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A B S T R A C T   

In-situ liquid cell transmission electron microscopy (LCTEM) with electrical biasing capabilities has emerged as 
an invaluable tool for directly imaging electrode processes with high temporal and spatial resolution. However, 
accurately quantifying structural changes that occur on the electrode and subsequently correlating them to the 
applied stimulus remains challenging. Here, we present structural dissimilarity (DSSIM) analysis as 
segmentation-free video processing algorithm for locally detecting and quantifying structural change occurring 
in LCTEM videos. In this study, DSSIM analysis is applied to two in-situ LCTEM videos to demonstrate how to 
implement this algorithm and interpret the results. We show DSSIM analysis can be used as a visualization tool 
for qualitative data analysis by highlighting structural changes which are easily missed when viewing the raw 
data. Furthermore, we demonstrate how DSSIM analysis can serve as a quantitative metric and efficiently convert 
3-dimensional microscopy videos to 1-dimenional plots which makes it easy to interpret and compare events 
occurring at different timepoints in a video. In the analyses presented here, DSSIM is used to directly correlate 
the magnitude and temporal scale of structural change to the features of the applied electrical bias. ImageJ, 
Python, and MATLAB programs, including a user-friendly interface and accompanying documentation, are 
published alongside this manuscript to make DSSIM analysis easily accessible to the scientific community.   

1. Introduction 

In-situ liquid cell transmission electron microscopy (LCTEM) with 
biasing capabilities enables solution-state electrode processes to be 
recorded with nanoscale spatial resolution and millisecond-scale tem
poral resolution [1–5]. Direct observation of electric potential induced 
phenomena has contributed valuable mechanistic insights towards 
research in batteries, [6–9] catalysis, [10–13] and polymers [14,15]. 
The principal goal of many in-situ LCTEM electrochemical studies is to 
correlate the applied stimulus to structural changes captured in the 
video, such as material formation or dissolution. While structural 
changes may be visually apparent, raw LCTEM videos are often difficult 
to analyze for two main reasons. First, the liquid layer within the cell 
reduces object contrast in the images and introduces a large amount of 

noise into the data [16]. As a result, subtle structural changes are easily 
missed when viewing the raw data. Second, LCTEM videos collected on 
high-framerate microscopes can reach 1000’s of frames in size, resulting 
in multiple terabytes of data [17]. Manually identifying and comparing 
events in the raw data can be extremely time-consuming and subjective. 
Thus, large datasets require efficient video analysis algorithms to detect 
and measure structural change events so they can be easily interpreted 
and correlated to the applied stimulus. 

The most common method of quantiatively analyzing structural 
change is with image segmentation algorithms, in which objects are 
identified and analyzed in every image of the video [18]. This has been 
widely used in the LCTEM community to quantify dynamic events such 
as micelle fusion [19], solid electrolyte interphase (SEI) layer growth 
[6], nanoparticle etching [20], and more [21]. However, in some 
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datasets which contain multiple classes of objects or continuous objects, 
segmentation can be highly subjective or impossible. Recently, there 
have been segmentation-free analysis algorithms developed to measure 
structural change without the need to label objects in the images [22]. 
For example, an algorithm was developed to quantify beam-induced 
damage over time while imaging organic thin-films [23]. This was 
accomplished by using the normalized cross-correlation metric to 
compare the first frame and subsequent frames of an electron 
dose-series. The success of this method for characterizing a dynamic 
process unsuitable for segmentation analysis demonstrates the need for 
continued development of segmentation-free metrics. Here, we present a 
new segmentation-free video analysis algorithm to highlight and 
quantify structural change using the structural dissimilarity (DSSIM) 
metric, a linear variant of the commonly used structural similarity 
(SSIM) metric [24]. 

DSSIM is an established measure of the perceived difference between 
two images, which compares local variation in the mean, standard de
viation, and cross-correlation of pixel intensity values to produce a new 
dissimilarity image [25,26]. DSSIM was originally developed to assess 
the quality of structural information present in a reference and distorted 
image, such as comparing a raw image with a compressed image [25]. It 
was later adopted by the machine learning community as a metric to 
evaluate model performance by comparing a reconstructed image 
against a ground truth image [27]. The resulting dissimilarity image will 
highlight regions where the reconstruction image deviates the most from 
the ground truth image. To date, DSSIM has found several niche 

applications for structural analysis in the microscopy community. For 
example, DSSIM/SSIM has been used to identify: neurochemical events 
from cyclic voltammetry, [28] microcalcification from mammography, 
[29] crack formation from X-ray tomography, [30] phase changes in 
polarized optical microscopy, [31] and dynamic behavior in confocal 
fluorescence microscopy [32]. A recent LCTEM study used the metric to 
quantify beam-induced gold nanoparticle growth because segmentation 
analysis was not possible [33]. To quantify growth, they used SSIM to 
compare pairs of images taken of the same region in the liquid cell 
before and after electron irradiation. 

For the first time, we apply the DSSIM metric to spatially and 
temporally quantify the stimulated structural changes captured in 
LCTEM electrochemistry videos. The proposed DSSIM analysis video 
algorithm compares temporally offset frames of the input video to create 
a dissimilarity video, which measures and highlights locations where 
structural change has occurred. In Section 2, we describe how to apply 
and tune the parameters of DSSIM analysis. In Section 3, we analyze two 
in-situ LCTEM datasets from different studies and show it is possible to 
extract quantitative, easy-to-interpret information and gain additional 
insight into electrochemically-driven materials formation and dissolu
tion. For each dataset, we demonstrate DSSIM analysis can be used to 
evaluate the correlation between the applied stimulus and the resulting 
structural change. 

Fig. 1. DSSIM analysis workflow. (A) Raw data is denoised with a combination of temporal and spatial averaging. (B) DSSIM analysis is applied using the defined 
parameters. Temporally offset images in the video are compared in a sliding-window operation (left). Image pairs are analyzed with the DSSIM metric which 
compares the same local neighborhoods of each image to produce a DSSIM image (right). Note images have been downsized by a factor of 4 to improve figure 
legibility. (C) DSSIM analysis results are quantified with global analysis (entire image) and regional analysis (cropped image). 
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2. Methods 

2.1. DSSIM analysis workflow 

Fig. 1 describes the general workflow for applying DSSIM analysis to 
a video dataset. In step 1, the raw data is preprocessed to reduce noise in 
each frame prior to DSSIM analysis. In this study, noise is reduced by 
using frame averaging (temporal averaging) and Gaussian blurring 
(spatial averaging). 

In step 2, DSSIM analysis is applied to the denoised video. The DSSIM 
analysis algorithm presented here is a sliding-window calculation which 
compares frame t with frame t + Δt (Fig. 1B). First, the two frames are 
compared with the SSIM metric. For every pixel location in each pair of 
images (Fig. 1B, orange boxes), the metric compares intensity values in a 
Gaussian-weighted local neighborhood around the pixel location 
(Fig. 1B, blue boxes). Boarder pixels are excluded from the analysis. The 
Gaussian-weighted intensity values in the local neighborhoods are 
compared with three components: the mean (m), variance (v), and cross- 
correlation (c) [26]. Then, these components are weighted by the ex
ponents [α β γ] and multiplied together to produce a SSIM image (Eq. 
(1)). The SSIM image is linearly converted to a DSSIM image using Eq. 
(2). DSSIM values are between 0 and 1, where a high value corresponds 
to a region of high dissimilarity. The result of the sliding window al
gorithm is a DSSIM video, which is shorter than the input video by Δt 
frames. 

SSIM(Xt, Xt+Δt) = m(Xt, Xt+Δt)
α

∗ v(Xt, Xt+Δt)
β

∗ c(Xt, Xt+Δt)
γ (1)  

DSSIM(Xt, Xt+Δt) =
1 − SSIM(Xt, Xt+Δt)

2
(2) 

There are 3 parameters that will affect the output of DSSIM analysis: 
the local neighborhood size, the temporal offset Δt, and the [α β γ] 
DSSIM coefficients. Xt and Xt+Δt denote two local neighborhoods of 
common size (Fig. 1B, blue boxes) taken from the same pixel location 
(Fig. 1B, orange boxes) in both images. For example, the analysis shown 
in Fig. 1B uses 5 × 5 pixel local neighborhoods which are visualized with 
blue boxes. Every valid pair of neighborhoods is compared with DSSIM 
to construct the final dissimilarity image, and the size of the local 
neighborhood will determine the spatial resolution of the output. Δt is 
the temporal offset of the pair of frames and will determine the temporal 
resolution of the output. [α β γ] are the DSSIM coefficients which adjust 
the relative weighting of the mean, standard deviation, and cross- 
correlation components. Coefficients were kept at [1 1 1] for the ana
lyses presented here. 

Lastly, the output of DSSIM analysis is quantified (Fig. 1C). The 
simplest method of quantification is calculating the global mean DSSIM 
value for each DSSIM image. This provides information about mean 
structural change occurring in the image, where high mean DSSIM 
values correspond to a high degree of structural change. Alternatively, it 
is often useful to perform regional analysis to compare structural change 
across different spatial locations in the data, [32] or to closely examine a 
particular event of interest. After quantification, the original 3-dimen
sional video is reduced to 1-dimensional data that is easily interpreted 
and correlated to other types of data. 

2.2. Parameter tuning 

The data analysis pipeline described here requires three parameters 
to be tuned in Step 2. While multiparameter analysis methods are 
generally considered to be complex, parameter tuning for DSSIM anal
ysis is intuitive and directly related to the spatial and temporal resolu
tion of the physical phenomena taking place. The spatial and temporal 
resolution of the detected dynamics will depend on the temporal offset 
and local neighborhood, respectively. Determining the ideal local 
neighborhood size requires consideration of the feature size of interest 
as well as the signal-to-noise ratio. In general, smaller neighborhoods 

are ideal because they have the highest resolution and are most sensitive 
to small structural changes, but can result in artifacts and ‘false events’ 
caused by noise. If DSSIM analysis is applied to particle nucleation 
events, the neighborhood should be smaller than the particle (Fig. 1B). 
Typically, it is best to start parameter tuning with a large temporal offset 
and a large neighborhood to capture the most obvious dynamics. These 
parameters can then be iteratively decreased until the output becomes 
too noisy for clear interpretation. Depending on the nature of the dy
namics, the user should focus on maximizing either temporal or spatial 
resolution. The structural change must occur over a time period that is 
strictly larger than twice the time of the temporal offset in order to be 
captured by DSSIM analysis (Nyquist-Shannon theorem). [34] 

The DSSIM coefficients should generally be kept at [1 1 1]. However, 
it can be useful to remove one of the components of the DSSIM analysis 
by setting a coefficient to 0. For example, using coefficients [0 0 1] will 
reduce DSSIM to a local normalized cross-correlation calculation [35]. 
In the case of confocal fluorescence microscopy data, it was reported 
that the mean channel contributed mostly noise in the final output, so [0 
1 1] coefficients were selected [32]. In the LCTEM datasets presented 
here, no exponent tuning was required. 

Overall, we find parameter tuning to be intuitive and find that the 
end result is consistent and stable for a wide range of parameters. 
Additionally, it is important to note that DSSIM analysis is a computa
tionally efficient algorithm that is easily parallelizable. This enables 
users to receive rapid feedback when tuning DSSIM analysis parameters. 

2.3. Dataset considerations for DSSIM analysis 

The DSSIM metric highlights both structural change and object 
movement. For datasets where both are occurring at the same time, 
DSSIM analysis will highlight both types of dynamics [32]. For struc
tures that are in motion, object tracking and drift correction algorithms 
could be applied in the pre-processing steps to minimize movement from 
camera drift. This would enable the DSSIM metric to highlight structural 
changes. In the case of LCTEM electrochemical experiments, structures 
are typically attached to the electrode or the silicon nitride window, and 
so structural change can be isolated from object movement. In general, 
TEM imaging is better suited than scanning transmission electron mi
croscopy (STEM) imaging for DSSIM analysis. This is because TEM im
ages can be captured at higher framerates and there are no scanlines 
which result in artifacts after applying DSSIM analysis (Fig. 2C,E). In 
addition, near-zero pixel intensity values recorded in dark-field STEM 
imaging can cause instability in the DSSIM metric. 

3. Results and discussion 

3.1. DSSIM analysis of bright-field liquid cell STEM 

DSSIM analysis is applied to a previously published bright-field 
liquid cell STEM video of SEI layer formation on a Pt electrode [6]. In 
this dataset, an electrochemical liquid cell was configured with Pt 
electrodes on a silicon nitride membrane to create an operando Li bat
tery. Cyclic voltammetry (CV) was performed, in which the electrode 
potential was progressively decreased to induce charging, then pro
gressively increased to induce discharging. During charging, the SEI 
layer rapidly grows on the electrode and there is a negative peak in the 
current (Fig. 2A-D, SI Video 1). During discharging, the SEI layer 
partially dissolves and there is a positive peak in the current (Fig. 2E,F, 
SI Video 1). 

DSSIM analysis is applied to correlate the features of the recorded CV 
with the structural changes recorded on the electrode during charging 
and discharging. The dataset consists of 95 images taken across 402 s 
with a frame-time of 4.2 s. Preprocessing was done by applying a 
Gaussian blur with a first standard deviation of 90 nm (7 pixels) to 
remove noise. Due to the high signal-to-noise ratio and relatively low 
temporal resolution, no temporal averaging was applied to this dataset. 
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Next, DSSIM analysis was applied with a local neighborhood of 244 ×
244 nm (19 × 19 pixels), 1 frame offset, and [1 1 1] coefficients, 
resulting in 94 DSSIM frames. 

The CV is shown as a current-potential plot in Fig. 2G and replotted 
as a current-time plot in Fig. 2H. The mean DSSIM value for each DSSIM 
frame is plotted to directly compare features of the current-time plot 
with the structural change taking place in the microscope. The analysis 
shows a clear correlation between the features of the CV and the 
resulting structural change. Interesting, there is a 9.0 s delay between 
the peak current and peak mean DSSIM during charging, and a 10.0 s 
delay between the negative peak current and peak mean DSSIM during 
discharging. The current value should be directly proportional to the 
rate of addition or removal of Li. Considering the frame-time of this 
dataset is 4.2 s, the mismatch represents 2 frames which could be 
attributed to a delay in recording the frames. The mismatch could also 
suggest the addition of Li during the peak current is not contributing to 
significant structural change of the SEI volume. 

To compare the results of DSSIM with another metric, the analysis 
workflow described in Fig. 1 was applied but the DSSIM metric was 
replaced with the mean squared error (MSE) metric. Fig. 2I shows there 
is very good agreement between the timescale of features captured with 
both metrics. Fig. 2I also shows disagreement in relative peak heights of 
the two metrics during charging and discharging. This discrepancy is 
unsurprising, as disagreement between the two metrics has been pre
viously reported [36–38]. MSE compares the absolute error between 
each pixel for the image pair, whereas DSSIM attempts to evaluate 
perceived differences in structure by comparing local regions of pixels. 

As a result, DSSIM is less susceptible to single-pixel noise, which may be 
the reason for the disagreement in relative peak heights in Fig. 2I. 
Another key advantage of DSSIM analysis is the algorithm provides a 
map of local change for each pair of frames, which is not provided with 
MSE. This makes it easy to assess which regions of the image are 
contributing to the mean DSSIM value. Furthermore, the dissimilarity 
images can aid in qualitative analysis and reveal events easily missed. 
For example, Fig. 3 shows there is a subtle structural change that occurs 
a long time after motion has stopped elsewhere in the SEI layer. 

3.2. DSSIM analysis of bright-field LCTEM 

DSSIM analysis was applied to a bright-field LCTEM dataset which 
captures cyclic electrochemical Cu plating and stripping on a TiNx 
electrode. An in-depth description of the electrode fabrication and 
experimental details will be released in an upcoming manuscript [39]. In 
this experiment, square-wave chronoamperometry was performed in 
which the electrode potential was decreased to −1.5 V (vs. TiNx) and 
held constant to induce Cu plating, then instantaneously increased to 
+1.5 V (vs. TiNx) and held constant to induce Cu stripping. Fig. 4A-D 
shows the first plating process as the dark Cu domains form on the 
electrode. Fig. 4E,F shows the first stripping process as the domains 
dissolve. In total, 4 plating and 3 stripping processes were performed (SI 
Video 2). 

DSSIM analysis is applied to correlate the features of the square wave 
chronoamperometry data with the structural changes occurring on the 
electrode during plating and stripping. The raw dataset consists of 600 

Fig. 2. DSSIM analysis applied to a previously published bright-field liquid cellSTEM video (SI Video 1) [6]. A-F) Select microscopy frames (top) and corresponding 
DSSIM frames (bottom) during electrode charging (A-D) and discharging (E,F). Bright pixels values correspond to regions of high dissimilarity between frames. 
Bottom labels correspond to the times of the two microscopy frames used to calculate the DSSIM image. Red arrows in (C, E) shows STEM scanline artifact in the 
DSSIM image. G) CV plotted as current vs. potential and H) current vs. time with key frames from (A-F) indicated with triangles. (H) contains a mean DSSIM plot, 
with key correlative features highlighted with dashed lines. High DSSIM values correspond to timepoints of high change. I) Mean DSSIM and MSE comparison. 
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images taken across 120 s with a frame-time of 0.2 s. Preprocessing was 
done by first temporal averaging every 2 frames, reducing the size of the 
dataset to 300 frames. Next, a Gaussian blur was applied with a standard 
deviation of 120 nm (10 pixels) to remove noise. Then, DSSIM analysis 
was applied with a local neighborhood of 131 × 131 nm (11 × 11 
pixels), 1.8 s offset (3 frames), and [1 1 1] coefficients. A frame offset of 
3 was selected due to the high temporal resolution of the initial dataset, 
which meant there was little measurable change between adjacent 

frames. These parameters resulted in 297 DSSIM frames. 
The mean DSSIM is calculated for each frame and then plotted 

against the current-time data (Fig. 4G) and the potential-time data 
(Fig. 4H). The mean DSSIM plot shows that during plating, there is a 
sharp peak in Cu structural formations which subsequently slows down. 
During stripping, there is more uniform structural dissolution that oc
curs at a slower rate. This signature pattern is observed during each of 
the plating/stripping cycles captured in this dataset. Interestingly, 

Fig. 3. (A,C) Consecutive frames in the bright-field liquid cell STEM video with (B) corresponding DSSIM image. Arrow in the DSSIM image highlights an isolated 
structural change event. 

Fig. 4. DSSIM analysis applied to bright-field LCTEM data (SI Video 2). [39] A-F) Select microscopy frames (top) and corresponding DSSIM frames (bottom) during 
electrode plating (A-D) and stripping (E,F). Bright pixels values correspond to regions of high dissimilarity between frames. Bottom labels correspond to the times of 
the two microscopy frames used to calculate the DSSIM image. (G) Square-wave chronoamperometry plotted as current vs. time and (H) potential vs. time compared 
to mean DSSIM. High DSSIM values correspond to timepoints of high change. Current and potential data was smoothed using a Gaussian-weighted sliding-window 
average with a stand deviation of 1.5 datapoints. (I) Zoom-in to dashed region in H. Black dashed lines mark timescale of features in the potential plot. Red dashed 
lines mark the timescale of the DSSIM peaks using FWHM. 
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during stripping the DSSIM peaks show broadening across each subse
quent cycle. This peak broadening is also seen via full-width half-max 
(FWHM) analysis of the stripping peaks in the current-time plot 
(Fig. 4G). These features in the chronoamperometry and mean DSSIM 
data suggest there is hysteresis across the stripping cycles. To further 
examine this, all DSSIM images were averaged together to display the 
entire history of structural change in a single image (Fig. 5). Fig. 5 shows 
there were regions that experienced multiple nucleation events (red 
arrows). This suggests there are some locations that favor Cu nucleation, 
or the Cu does not fully dissolve during stripping. 

Closer examination of the potential-time and mean DSSIM plots from 
the first cycle shows there is a strong correlation between the shape of 
the square-wave chronoamperometry and the structural change events 
occurring on the electrode (Fig. 4I). During plating, the potential-time 
plot shows a delay of 1.4 s before −1.5 V is reached. Applying FWHM 
analysis to the mean DSSIM peak shows that structural formation occurs 
across 1.2 s. During stripping, a similar phenomenon occurs in which 
there is a delay of 3.4 s before the voltage reaches +1.5 V. FWHM 
analysis of the mean DSSIM peak shows that structural dissolution oc
curs across 3.2 s. This analysis demonstrates the timescale of features in 
the square-wave chronoamperometry correlate with the timescale of 
structural change events occurring on the electrode. 

3.3. Comparison of DSSIM analysis and segmentation analysis 

Regional DSSIM analysis was applied to individual Cu plating and 
stripping events from the previously discussed bright-field LCTEM 
dataset (Section 3.2) to compare the results of DSSIM analysis to the 
results of segmentation-based growth rate analysis. Typically, particle 
growth rate is calculated by segmenting the particle in each frame and 
then calculating the derivative of area with respect to time [40] . Here, 
we compare growth rates calculated from segmentation analysis to the 
structural change calculated from regional DSSIM analysis. 

Individual particle plating and stripping events from SI Video 2 were 
isolated and cropped for analysis (Fig. 6). For each frame, the particle 
area was calculated using a standard segmentation routine that has been 
described previously [40]. The green outline labels the edge of the 
segmented particle in each frame (Fig. 6A,D). Next, the particle growth 
rate was calculated by first smoothing the particle areas (Fig. 6B,E) and 
then taking the derivative of smoothed area with respect to time 
(Fig. 6C,F). The growth rate plots show a sharp increase in size during 
plating followed by a decrease in size during striping. 

The same region was then cropped from the corresponding DSSIM 
frames and the mean DSSIM values were calculated. Fig. 6C,F shows the 
same features are captured in particle growth rate analysis and the 
regional mean DSSIM analysis. Fig. 6F shows DSSIM analysis correctly 
captures the subtle decrease in growth rate (dashed line). This 

demonstrates DSSIM can be used as an alternative to segmentation 
analysis in cases where the temporal scale and rate of structural change 
are of interest. It is important to highlight that DSSIM analysis provides 
different information than segmentation analysis. Specifically, DSSIM 
analysis will capture changes in object contrast, which are not directly 
captured in segmentation analysis. Additionally, DSSIM analysis will 
only provide relative information about how a structure is changing 
whereas segmentation analysis provides an absolute value about the 
particle size and position. For example, Fig. 6C,F shows the particle size 
is increasing steadily between 50 s and 60 s. While this slow growth is 
still visible in the DSSIM(47.5,48.7) images, the mean DSSIM graph does 
not highlight this processes. Note that increasing the temporal-offset of 
DSSIM analysis would improve the signal of the slow growth at the cost 
of temporal resolution. While particle segmentation is straightforward 
in the case presented here, DSSIM analysis can be applied to datasets in 
which segmentation is highly subjective or impossible, such as multi
class datasets where objects have a wide distribution of intensities [23, 
32]. 

4. Code availability and efficiency 

ImageJ, MATLAB, and Python code for applying DSSIM analysis is 
available via Github: github.com/JustinTMulvey/DSSIM_Analysis. 
DSSIM analysis is accessible as a MATLAB script, Python Jupyter note
book, or ImageJ plugin with an accompanying user-guide. The ImageJ 
plugin has an easy-to-use user-interface and can process floating-point 
and integer-type microscopy datasets (Fig. 7). The MATLAB and Py
thon codes are parallelized and can process floating point videos data at 
100–1000 MB/s (depending on neighborhood size) on a modern high- 
end CPU (32 cores 3.5 GHz, 3200 MHz memory). 

5. Conclusion 

We have demonstrated DSSIM analysis can be used to detect and 
quantify structural change in LCTEM videos. We showed the method can 
be used to assist in qualitative analysis and reveal structural change that 
is easily missed when viewing the raw data. We also showed the algo
rithm can be used to quantitatively correlate the applied electro
chemical biasing to the structural change that occurs on the electrode. 
We verified the accuracy of the metric by comparing it to segmentation 
analysis and found good agreement in temporal scale and magnitude of 
individual particle growth rates. Given the computation efficiency and 
ease of interpretation, we believe there is great potential to use DSSIM 
analysis for real-time event detection during data acquisition to high
light changes taking place to the microscope operator. This use case may 
also extend as an automated event detection algorithm for application in 
sparse imaging. 

Data acquisition 

The bright-field liquid cell STEM video of SEI layer formation on a Pt 
electrode was acquired by downloading the SI video from the publica
tion. [6] The CV data was extracted and aligned to frames using a custom 
computer vision script. Frame times and CV times were estimated by 
matching the extracted frames to the publication figure time stamps and 
then using linear interpolation. The bright-field LCTEM dataset of Cu 
plating and stripping on a TiNx electrode and accompanying square 
wave chronoamperometry data was received as raw data [39]. 

Declaration of generative AI and AI-assisted technologies in the 
writing process 

During the preparation of this work the authors used OpenAI’s 
ChatGPT 3.0 in order to improve phrasing and clarity of the writing. 
After using this tool, the authors reviewed and edited the content as 
needed and take full responsibility for the content of the publication. 

Fig. 5. Summation of all DSSIM frames from the bright-field LCTEM dataset (SI 
Video 2). Arrows highlight regions where multiple nucleation events occurred 
on the electrode. 
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