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ABSTRACT
This paper demonstrates the mixed formulation of the Brinkman problem
using linear equal-order finite element methods in porous media mod-
elling. We introduce Galerkin least-squares (GLS) and least-squares (LS)
finite element methods to address the incompatibility of finite element
spaces, treating velocity, pressure, and vorticity as independent variables.
Theoretical analysis examines coercivity and continuity, providing error
estimates. Demonstrating resilience in theoretical findings, these methods
achieve optimal convergence rates in the L2 norm by incorporating stabi-
lization terms with low-order basis functions. Numerical experiments vali-
date theoretical predictions, showing the effectiveness of the GLS method
and addressing finite element space incompatibility. Additionally, the GLS
method exhibits promising capabilities in handling the Brinkman equation
at low permeability compared to the LS method. The study reveals an
increase in the average pressure difference in the Brinkman problem com-
pared to the Stokes equations as the inlet velocity rises, providing insights
into the behaviour of Brinkman equations.
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1. Introduction

Understanding the intricate dynamics of fluid movement through tiny rock pores is paramount in
challenging underground reservoirs with limited natural fluid flow. The behaviour of fluids within
these porous structures not only impacts resource extraction but also holds significant implications
for environmental and geological considerations [26]. This paper addresses the complex challenge of
characterizing fluid flow at themicroscopic level within porous rock formations. The specific problem
we aim to tackle is understanding how fluids traverse these tortuous pathways in cases where natural
fluid flow is limited. This question lies at the heart of efficient underground reservoir management,
influencing a wide range of industries, from energy production to environmental conservation.

The Brinkman equations have proven indispensable in describing flow in porous media. Prior
studies, such as those by Hwang and Advani, Iliev et al., and Ingeram [13–15], have applied the
Brinkman equations to perform numerical simulations and explore permeability in porous media,
underlining the mathematical properties and stability of the equations [15]. Recent advances in the
Brinkman problem indicated that the Galerkin finite element methods, including hybridizable dis-
continuous Galerkin method, mixed finite element and stabilized techniques [3,21,23,27,29] have
improved the accuracy and stability of solutions.
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However, the need for velocity-pressure interpolations that satisfy inf-sup conditions poses
challenges [3]. Recent investigations [11,20] suggest that finite element methods employing equal
lower-order elements yield more satisfactory results and incur lower computational costs than
those utilizing higher-order elements. Enhancing accuracy with lower-order elements often entails
mesh refinement [19]. This strategy is simpler to implement and demands fewer computational
resources, rendering it suitable for specific applications, particularly when computational efficiency is
paramount. To address space incompatibility, some studies [4,7,9,11,25,28] introduce the linear order
finite element methods based on the weak Galerkin and the Galerkin least-square (GLS) finite ele-
ment methods, interpolating stabilization terms in the governing equations to enhance the stability
and accuracy of finite element solutions. Additionally, the least-squares (LS) finite element method
offers a viable alternative that does not require the inf-sup condition [6,17–20].

This paper employs a mixed formulation of the Brinkman equations to model pore-scale flow
through rock pores, introducing flow vorticity as an additional unknown. While incorporating vor-
ticity as an independent unknown alignswith established techniques in the Brinkman problem [1,27],
our approach distinguishes itself from other velocity-pressure-vorticity formulations by incorporat-
ing the rate of deformation tensor to ensure stability. The use of the rate of deformation tensor for
stability is a common practice in viscoelastic fluid problems involving velocity, pressure, and stress
fields [4,10,16]. We employ lower equal-order finite element methods, including mixed finite ele-
ment and stabilized techniques, specifically three types of the GLS methods and the LS method for
the velocity-pressure-vorticity Brinkman equations. These approaches consider diffusion stabiliza-
tion terms, and our results demonstrate their ability to achieve optimal convergence rates in the L2
norm, even when using low-order basis functions. We also address the effect of the diffusion stabi-
lization term. Furthermore, we extend the application of these methods to simulate creeping flow
in porous media, specifically for a pore-scale flow problem. The results align with previous research,
validating the efficacy of our approach. However, we have observed that as the inlet velocity increases,
there is a significant amplification in the average pressure difference compared to solutions governed
by the Stokes equation.

The rest of this paper is organized as follows. Section 2 presents the problem statement. Section 3
presents notation and preliminaries. Section 4 introduces the finite element approximation. Section 5
presents two numerical examples, and finally, conclusions follow in Section 6.

2. Statement of the problem

This study addresses the steady creeping flow of incompressible Newtonian fluids within the inter-
stices of a porous medium. The specific problem at the heart of this research is to analyze and model
the fluid flow behaviour in the microscopic pores of a porous medium, with a particular focus on a
pore-scale geometry obtained from prior experiments [2,24,26]. Prior research conducted by Siriv-
ithayapakorn and Keller [26] directly observed the exclusion of colloids from small-aperture areas
using realistic micromodels of porous media. Auset and Keller [2] investigated the impact of particle
and pore sizes on colloid dispersion through water-saturated micromodels at the pore scale. Addi-
tionally, Liu et al. [24] introduced pore-scale flow simulations using the creeping flow interface and
Brinkman equation interfaces based on Comsol software.

For the creeping flow in the channels, the incompressible, stationary Brinkman (Stokes-Darcy)
equations [3] is used in a two-dimensional � with Lipschitz boundary � by

− μ�u + ∇p + εu = f in �, (1)

ρ∇ · u = 0 in �, (2)

u = 0 on �, (3)

where u = (u, v) is Darcy’s velocity and p is pressure. We assume that the scalar pressure p is fixed to
p0 at the point x0 on �, i.e. p(x0) = p0, to ensure the uniqueness of pressure. f is given data and the
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physical parameters are the fluid viscosity μ and ε = μ/κ with κ is the permeability of the medium.
Notably, themomentum Equation (1) is associated with high permeability κ , leading to the condition
εu = 0, which renders the effects of the porous structure negligible. This condition is analogous to
the one governing the Stokes equation for creeping flows.

3. Notation and preliminaries

Let Hs(�), s ≥ 0, be the Sobolev spaces with the standard associated inner products (·, ·)s and their
respective norms ‖ · ‖s. For s = 0,Hs(�) coincides with L2(�). To obtain a mixed formulation of the
Brinkman problem (1)–(3), we exploit, the vector calculus identity

−�u = a∇ × (∇ × u) − 2(1 − a)∇ · D(u),

for a divergence-free u, where 0< a< 1 and D(u) := 0.5(∇u + ∇uT) is the rate of deformation ten-
sor. Defining the vorticity variableω = ∇ × u, we have theVelocity–Pressure-Vorticity-Deformation
(VPWD) formulation [1,27] of the Brinkman Equations (1)–(3),

aμ∇ × ω − 2μ(1 − a)∇ · D(u) + ∇p + εu = f in �, (4)

ω − ∇ × u = 0 in �, (5)

ρ∇ · u = 0 in �, (6)

where the vorticity ω in R
2 is considered a scalar and the rate of deformation tensor D is included

to produce a stable effect on the solution [10,16]. Here a = 0.5 are considered. For a = 0, we con-
sider the Velocity–Pressure-Deformation (VPD) formulation of the Brinkman Equations (4)–(6) is
given by

− 2μ∇ · D(u) + ∇p + εu = f in �, (7)

ω − ∇ × u = 0 in �, (8)

ρ∇ · u = 0 in �, (9)

and for a = 1, the Velocity–Pressure-Vorticity (VPW) formulation of the Brinkman Equa-
tions (4)–(6) is given by

μ∇ × ω + ∇p + εu = f in �, (10)

ω − ∇ × u = 0 in �, (11)

ρ∇ · u = 0 in �. (12)

Let Hs(�), s ≥ 0 be the Sobolev spaces with the standard associated inner products (·, ·)s and their
respective norms ‖ · ‖s. The function spaces used in our variational formulations are defined as:

X = {v | v ∈ H1 (�)2 , v = 0 on ∂�},

 = L2(�),


1 = H1 (�) ,

Q =
{
q | q ∈ L2 (�) ,

∫
�
q dx = 0

}
,

Q1 = Q ∩ H1 (�) ,

and let the product spaces � := X × 
 × Q and �1 := X × 
1 × Q1.
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We consider the norms as

‖U‖2� = ‖ω‖20 + ∥∥p∥∥20 + ‖u‖21,
∀U = (u,ω, p) ∈ �.

The Galerkin weak formulation of (4)–(6) is derived for (u, p,ω) ∈ �. For the coercivity of the
associated bilinear form, (5) is multiplied by aμ, first. Multiplying (4) by a test function v and
integrating by parts, we have

aμ (ω,∇ × v) + 2μ(1 − a) (D(u),D(v)) − (
p,∇ · v) + ε (u, v) = (f , v) .

The weak formulation of (4)–(6) is then to find U ∈ � such that

B(U ,V) = F(V) ∀ V ∈ �, (13)

where

B(U ,V) = aμ (ω,∇ × v) + 2μ(1 − a) (D(u),D(v)) − (
p,∇ · v)

+ ε (u, v) + aμ (ω − ∇ × u, σ) + (
ρ∇ · u, q) , (14)

F(V) = (f , v) . (15)

The lower bound of B(U ,U) is shown as

B(U ,U) ≥ 2μ(1 − a)‖D(u)‖20 + ε‖u‖20 + aμ‖ω‖20 ≥ C(‖u‖21 + ‖ω‖20), (16)

and the continuity of B(·, ·) is also easily obtained by the Cauchy–Schwarz inequality:

B(U ,V) ≤ C(‖u‖1 + ‖ω‖0 + ‖p‖0)(‖v‖1 + ‖σ‖0 + ‖q‖0)
≤ C‖U‖�‖V‖�. (17)

Next, we consider the LS functional for the VPW formulation of Brinkman Equations (10)–(12) is
given by

L(U ; f) = ∥∥μ∇ × ω + ∇p + εu − f
∥∥2
0 + ‖ω − ∇ × u‖20 + K ‖ρ∇ · u‖20 , (18)

for all U = (u,ω, p) ∈ �1. The mass conservation weight K = 10m of the divergence term, where
m ranges from 0 to 10 is chosen [18]. Their results indicate that LS solutions can be improved by
sufficient weighting the divergence term.

The a priori estimate was derived for the first-order Stokes system [6], (10)–(12) with ε = 0, that
is, the coercivity for the homogeneous LS functional (18):

∥∥μ∇ × ω + ∇p
∥∥2
0 + ‖ω − ∇ × u‖20 + ‖ρ∇ · u‖20 ≥ C(‖ω‖20 + ∥∥p∥∥20 + ‖u‖21), (19)

for constant C> 0 independent of (u,ω, p) ∈ �1. Using this estimate and the inequality ‖a + b‖2 ≥
(1/2)‖a‖2 − ‖b‖2 and (19), we have the lower bound of L(U ; 0) as

L(U ; 0) ≥ ‖ω − ∇ × u‖20 + K ‖ρ∇ · u‖20 + 1
2
‖μ∇ × ω + ∇p‖20 − ‖εu‖20

≥ ‖ω − ∇ × u‖20 + K ‖ρ∇ · u‖20 + 1
2
‖μ∇ × ω + ∇p‖20 − ‖εu‖21,

≥ C(‖ω‖20 + ∥∥p∥∥20 + ‖u‖21) − ε2‖u‖21,
≥ c0 ‖|U|‖2� , (20)

for sufficiently small ε so that the coefficient of the last term in (20) is positive.
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For the continuity of L(U ; 0) follows naturally from the triangle inequality,

L(U ; 0) ≤ c1(‖ω‖21 + ∥∥p∥∥21 + ‖u‖21). (21)

Therefore, the LS minimization problem for the solution of system (10)–(12) is to choose U =
(u,ω, p) ∈ �1 such that

L(U ; f) = inf
V=(v,σ ,q)∈�

L(V ; f). (22)

4. Finite element approximation

For the finite element approximation, we assume that the domain � is a polygon and that mesh Th
is a partition of � into finite elements � = ⋃

T∈Th T with mesh size h = max{diam(T) : T ∈ Th}.
Assume that the triangulation Th is regular and satisfies the inverse assumption [19]. The grid size is
defined as h = √ | � | /√N, where | � | is the area of the domain andN is the number of elements in
Th. Let Pr(T) denote the standard space of degree r polynomials on element T. Define finite element
spaces for the approximate of U = (u,ω, p):

Xh = {vh | vh ∈ X ∩ (C0(�))2, vh | T ∈ Pr(T)2 ∀T ∈ Th},
Qh = {qh | qh ∈ Q ∩ C0(�), qh | T ∈ Pr(T) ∀T ∈ Th},
Qh
1 = {qh | qh ∈ Q1 ∩ C0(�), qh | T ∈ Pr(T) ∀T ∈ Th},


h = {σ h | σ h ∈ 
 ∩ C0(�), σ h | T ∈ Pr(T) ∀T ∈ Th},

h

1 = {σ h | σ h ∈ 
1 ∩ C0(�), σ h | T ∈ Pr(T) ∀T ∈ Th}.

4.1. Stabilized finite elementmethod

Let �h := Xh × Qh × 
h be finite element subspaces of � satisfying the standard approximation
properties [5], i.e. for 0 ≤ m ≤ r

inf
vh∈Xh

‖v − vh‖1 ≤ Chm‖v‖m+1 ∀ v ∈ Hm+1 (�) , (23)

inf
σ h∈σ h

‖σ − σ h‖0 ≤ Chm‖σ‖m ∀ σ ∈ Hm (�) , (24)

inf
qh∈Qh

‖q − qh‖0 ≤ Chm‖q‖m ∀ q ∈ Hm (�) . (25)

The Galerkin finite element (GFE) method of (13)–(14) is to find Uh ∈ Xh × Qh × 
h such that

B(Uh,Vh) = F(Vh) ∀ Vh ∈ �h, (26)

where

B(Uh,Vh) = a
(
μωh,∇ × vh

)
+ (1 − a)

(
2μD(uh),D(vh)

)
−

(
ph,∇ · vh

)

+ ε
(
uh, vh

)
+

(
ωh − ∇ × uh, σ h

)
+

(
ρ∇ · uh, qh

)
,

F(Vh) =
(
f , vh

)
.

Proper selection of spaces Xh, Qh and 
h is essential to satisfy the compatibility conditions required
by the inf-sup condition for the stability of finite element methods. For example, the Taylor-Hood
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element uses piecewise quadratic velocity and piecewise linear pressure, a well-established and stable
choice for such simulations [11,22].

We utilize equal-order polynomials as a finite element method to approximate equation (26).
Among the equal-order finite element methods, we adopt the reduced Galerkin least-squares (GLS)
method [4,7]. Unlike the standard GLS method, this reduced method is obtained by including only
essential terms for stability, which involves a stability parameter. Additionally, certain terms with sec-
ond derivatives in the second slot can be omitted when employing linear basis functions. The GLS
method is implemented by introducing stability parameters α and stabilization terms BDS and FDS
into the weak form of the governing Equation (26):

B(Uh,Vh) + αBDS(Uh,Vh) = F(Vh) + αFDS(Vh) ∀ Vh ∈ �h, (27)

where

BDS(Uh,Vh) =
∑
T∈Th

h2

μ

(
aμ∇ × ωh + ∇ph + (1 − a)2μ∇ · D(uh) + εuh : ∇qh

)
, (28)

FDS(Vh) =
∑
T∈Th

h2

μ

(
f : ∇qh

)
. (29)

SupposeU = (u,ω, p) ∈ Hm+1(�) × Hm(�) × Hm(�) is a solution of (4)–(6). It is obvious that the
exact solution U satisfies

B(U ,Vh) + αBDS(U ,Vh) = F(Vh) + αFDS(Vh) ∀Vh ∈ �h. (30)

We establish an a priori error estimate for the solution of (27) in the following theorem

Theorem 4.1: Suppose U = (u,ω, p) ∈ Hm+1(�) × Hm(�) × Hm(�) is a solution of (4)–(6). If
Uh = (uh,ωh, ph) ∈ �h is a solution of the Galerkin least squares scheme (27) for sufficiently small
α and h, it satisfies the estimate

‖u − uh‖1 + ‖p − ph‖0 + ‖ω − ωh‖0 ≤ Chm. (31)

Proof: Let Ũh = (ũh, ω̃h, p̃h) ∈ �h be the interpolants of U = (u,ω, p) satisfying the standard
results (23)–(25). First, subtract (30) from (27), and add and subtract Ũh in the resulting equation
to get

B(Uh − Ũh,Vh) + αBDS(Uh − Ũh,Vh) = B(U − Ũh,Vh) + αBDS(U − Ũh,Vh). (32)

Letting Vh = Uh − Ũh in (32), we consier the lower bound of the BDS term in the left side. Using
Cauchy–Schwarz, Young’s inequalities,

BDS(Uh − Ũh,Uh − Ũh)

≥
∑
T∈T h

h2

μ

[
−aμ‖∇ × (ωh − ω̃h)‖0‖∇(ph − p̃h))‖0 + ‖∇(ph − p̃h)‖20
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−2(1 − a)μ‖∇ · D(uh − ũh)‖0‖∇(ph − p̃h))‖0 − ε‖uh − ũh‖0‖∇(ph − p̃h))‖0
]

≥
∑
T∈T h

h2
[
−a2

1
4δ1

‖∇ × (ωh − ω̃h)‖20 − δ1‖∇(ph − p̃h))‖20 + 1
μ

‖∇(ph − p̃h)‖20

−(1 − a)2
1
δ2

‖∇ · D(uh − ũh)‖20 − δ2‖∇(ph − p̃h)‖20 − ε

μ

1
4δ3

‖uh − ũh‖20

− ε

μ
δ3‖∇(ph − p̃h)‖20

]

≥
∑
T∈T h

h2
(
1
μ

− δ1 − δ2 − ε

μ
δ3

)
‖∇(ph − p̃h))‖20 − a2

1
4δ1

CI‖ωh − ω̃h‖20

− (1 − a)2
1
δ2
CI‖D(uh − ũh)‖20 − ε

μ

1
4δ3

h2‖uh − ũh‖20, (33)

where δi for i = 1, 2, 3 are positive constants and the inverse inequality [5], ‖∇ × σ h‖0 ≤
CIh−1‖σ h‖0, was used for the last inequality in (33). Therefore, using (16) and (33)

B(Uh − Ũh,Uh − Ũh) + αBDS(Uh − Ũh,Uh − Ũh)

≥ (1 − a)
(
2μ − α(1 − a)

CI

δ2

)
‖D(uh − ũh)‖20 + ε

(
1 − αh2

4μδ3

)
‖uh − ũh‖20

+ a
(

μ − α
aCI

4δ1

)
‖ωh − ω̃h‖20 + αh2

(
1
μ

− δ1 − δ2 − ε

μ
δ3

)
‖∇(ph − p̃h))‖20. (34)

On the other hand, by (17), Young’s ineqaulity and (23)–(25),

B(U − Ũh,Uh − Ũh)

≤ C‖|U − Ũh|‖‖|Uh − Ũh|‖
≤ C(‖u − ũh‖1 + ‖ω − ω̃h‖0 + ‖p − p̃h‖0)(‖uh − ũh‖1 + ‖ph − p̃h‖0 + ‖ωh − ω̃h‖)0)
≤ Ch2m + δ4(‖uh − ũh‖21 + ‖ωh − ω̃h‖20 + ‖ph − p̃h‖20), (35)

for some δ4 > 0. Also,

BDS(U − Ũh,Uh − Ũh)

≤
∑
T∈T h

h2

μ

(
aμ∇ × (ω − ω̃h) + (1 − a)2μ∇ · D(u − ũh) + ε(u − ũh) + ∇(p − p̃h), (ph − p̃h)

)

≤ C
∑
T∈T h

h2
(
‖∇ × (ω − ω̃h)‖0 + ‖∇ · D(u − ũh)‖0 + ‖u − ũh‖0 + ‖∇(p − p̃h)‖0

)
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× ‖∇(ph − p̃h)‖0

≤ C
∑
T∈T h

h4

δ5

(
‖∇ × (ω − ω̃h)‖20 + ‖∇ · D(u − ũh)‖20 + ‖u − ũh‖20 + ‖∇(p − p̃h)‖20

)

+ δ5
∑
T∈T h

‖∇(ph − p̃h)‖20

≤ Ch4
(
h2m−2) + δ5

∑
T∈T h

‖∇(ph − p̃h)‖20

≤ Ch2m+2 + δ5‖∇(ph − p̃h)‖20 . (36)

for some δ5 > 0. Applying the estimates (34)–(36) to the Equation (32), we obtain

(1 − a)
(
2μ − α(1 − a)

CI

δ2
− δ4K1

)
‖D(uh − ũh)‖20 + ε

(
1 − αh2

4μδ3

)
‖uh − ũh‖20

+ a
(

μ − α
aCI

4δ1
− δ4

)
‖ωh − ω̃h‖20

+ αh2
(
1
μ

− δ1 − δ2 − ε

μ
δ3 − δ4K2 − δ5

)
‖∇(ph − p̃h)‖20

≤ Ch2m, (37)

where we used ‖uh − ũh‖1 ≤ M1‖D(uh − ũh)‖0 and ‖ph − p̃h‖0 ≤ K2‖∇(ph − p̃h)‖0 for K1, K2 >
0. Choose sufficiently small δi for i = 1, . . . , 5 so that the coefficient of the last term in (37) is positive.
If α, h are small enough to yield positive coefficients of other terms in (37), the estimate (31) follows
from the triangular inequality. �

These terms depend on the residual of the momentum equation and thus ensure the consistency
of the stabilized formulation [9]. The specific positive constant α is dependent on the details of the
simulation and may need to be adjusted for optimal results [12].

4.2. LS finite elementmethod

Let �h
1 := Xh × Qh

1 × 
h
1 be finite element subspaces of �1 satisfying the standard approximation

properties (23)–(25). The discrete LS minimization problem for the Brinkman Equations (10)-(12)
is to choose Uh ∈ �h

1 such that

L(Uh; f) = inf
Vh=(vh,σ h,qh)∈�h

1

L(Vh; f). (38)

The finite approximation to (38) is equivalent to seek to find Uh ∈ Xh × 
h
1 × Qh

1 such that

BLS(Uh,Vh) = F(Vh) ∀ Vh ∈ Xh × 
h
1 × Qh

1, (39)
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where

BLS(Uh,Vh) =
∑
T∈Th

(
μ∇ × ωh + ∇ph + εvh : μ∇ × σ h + ∇qh + εvh

)

+
∑
T∈Th

K
(
ρ∇ · uh : ρ∇ · vh

)

+
∑
T∈Th

(
ωh − ∇ × uh : σ h − ∇ × vh

)
,

F(Vh) =
∑
T∈Th

(
f : μ∇ × σ h + ∇qh + εvh

)
.

We establish an a priori error estimate for the solution of (39) in the following theorem

Theorem 4.2: Let U = (u,ω, p) ∈ Hm+1(�) × Hm+1(�) × Hm+1(�) be the velocity–pressure–
vorticity formulation of Brinkman Equations (10)–(12). Suppose ε is sufficiently small. Then there exists
a unique solution Uh = (uh,ωh, ph) ∈ �h

1 satisfying LS minimization problem (22) such that

‖u − uh‖1 + ‖p − ph‖0 + ‖ω − ωh‖0 ≤ Chm. (40)

Proof: The orthogonal property BLS(U − Uh,Vh) = 0 for all Vh = (vh, σ h, qh) ∈ �h
1 and the

bounds (20) and (21) directly leads to the bound

‖u − uh‖1 + ‖p − ph‖0 + ‖ω − ωh‖0 ≤ inf
Vh∈�h

c1
c0

(
‖u − vh‖21 + ‖p − qh‖1 + ‖ω − σ h‖1

)
,

which, using the approximation properties in (23)–(25), yields the desired error bound. �

5. Numerical results

In our numerical experiments, we employed the GFE in (26), the GLS in (27), and the LS in (38)
methods to solve the system of Equations (1)–(3). We implemented element pairs (P2,P1,P1) and
(P1,P1,P1) for velocity, pressure, and vorticity, respectively. We considered three variations of the
GLS method in (27) and (28):

• VPD formulation: This formulation emphasizes the relationship between velocity, pressure, and
the rate of deformation tensor in the momentum equation for the GLS method with a = 0.

• VPDW formulation: The formulation extends the GLS method with 0< a< 1 to include velocity,
pressure, the rate of deformation tensor, and vorticity in the momentum equation, allowing for a
more comprehensive analysis. Here, we considered a = 0.5.

• VPW formulation: The formulation further extends the GLS method with a = 1 by focussing on
the interactions between velocity, pressure, and vorticity in the momentum equation.

In addition, we implemented the LS method as an alternative approach. The interpretation and
discussion of these results will follow in the subsequent sections, shedding light on the insights gained
from our numerical experiments and their implications for the broader understanding of fluid flow
in porous media.

5.1. Test problem

We consider a non-physical example [3]. The parametersμ = 1 and ρ = 1 are considered in (4)–(6).
The domain � for the model equations is defined as � = (0, 1)2. The source term f in (4) is chosen
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so that the exact solutions for the velocity u, pressure p, and vorticity ω are

u = (−2πcos(2πx)sin(2πy), 2πsin(2πx)cos(2πy)
)
,

p = sin(2πx)sin(2πy),

and

ω = 8π2sin(2πx)sin(2πy),

respectively. Boundary conditions enforce the exact solutions on the domain boundary. To perform
numerical experiments, we employ linear basis functions for all variables. The domain� is discretized
using uniform Union Jack grids with three different grid sizes: h = 1/32, 1/64, and 1/128. Figure 1
displays the solution of the GLS method with a = 0 (VPD) on a uniform Union Jack grid with h =
1/64 at (κ ,α) = (1, 0.005), demonstrating seepage velocity arrows.

In the following figures, we illustrate the convergence rates of the VPD solutions for (u, p,ω).
Figure 2 demonstrates convergence rates of O(h2) in the L2-norm for (u, p,ω), considering different
values of κ while keeping α fixed at 0.005. In Figure 3, we present the convergence rates of the VPD
solutions with various α values while maintaining κ at 1. These results highlight improvements in the
accuracy of the pressure variable (p) when α is set to 0.5. The findings from the VPDmethod suggest
that using α = 0.5 can decrease the L2 error in the pressure variable.

Finally, Figure 4 provides the convergence rates of four linear equal-order finite element methods
for the Brinkman equations with ε = μ/κ = 1: the LS with K = 103 and the GLS methods with
α = 0.005 for various values of a ( 0 for VPD, 0.5 for VPDW, 1 for VPW). These results demonstrate
nearly optimal convergence rates ofO(h2) in the L2-norm for all cases. Furthermore, the VPDW and
VPWmethods prove effective in reducing errors compared to VPD solutions, and except for velocity,
the results of LS are similar to that. The most favourable performance was observed when employing
the VPWmethod.

Figure 1. The seepage velocity u (arrows) and the pressure p (contours) at κ = 1 on uniform Union Jack grids as h = 1/64 using
the VPD form at α = 0.005.
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Figure 2. L2 errors of (a) u, (b) p, and (c)ω for the GLS with a = 0 (VPD) at (κ ,α) = (1, 0.005), (0.1, 0.005), and (0.01, 0.005).
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Figure 3. L2 errors of (a) u, (b) p, and (c)ω for the GLS with a = 0 (VPD) at (κ ,α) = (1, 0.005), (1, 0.05), and (1, 0.5).
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Figure 4. ε = 1. L2 errors of (a) u, (b) p, and (c)ω for the GLS with a = 0 (VPD), 0.5 (VPDW), and 1 (VPW) and the LS with K = 103.
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5.2. Pore-Scale flow problem

In this study, we utilize one of the SEM images from Keller, Auset, and Sirivithayapakorn’s pore-scale
flow experiments to determine flow velocity and pressure drop in the pore throats [2,26]. The model
focuses exclusively on the pore space, as depicted in Figure 5, with the solid regions excluded. The
spatial area considered is 640μm by 320μm, and it simulates the flow of water from right to left
across the geometry. The inlet and outlet fluid pressures are known, and it is further assumed there
are the top and bottom symmetric boundaries. Importantly, the flow within the pores is assumed to
not penetrate the solid grains.

The boundary domain � is defined as � = �in ∪ �w ∪ �out ∪ �s, where �in, �w, �out, and �s are
the inlet, wall, outlet, and symmetric boundaries, respectively. To simplify the finite element formu-
lation and its presentation, we assumed the homogeneous boundary conditions on � for u. On the
boundaries along the wall �w, u = 0. On the axis of symmetry �s, we assume standard symmetric
boundary conditions u · n = 0, where n is outward unit normal vectors. Problems with nonhomoge-
neous boundary conditions on �in and �out will be considered for numerical tests of creeping flow,
which can be formulated analogously.

We employed the GFE, the GLS with α = 0.5, and the LS with K = 103 methods to tackle pore-
scale flow problems, which were previously investigated [2,26]. We used the parameters μ, ρ, and κ
(Table 1) to characterize the fluid rheology [8].

Our initial investigation focussed on the Brinkman equations in (1) with ε = 0, essentially corre-
sponding to the Stokes equations. For our numerical tests, we considered the Stokes equations with
nonhomogeneous boundary conditions on �in (p = pi) and �out (p = po), as depicted in Figure 5.
The Stokes system was discretized using elements (P2,P1,P1) and (P1,P1,P1) for (u, p,ω), resulting
in a degree of freedom (DOF) of 452566 and 185640, respectively.

Figure 5. A 640μm by 320μm geometry and boundary conditions and finite element mesh.

Table 1. Symbols and values of physical and numerical constants and parameters
used in pore-scale flow problem.

Parameter Symbol Value Units

Fluid density ρ 1000 kg/m3

Fluid viscosity μ 0.001 kg/(m · s)
Pressure on the inlet pi 0.715 pa
Pressure on the outlet po 0 pa
Permeability κ 9.86922 × 10−13 m2

Velocity on the inlet ui −10−4 ∼ −10−5 m/s
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Figure 6. Stokes equations. The magnitude of velocity contours, streamline of the (a) GFE with a = 0 (VPD) at
(u, p,ω,DOF) = (P2, P1, P1, 452566), GLS with (b) a = 0 (VPD), (c) a = 0.5 for VPDW, and (d) a = 1 (VPW) at
(u, p,ω,DOF) = (P1, P1, P1, 185640).

To illustrate the impact of the choice of diffusion stabilization terms, we present the magnitude
of velocity contours for the GFE and the GLS methods with different values of a (0 for VPD, 0.5
for VPDW, and 1 for VPW) applied to the Stokes equations in Figure 6. The results in Figure 6
demonstrate that for elements (u, p,ω) = (P2,P1,P1), theGFEmethod produces smooth velocity and
pressure contours, similar to those obtained with the GLS-VPD and GLS-VPDW methods for ele-
ments (u, p,ω) = (P1,P1,P1). These velocity contours for the Stokes flowsmatch the results obtained
fromComsol software [8]. However, the GLS-VPWmethod exhibits unstable velocity values near the
inlet (Figure 6(d)). These findings suggest that employing the GLS-VPD and GLS-VPDW methods
for the Stokes equations can lead to a reduction in the degree of freedom (DOF) from 452566 to
185640 while including the stabilization terms for the VPD and VPDWmethods proves valuable for
accurately capturing velocity profiles. Furthermore, the rate of deformation tensorD has a stabilizing
effect on the velocity.

In Figure 7, we applied the GFE methods to approximate the Brinkman system, varying the val-
ues of a (0 for VPD, 0.5 for VPDW, and 1 for VPW). The results depicted in Figure 7 illustrate
that, for elements (u, p,ω) = (P2,P1,P1), the GFE-VPDmethod produces smooth velocity and pres-
sure contours. When employing elements (u, p,ω) = (P1,P1,P1) for all three GFE methods, only
GFE-VPDW exhibits velocity contours consistent with those of the GFE-VPD method with ele-
ments (u, p,ω) = (P2,P1,P1) (Figure 7(a)). In the following Figure 8, we provide velocity, streamline,
and pressure contours obtained using the LS method with K = 103 and the GLS methods with dif-
ferent values of a (0 for VPD, 0.5 for VPDW, and 1 for VPW). These results are obtained with
(u, p,ω) = (P1,P1,P1) elements. The observations in Figure 8 indicate that the three methods yield
similar pressure contours. These results show that the stabilization term BSD stabilizes velocity and
pressure contours. Our findings demonstrate the effectiveness of the stabilized GLS methods for the
Brinkman equations, reducing the degrees of freedom from 452566 to 185640 while maintaining
comparable accuracy.

Furthermore, in Figure 8, while the three GLS methods consistently exhibit both the magnitude
of velocity and pressure contours, the LS method lacks velocity contours. This discrepancy can be
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Figure 7. Brinkman equations. The magnitude of velocity contours, streamline, pressure contours of the GFE with a = 0 (VPD)
at (u, p,ω,DOF) = (P2, P1, P1, 452566) and the GFE with a = 0 (VPD), a = 0.5 (VPDW), and a = 1 (VPW) at (u, p,ω,DOF) =
(P1, P1, P1, 185640). (a) GFE-VPD (P2, P1, P1) (b) GFE-VPD (P2, P1, P1) (c) GFE-VPD (P1, P1, P1) (d) GFE-VPD (P1, P1, P1) (e) GFE-VPDW
(P1, P1, P1) (f ) GFE-VPDW (P1, P1, P1) (g) GFE-VPW (P1, P1, P1) (h) GFE-VPW (P1, P1, P1).

attributed to the fact that, in the LS method, we establish the coerciveness of L(U ; 0) in (20) for
sufficiently small ε. However, as shown in Table 1, the LS method encounters a challenge due to a
significantly large ε = μ/κ > 1010 at a low κ = 10−13, which might fail to satisfy the coerciveness
condition of L(U ; 0). Therefore, the GLS method is more suitable for the Brinkman equation at a low
permeability than the LS method.

We next extended our examination to encompass the Stokes and Brinkman problems. For these
numerical tests, we applied nonhomogeneous boundary conditions on �in (u = (ui, 0)), and �out
(p = po). Figure 9 shows the pressure contours for the Stokes andBrinkmanproblems. These contours



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 17

Figure 8. Brinkman equations. Themagnitude of velocity contours, streamline, and pressure contours of theGLSwith a = 0 (VPD),
a = 0.5 (VPDW),a = 1 (VPW) and the LSwith K = 103 at (u, p,ω,DOF) = (P1, P1, P1, 185640). (a) GLS-VPD (P1, P1, P1) (b) GLS-VPD
(P1, P1, P1) (c) GLS-VPDW (P1, P1, P1) (d) GLS-VPDW (P1, P1, P1) (e) GLS-VPW (P1, P1, P1) (f ) GLS-VPW (P1, P1, P1) (g) LS (P1, P1, P1)
(h) LS (P1, P1, P1).

were derived using the GLS-VPDmethod.We calculated the average pressure difference d to quantify
and compare the results. The formula used to define d is presented below:

d = 
n
k=1

dk
n
, (41)

where dk = pi,k − po,k at xk, k = 1, 2, . . . , n. This calculation is performed for the Stokes and
Brinkman equations, considering various magnitudes of velocity U = |u| at the inlet in the range
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Figure 9. Pressure contours of the GLS-VPD method at (u, p,DOF, ui) = (P1, P1, 185640,−10−4) for the (a) Stokes and (b)
Brinkman equations.

Figure 10. The average pressure difference d of the Stokes and Brinkman equations for various magnitudes of velocity U on the
inlet between 10−5 and 10−4 at po = 0.

between 10−5 and 10−4, with po = 0. As shown in Figure 10, the results clearly demonstrate a signif-
icant increase in the average pressure difference for the Brinkman equations compared to the Stokes
equations as the inlet velocity U increases. The results highlight the use of the Brinkman equation
to capture a noticeable amplification in the average pressure difference as the inlet velocity increases.
This observation suggests that the Brinkman simulation ismore realistic and accurate than the Stokes
simulation in the effects of the porous medium on the flow.

6. Conclusion

In this study, we have developed linear equal-order finite element techniques for the mixed formu-
lation of the Brinkman problem. We explored three distinct GLS methods: VPD, VPW, and VPDW,
each enhanced with stabilization terms. Additionally, we applied a LS approach made by L2 residu-
als of equations. Our analysis encompassed critical properties such as coercivity and continuity and
provided error estimates.

We commenced our investigation with a non-physical illustrative case, employing numerical
experiments to affirm the validity of our theoretical findings. These experiments exemplified impres-
sive convergence rates of these methods, demonstrating error reduction at an optimal O(h2) rate in
the L2 norm. Using the GLS-VPDW and GLS-VPW methods effectively mitigated errors compared
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to the GLS-VPD. Particularly noteworthy was the remarkable error reduction achieved with the GLS-
VPW method. Furthermore, we extended the application of these methods to address a benchmark
problem aimed at simulating pore-scale flow dynamics. In this practical application, the solutions
obtained using the GLS-VPD and GLS-VPDW methods closely aligned with previously published
work, underscoring the reliability of our approach, showing the rate of deformation tensor is included
to produce a stable effect on the solution. The GLS method can be used for the Brinkman equation
at a low permeability compared to the LS method. A mixed GLS method also promises to reduce the
elements required for accurate simulations, making it a compelling avenue for future research.

Furthermore, our research has revealed a significant increase in the average pressure difference in
the Brinkman problem compared to the Stokes equation as the inlet velocity increases. This obser-
vation provides valuable insights into the unique behaviour of Brinkman equations within porous
media, enhancing our understanding of fluid flow in such environments.

The differences in results between the two models underscore the critical importance of selecting
the appropriate model for simulating the given scenario. The Stokes equations, not necessitating the
specification of the permeability parameter, are advantageous for scenarios where the effects of the
porous structure are negligible. On the other hand, the Brinkman equations, incorporating the impact
of permeability in porous media, become essential when modelling flows through mediums with
significant permeability.
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