists a set A of positive upper Banach density such that
A — A does not contain any Bohr set. See [23, Remark 1.6] for further discussion.

Theorem 1.4. Let G be a discrete abelian group and let ¢y, ¢ : G — G be commuting endomorphisms
such that |G : ¢;(G)] is finite for j € {1,2}. Then for every finite partition G = \J;_, A;, there exists
i€{l,...,r} such that

#1(A;) + ¢2(A;) — ¢2(Ay)

contains a Bohr-(k,n) set, where k and n depend only on r and the indices [G : ¢;(G)].
Remark 1.5.

o In contrast to Theorem 1.2 and Theorem 1.7 below, Theorem 1.4 does not assume G is countable.
The reason is that the former two theorems use Kronecker factors via Furstenberg’s correspondence
principle, and the theory of factors requires the group to be countable. There are two ways to think of
a factor of a measure preserving G-system: as a spatial map or as a G-invariant sub o-algebra. The
latter can be obtained trivially from the former, but the converse is not trivial, and requires the group
to be countable (in addition to the o-algebras being separable). For instance, the method of proof of
Theorem 5.15 in [18] requires G to be countable.

o Since Bohr sets contain 0, Theorem 1.4 implies that the equation ¢ (x)+¢2(y) —¢2(z) = Ois partition
regular in discrete abelian groups, that is, under any partition G = |J/_, A;, there exists non-zero
x,Y,z in the same class A; such that ¢;(x) + ¢2(y) — ¢2(z) = O (to see that we can take x, y, z to be
non-zero, give 0 its own partition class).

o If d*(A) > 0, then A + A — A is not guaranteed to contain a Bohr set as remarked after Theorem B.
In particular, the analogous version of Theorem 1.4 for sets of positive upper Banach density is false.

o The hypothesis that ¢,(G) has finite index in G cannot be omitted. For example, taking ¢, = 0 and
¢1(x) = x for x € G, the sumset in Theorem 1.4 simplifies to A;.

The question of whether the Theorem 1.4 remains true without the assumption that [G : ¢ (G)] is
finite is essentially Question 1.1: we may take ¢1(x) = 0 and ¢, (x) = x for all x € G, and the sumset
in Theorem 1.4 simplifies to A; — A;.

o Similar to Theorem 1.2, the hypothesis that the ¢; commute can be removed if one of them is an
automorphism.

As a consequence of Theorems 1.2 and 1.4, we obtain immediately the following number field
generalization of Theorems B and C. In [33], this result was proved (at least for Z[{]) using a different
argument, similar to Bogolyubov and Bergelson-Ruzsa’s proofs of Theorems A and B in Z.

3Whenever three endomorphisms sum to 0 and two of them commute, all three must commute. Since I d commutes with every
endomorphism, these three commute.
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Corollary 1.6. Let K be an algebraic number field of degree d and Ok be its ring of integers (so the
additive group of Ok is isomorphic to Z%). Let s, 52, 53 € O \ {0} such that s| + s2 + 53 = 0.

(1) If A Cc Ok has d*(A) > 0, then s\ A+ s, A+ 53A contains a Bohr set, whose rank and radius depend
only on d*(A) and the norms of s, 52, s3.

(i) If Ok = le Ay, then there exists i such that s1A; + spA; — spA; contains a Bohr set, whose rank
and radius depend only on r and the norms of s| and s».

Bergelson, Furstenberg and Weiss [5, Corollary 1.3] showed that if B, C C Z have positive upper
Banach density and A ¢ Z is syndetic, then B + C + A contains a translate of a Bohr set. Here a set
A C Z is syndetic if a collection of finitely many translates of A covers Z. Our next theorem not only
generalizes Bergelson-Furstenberg-Weiss’s result to countable abelian groups but also strengthens it by
only assuming that A arises from an arbitrary partition. Moreover, we provide quantitative bounds on
the radius and rank of the Bohr set, a feature not presented in [5].

Theorem 1.7. Let G be a countable discrete abelian group and let B, C C G have positive upper Banach
density. Then for any partition G = \Ji_, A;, thereisani € {1,...,r} such that B+ C + A; contains a
Bohr-(k,n) set, where k,n depend only on d*(B),d*(C) and r.

We deduce Theorems 1.2, 1.4 and 1.7 from their counterparts for compact abelian groups (i.e.,
Theorems D and 10.1). However, the latter can be used as black boxes and the reader does not need
to know their inner workings. The heavy lifting of this paper is done by correspondence principles,
which state that sumsets in discrete abelian groups can be modeled by sumsets in compact abelian
groups. This strategy dates back at least to Furstenberg’s correspondence principle [17], used in his
proof of Szemerédi’s theorem. However, to accommodate the three different kinds of sumsets in our
results, we need three different correspondence principles. These are Proposition 6.2, Proposition 7.1
and Proposition 9.6.

Our bounds for k and 7 in Theorems 1.2, 1.4 and 1.7 are transferred from and have the same quality
as their compact analogues. Since the proof of Theorem D (i) relies on a regularity lemma, the bounds
in Theorem 1.2 are of tower type. The proof of Theorem D(ii) relies on the Hales-Jewett theorem, so
the bounds in Theorem 1.4 are extremely poor (albeit still primitive recursive). As for Theorem 1.7, we
get more appealing bounds of the form 17 = Q(d*(B)d*(C)r~") and k = O(d*(B)~2d*(C)~?r?), though
these may not be optimal (see Question 11.2).

1.4. Main ideas of the proofs

Here we outline the obstacles to proving Theorems 1.2, 1.4 and 1.7 and our strategies for overcoming
them. We will use notation and terminology defined in Section 2.

Theorem 1.2: To prove the first theorem, we find a parameterized solution to the relation
P1(w) € ¢1(A) + $2(A) + ¢3(A). 2
For instance, w will satisfy (2) if
u+w—¢r(v),u+¢(v), and u all belong to A for some u,v € G.

Then Furstenberg’s correspondence principle is applied to show that the set of such w contains the
support of the multilinear ergodic average:

I(w) :=UC - lim / fTo ) f * Tw-gy(0) f du, 3)
gEG X
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Figure 1. Relations among X, Y, Z, and K.

where (X, u, T) is an ergodic G-system and f : X — [0, 1] is a measurable function with fX fdu=
d*(A). As shown in [2], the Kronecker factor (Z, mz, R) is characteristic for the average in (3) and so

I(w):UC—lim/f~R¢l(g)f-RW_¢2(g)fdmz,
gEG X

where f : Z — [0,1] satisﬁesf fdmyz = f f du (see Section 2.2 for the definition of UC —lim). In order
to utilize the corresponding result in compact groups [33], we need to show that the homomorphisms
®1, ¢2, ¢3 induce homomorphisms ¢ j on Z satisfying é joT =T1o¢;, where 7 is anatural embedding of
G in Z. This is straightforward under the additional assumption that the spectrum of (X, u, T) (i.e., the
group of eigenvalues) is closed under each ¢ ;. However, the spectrum of (X, u, T') will not, in general,
be closed under the ¢ ;.

To overcome this problem, we find an ergodic extension (Y, v, S) of (X, u, T') such that the spectrum
of (Y,v,S) contains a subgroup I' which extends the spectrum of (X, u,T) and is invariant under
each ¢;. After lifting f to Y, the Kronecker factor Z of X can be viewed as a factor of Y and is still
characteristic for the averages in (3). Thus, any extension of Z in Y will also be characteristic for these
averages. The group rotation factor K of Y corresponding to I" is such an extension of Z, and this allows
us to transfer the Bohr sets obtained in [33] to G. Figure | demonstrates the relations among X,Y,Z
and K where Y — X means Y is an extension of X.

Theorem 1.4: In contrast to the sumset ¢ (A) + ¢2(A) + $3(A), a parametrized solution to ¢, (w) €

$1(A) + ¢2(A) — ¢2(A) is
(V) u+w,u+¢(v) €A 4)

The absence of the variable u in the first function prohibits us from using Furstenberg’s correspondence
principle as we do in the Proof of Theorem 1.2. Instead, we use Proposition 7.1, which models the
relevant sumsets by convolutions on the Bohr compactification of G. This idea was used in [10] to
express A + A — A in terms of convolutions on a compact group. Parts of this process also already
appeared in Fglner’s works [15, 16].

Specifically, we fix an invariant mean v on G with d*(A) = v(14), and observe that the difference
set A — A contains the support of the convolution 14 #, 1_4(¢) := v(14144,). This convolution is
easily verified to be a positive definite function on G, which can therefore be represented as a Fourier
transform of a positive measure o on G. The continuous part of o can be ignored, allowing us to expand
14 *, 1_4(¢) as a Fourier series and express A + A — A in terms of a convolution /4 * hs * h_4 on bG,
the Bohr compactification of G.

To study the more complicated expression ¢;(A) + ¢2(A) — ¢2(A), we need to investigate the
relationship between 14 *, 1_4 and 1g,(4) *, 1_g,(4). This investigation leads to the introduction of
Radon-Nikodym densities p;, pgz A) and their relationship in Section 4. After the required relationship
is established, we put all ingredients together (Proposition 7.1, Corollary 4.10) and use the compact
counterpart in [33] to prove Theorem 1.4.
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Theorem 1.7: This last theorem relies on two ingredients:

(i) an estimate for the rank and radius of a Bohr set in sumsets of the form B + C + A;, where B, C
are subsets of a compact abelian group K and K = [J;_; A;. We bound the rank and radius in
terms of mg (B), mg (C) and r, using the pigeonhole principle and elementary estimates on Fourier
coefficients.

(i) a correspondence principle relating the expression B + C + A; in a discrete abelian group to an
analogous expression in a compact abelian group.

The two correspondence principles previously mentioned do not apply to the expression B+ C + A;;
see Remark 1.8. Instead, we use a result from [25] which exhibits piecewise Bohr structure in B + C.
This allows us to relate B + C + A; to a convolution hg * hc * ha, on a compact group K, where each
of these functions takes values in [0, 1], / hg dmg > d*(B), / hcdmyg > d*(C),and X7, ha, > k.

Remark 1.8. None of the three correspondence principles outlined above subsumes the others. The
sumset ¢ (A) + ¢2(A) + ¢3(A) with ¢y + ¢» + ¢3 = 0 is translation invariant (replacing A with
a translate of A does not affect this sumset) and so a straightforward application of Furstenberg’s
correspondence principle suffices. The second sumset ¢1(A) + ¢2(A) — ¢2(A) is no longer translation
invariant and hence requires a different correspondence principle. Since the last sumset B + C + A; is
neither translation invariant nor has the form A + B — B, we need yet another correspondence principle.
Conversely, one cannot use the third principle for the first two sums since this principle does not retain
the relations among the summands which are present in the fact that ¢ (A), ¢2(A), ¢3(A) are images
of the same set A.

1.5. Outline of the article

In Section 2, we set up notation and present some basic facts about measure preserving systems,
Bohr compactifications, Kronecker factors, etc. In Section 3, we describe a general construction of
homomorphisms from discrete groups into compact groups with dense image. This construction is used
in the proofs of all of our results. Section 4 is devoted to transferring functions on discrete groups to
compact groups, an ingredient used in the proofs of Theorems 1.4 and 1.7. After these preliminaries,
Theorem 1.2 is proved in Sections 5 and 6, then Theorem 1.4 is proved in Sections 7 and 8. We prove the
correspondence principle needed for Theorem 1.7 in Section 9 and establish the theorem in Section 10.
Lastly, we present some open questions in Section 11.

2. Background
2.1. Notation and convention

Throughout this paper, G is a countable discrete abelian group, and K is used to denote a compact
Hausdorft abelian group. We use mg to denote the unique probability Haar measure on K. The set of
all continuous functions on K is denoted by C(K).

For r € N, we use [r] to denote {1,2,...,r}. By the support of a function f, denoted by supp f, we
mean {x : f(x) # 0}.

2.2. Foplner sequences and uniform Cesaro averages

A sequence F = (F )y e of finite subsets of G is a Fglner sequence if for all g € G,

|[Fna(g+Fn)l

lim =0.

N—eo |Fnl

Every countable abelian group admits a Fglner sequence. This is due to the fact that all discrete
abelian groups are amenable, and having a Fglner sequence is one of the many equivalent definitions of
amenability for countable discrete groups (see [30]).
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If F is a Fglner sequence and A C G, the upper density of A with respect to F is

- ANF
dp(A) :=lim sup M
N > |FN|

The upper Banach density of A is
d*(A) := sup{dp(A) : F is a Fglner sequence} (5)

(for a proof that the definitions (1) and (5) are equivalent, see [9, Proposition A.6]).
Letu : G — C be a bounded sequence. We say (u(g))qec has a uniform Cesaro average if for every
Fglner sequence (Fn)n en, the limit

1
lim —— u
N —o00 |FN| Z (g)

neFyn

exists and is independent of the choice of Fglner sequence. In this case, we denote the common limit by
UC - limgeg u(g).

2.3. Measure preserving systems

A measure preserving G-system (or G-system) is a quadruple X = (X, B, u,T), where (X, B, ) is a
probability space and G acts on X by transformations 7, which preserve u; that is,

u(Tg'A) = u(A)

for all measurable A C X and all g € G. In this paper, all probability spaces underlying G-systems are
assumed to be separable; that is, B is countably generated modulo null sets, or equivalently, LP (X, 3, u)
is separable forall 1 < p < oo. In particular, if X is a compact metric space, B3 is its Borel o-algebra and
u is any probability measure on B, then (X, B, ) is separable. When there is no danger of confusion,
we will suppress the o-algebra B and write (X, u, T) for a G-system. We abbreviate G-systems with
boldface letters: X = (X, u, T).

The G-system (X, 3, u, T) is said to be ergodic if ,u(AATg_lA) =0 for all g € G implies u(A) =0
or u(A) =1.

If f € L?(u) and g € G, we write T, f for f o T,. This defines an action of G on L?(y) by unitary
operators Ty.

A G-system Y = (Y, D, v, S) together with a map 7 : X — Y defined for u—almost every x € X is a
factor of X = (X, B, u, T) if mou = v (i.e. (77" (A)) = v(A) forall A € D) and forall g € G,

n(Tgx) = Sgm(x) for u-almost all x € X.

The map 7 is called a factor map. The space L?>(v) can be identified with the subspace of L%(u)
consisting of functions of the form /4 o 7, where h € L?(v). We use E(-|Y) : L?(u) — L?(v) to denote
the corresponding orthogonal projection. Later we abuse notation and write ‘Y is a factor of X’ instead
of (Y, n) is a factor of X".

For a Fglner sequence (Fy)nen in G, functions fy, ..., fr € L®(u) and sequences s, ..., Sk :
G — G, we say the factor Y is characteristic for the average

1
= Z ‘/);fO'TYI(g)fI"'Tsk(g)fkd#

gEFN
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if

1
I = lim —
N—e |Fy|

Z /fo ' TSn(g)fl "'TSk(g)fk dv,
geFn 'Y
where fiz E(£]Y).
Let G denote the Pontryagin dual of G (i.e., the group of characters y : G — § ! with the operation

of pointwise multiplication). A character y € G is called an eigenvalue of X if there exists a nonzero
function f € L*(u) such that T, f = x(g)f for all g € G. The set of all eigenvalues for X forms a

subgroup of G, called the spectrum of X and denoted by £(X). If Y is a factor of X, then £(Y) is a
subgroup of £(X). If X is ergodic, then all eigenspaces are one-dimensional and mutually orthogonal
(for a proof, see [39, Theorem 3.1]). Since L? () is separable, £(X) is at most countable.

2.4. Kronecker factors
A group rotation G-system is a G-system K = (K, mg, R) in which

o K is a compact metrizable abelian group with Borel o--algebra /C, probability Haar measure mg and
o there is a homomorphism 7 : G — K such R,(z) =z+7(g) forallz € Kand g € G.

The group rotation (K, mg, R) is ergodic if and only if 7(G) is dense in K. In this case, (K, mg, R)
is, in fact, uniquely ergodic (i.e., mk is the unique R-invariant probability measure on K) (for a proof,
see [2, Lemma 2.4]). Consequently, the sequence (7(g))qec is well-distributed in K; that is, for every
continuous function # € C(K),

UC - lim h(7(g)) =/ hdmg. (6)
geG K

For an ergodic G-system X, its Kronecker factor K = (K, mg, R) is a factor of X with factor map
7 : X — K such that L?(my) is spanned by the eigenfunctions of X, meaning:

(i) every eigenfunction f € L?(u) is equal u-a.e. to f o & for some eigenfunction f € L?(mg), and
(ii) the span of the eigenfunctions of K is dense in L*(m).

It can be shown that K is the largest factor of X that is isomorphic to an ergodic group rotation G-system.
More concretely, K = (K, mg, R), where K = g(Y) (see Lemma 3.3 (iii)).

Let (X, u, T) be an ergodic G-system with Kronecker factor (K, mg, R) and fi, f>, f3 € L*(X). It
is shown in [2, Theorem 3.1] that if ¢, : G — G are homomorphisms such that ¢(G), ¥ (G), and
(¥ — ¢)(G) each have finite index in G,

UC — lim / f] . T¢(g)f2 . T¢(g)f3 d/.l (7)
gEG X
exists and is equal to
UC - lim fl . R‘/,(g)fz . Rw(g)fé dmg,
g€G Jk

where f; = E(f;|K) is projection of f; onto L?(m ). In other words, the Kronecker factor is characteristic
for the average in (7).

2.5. Invariant means

If f €£*(G)andt € G, define f; € £°(G) by f;(s) := f(s —t). An invariant mean on G is a positive
linear functional v : ¢°(G) — C such that v(1g) = 1 and v(f;) = v(f) forevery f € £*(G), t € G.
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In the weak® topology on £°(G)*, the space M (G) of invariant means forms a compact convex set.
An invariant mean v is said to be extremal, or an extreme point, if it cannot be written as a convex linear
combination of two other invariant means.

Bauer’s maximum principle [1, 7.69] implies that if C is a compact convex subset of a locally convex
Hausdorff space, then every real-valued continuous linear functional on C has a maximizer that is an
extreme point. Thus, if A C G, there is an extremal invariant mean v such that d*(A) = v(14).

Let H be a countable abelian group and ¢ : G — H be a surjective homomorphism. For any invariant
mean v on G, the pushforward ¢..v is an invariant mean on H and is defined by

¢.v(h) =v(ho¢),

forall h € ¢*(H). Given f € £*(G) and an invariant mean v, we sometimes write /G f(t) dv(t) instead
of v(f).If g € £°(G), we define the ‘convolution’ of f and g with respect to v by

7o e = [ W= dveo.
In conventional notation, this could be written as f %, g := v((g’),f), where g’(x) := g(—x). The
following lemma is a special case of [9, Proposition 2.1].

Lemma 2.1. If A is an extremal invariant mean on G and f, g € ¢*(G), then

| #wsc =9 draues = apace) ®

for every invariant mean p on G.

For completeness, we include a proof.

Proof. 1t suffices to prove (8) for 0 < f < 1. When A(f) = 0 or 1, it is straightforward to check (8).
Suppose A(f) = @ € (0, 1). Define two invariant means i and n’ by

we) =+ [ F02t=9 a0 wd @ == [| 1= r0w-9 .

Then it is easy to check that A(g) = an(g) + (1 —a)n’(g). Since A is extremal, we must haven =’ = A,
and we are done. O

2.6. Bohr compactification

The Bohr compactification of G is a compact abelian group bG, together with a homomorphism
7 : G — bG such that 7(G) is dense in bG and every character y € G can be writtenas y = y’ o7,
where y’ is a continuous homomorphism from 4G to S'. The homomorphism 7 is universal with respect
to homomorphisms into compact Hausdorff groups; that is, if K is another compact Hausdorff group
and 7 : G — K is a homomorphism, then there is a unique continuous homomorphism # : bG — K
such that 7 = 7 o 7. The Bohr compactification also has a concrete description; it is the dual of G where
G is given the discrete topology (see Section 3).
See [34] for basic results on the Bohr compactification and [9] for a recent application to sumsets.

2.7. Lemmas on Bohr sets

We document two lemmas concerning Bohr sets for later use. Similar lemmas for compact abelian groups
have been proved in [33]; the proofs for arbitrary abelian groups are identical and so we omit them.
The first lemma states that the preimage of a Bohr set is a Bohr set.
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Lemma 2.2 [33, Lemma 2.9]. Let G, H be abelian groups and v : G — H be a homomorphism. If B is
a Bohr-(k,n) set in H, then =" (B) is a Bohr-(k,n) set in G.

The second lemma says that the image of a Bohr set under a homomorphism with finite index image
is again a Bohr set.

Lemma 2.3 [33, Lemma 2.10] and [23, Lemma 1.7]. Let G be an abelian group and ¢ : G — G be an
endomorphism with [G : ¢(G)] < oo. If B is a Bohr-(k,n) set in G, then ¢(B) is a Bohr-(k’,n’) set
in G, where k’,n’ depend only on k, n, and [G : ¢(G)].

2.8. Almost periodic functions and null functions

A function on G of the form g +— Zle cixi(g), where ¢; € C and y; € G, is called a trigonometric
polynomial.

An f € £°(G) is called a (Bohr) almost periodic function if it is a uniform limit of a sequence of
trigonometric polynomials. Alternatively, f is almost periodic if f = & o 7, where & is a continuous
function on bG and 7 : G — bG is the natural embedding. Given an almost periodic function f, a y € G
and an invariant mean v on G, we write f(x) for the Fourier coefficient v(fY). It is easy to verify that
for an almost periodic f, f(x) does not depend on the choice of v.

An f € £*(G) is called a null function if v(| f|) = O for every invariant mean v on G.

3. Dense images of discrete groups in compact groups

This section describes a general way to construct a homomorphism 7 : G — K from a discrete abelian
group G into a compact abelian group K. It also provides sufficient conditions for an endomorphism ¢
of G to induce an endomorphism ¢ of K. This framework provides a concrete description of the Bohr
compactification of G and of the Kronecker factor of an ergodic G-system. We start with the following.

Lemma3.1. LetI" be alocally compact abelian group andlet ¢ : I" — T be a continuous endomorphism.
Define an endomorphism ¢* : T' — T" by ¢*(x) = x o ¢. Then

(i) ¢ is continuous.
(ii) Under the canonical identification of T with T, (p")* = ¢.

Proof. (i) By definition, [ is equipped with the topology of uniform convergence on compact subsets
of I'. It therefore suffices to prove that if (x,),<s is a net of elements of r converging to y € r uniformly
on compact subsets of I", then (y, o ¢),e; converges to y o ¢ uniformly on compact subsets of I'.
Continuity of ¢ implies ¢(K) is compact for every compact K C I', so the assumption that y, — x
uniformly on every compact K C I" implies y,, — yx uniformly on ¢(K) for every compact K C I'. But
this means (y, © ¢),c; converges to y o ¢ uniformly on compact subsets of I', as desired.

(i) For y € T, define the evaluation map e, (y) = y(y) for any y € T. It suffices to prove that

(¢7)7(ey) = eg(9)s
meaning (¢*)*(ey)(x) = x(¢(y)) forall y € T. To see this, note that y — (¢*)*(ey)(x) is defined by
ey(‘f’*(X)) =67(X°¢)- ]
We now apply Lemma 3.1 in the case where I is a discrete group.

Lemma 3.2. Let A be a subgroup of G, viewed as a discrete group, so that A is compact. For g € G,
define the evaluation map eg (x) = x(g) for x € G. Define a homomorphismt : G — Abyt(g) = egla.
Then

(1) 7(G) is dense in A
(ii) Suppose ¢ : G — G is an endomorphism such that y o ¢ € A for all y € A. Then there is a
continuous endomorphism ¢ of A such that ¢ o T = T o ¢. Furthermore, [A : ¢(A)] < [G : ¢(G)].
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Proof. (i) Lety € K, let F = {x1,...,xa} C A be finite and let £ > 0. We will show that there is a
g € G such that [y (x;) —eg(x;)| < &forall y; € F. Consider the subgroup

H:={(x1(8),...,xa(g) : g € G} c (SH™.

It suffices to prove that

7= W),....¥(xa) € H. ©9)

Assume, to geta contradiction, that (9) is false. Then there is a nontrivial character @ € (S!)4 which
annihilates H but does not annihilate 7. Writing a(x, . . ., Xg) as x{“ . xd , we have

x1(g)" - xa(g)" =1  forallgegG, (10)

but ¥ (x1)™ ---¥(xa)"™ # 1. Since y is a character, the latter equation means

v xgh) # L (11

But (10) means that X? )(Z is trivial, contradicting (11).

(ii) Define ¢’ : A — A by ¢’ ()() yoo¢. Letd:=(¢')* asin Lemma 3.1 , meaning that for y € A,
é(¥) =y o¢’. By Lemma 3.1, ¢ is a continuous endomorphism. To verify that g o7 = T 0 ¢, fix y € A,
g € G and evaluate

B(1(8))(x) = eg(¢"(x)) = eg(x 0 B) = x 0 d(g) = eg(g)(x) = T(6(2)) (X)-

Thus, g o7 =70 ¢.

Now let k = [G : ¢(G)] (assuming this index is finite) and let #; + ¢(G),j = 1,..., k be coset
representatives of ¢(G). The identity ¢ o 7 = 7 o ¢ implies &(K) contains 7(¢(G)). The latter subgroup
has index at most k, since the translates 7(¢; + ¢(G)) = 7(¢;) + 7(¢(G)) are closed and cover a dense
subset of A. Thus, (ﬁ(X) also has index at most k. )

It can be shown that all homomorphisms from G into compact groups with dense images arise from
the construction in Lemma 3.2, though we do not need this fact. When A = G with the discrete topology,
A is the Bohr compactification bG of G, which is relevant in the proof of Theorem 1.4.

In the proofs of Theorems 1.2 and 1.7, we wiAll focus on the case where A is at most countable.
The relevance of countability is that, in this case, A is compact and metrizable. Consequently, its Borel
o-algebra is separable (so the theory of factors applies).

The group A being abelian, we can write its group operation additively. Equipped with its normalized
Haar measure my, Ais naturally endowed with a group rotation via the G-action R glven by Rg(z) :=

z+71(g) forall z € A and g € G, where 7 is defined in Lemma 3.2. Since 7(G) is dense in A, this action
is ergodic. We will now state some properties of these group rotations.

Lemma 3.3.

(i) For all countable subgroups A of G, we have £ (A mz, R) = A. Furthermore, all the eigenvectors
of R corresponding to the eigenvalue A € A are constant multiples of v,, where v (x) = x(Q) for
all x € A R -

(ii) If A1 < Ay are countable subgroups of G, then the group rotation associated with A is a factor of
the group rotation associated with A,.

(i) If X = (X, u,T) is an ergodic G-system and A = E(X), then (A m3, R) is the Kronecker factor
of X.
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Proof. (i) Ford e Aandx € K we have
valx +7(8)) = (x + ) () =x()A(g) = A(g)va(x).

This shows that A is an elgenvalue of (A mz, R) and v, is a corresponding eigenvector.

Conversely, suppose y € G and there exists non-zero fe LZ(A) suchthatforallg € G, f(x+7(g)) =
x(8) f(x) for almost all x, we need to show that y € A. Since f is not zero, there exists 4 € A such that
f(A) # 0. Computing the Fourier coefficients of both sides, we have

x (&) f(2) = eg (D) F(D) = () F(A)

for any g € G. Since f(/l) # 0, this implies that y(g) = A(g) for any g € G. Therefore, y = 4 € A.
Furthermore, this also shows that f has exactly one non-zero Fourier coefficient and f = f(2)v,a.

(ii) Define m : Ap — Ay by m(x) = x|s, for all x € A,. Then x is a surjective, continuous group
homomorphism. By [33, Lemma 2.7], 7 is measure-preserving.

Recall that the homomorphisms from G to A and A, are 7 (8) = egla, and 72(g) = €4, Itis clear
that

m(x +12(8)) = 7(x) +71(g),

thus showing that 7 is a factor map.

(iii) We assume (see Section 2.3) that L?(u) is separable. For each 1 € A = £(X), there is an
eigenvector f € L?(X) such that T, fy = A(g) fi forany g € G. Arguing similarly to [39, Theorem 3.4],
we may assume that |fy| = 1 and fh¢ = fife for any A,¢ € A. Defining V(v,) = f, and extending V
linearly, we have an isometry V : L2(A) — L*(X) satisfying V(fg) = V(f)V(g) forany f, g € L*(A).
By [39, Theorem 2.4], V induces a homomorphism of measure algebras, and therefore a factor map
X — A. Since £ (A) A, part (ii) shows that A is the largest group rotation that is a factor of X. O

4. Radon-Nikodym densities

In this section, we make no assumption on the countability (or uncountability) of G. In particular, the
lemmas here will apply when G is an arbitrary discrete abelian group.

4.1. Definition of Radon-Nikodym densities

Let K be a compact abelian group and 7 : G — K be a homomorphism such that 7(G) is dense in K.
We describe a way to transfer a function f : G — [0, 1] to a function p : K — [0, 1] with the aid of
invariant means. This construction follows the proof of [24, Lemma 2.5] (cf. Section 4 of [10]); it will
be used in the proofs of Theorems 1.4 and 1.7.

Definition 4.1. Let f : G — [0, 1] and let v be an invariant mean on G. The Radon-Nikodym density
associated with f and v is a Borel measurable function p}’c : K — [0, 1] satisfying

v(thor)- )= [ h-p} dms. (12

for every continuous 4 : K — C. It is unique up to m g -measure 0.

Thus, p; depends on the compact group K and the map 7. When f = 14 is the characteristic function
of a subset of G, we write p’ in place of p}’A to avoid nested subscripts.

Given an invariant mean v on G, and f : G — [0, 1], we will prove that there is a function p;.
satisfying Definition 4.1. We first observe the following. '
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Lemma 4.2. For all h € C(K), we have
v(hor)=/ hdmg. (13)

K

Proof. We define a linear functional L on C(K) by
L(h) :=v(hoT).

By the Riesz representation theorem, there exists a regular Borel probability measure m on K such that
L(h) = fK h dm. However, for any g € G, we have

L(hr(g)) =v((hoT)g) =v(hot)=L(h) (14)

by translation invariance of v. Since the map x — A, from K to C(K) is continuous, and since 7(G) is
dense in K, (14) implies L(hy) = L(h) for all x € K. Hence, m is translation invariant. By uniqueness
of the Haar measure, we have m = mg, as desired. O

Given f : G — [0, 1], we define a linear functional A‘;. :C(K) —» Rby

AY(h) = v((hoT)- f). (15)

Clearly, A}’C is a positive linear functional. Thus, by the Riesz representation theorem, there exists a
regular Borel measure m on K such that

A () :/ hdm (16)
K

for all h € C(K).

Lemma4.3. The measure m defined by (16) is absolutely continuous with respect to the Haar probability
measure mg on K, and, in fact, m(B) < mg (B) for all Borel sets B C K.

Proof. First, by (13), we have

//’ldm:V((hOT)'f)SV(/’lOT):/hde 17)
K K

for any h € C(K).

Let B be any Borel set in K. By regularity of m and mg, there is an open set U, a closed set V, such
that V.c Bc U, m(U\V) < € and mg (U \ V) < €. By Urysohn’s lemma, there exists a continuous
function 4 : K — [0, 1] such that A =1o0n V and 2 = 0 on U°. Applying (17), we have

m(B) <m(V)+e€ S/

hdm+e < / hdmg + € < mg(U) +€ < mg(B) +2¢.
K K

Since € is arbitrary, this implies that m(B) < mg (B). Therefore, m is absolutely continuous with respect
tomg. ]

We now prove that, for each f : G — [0, 1], there is a p}’c satisfying (12). Given such an f, we
consider the measure m on K defined above. Since m is absolutely continuous with respect to mg,
we may define p; to be the Radon-Nikodym derivative of m with respect to mg, meaning p; is the
unique (up to mg-measure 0) function in L' (m) satisfying / th‘; dmg = f hdm for all h € C(K).
Then (12) follows from (15) and (16). The inequality 0 < p‘;, < 1 mg-a.e. follows from the fact that
0 < m(B) < mk (B) for all Borel sets B. '
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4.2. Properties of p’;

We will now state some properties of p; when f is the characteristic function of a set. Recall that we
write p); in place of p{’A.

Lemma 4.4. Let A C G and let v be an invariant mean on G. Then

() [ phdmk =v(14),
(ii) pY is supported on T(A); that is, p; =0 mg-a.e. on K \ 7(A).

Proof. The first claim follows from the definition of p’. For the second claim, let  : K — R be any

continuous function that is supported on K \ 7(A).If g € A, then 7(g) € 7(A) will not be in the support
of h. In other words, ho7-14(g) =0forall g € G, and so

/h-pdesz((hOT)-lA)zo. (18)
K

Suppose for a contradiction that there exists a Borel set V c K \7(A) with mg (V) > 0 such that ey >0
on V. Since mg is regular, we may assume that V is closed. By Urysohn’s lemma, there is a continuous
function 4 : K — [0, 1] that is equal to 1 on V and 0 on 7(A). Then (18) implies that /v phdmg =0,a
contradiction. O

Lemma 4.5. Let G = U]_, A; be a partition of G and let v be an invariant mean on G. Then

.
PWIAOES
i=1

for mg -almost every x.

Proof. Since };_, 14, = 1, forany h € C(K),

‘/I(h(gprsi)dmk=Zr:v(hor~1Ai)=v(hor)=/hdmk,

i=1 K

where the last equality comes from Lemma 4.2. Since C(K) is dense in L'(mg), this implies that
Y p. = 1 almost everywhere. O

4.3. Relation between p 5 and p 4 4)

Let G = A U---U A,. Our proof of Theorem [.4 relies on a correspondence principle relating
¢1(A;) +$2(A;) — ¢2(A;) to a convolution of the form 1 (5, * L4, (8:) * 14, (-p,) on a compact abelian
group K. To prove such a correspondence principle, we need Lemma 4.6 and Corollary 4.10, which
specify the relationship between the Radon-Nikodym densities of 14 and 144). In order to make the
relevant issues apparent, the next lemma takes place in slightly greater generality than we need for our
application.

Lemma 4.6. Let G and H be discrete abelian groups and let ¢ : G — H be a surjective homomorphism.
Let Ky, Ky be compact abelian groups and 71 : G — Ky, 7 : H — K, be homomorphisms with dense
images. Suppose ¢ : K| — K is a continuous surjective homomorphism such that

(i) ot =109, and R R
(ii) for all y € K, if there is a y € H such that y o 1) = { o ¢, then there is a ¥’ € K, such that
W = x’ o1y (see Figure 2).
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19)

Figure 2. Illustration of (ii).

Let f : H — [0, 1] and let v be an invariant mean on G. Letp;w Ky — [0,1] andpjj*v 1 K> — [0,1]
be the associated Radon-Nikodym densities as in Definition 4.1. Then

Plog=(py ") 06
mg, -almost everywhere.

Remark 4.7.

o The surjectivity of ¢ is required for ¢.v to be an invariant mean on H, and thus for p f*v to be defined
on K».

o The assumption (ii) is satisfied by the groups we use in the proof of Theorem |.4; namely, K| will be
the Bohr compactification of G, K> will be $(K ), which will coincide with the Bohr compactification
bH of H, and 7, : H — K, will be the usual embedding of H into bH.

Proof. We will prove that

P;olp = (pf*v) ° . (20)
We first identify some characters of G which are orthogonal to f o ¢.

Claim 4.8. Let ¢ € G. Then v((f o) ) =0unlessy =y’ o ¢ for some '’ € H.
Similarly, if xy € K, and h € L?(mk,), then h o ¢(x) = O unless y = ' o ¢ for some x' € K.

To see this, assume ¢ € G does not have the form Y’ o ¢ for some '’ € H. Then there is a g €ker¢
such that y/(g) # 1.* We then have

v((fo9) ) =v(((fod) )
=v((fod)- (W)
=y (@((fod) - ¥).

Sov((f o) ) =y(g)v((f o)), which means f o () = 0 since ¢ (g) # 1. This proves the
first statement in the claim, and the second statement is proved similarly.

Claim 4.9. Let y € Ki. Then p‘f’.od)(/\/) = 0 unless y = x’ o ¢ for some y’ € K.

To prove this claim, let y € Ki. Then
Pog(X) =/ Phogp X dmg, =v((fo@)- (X o).
A e

4Supposing ¥ (g) = 1 for all g € ker ¢, we define a character ¢’ on H by ¥’ (¢(g)) = ¢(g). This is well-defined since
#(g) = ¢(g’) implies ¥ (g) = Y (g’). Tocheck that ' (h+h') = ¢’ (h)y’(h’), choose g, g’ so that ¢(g) = hand ¢(g’) = h/,
and evaluate ' (h + h') as p(g +g') = ¢ (g)#(8") = ¥/ (6(8) ¥’ (¢ (h)).
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By Claim 4.8, the above evaluates to O unless y o7; = i o ¢ for some y € H. Choosing such a i, we have
25os 00 = V([ 08) - (F 0 8)) = uv(fD).

By assumption (ii), we may write  as y’ o7, for some y’ € K. Then yot; = (y'om)o¢ = )( o 5071

Soyor = )( o ¢ o 71. The denseness of 71 (G) in K| and continuity of y then implies y = y”’ o $. This

shows that p ()() O unless y = y’ o ¢ for some y’ € K».
We now prove equation (20).

Case 1: y = y’ o & for some y’ € K». Then

Prost0= [ oo Tam,
=v((fod) (Tom) by definition of 7. ,
=v((fod)-(xodon))
=v((fo9)- (Vom0
=¢wU~??E)

/ }p*vX dmg,
- [ (657 24)- (7o d) e

=P o Gx).

Case 2: y # x’ o ¢ forall ¥’ € K». In this case, Claim 4.8 implies (pf*v) o (x) = 0, and Claim 4.9
implies p;o‘p()() =0. O
Corollary 4.10. Let G be a discrete abelian group, v an invariant mean on G and ¢ : G — G an
endomorphlsm Let K be a compact abelian group, T : G — K a homomorphism with dense image and
é: K — K an endomorphism such that dor=1o0 > . Assume further that for all y € K, if there is a

weGsuchthat)(OT—w @, then there is a x’ EKsuchthan// x' ot.Let H=¢(G), A CG, and

let p)) : K — [0, 1] and pz*(z) : §(K) — [0, 1] be the associated Radon-Nikodym densities. Then

(%
O<pi=pynod
mg -almost everywhere.

Proof. Applying Lemma 4.6 for H = ¢(G) and f = 144) : H — [0, 1], we get

v _ b
pl¢(A)o¢ - p1¢(A) © ¢
Since 14(a) © ¢ = 14-1(4(a)) = 1a, we have
v v
Plyaos = Pa:
It follows that p} < pf’*(v/ﬂ o ¢, meaning

ooy
PAS Pyia ©9- o
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5. Reducing correlation sequences to integrals in compact groups

The goal of this section is to show that certain averages for ergodic G-systems can be reduced to double
integrals on a compact group. Lemma 5.1 establishes this for group rotations on a compact abelian
group K, as long as some endomorphisms on G can be extended to all of K.

Lemma 5.1. Let K be a compact abelian group and let T : G — K be a homomorphism with dense
image. Let ¢, 2,93 : G — G be endomorphisms. Suppose there are continuous endomorphisms
éi : K — K suchthat ;o1 = to¢; for | <i < 3. Then for all bounded measurable fi, f>, f3 : K — C,
we have

I(f,$) = UC - lim/ Ffi(z+7(61(2) oz +T(d2(9)) f3(z + T($3(g))) dmx (2)
g€G Jk
=/-/er filz+d1()) (2 + (1) f3(z + ¢3(1)) dm (z) dmg (2).

Proof. Since I( f , q?) is continuous in f; (with respect to the L?(m)-norm) and multilinear in f;, it
suffices to prove the identity when each f; is a character y; of K. In this case, we have

3
I(x1, x2, x3,¢) = UC — ;ierg /K)mcz)(s(Z) gxi(f(fm(g))) dmg (2)

3
=UC - ;ie% /K X1x2x3(2) HXi o $i(7(g)) dmk ().
i=1

By (6), we have

3
10 ® = [ @ [ Tre o dne@dni o
i=1

3
://Kzg)(i(z+¢;i(t)) dmg (z)dmg (1),

and this finishes our proof. O

The next proposition deals with a general ergodic G-system X. The compact group in question will
be an extension K of the group Z underlying Kronecker factor of X, constructed to be invariant under
the corresponding ¢;, as required by Lemma 5.1.

Proposition 5.2. Given an ergodic measure preserving G-system X = (X, u,T) and f : X — [0,1],
define I : G — Ryq by

I(w) =UC - lim/ I Tose) f - Tw-go(9) f A,
geG Jx

where @2, ¢3 : G — G are endomorphisms such that ¢, ¢3, ¢2 + ¢3 have finite index images in G.
Then there are a compact abelian group K, a homomorphism v : G — K with dense image,
endomorphisms ¢»,¢3 : K — K and f : K — [0, 1] with fK fdmg = fX f du such that forallw € G,

I(w) = //Kz F@F(z+¢3(0) f(z+7(w) = §2(1)) dmg (2) dm (1). 2n

Furthermore, [K : ¢;(K)] < [G : ¢:(G)] for each i € {2,3} and [K : (¢» + $3)(K)] < [G :
(¢2+ ¢3)(G)].
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Proof. Let ¢ = —¢ — ¢3. We first prove the special case of the lemma where £(X) is invariant under
each ¢;, meaning that for all eigenvalues 1 € £(X) and i € {1,2,3}, we have 10 ¢; € £(X). In this case,
the conclusion was also observed in [2, Remark 3.2]. By [2, Section 3], the Kronecker factor (Z, mz, R)
of (X, u, T) is characteristic for the average defining I(w). Let 7 : G — Z be the canonical projection.
We can therefore replace f with f := E(f]Z) without changing I(w):

100 =UC = tim [ - Royio - Ru-ni Sz
_ UC - lim / FF 4 7(03() (2 + 70w — 62(8))) dmz (2). 22)
8sG Jz

In view of Lemma 3.2, let ¢; : Z — Z be continuous endomorphisms satisfying 7 o ¢; = ¢; o 7.
Applying this identity to (22), we have

I(w) =UC - lim / F@f(z+83((@))f(z+7(w) = $2(7(8))) dmz(2).
gEG 7z

By Lemma 5.1, we can rewrite the previous line as

I(w) = /./22 F@f(z+83(0) f(z+7(w) = §2(1))) dmz (z) dmz (7).

Taking K = Z, we prove the proposition in this special case. _

For the general case, let A be the smallest subgroup of G that contains £(X) and is closed under
each ¢;. Since £(X) is countable, it is easy to see that A is countable. Let K = (A, m3, R) be the
group rotation on A described in Lemma 3.3. By part (i) of Lemma 3.3, we have £(K) = A. Since
E(Z) = £(X) C A, part (ii) of Lemma 3.3 implies that Z is a factor of K.

We now fix an ergodic G-system Y = (Y, v, S) that is a common extension of X and K. For example,
we can take Y = (X X K, v, T X R) to be an ergodic joining of X and K. (For details about joinings and
the existence of ergodic joinings, see Glasner [19, Section 6] or de la Rue [14, Section 3.1].)

Writing 7 : ¥ — X for the factor map, we define f’ : Y — [0, 1] to satisfy f’ := f o w and

I'(w) :=UC - lim / f - S¢3(g)fl . SW_¢2(g)f’ dv.
gEG Y

Since f” is a lift from f on X, it is obvious that I’ = I and the Kronecker factor Z of X is characteristic for
the averages I’(w). Thus, any factor of Y between Y and Z is also characteristic for I’(w). In particular,
K is characteristic for I’(w). Now applying an argument similar to the first part of the proof to the
factor K of Y and the function f’, we obtain the compact group K = A, the function f = E(f’|K) and
endomorphisms ¢; satisfying (21). Finally, we have [K : ¢;(K)] < [G : ¢;(G)] foreach i € {1,2,3}
by Lemma 3.2 (ii). O

6. First correspondence principle and Bohr sets in ¢|(A) + ¢2(A) + ¢3(A)

Proposition 6.1. Let G be a countable abelian group. Let ¢1, ¢2, $3 : G — G be commuting endomor-
phisms with finite index images such that ¢\ + ¢2 + ¢3 = 0. Let (X, u,T) be an ergodic G-system and
f:X —[0,1] with fo =6 > 0. Define the function I : G — [0, 1] by

I(w):=UC - lim / S Toy) f - Tw-go (o) f du.
g€G Jx
Then supp(I) contains a Bohr-(k,n) set, where k,n depend only on § and the indices of $;(G) in G.

https://doi.org/10.1017/fms.2023.49 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.49

Forum of Mathematics, Sigma 21

Proof. By Proposition 5.2, there exist a compact abelian group K with Haar measure mg, a homo-
morphism 7 : G — K with dense image, and endomorphisms ¢; : K — K and f : K — [0, 1] with
Ji fdmk = [ f du =6 such that

I(w) = //Kz F@F(z+@3(0) f(z+1(w) = $2(1)) dmg (z) dm (1).
Furthermore, [K : ¢;(K)] < [G : ¢;(G)] for each i. Now define I’ : K — [0, 1] by
I'(w) = // F@f(z+ () f(z+w — §2(1)) dm (z) dmk (7).
K2
By change of variable z > z + $>(¢) and using ¢, + ¢3 = —¢;, we obtain
I'(w) = // Fz+62(0) f(z = 1(1) f(z + W) dm (2) dmk (1).
K2

Applying [33, Proposition 4.3], it follows that supp(/”) contains a Bohr-(k,n) set B in K, where k,n
depends only on § and the indices [K : ¢;(K)]. It is easy to see that supp(/) contains 7! (B). Moreover,
Lemma 2.2 implies that 7=!(B) contains a Bohr-(k, 1) set in G, completing the proof. O

Proposition 6.2 (First correspondence principle). Let G be a countable abelian group and A C G with
d*(A) =6 > 0. Let @1, 92, 3 be commuting endomorphisms of G with finite index image such that
@1+ @2+ ¢3 = 0. Then there is an ergodic G-system X = (X, u, T) and a function f : X — [0, 1] with
fX fdu = d*(A) such that the function I : G — [0, 1] defined by

I(w):=UC - lim/ f- T¢3(g)f . Tw_¢2(g)fd/,l
gEG X

satisfies ¢p3(supp ) C ¢1(A) + ¢p2(A) + ¢p3(A).
Proof. By Furstenberg’s correspondence principle (for example, see [6, Theorem 2.8]), there exists an
ergodic G-system (X, u, T) and a measurable set E C X with u(E) = d*(A) such that forallw;, w; € G,

WENTENTE) <d* (AN (A-wi) N (A-wy)).

Letting f = 1g, w; = ¢3(g) and wy = w — ¢2(g), we deduce that for all w and g € G,

/X [ Toso)f Tw-g,(e) f dpt < d" (AN (A= ¢3(g)) N (A= (w—2(g))).

It follows that if w € supp([), then there are 2 € A and g € G such that &, h+ ¢3(g), and h+w — ¢2(g)
all belong to A. Therefore,

¢3(w) = ¢1(h) + da(h+ $3(8)) + d3(h+w — $2(8)) € ¢1(A) + $2(A) + $3(A), (23)
and this finishes our proof. Note that in (23), we use the fact that ¢, o @3 = ¢3 o ¢». O
We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Proposition 6.2, there exists an ergodic G-system (X, u,7T) and f : X —
[0, 1] with /X f = d*(A) such that

I(w) =UC - lim / f- T¢3(g)f . TW_¢2(g)fdu
geG Jx

has ¢3(supp(1)) C ¢1(A) + ¢2(A) + ¢3(A).
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In view of Proposition 6.1, supp(/) contains a Bohr-(k, 1) set where k, 7 only depends on § and the
indices of ¢;(G) in G. Lemma 2.3 then implies that ¢3(supp(/)) contains a Bohr-(k’,n") set where
k’,n’ depends only on é and the indices mentioned above. m]

7. Second correspondence principle

In this section, we establish the second correspondence principle Proposition 7.1, which is used in the
proof of Theorem 1.4. This can be thought of as a special case of Propositions 3.1 and 3.2 of [10]. Here
we write bG for the Bohr compactification of G.

Proposition 7.1 (Second correspondence principle). Let K = bG and let T : G — K be the natural
embedding. Let A, B C G and let v, A be two invariant means on G where A is extremal. Then A+ B— B

contains T‘l(supp(px * ,0’}; * P’,lB))~

Proof. By Lemma 4.4, the Radon-Nikodym density p’; is supported on 7(A). Therefore, the convolution
Py * pé, which is defined as

P b = [ pAp(e ) dmc o),
K

is supported on 7(A) + 7(B) = 7(A + B). Similarly, p} * pé * p’_lB is supported on 7(A + B — B). This,
however, is weaker than the conclusion of Proposition 7.1 and is insufficient for our purpose.
Define ¢,0 : G — [0, 1] by

(1) = 1p 22 1p(1) = /G 15001 (1 — ) dA(x)
and
0(1) = 14 %y 9(1) = /G LA ()B( — y) dv(y).

We can see that 6 is supported on A + B — B. It remains to show that § = (p x p * p*) o 7.
Claim 7.2. ¢ = n+, where  is a null function and n := (pé s pr) oT.

Proof of claim. One can verify that ¢ is positive definite by writing X, ycg coCnép(g — h) as
/G(Zg celp(x — g)Xpcnlp(x —h)dA(x) = /G|ZS Ig(x — g)|2 dA(x) for a finite collection of co-
efficients ¢, € C. Therefore, by the Bochner-Herglotz Theorem, ¢ is the Fourier transform of a positive

measure o on G. Decomposing o = o4 + 0, where o is the discrete component of o and o is the
continuous part, we have

¢ =0q+0e. (24)

Since o4 has only countably many atoms, & is an almost periodic function. However, by Wiener’s
lemma (see [21, Théoréme 16(2)]), /G |6e |2 du = 0 for all invariant means ¢ on G.

Now we will prove that 65 = 1. We first show that &4 and n are almost periodic functions defined
by Fourier series on G with absolutely summable coefficients. To see this for &, we write 6y =
eré o({x}Hx, where eré o({x}) is a convergent sum of nonnegative values. For 1, note that both

pg and p* p are in L*(mg). Thus, their Fourier coefficients are square-summable, and the Fourier
coeflicents of pé % pt  are absolutely summable. To prove that &4 = 7, it therefore suffices to prove that
04 and 1 have the same Fourier coefficients. This is the same as showing that ¢ and n have the same
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Fourier coeflicients, as the Fourier coeflicients of & are all 0 (since & is a null function). So we verify
that

u(ex) = p(nx)

for every invariant mean y on G and every character y € G. Fix the invariant mean M, characters y € G
and y’ € K such that y = y’ o 7. We then have

w0 = [ 160180 -0XG di0du(s

- [ L5 00 (-6 -0 dwduts
=A(lg - x)A(1_g - x) (by Lemma 2.1)
=‘/Kp§)7dm1<-‘/Kp’}B)?de (by definitions of,o’;g andp’}B)
= P30 500

=pm3(x’)

= [0+ o) 7

= u(ny) (by the definition of 7 and Lemma 4.2). O

We are ready to prove 6 = (p); * pé * pr) o 7. Indeed, by Claim 7.2,
O:=1axy¢p=1a*,n+1laxy,
where ¢ is a null function and n = (pé * p’_lB) o7.Forallt € G, we have

[La*y ¢ (O] < v(I = i) = v(l¥]) = 0.

Moreover, since 7 is a Fourier series with absolutely summable coefficients, 1 4 *, 7 is as well. It follows
that 6 is almost periodic. Therefore, to show 6 = (p * pé * pt g) © 7, it suffices to check that  and
(o) * pé x p ) © T have the same Fourier coefficients. We omit the computations as they are nearly
identical to the proof of Claim 7.2. O

8. Bohr sets in ¢ (A;) + ¢2(A;) — d2(A;)

In this section, we prove Theorem 1.4, which says that ¢ (A;) + ¢2(A;) — ¢2(A;) contains a Bohr set for
some A; in any partition G = |J;_, A;. Since the proof is technical and uses cumbersome notation, we
first sketch the main idea. Fix an invariant mean v on G. The pushforwards ¢ v and ¢, .v are invariant
means on H; = ¢1(G) and H, = ¢>(G), respectively. Since H;, H, are only subgroups of G, in order to
apply the correspondence principle (Proposition 7.1), we need to extend ¢ _.v and ¢, v to means v; and
v, on G. Furthermore, v can be chosen in such a way that v, is extremal. Having found such extensions,
Proposition 7.1 implies that ¢ (A;) + ¢2(A;) — ¢2(A;) contains the preimage of the support of

Vi V2 V2
Poian *Peooay * P=ps(a:)

which, in turn, contains a Bohr set for some i € [r] thanks to Corollary 4.10 and the corresponding
partition result in compact groups (Theorem D (ii)) from [33].
The precise result we need from [33] is the following.
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Proposition 8.1 [33, Proposition 3.4]. Let K be a compact abelian group and ¢, ¢, be commuting
continuous endomorphisms on K with finite index images. Suppose pi,...,pr : K — [0,1] are
measurable functions such that 3;_, p; > 1 almost everywhere. For w € G, define

Ri(w) = //K2 pi(2(V)pi(w +u)pi(u+ ¢ (V) dug (w)dpg (v).

Then there are k,n > 0 depending only on [K : $1(K)], [K : ¢2(K)] and r such that for some i € [r],
the support of R; contains a Bohr-(k,n) set.

We turn to the details. The following lemma helps us extend an invariant mean on H = ¢(G) to a
mean on G by thinking of £*°(H) as embedded into £*°(G) through the pullback map ¢™.

Lemma 8.2. Let G and H be discrete abelian groups and ¢ : G — H be a surjective homomorphism.
Then for every invariant mean u on H, there exists an invariant mean v on G such that ¢.v = p.

Proof. First, we observe that if v is a linear functional on £3°(G) and v(1g) = 1, then v is positive if
and only if v(f) > p(f) :=infyec f(x) forall f € £3°(G). Clearly p is a concave function.

Let V be the vector subspace of £3°(G) consisting of functions of the form / o ¢ for some h € €3’ (H).
If f € V, then by surjectivity of ¢, there is a unique h € £3°(H) such that f = h o ¢. We have

u(h) > inlf{ h(y) (since u is an invariant mean on H)
ye€
= ing h(p(x)) =p(f) (since ¢ is surjective).
X€E

By the Hahn-Banach theorem, the linear functional f +— u(h) on V can be extended to a linear
functional A on £3’(G) such that A(f) > p(f) for any f € £°(G). In particular, A is positive and
A(1lg) = A(1g o ¢) = u(1gy) = 1. We now show that A can be further refined to become G-invariant.

We let 7 be an invariant mean on G and define

V(f) = /G A(fy) dn(x)

for all f € £3°(G). Then v(fg) = v(f) for all g € G since n is translation invariant. The positivity of v
follows from the positivity of A and . If f = ho ¢ € V, then A(fg) = u(hy(g)) = pu(h) forall g € G, so
v(f) = u(h). The lemma now follows since an invariant mean is completely determined by its values
on real-valued functions. O

If H happens to be a subgroup of G, then another way to extend a mean on H to a mean on G is to
consider £ (H) as a subset of £*°(G) consisting of functions supported on H. This is the content of the
next lemma.

Lemma 8.3. Let H be a subgroup of G of index k € N and let u be an invariant mean on H. There exists
a unique invariant mean v on G such that

v =t

for every f € £*(G) supported on H. Furthermore, if u is extremal, then v is also extremal.

Proof. Let H—g; for0 <i < k — 1 be the cosets of H in G with go = 0. We first show that an invariant
mean v satisfying the conclusion of the lemma must be unique. For a function f supported on H — g;, the
function f,, given by x — f(x — g;) is supported on H. Therefore, in this case, since v is G-invariant,
we must have

u(f, gi )

V() = v(fe) = =2 ©5)
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For an arbitrary f € £*(G), define f' = f -1 H-g;-Since [ = Z{;—Ol £, from the previous paragraph,
we must have

k—1 k—
V()= v = Z () (26)
i=0 i=0

This equation uniquely defines v.
It is easy to see that v as defined in (26) is a linear functional on £*°(G) with v(15) = 1. To show v
is G-invariant, we consider arbitrary g € G and f € ¢*°(G). By the linearity of v and (25),

k-1 k-1 k-1
V) = 2 () = 2 2 B edegi) = 5 D w (g e
i=0 i=0 i=0

where j(i) € {0,...,k—1}issuchthat —g;+g+g;; € H.Fori € {0,...,k—1},leth=—gi+g+g;(-
Since u is H-invariant,

1 Dgrgya) = KO gen) = 1((fg,)- (28)

Relations (26), (27) and (28) give v(fg) = v(f), and so v is G-invariant.
Suppose u is extremal. To show that v is extremal, suppose v = av; + (1 — @)v,, where v and v;
are means on G and 0 < a < 1. Restricting to S := {f € £*°(G) : f is supported on H}, we get

ulk =vls = avils + (1 —a)r|s.

Since y is extremal, it must be that v |s = v2|s = p/k. Due to the uniqueness of the extension of u from
H to G, we deduce that v{ = v, = v. Therefore, v is extremal. O

The next lemma shows that if H is a subgroup of G with finite index, then the Radon-Nikodym
density associated with the mean u on H and the one associated with its extension on G are the same.

Lemma 8.4. Let H be a subgroup of G of index k € N. Let K be a compact abelian group andt : G — K
be a homomorphism with dense image and Ky = 7(H). Let B C H and u be an invariant mean on H.
Let v be the extension of u to G as stated in Lemma 8.3. Suppose py, : K — [0, 1] andpg Ky — [0,1]
are the associated Radon-Nikodym densities. By identifying pg with its extension to 0 outside of Ky,
we have

v _ M
PB = Pp
mg -almost everywhere.

Proof. As in the proof of Lemma 8.3, let H — g; for 0 < i < k — 1 be the cosets of H in G with gg = 0.
Since B C H, according to Lemma 4.4, both py, and pg are supported on Ky . From (26), for h € C(K),

k-1
v(hot 1p) = kZ#Wm 15 1Hg)e.)- 29)

Since 1p is supported on H,
hot-lg-1p_g =0ifi#0.

Therefore, the right-hand side of (29) is equal to

1
ZH(hoT-1p),
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which is equal to

1
%/ h-pgdeH.
Kn

It follows that
1
/h'pédeZV(hOT'lB)ZE/ h-pgdeH.
K Ku

Since when restricting to Kg, the measure mg is equal to %m Ky » We deduce that py, = pg. O

We are ready to prove Theorem |.4. Our proof will use Corollary 4.10, applied in the case where
K| = bG, K, = $(bG) (where ¢ is given by Lemma 3.2(ii)), and 71 = 7» = 7 = the canonical
embedding of G into bG. In order to verify that the hypotheses of Corollary 4.10 are satisfied, we want
to know that every character ¢ of ¢(G) can be written in the form y’ o 7, where /\( is a character of
#(bG). This is the case, as every ¥ € ¢(G) can be extended to a character ¢y € G and Yo=xoo0T
for some yo € bG. Let x” = xolg(pG)- We claim that x” o 7 = . To see this, note that yo o 7 = o,
s0 (x0 © T)lp(G) = Yolg(c) = Y. Finally, note that 7(¢(G)) € #(bG) since ¢ o T = 7 o ¢. Thus,
(xo°Dlp) =x"oT.

Proof of Theorem 1.4. Let H) = ¢1(G) and Hy = ¢»(G). Let u be an extremal invariant mean on H,.
By Lemma 8.2, there exists an invariant mean v on G such that the pushforward ¢, ..v is equal to u. In
view of Lemma 8.3, ¢ v can be extended canonically from H; to a mean v; on G such that

(¢1*V)(f)

vi(f) = (G H]

for every f € ¢ (G) supported on H;. Likewise, extend y = ¢, v from H; to a mean v, on G. Since u
is extremal, v, is extremal; however, v; may not be extremal.

Let A C G,K = bG and 7 : G — K be the natural embedding. By Proposition 7.1 and because v,
is extremal, the sumset ¢ (A) + ¢2(A) — ¢2(A) contains

-1 v Y V.
T (SUPP Ly, () * Py (a) * Pg(-a))-
In light of Lemma 8.4,

Vj Djv
Pyia) =Pga

where we identify p¢ (A) with its extension to 0 outside of ¢ ; (K). It follows that ¢1(A) +¢2(A) — 2 (A)
contains

-1 D1,V P2,V G2,V
T (Suppp¢l(A) Poya)* p¢2( A))

For j € {1,2},let ¢; : K — K be a continuous homomorphism such that ¢; o 7 = 7 o ¢;. Then
drodroT=Tod odr=To¢y0¢| =0 P or. It follows that ¢; and ¢» commute since 7(G) is
dense in K. By Lemma 3.2, [K : ¢;(K)] < [G : ¢;(G)] is finite.

For ease of notation, we write

_ P15V b2,4V @2,V
F=Pgay 8= Pgyay adh:=py 4.

Note that f, g, h are nonnegative.
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Claim 8.5. The support of f * g * h contains the support of S : K — [0, 1] defined by
S(w) == //K2 (@1 062(v)) - g(w+ da(u)) - h(=p2(u) — ¢z © §1(v)) dmg (u)dmg (v).
Proof of Claim. Note that by [33, Lemma 2.6], ¢; o ¢, (K) has finite index in K. We recall [33, Lemma

2.8], which says that if f is a nonnegative function on a compact abelian group K, ¢ is a continuous
endomorphism on K and m = [K : ¢(K)] < oo, then

[ s dux <m [ 1) e o
K K
By two applications of this fact, we have
S(w) < [K : ¢2(K)] //K2 (@1 062(v)) - g(w+u) - h(=u — ¢z 0 ¢1(v)) dm (u)dmg (v)

< [K:¢2(K)] - [K : 10 r(K)] //KZ FO)-gw+u) - h(—u—v) dng(u)dmg (v)
=[K: $2(K)] - [K : §1 0 G2(K)] - f g *h(w),
thus proving the claim. O

By Corollary 4.10, we have

F(@10¢2(v) 2 pi(42(v)). (30)
8(2(w) + d2(u)) > pji(w +u), (31)
and
h(=g2(u) = ¢2 0 $1(v))) = py(u+d1(v)). (32)
Therefore,
S(2(w)) = Ra(w) (33)

for all w € K, where
Ra(w) := //Kz Pa( B2V AW +u)ph (u+ 1 (v)) dmg (w)dmg (v).

Combining (30)-(33), we get that for all A c G, the sumset ¢;(A) + ¢2(A) — ¢$2(A) contains

7 (¢2(supp Ra)).
As a consequence, we have for each partition G = | Ji_, A; and each i € [r],

G1(A) + $2(A) — ¢2(A;) D 7 (da(supp Ra,)).

By Corollary 4.5, 37, p/‘;i = 1 almost everywhere. Therefore, in view of Proposition 8.1, for some
i € [r], the support of R4, contains a Bohr-(k,7) set B C K, where k,n depend only on r and the
indices [K : él(K)],N[K : dr(K)). i

By Lemma 2.3, ¢(B) is a Bohr-(k’, ") set where k’,n’ depend only on k,n and [K : ¢»(K)].
Lemma 2.2 then implies that 7~!(¢,(B)) contains a Bohr-(k’, ') set and our proof finishes. O

9. Third correspondence principle

In this section, we derive a correspondence principle for B + C + A;. Assuming only that the summands
A, B, C have positive upper Banach density, we cannot guarantee that A+ B+ C is a Bohr set, a translate
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of a Bohr set or even that A + B + C is syndetic.> Under the stronger assumption that A and B have
positive upper Banach density and that C is syndetic, [5] proves (for the ambient group Z) that A+ B+ C
contains a translate of a Bohr set. Our Theorem 1.7 has a similar, but weaker, hypothesis: partitioning
Gas Aj U ---U A,, it is possible that none of the A; are syndetic. Of course, one of the A; must be
piecewise syndetic ([12], [29]).

Proposition 9.6 says that when A, B,C c G with d*(B),d*(C) > 0, the sumset B+ C + A can
be modeled by a convolution hp * hc * hs on a compact group K, where f hpdmg > d*(B) and
f hc dmg > d*(C). In this correspondence principle, the hypothesis d*(A) > 0 is not strong enough
to guarantee that /14 is nonzero. However, assuming that G = A; U - - - U A,., we will be able to conclude
that 337, h4, > 1 almost everywhere and this suffices to give a useful bound on the hp * hc * ha,(0)
for some i € [r].

Definition 9.1. Let A, B ¢ G. We write A < B if for all finite subsets A’ C A, there exists ¢ € G such
that A’ + ¢t C B. In this case, we say that A is finitely embeddable in B.

The following lemma is implicit in [25] and, to some extent, in [24]. A similar statement for amenable
groups can be obtained from Propositions 1.10 and 1.11 in [8].

Lemma 9.2. Let B,C C G. There exist a compact abelian group K, a homomorphism T : G — K for
which 7(G) is dense in K, functions hg, hc : K — [0, 1] such that

(i) [ hgdmg =d*(B) and [, hc dmk = d*(C), and
(i) {¢ € G : hp*hc(r(g)) >0} <B+C.

Remark 9.3. Readers familiar with Furstenberg’s correspondence principle and Kronecker factors
may appreciate the following additional detail: to obtain the group K, one may apply the Furstenberg
correspondence principle to find ergodic measure preserving systems Xg = (Xp, up,Tg) and X¢ =
(Xc, pc,Tc) modeling B and C, with corresponding Kronecker factors Kp = (Kp, mk,, Rg) and
K¢ = (K¢, mk.. Rc). The groups K and K¢ are the respective duals of the eigenvalue groups £(Xp)
and £(X¢) of Xp and X¢ (as described by Lemma 3.3). The group K may be realized as the phase
space of the maximal common factor of Kp and K¢, or, equivalently, as the dual of £(Xp) N £(X¢).

Proof. By [25, Lemma 2.8], there is an ergodic measure preserving G-system (X, u, T), where X is a
compact metric space, and a clopen set O¢c C X with u(O¢) = d*(C) such that for all x € X,

(¢€G :Tyx e UTbOC}<B+C. (34)
beB

By [25, Lemma 4.1], there is a group rotation factor (K, mg, R) of (X, u, T) with factormapn : X — K
and a homomorphism 7 : G — K with dense image such that

U T°0¢ 2 n7'(J) up to a set of u-measure 0, (35)
beB
where J := supp(fp * fc) for some functions fz, fc : K — [0, 1] with fK fpdmg = d*(B) and

[ fc dmg = d*(C).
Note that for u-almostevery x € X, Rgm(x) = n(Tgx). Therefore, if Rg (7(x)) € J, thenTyx € n71(J).
Thus, from (35), for u-almost every x € X, we have

if Rg(m(x)) € J then Tyx € U T°0c¢.
beB

SIn every countably infinite abelian group, there are sets D, E with positive upper Banach density where D + E is not syndetic,
and Proposition 6.2 of [4] produces sets A, B, C having positive upper Banach density, where A+ B+ C c D + E.
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Fix such an x. Then,

(8€G: fo* fe(n(x)+7(g) >0} C{g € G : Tyx € U T°0c}.
beB

The relation (34) then implies {g € G : fp * fc(n(x) + 7(g)) > 0} < B + C. By defining functions
hp,hc as hp(t) := fp(t + n(x)) and h¢c = fc, we obtain our conclusion. O

Lemma 9.4. Let K be a compact metrizable abelian group and T : G — K be a homomorphism with
dense image. Let h : K — [0, 1] be continuous and let A, = {g € G : h(t(g)) > 0}. If A, < D, then
there is a translate h’ of h and an invariant mean A on G such that

Ipsag2h'otxiq

forallg: G — [0,1].

Proof. Let (Fyn)n en be a Fglner sequence for G. Since Fy N A, € Ap, and Aj, < D, we may choose,
foreach N € N, aty € G so that (Fy N Ap) +tny C D. Note that (Fy + x5 )nen is also a Fglner
sequence. Passing to a subsequence if necessary, we assume 7(¢y) converges to a point k¢ in K. Let
h'(k) = h(k — ko) for k € K, so that h(k — 7(ty)) converges uniformly to 4’ (k).

Define a sequence of functions py : Fy +ty — [0, 1] by py(g+2n) = h(7(g)). Since h(7(g)) =0
foreach g € (Fy \ Ap),and Fy N A, +ty C D, wehave 1p(g) > py(g) forall g € Fy +1ty.

For each N € Nand each g : G — [0, 1], we have

Y @9z Y py(@al-g)

IEN] e fetin |Fi|

__L Z h(t(g) —7(tn))q(t - g).

|FN| geFN+tN

(36)

For each N, let Ay be the linear functional on ¢ (G) defined by An (f) := ﬁ 2gery+ty J(8)- Let
A be a linear functional on £*°(G) that is a weak® limit point of the sequence Ay (meaning that for all
fel®(G),alle > 0,and all M € N, there isan N > M such that |1(f) —An (f)| < &). In other words,
AeNyyoy {An : N > M},

Since h(k — 7(ty)) converges uniformly in N to h(k — ko) = h’(k), (36) implies 1p *, g(t) >
h otx,q(t)forallt € G. O

Lemma 9.5. Let K be a compact abelian group and T : G — K be homomorphism with dense image.
Let h : K — [0, 1] be a continuous function and A be an invariant mean on G. Then for every A C G,

(hot)syla=(h*p})oT,

where p’[; is defined in Definition 4.1.

Proof. Approximating & by trigonometric polynomials, it suffices to prove the statement for the special
case where & is a trigonometric polynomial. By linearity, we may assume # = y € K. For such y,
we have

(xo1) % Lalg) = /G Yot - Talg —x) dA(x)
- /G o (g +2)14(=x) dA(x)

= xor(g) fG X or(x) - Ta(=x) dA(x)

https://doi.org/10.1017/fms.2023.49 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.49

30 John T. Griesmer et al.

:XoT(g)//\/OT'l_Ad/l
G

=X°T(g)/K)(-pfAdmz<.

Computing y = pg(t) fort € K, we get

X eph(n) = /K @A - 2) dmg (2)
- /K W2+ Dph(=2) dmg (2)
=)((t)/)((2)pfA(Z) dmg (2)
K

=X(t)/)c - ptydmg.
K
Substituting 7(g) for 7, we get

(x o7) *1 1a(g) = (x = p)(7(g)),

completing the proof. O

Combining Lemmas 9.2, 9.4 and 9.5, we have a proposition which serves as a correspondence
principle for B + C + A;.

Proposition 9.6 (Third correspondence principle). Let B,C C G. There exist a compact abelian
group K, a homomorphism v : G — K with dense image, measurable functions hg,hc : K — [0, 1]
and an invariant mean A on G such that

(i) [ hgdmk = d*(B) and [, he dmg = d*(C),
(i) forall A C G,

B+C+A Dt (supp(hg * he *p’A})).

Remark 9.7. The invariant mean A depends on B and C; it may not realize the upper Banach density
of A. In particular, it is possible that A1(A) = 0 while d*(A) > 0.

Proof. In view of Lemma 9.2, there are a compact abelian group K, homomorphism 7 : G — K with
dense image, measurable functions hg, hc : K — [0, 1] with f hg dmg = d*(B), f hc dmg = d*(C)
such that

{g€G:hg+hc(t(g)) >0} <B+C.
We now apply Lemma 9.4 with hp * hc in place of h: there is an invariant mean A on G such that

Igic#ala = h oTxy 14, 37

where A’ is a translate of hig * hc.
By Lemma 9.5,

Wotsyla= (W *pl)or. (38)
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Note that B + C + A contains the support of 1p,c *1 14 and h’ can be written as hy, * hc, where h is
a translate of hpg. Therefore, (37) and (38) imply

B+C+AD{geG:hlyxhc=ph(r(g)) >0},

and this proves our proposition. O

10. Bohr setsin B+ C + A;
The next proposition establishes the existence of Bohr sets in B + C + A; in compact abelian groups.

Proposition 10.1. Let 61,0, > Oandr € N. There are constantsn > 0 and k € N such that the following
holds. Let K be a compact abelian group with probability Haar measure mg and let f,g : K — [0, 1]
be measurable functions such that fK fdmg > 61 and fK gdmg > 6. Fori € [r], let h; : K — [0,1]
be measurable functions such that 3,;_; hj = 1 mg-almost everywhere. Then for some i € [r], the
support of f * g = h; contains a Bohr-(k,n) set.

Proof. The proof is similar to an argument used in [33] (Part I of this series). Since };_, /; = 1 almost
everywhere, we have

r

fege (Zm)m ~frgne( = [ famg [ gdni > 60
i=1 K K
for all x € K. Therefore, by the pigeonhole principle, there exists i € [r] such that f*g=h;(0) > 6,5, /r.
By [33, Lemma 2.12], we have
|f g hit) = f g hi(0)] = ‘/Kz(g(x) = 8:(x)) f(Y)hi(=x = y) dmg (x)dm (y)

< lIg = &l ll f1I211 722 112

<118 = &tlleos
where g,(x) = g(¢ +x). Hence, f * g * h;(t) > ‘51 62 whenever ||g — &; |l < 61 52 . By [33, Lemma 2.1],
the set of those ¢ contains a Bohr-(%, 52) set B w1th k < i 6116;2)2. )

We are ready to prove Theorem 1.7.

Proof of Theorem 1.7. By Proposition 9.6, there exist a compact abelian group K, a homomorphism
7 : G — K with dense image, measurable functions A, hc : K — [0, 1] and an invariant mean A on
G such that

(i) [ hgdmg =d*(B) and [, hc dmg = d*(C),
(i) foralli € [r], B+C+A; > v~ (supp(hp * h¢ *pgi)).

In light of Corollary 4.5, 3}I_, pi = 1 almost everywhere. Therefore, by Proposition 10.1, there exist k£

and 77 depending only on § and r such that the support of hp * hc * pt A contains a Bohr-(k, ) set in K
for some i € [r]. Lemma 2.2 then implies that B + C + A; contains a Bohr—(k n) setin G. O

Remark 10.2. The proof of Theorem 1.7 follows a general phenomenon: if D C G is a piecewise Bohr
set, then for any partition G = [ J;_, A;, thereis ani € [r] such that D + A; contains a Bohr set. However,
if we did not know that D has the form B + C, it is impossible to give any quantitative bounds on the
rank and radius of the Bohr set in D + A;. This necessitates the presence of triple sum B + C + A; in
Theorem 1.7.
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11. Open questions

In the proofs of Theorems 1.2 and 1.4, the assumption that ¢, ¢», ¢3 commute is used to provide a
parameterized solution to the relation w € ¢ (A) + ¢2(A) + ¢3(A). This concern raises the following
question.

Question 11.1. Can the assumption that the ¢; commute in Theorems 1.2 and 1.4 be omitted?

The Bohr sets in Proposition 10.1 and Theorem 1.7 have the same rank k and radius 7. Proposition 10.1
gives k < a~® and > o>, where a = (6,6,r~")'/3. If we are only interested in translates of Bohr
sets (i.e., Bohr neighborhoods of some element), then better bounds are available. A result of Sanders
[37, Theorem 2.4] implies that there exists i such that B + C + A; contains a translate of a Bohr-(k, 1)
set with k < @~ and 7 > exp(—ca~! log@™!), for some absolute constant c. We ask the following.

Question 11.2. Is it possible to improve on k and/or 77 in Theorem 1.7? Can we take k < a~!?

In the spirit of Ruzsa and Hegyvari’s result [28] on Bohr sets in A + A — A — a mentioned in the
introduction, we ask whether the Bohr set in Theorem 1.7 can be given by a fixed element of C. More
precisely, we ask the following question.

Question 11.3. If B, C ¢ G with d*(B),d*(C) > 0and G = |J;_, A;, must there exist ¢ € C andi € [r]
such that B + ¢ + A; contains a Bohr set?

The proof of Theorem 1.7 uses the fact that D := B + C is a piecewise Bohr set to deduce the Bohr
structure in D + A;. It is natural to ask besides piecewise Bohr, what other conditions on D guarantee
the existence of a Bohr setin D + A;.

Question 11.4. What is a sufficient condition on D C G so that for any partition G = |J;_, A;, there is
i € [r] such that D + A; is a Bohr set (or a translate of a Bohr set)? In particular, does the assumption
that D is piecewise syndetic or d*(D) > 0 suffice? What if G = Z and D = P (the set of primes) or
D ={n*:neN}?

Our Theorem 1.2 generalizes Theorem B in two ways: replacing the ambient group Z with an arbitrary
countable abelian group and replacing the endomorphisms g — s;¢ with commuting endomorphisms
having finite index image. The main result of [23] generalizes Theorem B in a different way: the
endomorphisms still have the form g +— s;g, but more summands are considered. The following
conjecture is a natural joint generalization of these results.

Conjecture 11.5. Let G be a (not necessarily countable) abelian group, let d > 3, let ¢, ..., ¢pq be
endomorphisms of G such that [G : ¢;(G)] < oo for each j, and such that ¢1 + - -+ ¢4 = 0. Then for
all A C G with d*(A) > 0, the sumset ¢1(A) + -+ - + ¢p4(A) contains a Bohr set with rank and radius
depending only on d*(A) and the indices [G : ¢;(G)].

Defining endomorphism ¢ : G — G by ¥/(g) := 2723 ¢;(g). Then ¢1 + 2+ =0and
d
DT 6i(4) D ¢1(A) + da(A) +Y(A).

=1

J

Therefore, if [G : (G)] is finite, then Conjecture 11.5 immediately follows from Theorem 1.2.
However, it is not true in general that ¢ (G) has finite index (for example, take d = 4, ¢3 = —¢4), and so
Conjecture 11.5 is genuinely interesting. It may be necessary to impose some additional hypotheses on
the ¢ ;; see [23, Section 4] for more discussion.

Along the same lines, we have the following conjecture for partition that extends Theorem 1.4.

Conjecture 11.6. Let G be a (not necessarily countable) abelian group, let d > 3 and let ¢y, . . ., pq be
endomorphisms of G such that [G : ¢;(G)] < oo for each j. Suppose 3. jcs ¢; = 0 for some non-empty
subset S C [d]. Then for every finite partition G = \J;_, A;, there exists i € [r] such that ijl @ (Ay)
contains a Bohr-(k,n) set, where k and n depend only on r and the indices [G : ¢;(G)].
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