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In-situ liquid cell transmission electron microscopy (LCTEM) with electrical biasing capabilities has emerged as
an invaluable tool for directly imaging electrode processes with high temporal and spatial resolution. However,
accurately quantifying structural changes that occur on the electrode and subsequently correlating them to the
applied stimulus remains challenging. Here, we present structural dissimilarity (DSSIM) analysis as

Electrochemistry . . . . . o .
Quantitative image analysis segmentation-free video processing algorithm for locally detecting and quantifying structural change occurring
ImageJ in LCTEM videos. In this study, DSSIM analysis is applied to two in-situ LCTEM videos to demonstrate how to

implement this algorithm and interpret the results. We show DSSIM analysis can be used as a visualization tool
for qualitative data analysis by highlighting structural changes which are easily missed when viewing the raw
data. Furthermore, we demonstrate how DSSIM analysis can serve as a quantitative metric and efficiently convert
3-dimensional microscopy videos to 1-dimenional plots which makes it easy to interpret and compare events
occurring at different timepoints in a video. In the analyses presented here, DSSIM is used to directly correlate
the magnitude and temporal scale of structural change to the features of the applied electrical bias. ImageJ,
Python, and MATLAB programs, including a user-friendly interface and accompanying documentation, are
published alongside this manuscript to make DSSIM analysis easily accessible to the scientific community.

1. Introduction noise into the data [16]. As a result, subtle structural changes are easily
missed when viewing the raw data. Second, LCTEM videos collected on
high-framerate microscopes can reach 1000’s of frames in size, resulting

in multiple terabytes of data [17]. Manually identifying and comparing

In-situ liquid cell transmission electron microscopy (LCTEM) with
biasing capabilities enables solution-state electrode processes to be

recorded with nanoscale spatial resolution and millisecond-scale tem-
poral resolution [1-5]. Direct observation of electric potential induced
phenomena has contributed valuable mechanistic insights towards
research in batteries, [6-9] catalysis, [10-13] and polymers [14,15].
The principal goal of many in-situ LCTEM electrochemical studies is to
correlate the applied stimulus to structural changes captured in the
video, such as material formation or dissolution. While structural
changes may be visually apparent, raw LCTEM videos are often difficult
to analyze for two main reasons. First, the liquid layer within the cell
reduces object contrast in the images and introduces a large amount of
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events in the raw data can be extremely time-consuming and subjective.
Thus, large datasets require efficient video analysis algorithms to detect
and measure structural change events so they can be easily interpreted
and correlated to the applied stimulus.

The most common method of quantiatively analyzing structural
change is with image segmentation algorithms, in which objects are
identified and analyzed in every image of the video [18]. This has been
widely used in the LCTEM community to quantify dynamic events such
as micelle fusion [19], solid electrolyte interphase (SEI) layer growth
[6], nanoparticle etching [20], and more [21]. However, in some
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datasets which contain multiple classes of objects or continuous objects,
segmentation can be highly subjective or impossible. Recently, there
have been segmentation-free analysis algorithms developed to measure
structural change without the need to label objects in the images [22].
For example, an algorithm was developed to quantify beam-induced
damage over time while imaging organic thin-films [23]. This was
accomplished by using the normalized cross-correlation metric to
compare the first frame and subsequent frames of an electron
dose-series. The success of this method for characterizing a dynamic
process unsuitable for segmentation analysis demonstrates the need for
continued development of segmentation-free metrics. Here, we present a
new segmentation-free video analysis algorithm to highlight and
quantify structural change using the structural dissimilarity (DSSIM)
metric, a linear variant of the commonly used structural similarity
(SSIM) metric [24].

DSSIM is an established measure of the perceived difference between
two images, which compares local variation in the mean, standard de-
viation, and cross-correlation of pixel intensity values to produce a new
dissimilarity image [25,26]. DSSIM was originally developed to assess
the quality of structural information present in a reference and distorted
image, such as comparing a raw image with a compressed image [25]. It
was later adopted by the machine learning community as a metric to
evaluate model performance by comparing a reconstructed image
against a ground truth image [27]. The resulting dissimilarity image will
highlight regions where the reconstruction image deviates the most from
the ground truth image. To date, DSSIM has found several niche
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applications for structural analysis in the microscopy community. For
example, DSSIM/SSIM has been used to identify: neurochemical events
from cyclic voltammetry, [28] microcalcification from mammography,
[29] crack formation from X-ray tomography, [30] phase changes in
polarized optical microscopy, [31] and dynamic behavior in confocal
fluorescence microscopy [32]. A recent LCTEM study used the metric to
quantify beam-induced gold nanoparticle growth because segmentation
analysis was not possible [33]. To quantify growth, they used SSIM to
compare pairs of images taken of the same region in the liquid cell
before and after electron irradiation.

For the first time, we apply the DSSIM metric to spatially and
temporally quantify the stimulated structural changes captured in
LCTEM electrochemistry videos. The proposed DSSIM analysis video
algorithm compares temporally offset frames of the input video to create
a dissimilarity video, which measures and highlights locations where
structural change has occurred. In Section 2, we describe how to apply
and tune the parameters of DSSIM analysis. In Section 3, we analyze two
in-situ LCTEM datasets from different studies and show it is possible to
extract quantitative, easy-to-interpret information and gain additional
insight into electrochemically-driven materials formation and dissolu-
tion. For each dataset, we demonstrate DSSIM analysis can be used to
evaluate the correlation between the applied stimulus and the resulting
structural change.
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Fig. 1. DSSIM analysis workflow. (A) Raw data is denoised with a combination of temporal and spatial averaging. (B) DSSIM analysis is applied using the defined
parameters. Temporally offset images in the video are compared in a sliding-window operation (left). Image pairs are analyzed with the DSSIM metric which
compares the same local neighborhoods of each image to produce a DSSIM image (right). Note images have been downsized by a factor of 4 to improve figure
legibility. (C) DSSIM analysis results are quantified with global analysis (entire image) and regional analysis (cropped image).
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2. Methods
2.1. DSSIM analysis workflow

Fig. 1 describes the general workflow for applying DSSIM analysis to
avideo dataset. In step 1, the raw data is preprocessed to reduce noise in
each frame prior to DSSIM analysis. In this study, noise is reduced by
using frame averaging (temporal averaging) and Gaussian blurring
(spatial averaging).

In step 2, DSSIM analysis is applied to the denoised video. The DSSIM
analysis algorithm presented here is a sliding-window calculation which
compares frame t with frame t + At (Fig. 1B). First, the two frames are
compared with the SSIM metric. For every pixel location in each pair of
images (Fig. 1B, orange boxes), the metric compares intensity values in a
Gaussian-weighted local neighborhood around the pixel location
(Fig. 1B, blue boxes). Boarder pixels are excluded from the analysis. The
Gaussian-weighted intensity values in the local neighborhoods are
compared with three components: the mean (m), variance (v), and cross-
correlation (c) [26]. Then, these components are weighted by the ex-
ponents [a f y] and multiplied together to produce a SSIM image (Eq.
(1)). The SSIM image is linearly converted to a DSSIM image using Eq.
(2). DSSIM values are between 0 and 1, where a high value corresponds
to a region of high dissimilarity. The result of the sliding window al-
gorithm is a DSSIM video, which is shorter than the input video by At
frames.

SSIM (X, Xiva0) = m(Xe, Xeya) ™ # v(Xe, Xeva) % (X, Xivar) €))

DSSIM(X17X1+Al) = w (2)

There are 3 parameters that will affect the output of DSSIM analysis:
the local neighborhood size, the temporal offset At, and the [a § 7]
DSSIM coefficients. X, and X, A, denote two local neighborhoods of
common size (Fig. 1B, blue boxes) taken from the same pixel location
(Fig. 1B, orange boxes) in both images. For example, the analysis shown
in Fig. 1B uses 5 x 5 pixel local neighborhoods which are visualized with
blue boxes. Every valid pair of neighborhoods is compared with DSSIM
to construct the final dissimilarity image, and the size of the local
neighborhood will determine the spatial resolution of the output. At is
the temporal offset of the pair of frames and will determine the temporal
resolution of the output. [@ § y] are the DSSIM coefficients which adjust
the relative weighting of the mean, standard deviation, and cross-
correlation components. Coefficients were kept at [1 1 1] for the ana-
lyses presented here.

Lastly, the output of DSSIM analysis is quantified (Fig. 1C). The
simplest method of quantification is calculating the global mean DSSIM
value for each DSSIM image. This provides information about mean
structural change occurring in the image, where high mean DSSIM
values correspond to a high degree of structural change. Alternatively, it
is often useful to perform regional analysis to compare structural change
across different spatial locations in the data, [32] or to closely examine a
particular event of interest. After quantification, the original 3-dimen-
sional video is reduced to 1-dimensional data that is easily interpreted
and correlated to other types of data.

2.2. Parameter tuning

The data analysis pipeline described here requires three parameters
to be tuned in Step 2. While multiparameter analysis methods are
generally considered to be complex, parameter tuning for DSSIM anal-
ysis is intuitive and directly related to the spatial and temporal resolu-
tion of the physical phenomena taking place. The spatial and temporal
resolution of the detected dynamics will depend on the temporal offset
and local neighborhood, respectively. Determining the ideal local
neighborhood size requires consideration of the feature size of interest
as well as the signal-to-noise ratio. In general, smaller neighborhoods
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are ideal because they have the highest resolution and are most sensitive
to small structural changes, but can result in artifacts and ‘false events’
caused by noise. If DSSIM analysis is applied to particle nucleation
events, the neighborhood should be smaller than the particle (Fig. 1B).
Typically, it is best to start parameter tuning with a large temporal offset
and a large neighborhood to capture the most obvious dynamics. These
parameters can then be iteratively decreased until the output becomes
too noisy for clear interpretation. Depending on the nature of the dy-
namics, the user should focus on maximizing either temporal or spatial
resolution. The structural change must occur over a time period that is
strictly larger than twice the time of the temporal offset in order to be
captured by DSSIM analysis (Nyquist-Shannon theorem). [34]

The DSSIM coefficients should generally be kept at [1 1 1]. However,
it can be useful to remove one of the components of the DSSIM analysis
by setting a coefficient to 0. For example, using coefficients [0 0 1] will
reduce DSSIM to a local normalized cross-correlation calculation [35].
In the case of confocal fluorescence microscopy data, it was reported
that the mean channel contributed mostly noise in the final output, so [0
1 1] coefficients were selected [32]. In the LCTEM datasets presented
here, no exponent tuning was required.

Overall, we find parameter tuning to be intuitive and find that the
end result is consistent and stable for a wide range of parameters.
Additionally, it is important to note that DSSIM analysis is a computa-
tionally efficient algorithm that is easily parallelizable. This enables
users to receive rapid feedback when tuning DSSIM analysis parameters.

2.3. Dataset considerations for DSSIM analysis

The DSSIM metric highlights both structural change and object
movement. For datasets where both are occurring at the same time,
DSSIM analysis will highlight both types of dynamics [32]. For struc-
tures that are in motion, object tracking and drift correction algorithms
could be applied in the pre-processing steps to minimize movement from
camera drift. This would enable the DSSIM metric to highlight structural
changes. In the case of LCTEM electrochemical experiments, structures
are typically attached to the electrode or the silicon nitride window, and
so structural change can be isolated from object movement. In general,
TEM imaging is better suited than scanning transmission electron mi-
croscopy (STEM) imaging for DSSIM analysis. This is because TEM im-
ages can be captured at higher framerates and there are no scanlines
which result in artifacts after applying DSSIM analysis (Fig. 2C,E). In
addition, near-zero pixel intensity values recorded in dark-field STEM
imaging can cause instability in the DSSIM metric.

3. Results and discussion
3.1. DSSIM analysis of bright-field liquid cell STEM

DSSIM analysis is applied to a previously published bright-field
liquid cell STEM video of SEI layer formation on a Pt electrode [6]. In
this dataset, an electrochemical liquid cell was configured with Pt
electrodes on a silicon nitride membrane to create an operando Li bat-
tery. Cyclic voltammetry (CV) was performed, in which the electrode
potential was progressively decreased to induce charging, then pro-
gressively increased to induce discharging. During charging, the SEI
layer rapidly grows on the electrode and there is a negative peak in the
current (Fig. 2A-D, SI Video 1). During discharging, the SEI layer
partially dissolves and there is a positive peak in the current (Fig. 2E,F,
SI Video 1).

DSSIM analysis is applied to correlate the features of the recorded CV
with the structural changes recorded on the electrode during charging
and discharging. The dataset consists of 95 images taken across 402 s
with a frame-time of 4.2 s. Preprocessing was done by applying a
Gaussian blur with a first standard deviation of 90 nm (7 pixels) to
remove noise. Due to the high signal-to-noise ratio and relatively low
temporal resolution, no temporal averaging was applied to this dataset.
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Fig. 2. DSSIM analysis applied to a previously published bright-field liquid cellSTEM video (SI Video 1) [6]. A-F) Select microscopy frames (top) and corresponding
DSSIM frames (bottom) during electrode charging (A-D) and discharging (E,F). Bright pixels values correspond to regions of high dissimilarity between frames.
Bottom labels correspond to the times of the two microscopy frames used to calculate the DSSIM image. Red arrows in (C, E) shows STEM scanline artifact in the
DSSIM image. G) CV plotted as current vs. potential and H) current vs. time with key frames from (A-F) indicated with triangles. (H) contains a mean DSSIM plot,
with key correlative features highlighted with dashed lines. High DSSIM values correspond to timepoints of high change. I) Mean DSSIM and MSE comparison.

Next, DSSIM analysis was applied with a local neighborhood of 244 x
244 nm (19 x 19 pixels), 1 frame offset, and [1 1 1] coefficients,
resulting in 94 DSSIM frames.

The CV is shown as a current-potential plot in Fig. 2G and replotted
as a current-time plot in Fig. 2H. The mean DSSIM value for each DSSIM
frame is plotted to directly compare features of the current-time plot
with the structural change taking place in the microscope. The analysis
shows a clear correlation between the features of the CV and the
resulting structural change. Interesting, there is a 9.0 s delay between
the peak current and peak mean DSSIM during charging, and a 10.0 s
delay between the negative peak current and peak mean DSSIM during
discharging. The current value should be directly proportional to the
rate of addition or removal of Li. Considering the frame-time of this
dataset is 4.2 s, the mismatch represents 2 frames which could be
attributed to a delay in recording the frames. The mismatch could also
suggest the addition of Li during the peak current is not contributing to
significant structural change of the SEI volume.

To compare the results of DSSIM with another metric, the analysis
workflow described in Fig. 1 was applied but the DSSIM metric was
replaced with the mean squared error (MSE) metric. Fig. 2I shows there
is very good agreement between the timescale of features captured with
both metrics. Fig. 2I also shows disagreement in relative peak heights of
the two metrics during charging and discharging. This discrepancy is
unsurprising, as disagreement between the two metrics has been pre-
viously reported [36-38]. MSE compares the absolute error between
each pixel for the image pair, whereas DSSIM attempts to evaluate
perceived differences in structure by comparing local regions of pixels.

As a result, DSSIM is less susceptible to single-pixel noise, which may be
the reason for the disagreement in relative peak heights in Fig. 2I
Another key advantage of DSSIM analysis is the algorithm provides a
map of local change for each pair of frames, which is not provided with
MSE. This makes it easy to assess which regions of the image are
contributing to the mean DSSIM value. Furthermore, the dissimilarity
images can aid in qualitative analysis and reveal events easily missed.
For example, Fig. 3 shows there is a subtle structural change that occurs
a long time after motion has stopped elsewhere in the SEI layer.

3.2. DSSIM analysis of bright-field LCTEM

DSSIM analysis was applied to a bright-field LCTEM dataset which
captures cyclic electrochemical Cu plating and stripping on a TiNy
electrode. An in-depth description of the electrode fabrication and
experimental details will be released in an upcoming manuscript [39]. In
this experiment, square-wave chronoamperometry was performed in
which the electrode potential was decreased to —1.5 V (vs. TiNy) and
held constant to induce Cu plating, then instantaneously increased to
+1.5 V (vs. TiNy) and held constant to induce Cu stripping. Fig. 4A-D
shows the first plating process as the dark Cu domains form on the
electrode. Fig. 4E,F shows the first stripping process as the domains
dissolve. In total, 4 plating and 3 stripping processes were performed (SI
Video 2).

DSSIM analysis is applied to correlate the features of the square wave
chronoamperometry data with the structural changes occurring on the
electrode during plating and stripping. The raw dataset consists of 600
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Fig. 4. DSSIM analysis applied to bright-field LCTEM data (SI Video 2). [39] A-F) Select microscopy frames (top) and corresponding DSSIM frames (bottom) during
electrode plating (A-D) and stripping (E,F). Bright pixels values correspond to regions of high dissimilarity between frames. Bottom labels correspond to the times of
the two microscopy frames used to calculate the DSSIM image. (G) Square-wave chronoamperometry plotted as current vs. time and (H) potential vs. time compared
to mean DSSIM. High DSSIM values correspond to timepoints of high change. Current and potential data was smoothed using a Gaussian-weighted sliding-window
average with a stand deviation of 1.5 datapoints. (I) Zoom-in to dashed region in H. Black dashed lines mark timescale of features in the potential plot. Red dashed

lines mark the timescale of the DSSIM peaks using FWHM.

images taken across 120 s with a frame-time of 0.2 s. Preprocessing was
done by first temporal averaging every 2 frames, reducing the size of the
dataset to 300 frames. Next, a Gaussian blur was applied with a standard
deviation of 120 nm (10 pixels) to remove noise. Then, DSSIM analysis
was applied with a local neighborhood of 131 x 131 nm (11 x 11
pixels), 1.8 s offset (3 frames), and [1 1 1] coefficients. A frame offset of
3 was selected due to the high temporal resolution of the initial dataset,
which meant there was little measurable change between adjacent

frames. These parameters resulted in 297 DSSIM frames.

The mean DSSIM is calculated for each frame and then plotted
against the current-time data (Fig. 4G) and the potential-time data
(Fig. 4H). The mean DSSIM plot shows that during plating, there is a
sharp peak in Cu structural formations which subsequently slows down.
During stripping, there is more uniform structural dissolution that oc-
curs at a slower rate. This signature pattern is observed during each of
the plating/stripping cycles captured in this dataset. Interestingly,
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during stripping the DSSIM peaks show broadening across each subse-
quent cycle. This peak broadening is also seen via full-width half-max
(FWHM) analysis of the stripping peaks in the current-time plot
(Fig. 4G). These features in the chronoamperometry and mean DSSIM
data suggest there is hysteresis across the stripping cycles. To further
examine this, all DSSIM images were averaged together to display the
entire history of structural change in a single image (Fig. 5). Fig. 5 shows
there were regions that experienced multiple nucleation events (red
arrows). This suggests there are some locations that favor Cu nucleation,
or the Cu does not fully dissolve during stripping.

Closer examination of the potential-time and mean DSSIM plots from
the first cycle shows there is a strong correlation between the shape of
the square-wave chronoamperometry and the structural change events
occurring on the electrode (Fig. 4I). During plating, the potential-time
plot shows a delay of 1.4 s before —1.5 V is reached. Applying FWHM
analysis to the mean DSSIM peak shows that structural formation occurs
across 1.2 s. During stripping, a similar phenomenon occurs in which
there is a delay of 3.4 s before the voltage reaches +1.5 V. FWHM
analysis of the mean DSSIM peak shows that structural dissolution oc-
curs across 3.2 s. This analysis demonstrates the timescale of features in
the square-wave chronoamperometry correlate with the timescale of
structural change events occurring on the electrode.

3.3. Comparison of DSSIM analysis and segmentation analysis

Regional DSSIM analysis was applied to individual Cu plating and
stripping events from the previously discussed bright-field LCTEM
dataset (Section 3.2) to compare the results of DSSIM analysis to the
results of segmentation-based growth rate analysis. Typically, particle
growth rate is calculated by segmenting the particle in each frame and
then calculating the derivative of area with respect to time [40] . Here,
we compare growth rates calculated from segmentation analysis to the
structural change calculated from regional DSSIM analysis.

Individual particle plating and stripping events from SI Video 2 were
isolated and cropped for analysis (Fig. 6). For each frame, the particle
area was calculated using a standard segmentation routine that has been
described previously [40]. The green outline labels the edge of the
segmented particle in each frame (Fig. 6A,D). Next, the particle growth
rate was calculated by first smoothing the particle areas (Fig. 6B,E) and
then taking the derivative of smoothed area with respect to time
(Fig. 6C,F). The growth rate plots show a sharp increase in size during
plating followed by a decrease in size during striping.

The same region was then cropped from the corresponding DSSIM
frames and the mean DSSIM values were calculated. Fig. 6C,F shows the
same features are captured in particle growth rate analysis and the
regional mean DSSIM analysis. Fig. 6F shows DSSIM analysis correctly
captures the subtle decrease in growth rate (dashed line). This

Fig. 5. Summation of all DSSIM frames from the bright-field LCTEM dataset (SI
Video 2). Arrows highlight regions where multiple nucleation events occurred
on the electrode.
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demonstrates DSSIM can be used as an alternative to segmentation
analysis in cases where the temporal scale and rate of structural change
are of interest. It is important to highlight that DSSIM analysis provides
different information than segmentation analysis. Specifically, DSSIM
analysis will capture changes in object contrast, which are not directly
captured in segmentation analysis. Additionally, DSSIM analysis will
only provide relative information about how a structure is changing
whereas segmentation analysis provides an absolute value about the
particle size and position. For example, Fig. 6C,F shows the particle size
is increasing steadily between 50 s and 60 s. While this slow growth is
still visible in the DSSIM(47.5,48.7) images, the mean DSSIM graph does
not highlight this processes. Note that increasing the temporal-offset of
DSSIM analysis would improve the signal of the slow growth at the cost
of temporal resolution. While particle segmentation is straightforward
in the case presented here, DSSIM analysis can be applied to datasets in
which segmentation is highly subjective or impossible, such as multi-
class datasets where objects have a wide distribution of intensities [23,
32].

4. Code availability and efficiency

ImageJ, MATLAB, and Python code for applying DSSIM analysis is
available via Github: github.com/JustinTMulvey/DSSIM_Analysis.
DSSIM analysis is accessible as a MATLAB script, Python Jupyter note-
book, or ImageJ plugin with an accompanying user-guide. The ImageJ
plugin has an easy-to-use user-interface and can process floating-point
and integer-type microscopy datasets (Fig. 7). The MATLAB and Py-
thon codes are parallelized and can process floating point videos data at
100-1000 MB/s (depending on neighborhood size) on a modern high-
end CPU (32 cores 3.5 GHz, 3200 MHz memory).

5. Conclusion

We have demonstrated DSSIM analysis can be used to detect and
quantify structural change in LCTEM videos. We showed the method can
be used to assist in qualitative analysis and reveal structural change that
is easily missed when viewing the raw data. We also showed the algo-
rithm can be used to quantitatively correlate the applied electro-
chemical biasing to the structural change that occurs on the electrode.
We verified the accuracy of the metric by comparing it to segmentation
analysis and found good agreement in temporal scale and magnitude of
individual particle growth rates. Given the computation efficiency and
ease of interpretation, we believe there is great potential to use DSSIM
analysis for real-time event detection during data acquisition to high-
light changes taking place to the microscope operator. This use case may
also extend as an automated event detection algorithm for application in
sparse imaging.

Data acquisition

The bright-field liquid cell STEM video of SEI layer formation on a Pt
electrode was acquired by downloading the SI video from the publica-
tion. [6] The CV data was extracted and aligned to frames using a custom
computer vision script. Frame times and CV times were estimated by
matching the extracted frames to the publication figure time stamps and
then using linear interpolation. The bright-field LCTEM dataset of Cu
plating and stripping on a TiNy electrode and accompanying square
wave chronoamperometry data was received as raw data [39].

Declaration of generative Al and Al-assisted technologies in the
writing process

During the preparation of this work the authors used OpenAI’s
ChatGPT 3.0 in order to improve phrasing and clarity of the writing.
After using this tool, the authors reviewed and edited the content as
needed and take full responsibility for the content of the publication.
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Fig. 6. Regional DSSIM analysis compared to segmentation-based growth-rate analysis. (A,D) Select microscopy frames showing segmentation of particle (top) and
corresponding DSSIM frames (bottom) during electrode plating and stripping. Bright pixels values correspond to regions of high dissimilarity between frames. Bottom
labels correspond to the times of the two microscopy frames used to calculate the DSSIM image. (B,E) Segmented particle areas for each frame plotted over time.
Black line indicates a sliding-window Gaussian-weighted average. (C,F) Growth rate calculated as the derivative of the smoothed particle area with respect to time
and mean DSSIM from regional analysis. Dashed lines show key features are aligned.
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Fig. 7. ImageJ user interface for applying DSSIM analysis. DSSIM analysis can
also be applied using Python or MATLAB scripts.
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