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Equal Lower-order Finite Elements of Least-squares Type in Biot

Poroelasticity Modeling

Hsueh-Chen Lee* and Hyesuk Lee

Abstract. We investigate the behavior of the approximate solution of Biot’s con-
solidation model using a weighted least-squares (WLS) finite element method. The
model describes the fluid flow in a deformable porous medium, with variables for fluid
pressure, velocity, and displacement. The WLS functional is defined based on the
stress-displacement formulation, with the symmetry condition of the stress and the
weight that depends on the time step size for the temporal discretization of the model.
An a priori error estimate for the first-order linearized least squares (LS) system is
analyzed, and its validity is confirmed through numerical results. By using continuous
piecewise linear finite element spaces for all variables and adjusting the weight appro-
priately, we obtain optimal error convergence rates for all variables. Additionally,
we present two numerical examples to demonstrate the implementation of the WLS

method for benchmark problems.

1. Introduction

Poroelasticity is a model that describes the time-dependent coupling between fluid flow
and deformation in an elastic porous material, which often involves data with high uncer-
tainty. For some applications, studies have shown that using equal lower-order elements is
more accurate than using higher-order elements [9]. Moreover, this approach is easier to
implement in large simulation codes as it results in less dense matrices on supercomput-
ers [3,8]. While the linear equal-order finite element approach offers several computational
advantages, the Galerkin finite element method can lead to instabilities due to space in-
compatibility. To address this issue, the least-squares (LS) finite element method can be
used, which does not require the inf-sup condition [3,13].

There have been several reports on LS methods to simulate the four-field Biot model

[11,12,15,17]. In [17], Tchonkova et al. presented a mixed least-squares method with

Received April 9, 2023; Accepted July 5, 2023.

Communicated by Jenn-Nan Wang.

2020 Mathematics Subject Classification. 65N30.

Key words and phrases. least-squares method, time dependent weight, Cantilever bracket problem, Biot
poroelasticity model.

The first author is grateful for the Taiwan NSTC grant 111-2115-M-160-003 and the second author is
grateful for the NSF under grant number DMS-2207971.

*Corresponding author.

971



972 Hsueh-Chen Lee and Hyesuk Lee

equal order linear interpolation function to minimize the combined LS functional of the
flow and elasticity parts. In addition, they demonstrated that equal-order interpolation in
a cantilever beam problem did not exhibit any numerical instability, such as shear locking
or oscillations. In [11,12], the standard least-squares functional was formulated as the sum
of the residuals of equations measured in the L?-norm, based on H%V-conforming Raviart—
Thomas spaces for the velocity and stress components. In [15], time-dependent weights
and a scaled stress-displacement equation were used in the L? least-squares functional to
simulate the intracranial brain pressure. Cai and Starke [5] showed that the scaled stress-
displacement equation was permissible for the piecewise linear finite element spaces.

In [11,15], WLS methods for poroelasticity were introduced and analyzed for finite
element error estimates. In those studies, WLS functionals were defined based on the
stress-displacement formulation, and the weight depends on At, the time step size cho-
sen for the temporal discretization. This work aims to extend the investigation of the
WLS method, introduced in [15], by testing it numerically using linear equal-order basis
functions for all variables and different weights. Furthermore, we propose an a posteriori
error estimator [14] for the WLS method to verify its convergence rate in a non-physical
problem with a known solution. We then use this estimator as a mesh refinement criterion
to refine the grid points and compare the numerical results for a physical problem.

We also extend the implementation to simulate the cantilever bracket problem con-
sidered in [16,18]. In [18], the mixed finite element method utilizes continuous bilinear
elements for displacement and the lowest-order Raviart-Thomas space for flow variables.
In contrast, we use linear equal-order finite elements to solve the Biot model. It is im-
portant to note that equal-order linear elements do not satisfy compatibility conditions
between finite element spaces and offer advantages in terms of ease of implementation.
Despite this difference, our approach results are comparable to the mixed finite element
method presented in [18].

The rest of this paper is organized as follows. Section 2 presents the model equations.
Section 3 introduces the WLS functional with the scaled stress-displacement equation
and the analysis for the functional. Section 4 presents finite element spaces and an error
estimate of the finite element solution. Section 5 provides two numerical examples, where
numerical solutions by different sets of weights and stress equations are compared, and

finally, conclusions follow in Section 6.

2. Model equations

Biot’s consolidation model provides a general description of the mechanical behavior of
poroelastic materials. Biot’s poroelasticity model is composed of the fluid mass balance in

the pores of the matrix, Darcy law, and the momentum equation for the balance of total
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forces [1,2]. Let Q be a bounded, connected domain in RY, d = 2,3 with the Lipschitz

boundary 0f2. The governing equations are as follows:

(2.1) V~u+%(csp+av-n):fs in €,
(2.2) u+KVp=0 inQ,
(2.3) —2uV -€(n) = AV(V-mn)+aVp=1£ inQ,

where u denotes the fluid velocity, i denotes the displacement field, p is the pore pressure of
the fluid and €(n) := 0.5(Vn+Vn') is the standard strain rate tensor. The parameter c; is
the constrained specific storage coeflicient, o is the Biot—Willis coefficient, and K = x/ps
is the hydraulic conductivity with x being the permeability and i being the fluid viscosity.
In (2.3) p and A are the Lamé coefficients, which is computed by the Young’s modulus E
and the Poisson ratio v:
Ev Ev
NSt T v ni—m)

The right-hand side functions fs, f, are the source/sink term and the body force, respec-

tively. Let the boundary of domain, 9€2 be decomposed into two pairs of disjoint sets such
that 02 = I',p UT',y and 02 = I'yp UT'gn with the Neumann and Dirichlet boundaries.
The Biot model is completed with the boundary conditions

p=0 onlyp, u-n=0 onDl,y,
T]ZO ODFdD, o-n=20 OanN,

where n is an outward unit normal vector and we consider homogeneous boundary condi-

tions for simplicity. We also have the following initial conditions

b = Ppo, n =71 for t = 0.
In order to formulate the least squares functional, we introduce the elastic stiffness tensor
C [6]:
(2.4) Ce(n) = 2ue(n) + Atr e(n))1,

which can be regarded as a symmetric positive linear mapping. However, C is the linearity
of the elastic stiffness tensor, where it is assumed to be linear. Let o be the stress tensor

from linear elasticity satisfying
(2.5) o = Ce(n).

In finite element approximations of the linear elasticity with a large A > 0 for nearly

incompressible materials, the equation

Clo =e(n)
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is usually considered instead of (2.9) for a locking-free formulation, where C~! is the

fourth-order compliance tensor given by

o1 1 A

- - (ro)l
2,ua QM(d)\—i-Q,u)(ro-)’

where d is the dimension of .

Using the backward Euler method for the time derivative and the additional stress
variable defined in (2.5), the temporal discretized first order system for (2.1)—(2.3) can be
written as

LU=F inQ,
where £ := (L1, L9, L3,L4) and F := (f1, £5, 3, £4) = (fs + é(av -0 4 e pd), 0, £, O),
in which
1
At
LoU :=u+ KVp,

L3U := -V . (o — apl),
L4U := 0 — Ce(n),

LU=V -u+ —(csp+aV-n),

where At is a fixed time step size and p°'9d, n°d denote the pressure and displacement

fields at the previous time-step, respectively.

3. Least squares functional

Let H*(2), s > 0, be the Sobolev spaces with the standard associated inner products
(+,+)s and their respective norms || - ||s. For s = 0, H*(f2) coincides with L?(£2), and || - ||
is used for || - 0. In order to consider the least squares functional, we first introduce the

functional spaces for (o, m,u,p):

S:={r€Hyy(Q) : 75 =751,1 <4, <d, 7-n=0o0nTyn},

T :={(cH(Q):£=0o0nTu},

X:={ueHy(?):u-n=0o0nTynN},

Q:={ge H'(Q):q=00nT,p}
and define the product space ® = S x ¥ x X x ). The standard WLS functional for
(2.6)-(2.9) is given by

4
(3.1) Js(.m,u,p;F) ==Y W[|L;U0 — %,
j=1
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where W; for j = 1,2,3,4 are positive constants.

In this work, we consider a scaled stress equation instead of (2.9) for the proper balance
of terms in the WLS functional to be introduced. First, we derive the fractional operator
C'/2€(n) satisfying

(3.2) Ic"2e(m)|* = (Ce(n), e(n))-
With the definition of C, (2.4),
(Ce(m), e(m)) = 2ulle(m)|* + A((tr (m))L, e(n))

(3-3) = 2plle(m)||* + Atr e(n), tr ()
= 2ple(m)||* + Al tr ().

In order to have (3.2) and (3.3) satisfied, C'/2€ should be in the form of

(3.4) C%e(n) = \/2ue(n) + X (tre(n))I

for some scalar X to be determined. Using (3.4)

(3.5)
IC*2e(n)||* = (C'/%e(n),C'2e(n))

= 2plle(m)2 + X2((tr e(m))L. (tr e(m)T) + 2/2uX ((tr () L, (tr €())T)
— 2ulle(m)|2 + dX?| tre(n ||2+2f ]| tr e(m)]>.

Note that €(n) : I = tre(n). Then (3.2), (3.3) and (3.5) imply
2ulle(m)l* + Nl tre(m)[|* = 2plle(m)||* + dX>| tre(n)|* + 21/2uX || tr e(n)||?,

ie.,

dX? +2/2uX — X =0.

Solving the quadratic equation, we have X = ri /2putdA . Taking “+” sign here as both
parameters in C are positive, we obtain

—V20 4+ 20+ dX
(3.6) C2e(n) = \/2pie(n) + ) (tr e(m))L.

1/2

The inverse fractional operator C~"/“ can be derived similarly. Consider

(3.7) Ic~V2e|? = (C o, o),

where the inverse operator C~! is defined as (see (2.4) in [4])

1 A
Clo=—0c—-—"—(tro)lL
7 2,ua 2u(dX\ + 2u) (tro)
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By the definition of C_l,

A

S NS S
(3.5) €o0)= gl ~ 5

I tr0'|]2.

In order to have (3.7) satisfied, C~/2¢ should be in the form of

(3.9) V2= Loy X (tro)l

V2
for some scalar X to be determined. Using (3.9),

e 20 = (Va7 )

3.10 1 2
(3-10) = —|o|* + dX?|| tro|* + —X || tr ||
24 7

e

Now (3.7), (3.8) and (3.10) imply

1 2 A 2 1 2 2 2 2 2
—|o||* = —————||tro||* = —||o||* + dX*||tro||* + —=X|| tr o |,
5l g el = g lol + ax? ol + Xt
ie.,
2 A
dX? + X + =0
V24 2u(dX\ + 2p)
Solving the quadratic equation, we have X = %( — —LQM + 7%1)\1 +2u)’ and therefore,
1 1 1 1
3.11 TRy, S + = < + ) tro)l.
( ) V20 d V2 AN+ 2u ( )

Being scaled by C~1/2, (2.9) can be written in the following alternate formulation
[4,5,11]:

(3.12) C 12 —C'%e(n) =0,

where C'/2¢(n) and C~1/26 are given by (3.6) and (3.11), respectively.
We now define the WLS functionals with positive constants W; for (2.6)-(2.8) and
(3.12):

3
(3.13) T(o,nu,piF) = S WHIL,U — £ + Wi £5U — &),
j=1

in which £5U := C~'/26 — C'/?€(n). The least-squares problem for the first order sys-
tem (2.6)—(2.8) and (3.12) is to minimize the quadratic functional J (o, n, u, p; F) over ®,
that is, find (o, m,u,p) € ® such that

(3.14) J(e,nu,p;F)= inf J(1,§v,¢;F).

(T?£7V7q)€@
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For (3.13) we consider the WLS functional with the weights (W7, W, W3, W) = (A2, 1,
At 1):

Iaez(o,n,u,p; F) i= A2 LU — £ ||* + || £2U — £?

(3.15) ) ,
+ At||L3U — 3] + || £L5U — £4])°.

Define the scaled norm

(7, & v, )llAe = IV - 7l + [lc™27|1* + [Ic'/2e(€))”
+ (ALY - v + Atllv]® + At Vql* + gl

for all (7,&,v,q) € ®. In [15], we used the (Wy, Wa, W3, Wy) = (At, 1,At, 1) for J in
(3.13), i.e.,

jAt(a-a n,a,p; F) = At”‘ClU - f1||2 + ||['2U - f2H2

(3.16) ) )
+ At||L£3U — f3]]7 4 [|[L5U — £y |”.

and established the following a priori error estimate: V (7,€,v,q) € ®,

(317) 61||(}7-7€aV7Q)H2At < jAt(T,&,V,q;O) < €2||(T557V’q)||2At

for a fixed At < 1 and positive constants C, C'y dependent on At.
Using (3.17), we now derive the coercivity and continuity estimates of the functional

Jas2 in the following theorem.

Theorem 3.1. There are positive constants C, Co dependent on At satisfying
6”(7757""1)”2& < Ipe(7,6,v,4;0) < 62”(735:“(1)”2&

for all (1,€,v,q) € ®.

Proof. For the fixed At < 1, AtJa(o,m,u,p; F) < Jap(o,n,u,p;F). We have the
following result using (3.17),

AtC||(T,€,v,q)|A; < AtTae(o,m,u,p; F) < Tap(o,n,u,p; F).
Let the constant C' = AtC,
6"(T7E7V7q)HQAt S jAt2(0-7n7u7p; F) S jAt(o-anvuap; F) S €2|’(77£7V7Q)||2At

for all (7,€,v,q) € ®. O
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4. Finite element approximation

For the finite element approximation of (2.1)-(2.3), we assume that the domain Q is a
polygon and that 7 is a collection of finite elements such that 2 = UTeTh T with h =
max{diam(7) : T € Tp}. Assume that the triangulation 7y, is shape-regular and satisfies
the assumption for inverse estimates [13]. The grid size is defined as h = 21/]Q|/N,
where |Q] is the area of the domain and N is the number of elements in 7. Define finite

element spaces for the approximate of (o, m,u,p):
sh={r": " e XN CO ()2, VI € (T2 VT € Th},
Sh={¢":¢hemnC®(Q)? 0" |r € P(T)’VT € Tp},
X" = (vl vl e XN CY(0)% VI € P(T)2 VT € Th},
Q"={d":1¢"€QnCQ), "1 € P(T),VT € Tp},

where P, denote the piecewise polynomial space of order r, respectively.

We assume the following standard approximation properties:
(4.1) l = Pupli < Ch™|[ullprt, Vo € H™H(Q)

for m < r and [ = 0,1. Then, the discrete least-squares problem for the Biot model is
to choose ®" := S" x =" x X" x Q" be the finite element subspace of ® and consider
the discrete least-squares problem for the Biot model: compute (a”, n®, u”, p") € ®" such
that
(4.2) Taei(e”, ", ua, p" F) = inf T (7", €" V", ¢"; F)

(v vl gh)eeh

fori=1 or 2.

Theorem 4.1. Consider approximating the solution to (2.1)—(2.3) with the condition (4.1).
Assume that (o,m,u,p) € & N H™T(Q)2*2 x H™HH(Q)2 x H™HL(Q)2 x H™H(Q) is the
solution to (3.14) and (", n", u” p") € ®" is the unique approzimation solution to (4.2).
Then there is a positive constant C which is independent of h such that
1/2
(43) T (et ul ph F)
< Ch"(IV - allm + o]l + [11llmsr + 11V - 0l + [0l + [[pllns),

lo — & (e + 197 = 1"+ 10— 0 1 0+ [V 0 — )]

(4.4)
<CR"(IV - allm + lollm + [nllmsr + 1V - allm + [[alln + [pln),
and
h h h h
o—o'||+|p—p|tlju—u’|+|n—mn
(4.5) I I+ I+ I+ I

< CR™(IIV - allm + o lm + [0llms1 + 1V - allm + [allm + [pllmr1)
fori=1 or2.
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Proof. By Theorem 3.1, (3.17), and the approximation properties in (4.1), there exists
C > 0 depends on At such that

1/2
ini (o.h’ 77h7 uh7ph; F)

1/2

=J\i(e =" n—n"u—u"p-p"0)

1/2
<Cl(o—-a"n—n"u—u"p-p"0)

< Ch"(IV - &llm + o llm + [1llms1 + [V - Wl + [allm + [Pllmt)

and

lo = ™[l ) + IV = 0" + 0 = 0|, ) + IV (0 = ")
< I\ e —omn—n"u—u"p-po)
< Ch™(IV - ollm + o llm + [[0llmss + IV -l + [llm + [[Pllms1)

for i =1 or 2. Then by the Poincaré inequality and (4.4), we can have that

[u—u"| < CA™(|V - allm + 0 ]lm + [[0]lms1 + |1V -l + ([l + [[P]lms1),
In—n"| <|V(n—n")|
S CN([IV - ollm + [|ellm + [10llms1 + IV - ullm + [ullm + [2llmt1)-

By the same approach, we can obtain the desired estimates for ||p — p”|| and || — o"|],

respectively. O

Remark 4.2. The error bounds predicted based on (4.5) are only O(h) in the L?-norm for
o, p, u, and 7 if we use continuous piecewise linear polynomials for all unknown functions.
However, in Section 5, our numerical results demonstrate optimal convergence rates. In-
terestingly, we observe that the weight At? is crucial for achieving optimal convergence

when continuous piecewise linear polynomials are used for all unknowns. On the other

g2

Api (4.3) concerning

hand, the convergence behavior of the a posteriori error estimator

h is numerically tested in the numerical experiments.

5. Numerical implementation

For numerical experiments, we consider the WLS functional in (3.13) for (2.6)—(2.8) and
the scaled equation (3.12). The numerical results will be compared with the simulation
results obtained using the functional in (3.1) for the standard model equations (2.6)—(2.9).
We consider fours WLS functionals: Jas2 in (3.15), Ja¢ in (3.16), and J a2 and Jsae,
which are defined by J; in (3.1) with (W7, Wa, W3, W) = (At?,1, At, 1) and (At, 1, At, 1),

respectively.
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5.1. Test problem 1

To investigate the convergence of the proposed WLS methods, we perform numerical
experiments using the non-physical example reported in [10]. As shown in [10], we let
p=1 K=1I a=1and cs =0 in (2.6)(2.8) and (3.12). Consider Q = (0,1)? for the

domain of model equations. Let ¢(z,y) = sin(27z) sin(27y) and

it =

64ni 1+ dn? (87r2 sin(2nt) — 27 cos(27t) + 271-6—871'27&)'
We can obtain

fs(z,y,t) = (2, y) sin(2nt) + e (£)d(x, y),
where

W(t) =

and exact solutions

1
o el (471' cos(2mt) + sin(27t) — 47re_87r2t),

p((l?,y,t) = ¢(t)¢($7y)7 u(x,y,t) = —w(t)vﬁb(l',y), "7(%?/,15) = _qus(xvy)

All exact solutions are enforced on the boundary. In our computations, linear basis
functions are considered for all variables. The time step At = 0.01 is chosen for temporal
discretization. We discretized Q by a uniform Union Jack grids sequence with h = 1/8,
1/16, and h = 1/32. Figure 5.1 shows the solution of the WLS with Jx;2 in (3.15) at time
t = 0.05 with considerably enlarged deformations and seepage velocity arrows on uniform
Union Jack grids with h = 1/32.

1
| WRL'H‘AL‘L’JV P
AN NG RZ 0.003
B N 7 % ‘ VMI"HN’ANVANE; :
| 5 2 N
] 0.0024
08
B 0.0018
- i N : 0.0012
0.6 £ ) mwmwuw
MNKN‘AMV‘FN
B ‘MHV‘HV“‘AM‘ 0.0006
> | TN NGNS 0
INNAN N7
0.4 ;E%N'AI‘VHVI'EVAN -0.0006
| ? -0.0012
gﬂ
0.2F+17 -0.0018
B ?'ﬂn )
71X N
| B ORDIRPR R 0.0024
| X171 'M'ANﬂE\AMV NOX(
0 SUINIAN NIV -0.003
/I IR A EEVEEI RN R SRR |
0 0.2 0.4 0.6 0.8 1 1.2

Figure 5.1: The seepage velocity u (arrows) and the pressure p (contours) on the mesh
deformed by fifty times the 7 size using the WLS with Ja;2 on uniform Union Jack grids.
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Next, we present the convergence rates of the WLS solutions for (u,p,o,n) using
the functionals 7 in (3.13) and J, in (3.1) with (W7, Wy, W3, Wy) = (At?,1,At, 1), and
(At,1,At, 1) at time ¢ = 0.05 in Figures 5.2 and 5.3. Figure 5.2 illustrates convergence
rates of O(h) in the norm of (H¥, H', H¥ H") for (u,p,o,n). Moreover, these results
demonstrate optimal convergence of the functional value J/ 2(w,p,a,m;F) for J = Tas2,
Ints Tenez, and Jsar at O(h). These convergence rates are consistent with our analysis

in Section 4.

107 T T
O H(dw)errorin u O H(div) errorin u
slope = 1.1 slope = 1.1
y) H1 errorin p H1 error inp
. slope = 1.1 slope = 1.2
* H(div) errorin o s *  H(div) errorin o
>, * slope =1 > - * slope = 1.1
10 + Hierorin g 10 o ) + Hiermorin g
slope = 1 y / slope =1
@ g © 3o (upe) 2] = © Jof (upem)
e " s slope = 1 IS " / slope = 1
° B /// : .//
//
10 1 10
A A
~ -
~ %//
// -
/// 7
+ +~
10'4 L 10—4 L
102 107 10° 102 107 10°
h h
(a) WLS with Jas2 (b) WLS with J a2
107 107
O H(div)erorin u O H(div) errorin u
slope = 1 slope = 1
° H1 error in p H1 error in p
) slope = 1 slope = 1.1
o *  H(dv)erorin o o * H(dv)errorin o
» . slope = 1 » * slope = 1
10 o + HI| errcr1in n 10 o + H‘W error‘m n
slope = slope =
® ~ © J"of(u % i s LR
2 - .p.0.m) [ - of (up,o,m)
o ~ slope = 1 I3 _~ slope = 1
= * ~ = * P
5 A 3 -
" 7
103 k| 102
+
7 ///
/r/ e
_
7 e
+ +
10 - 10 -
10 107 10° 102 107 10°

h

(c) WLS with Ja¢

h

(d) WLS with Joar

Figure 5.2: H(div) errors of u, o, H' errors of p and n, and J'/2 functional value of
(u,p,o,m) for J as (a) Jas2, (b) Tsae, (¢) Jas, and (d) Tsae at t = 0.05.

In addition, we present the L?-norm errors of the WLS solutions in Figure 5.3. As
shown in Figure 5.3, the use of the WLS with Ja,2 yields a significant improvement in
the convergence of the solution, in particular, u and 7, compared to the solution obtained
using Ja¢. Also, in Figure 5.3 some improvements are observed when using J with
(W1, Wa, W3, Wy) = (At?,1,At, 1) over Js, resulting in the optimal rate O(h?). This

result suggests that the use of the mass conservation weight At? for J can improve the
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convergence rate of the solution in L?-norm to an optimal rate.

O L2emorin u O L2erorin u
slope = 2 slope = 1.8
L2 errorin p L2 error in p
slope = 1.9 slope = 1.8
* L2erorin o] 10° F * L2erorin o
slope =2 slope = 1.9
+ L2erorin g +  L2erorin g
slope = 2 slope = 1.9

Errors
3
IS

\\\
%
%

. .

Errors
3
'S

-
%

10° : 106 .
10 10" 10° 102 107 10°

h h
(a) WLS with Ja2 (b) WLS with 7,2
102 102
O L2ermorin u O Lzemorin u
slope = 1.4 slope = 1.6

L2 erorinp

slope =2.5

* L2erorin o 10° F
slope = 2.1

+  L2erorin g

slope = 1.6

L2 error in p

slope = 2.2

* L2erorin o]
slope = 2.1

+ L2ermorin g

slope = 2.1

Errors
3 >
C S

*

.

Errors
3 3
& S

\\\
%
%

1 O'G L 1 0—6 L
102 107 10° 102 107 10°

h h
(c) WLS with Ja (d) WLS with J.a;

Figure 5.3: L? errors of u, p, o, and 7 by WLS methods with (a) Jas2, (b) Jsas2, (¢) Tat,
and (d) Jsae at t = 0.05.

5.2. Cantilever bracket problem

We consider a cantilever bracket problem presented by Phillips and Wheeler [16], wherein
their simulation displays locking in poroelasticity. When the time step, At, is small, and if
¢s = 0 and the permeability is small, the early deformation solution is nearly divergence-
free within a short time. This makes it challenging for the numerical method to accurately
capture both phenomena, leading to locking. Furthermore, the results in [16] show that
continuous bilinear elements cannot approximate a nonconstant, divergence-free defor-

mation. Therefore, alternative spaces must be used for approximating the deformation.

We implement the WLS method using (3.13) to overcome nonphysical oscillations in

the pressure variable for a cantilever bracket problem in Figure 5.4. The body force and
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Figure 5.4: Description of the cantilever bracket problem.

the source terms are set to zero, i.e., f, = 0 and f; = 0. The domain is the unit square
(0,1)2. For the flow problem, we impose a no-flow boundary condition along the entire
boundary. We assume that the left side edge is fixed for the elasticity problem, assessing a
no-displacement boundary condition. Additionally, we impose downward traction at the
top side and a traction-free boundary condition at the right and bottom sides. The initial
displacement and pressure are assumed to be zero. We conduct numerical simulations
based on the physical parameters and boundary conditions used in [18]. Based on [18],

the following boundary conditions are considered:

u, =0, oyy=0 on {(z,y) € 9Q:y =0},

u; =0, 0, =0 on {(zr,y) € 0N :z =1},

u, =0, oyy=—1 on{(z,y) €9Q:y=1},
+=0, n,=0, n,=0 on {(z,y) €9N:z =0}

As shown in [7], the displacement vector is no longer divergence-free, so no locking
exists at later times. Hence, we set At = 0.001 and use these material parameters:
Young’s modulus £ = 10%, Poisson ration v = 0.45, percolation coefficient x = 1077,
a = 0.95, and constrained specific storage coefficient ¢, = 0.

We consider linear basis functions for all variables and use uniform Union Jack grids
in our computations. Figure 5.5 shows the pressure profiles at ¢ = 0.001 using the WLS
with Ja2, Jat, Jsa2, and Jsa¢ on various meshes with h = 2= (k+2) for k= 1,2,3,4.
We employ the a posteriori error estimator for mesh refinement criteria [14] with the

convergence tolerance 1076,

1/2 1/2 1/2
A‘](k/) . |‘] / 11 P70'777»F) - ‘](k/_l)(uvpvo.un;F)}

AN, | N — Ni—1] 7
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where N}, = 2h~2 represents the number of elements at the k-th refinement step. J (1 16/)2(u, D,
o,n; F) denotes the functional value JY/? (u,p,o,n; F) at the WLS solution by number of

elements N.

Figure 5.5: Pressure contours at time ¢t = 0.001. Results are produced using the WLS
with Jaz2 at (a) h=1/8, (b) 1/16, (c) 1/32, and (d) 1/64.

Figure 5.6(a) demonstrates mesh convergence for Ny, which is confirmed when AJ(lk/)2 /
AN}, < 1075 for all four functionals J = Ja2, Jat, Jsasz, and Jsa¢. Therefore, we achieve
convergent results at k = 5 for all cases, and we use the mesh with A = 1/128 for the
results presented in Figures 5.7. Figure 5.6(b) illustrates the relative error 6.J'/2, where
§JV? = (Ji/tg - JZS)/JZQ for J = J and Js, at various Nji. It is noteworthy that the
errors are negative, indicating that At? performs better than At as a mass conservation

weight for both J and J; functionals. Additionally, the difference in performance is more
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significant for the functional J. Figure 5.6(c) shows that Js functionals yield the linear
convergent rate of J'/2, O(h), while the convergence of J functionals is slightly worse

than J;. However, the functional values J 1/2 of 7 are much smaller than those of Ts

functionals.
0 e
CEENG
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Figure 5.6: (a) Reduction of AJ(lk/)Q /AN, versus number of elements N. (b) Reduction of

§JV? = (JX; — Ji/tQ)/Ji/f by J = J, Js versus number of elements Nj. (c) Convergence

of J/2 by J = Jaezs Iats Tsaz, and Tsag.

To demonstrate the effects of different weight choice, we present WLS solutions using
J in (3.13) and J, in (3.1) with (Wi, Wa, W3, Wy) = (At?,1,At, 1) and (At, 1,At,1).
We show pressure profiles for comparing the locking effects of four functional cases in
Figure 5.7. Figure 5.7 presents the pressure profiles by the WLS method with Ja2, Jat,
Tsnz and Jgay for ¢ = 0.001. The results show that the WLS method with Ja,2 and
JAt yields smooth pressure profiles, and there are no pressure profiles in all 7 cases. We
obtain a significant pressure profile by the WLS method with Ja,2 over other cases, which
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aligns with the results reported in [18]. These results suggest that the locking effect can
be effectively resolved by the J 2.

P P
3 1 3
2 B 2
0.8
1 L 1
0.6
o > - o
0.4
1 : 4
02
-2 | -2
T R | S O | O | O | Wy O O Oy |
0.8 1 N o9 0.2 0.4 Xer 0.8 1 N
(a) WLS with Jx,2 (b) WLS with J,a2
P ; P
3 r 3
2 B 2
0.8
1 1
0.6
o > o
0.4
1 B 1
02
2 | 2
M I | 3 0 L.y 3
0.8 1 0 0.2 0.4 xo.e 0.8 1
(c) WLS with Ja: (d) WLS with Jsa:

Figure 5.7: Pressure contours at time ¢ = 0.001 on the mesh with A = 1/128. Results are
produced using the WLS with (a) Jaz2, (b) T2, (¢) Tat, and (d) Tsat.

6. Conclusion

In this study, we investigated Biot’s consolidation problem in rheology using the weighted
least squares method. We compared the results obtained using least-squares formulations
with different weighting schemes. Our approach utilized lower-order basis functions in all
variables. It allowed us to get optimal convergence in all variables in the WLS with the
weight (At2,1,At, 1) for the stress-displacement formulation with C1/2 and CY2. Our

results indicate that adjusting the weight of the mass conservation equation in the WLS
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method is necessary for obtaining a more accurate and efficient solution. Specifically,

using At? can greatly improve the solutions, resulting in accurate results in the cantilever

bracket problem. Additionally, our WLS solutions agreed well with published work, further

validating the effectiveness of our approach.
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