
7436 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Privacy-Preserving Machine Learning Using
Functional Encryption: Opportunities

and Challenges
Prajwal Panzade , Member, IEEE, Daniel Takabi , Member, IEEE, and Zhipeng Cai , Fellow, IEEE

Abstract—With the advent of functional encryption (FE),
new possibilities for the computation of encrypted data have
arisen. FE enables data owners to grant third-party access to
perform specified computations without disclosing their inputs.
It also provides computation results in plaintext, unlike fully
homomorphic encryption (FHE). The ubiquitousness of machine
learning (ML) has led to the collection of massive private
data in the cloud computing environment. This raises potential
privacy issues and underscores the need for more private and
secure computing solutions. Numerous efforts have been made in
privacy-preserving ML (PPML) to address security and privacy
concerns. There are approaches based on FHE, secure multiparty
computation (SMC), and, more recently, FE. Compared to FHE-
based PPML techniques, FE-based PPML is still in its infancy.
In this article, we provide a survey of PPML works based
on FE, summarizing state-of-the-art literature. We focus on
inner product-FE, function-hiding inner product encryption,
and quadratic-FE-based ML models for PPML applications.
We analyze the performance and usability of the available FE
libraries and their applications to PPML. We also discuss future
research directions for FE-based PPML approaches. To the best
of our knowledge, this is the first work to survey FE-based PPML
approaches.

Index Terms—Computation on encrypted data, functional
encryption (FE), privacy-preserving machine learning (PPML),
trustworthy AI.

I. INTRODUCTION

M
ACHINE learning (ML) techniques have become

deeply integrated across domains like computer vision,

natural language processing, and speech processing, enabling

myriad applications. Increasingly, real-world ML relies on

a cloud-based framework, epitomizing ML as a Service

(MLaaS) [1]. Sectors with stringent regulations like bank-

ing, government, insurance, and healthcare are progressively

migrating their data and ML services to the cloud. This shift

highlights the escalating need for robust, secure computational

Manuscript received 11 October 2023; revised 15 November 2023; accepted
20 November 2023. Date of publication 1 December 2023; date of current
version 21 February 2024. This work was supported in part by the National
Science Foundation under Grant 2020636, Grant 2054968, Grant 2118083,
Grant 2315596, and Grant 2244219; and in part by the Microsoft Faculty
Fellowship Program. (Corresponding author: Prajwal Panzade.)

Prajwal Panzade and Zhipeng Cai are with the Department of Computer
Science, Georgia State University, Atlanta, GA 30302 USA (e-mail:
ppanzade1@student.gsu.edu; zcai@gsu.edu).

Daniel Takabi is with the School of Cybersecurity, Old Dominion
University, Norfolk, VA 23529 USA (e-mail: takabi@odu.edu).

Digital Object Identifier 10.1109/JIOT.2023.3338220

solutions that safeguard data and model privacy in cloud-based

ML. Consequently, research has focused on privacy-preserving

ML (PPML) [2], [3], [4], targeting data and model privacy

issues throughout ML stages.

Established techniques like fully homomorphic encryption

(FHE) [5] and secure multiparty computation (SMC) [6]

are fundamental PPML methods. Concurrently, functional

encryption (FE) [7] is evolving. FHE allows computation

on encrypted data without decryption. SMC enables joint

computation while preserving individual privacy. In contrast,

FE permits computation on encrypted data, yielding plaintext

results.

Gilad-Bachrach et al. [8] proposed a pioneering method that

involves the transformation of a pretrained neural network into

a cryptographic model termed CryptoNet. This method enables

secure transmission of homomorphically encrypted data from

data owners to a central server, facilitating the reception

of an encrypted inference. Similarly, Hesamifard et al. [9]

introduced CryptoDL, a novel methodology utilizing FHE

for privacy-preserving inference on pretrained convolutional

neural networks (CNNs). In a distinct study, Graepel et al. [10]

detailed a binary classification technique in their work,

ML Confidential, which integrates polynomial approxima-

tions and FHE. Furthermore, Mohassel and Zhang [11]

presented SecureML, elaborating on an efficient two-party

protocol for training linear regression, logistic regression,

and neural network models while ensuring data privacy.

Wagh et al. [3] proposed a three-party computation protocol

specifically designed for privacy-preserving training and infer-

ence in CNNs in their study, SecureNN.

In this study, we explore PPML methodologies leveraging

FE. Within the MLaaS framework, the model resides on

the server, and one or more clients are responsible for the

training process. At times, the server may possess pretrained

models. Typically, in FHE-based ML, models are trained on

unencrypted data, with inferences derived from encrypted data.

In this scenario, a client transmits encrypted data to the server,

which conducts tasks such as classification using the pretrained

ML model on the client data and delivers the prediction

outcomes in the ciphertext. Notably, the server performs

computations on encrypted data without learning the inputs,

ensuring that only the data owner can access the actual result.

Contrastingly, in FE, the server generates computation results

in plaintext utilizing a specific key, enabling partial decryption

required for computation (refer to Fig. 1). The subsequent

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

PANZADE et al.: PRIVACY-PRESERVING MACHINE LEARNING USING FUNCTIONAL ENCRYPTION 7437

Fig. 1. Overview of PPML using FE.

procedures closely parallel those of FHE. Within the realm

of PPML, the prospect of producing plaintext results over

encrypted data without full decryption is notably intriguing

for certain applications. It is worth noting that both FHE and

FE-based PPML necessitate high computational costs.

This study thoroughly examines multiple research papers on

FE-based PPML to provide a comprehensive overview to the

research community. Focusing on FE-based PPML approaches

amidst various existing methods, recent efforts have centered

on developing FE-based systems, broadly categorized into

inner product FE (IPFE)-based and quadratic FE (QFE)-based

methodologies. Ligier et al. [12] proposed an approach for

privacy-preserving classification on IPFE-encrypted data, and

Xu et al. [13] introduced an IPFE-based deep neural network

approach for image classification on the MNIST data set.

Additionally, Panzade and Takabi presented methods for faster

computation of secure activation functions using function-hiding

inner product encryption (FHIPE) for PPML [14] and a privacy-

preserving neural network training framework using IPFE and

FHIPE [15]. Ryffel et al. [16] developed a system using QFE

with adversarial training for privacy-preserving predictions.

Marc et al. [17] presented fully fledged FE libraries and their

applications in privacy-enhanced ML models.

The following are the primary contributions of this article.

1) We present a basic but substantial theoretical foundation

to help researchers understand current approaches to FE-

based PPML.

2) We provide a thorough review of the literature on

FE-based PPML, emphasizing the strengths and short-

comings of the various approaches to assess how they

supplement one another.

3) We examine the current constraints that prohibit the

implementation of existing FE-based PPML solutions in

real-world settings, mostly due to issues with efficiency

and usability.

4) We provide research directions to intensify existing

works in terms of time performance and security that the

research community may pursue in the coming years.

II. BACKGROUND KNOWLEDGE

FE is a generalization of public-key encryption that allows

a key holder to compute a particular function of encrypted

data using constrained secret keys [7]. Here, this function

is called functionality. For example, an FE scheme may be

particularly designed to compute inner products; in this case,

the functionality becomes an inner product. In the FE scheme,

a key management authority with a master secret key generates

a secret key skfe; a decryptor can use that to compute a function

on an encrypted message x. The symbols and acronyms used

in this article are given in Table I. This section summarizes

the two major FE schemes, IPFE and QFE, used by PPML

approaches.

A. Inner Product Functional Encryption

The decisional Diffie–Hellman (DDH) assumption under-

pins the method outlined by Abdalla et al. [18]. Let

GroupGenerator be a probabilistic polynomial-time (PPT)

algorithm with input security parameter 1λ, which produces a

triplet (G, p, g), where G is a group of order p created by

g in G. The tuples (g, ga, gb, gab) and (g, ga, gb, gc) are

computationally indistinguishable, according to DDH, where

(G, p, g) ← GroupGenerator(1λ), and a, b, c ∈ Zp are chosen

uniformly and independently at random.

The �ipfe = (Setup, Encrypt, KeyDerivation, Decrypt) FE

scheme for IPFE in DDH is as follows.

Setup(1λ, 1l): This algorithm samples (G, p, g)←
GroupGenerator(1λ) and s = (s1, . . . , sl) ← Zl

p, sets mpk =
(hi = gsi)i∈[�] and msk = s and finally returns a pair of

(mpk, msk).

Encrypt(mpk, x): This algorithm takes mpk and message x

= (x1, . . . , xl) ∈ Zl
p as input, chooses random number r ←

Zp, computes Ct0 = gr and, for each i ∈ [l], Cti = hi
r. gxi

and returns ciphertext Ct.

KeyDerivation(msk, y): This algorithm takes msk and vector

y = (y1, . . . , yl) ∈ Zp as input and outputs key skfe.

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

7438 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

TABLE I
SYMBOLS AND ACRONYMS USED IN THIS ARTICLE

Decrypt(mpk, Ct, skfe): This algorithm takes the master

public key, ciphertext, and skfe for vector y as input and outputs

the discrete logarithm in basis g of
∏

i∈[l] Ct
yi

i /Ct
skfe

0 .

Correctness: The method’s correctness is demonstrated as

follows [18]:

∀(mpk, msk) ← Setup
(

1λ, 1l
)

, all y ∈ Z
l
p and x ∈ Z

l
p

for skfe ← KeyDerivation(msk, y) &Ct ← Encrypt(mpk, x).

Decrypt
(

mpk, Ct, skfe

)

=

∏

i∈[l] Ct
yi

i

Ct
skfe

0

=

∏

i∈[l]

(

gsir+xi
)yi

gr
(
∑

i∈[l] yisi

)

= g
∑

i∈[l] yisir+
∑

i∈[l] yixi−r
(
∑

i∈[l] yisi

)

= g
∑

i∈[l] yixi

= g〈x,y〉.

B. Function Hiding Inner Product Encryption

Function hiding inner product encryption [19] is another

variant for computing inner products on encrypted data with

three key differences. First, FHIPE provides the special feature

of hiding the functionality. Second, it uses only one master

key for key derivation and encryption. Third, it is more secure

than IPFE as it provides simulation-based security in addition

to indistinguishability-based security (IND-CPA). The details

on security definitions are discussed in Section V-D. For more

information on FHIPE, we refer the readers to [19].

C. Quadratic Functional Encryption

A QFE scheme uses bilinear groups (also known as pairing

groups) and has been proposed by [20] and [21]. In the

case of QFE-based PPML, we refer to schemes proposed by

Ryffel et al. [16]. Here, GroupGenerator is a PPT algorithm

on inputting 1λ returns PG = (G1,G2, p, g1, g2, e) of an

asymmetric bilinear group, where G1 and G2 are cyclic groups

of prime order p (for a 2λ-bit prime p) and g1 and g2

are generators of G1 and G2, respectively. The application

e : G1 × G2 → GT is an admissible pairing, i.e., it

can be efficiently computable, nondegenerated, and bilinear:

e(gα
1 , g

β

2) = e(g1, g2)
αβ for any scalars α, β ∈ Zp. Therefore,

gT := e(g1, g2) which makes the group GT of order p, where

p is prime. For any s ∈ {1, 2, T}, n ∈ N, and vector u :=
⎛

⎜

⎝

u1

...

un

⎞

⎟

⎠
∈ Z

n
p, it is denoted by gu

s :=

⎛

⎜

⎝

g
u1
s

...

g
un
s

⎞

⎟

⎠
∈ G

n
s .

Similarly, for any vectors u ∈ Z
n
p, v ∈ Z

n
p, It is denoted

by e(gu
1, gv

2) =
∏

1−1 e(g1, g2)
ut·v̄1 = e(g1, g2)

u·v ∈ GT , since

u · v denotes the inner product between the vectors u and v,

that is, u · v :=
∑n

i=1 u1vi.

Ryffel et al. [16] built an efficient FE scheme shown below

for the set of functions defined, for all n, Bx, By, Bf ∈ N
∗, as

Fn,Bx,By,Bf
= {f : [−Bx, Bx]n × [−By, By]n → Z} where the

functions f ∈ Fn,Bx,By,Bf
are expressed as a set of bounded

coefficients {fi,j ∈ [−Bf , Bf]}i,j∈[n], and for all vectors x ∈
[−Bx, Bx]n, y ∈ [−By, By]

f (x, y) =
∑

i,j∈[n]

fi,jxiyj.

The FE scheme is explained as follows.

Setup(1λ,Fn,Bx,By,Bf
):

PG := (G1,G2, p, g1, g2, e) ← GroupGenenerator(1λ),

s, t ← Z
n
p, msk := (s, t),

mpk := (PG, gs
1, gt

2)

Return (mpk, msk).

Encrypt(mpk,(x, y)):

γ ← Zp, W ← GL2, for all i ∈ [n],

ai := (W−1)

(

xi

γ si

)

, bi := W

(

yi

−ti

)

Return Ct := (g
γ

1 , {gai

1 , g
bi

2 }i∈[n]) ∈ G1 × (G2
1 × G

2
2)

n

KeyDerivation(msk, f):

Return skqe := (g
f (s,t)

2 , f) ∈ G2 × Fn,Bx,By,Bf

Decrypt(mpk, Ct := (g
γ

1 , {gai

1 , g
bi

2)}i∈[n]),

skqe := (g
f (s,t)

2 , f)):

out := e(g
γ

1 , g
f (s,t)

2) ·
∏

i,j∈[n] e(g
ai

1 , g
bi

2)fi,j

Return log(out) ∈ Z

Correctness:

For all i, j ∈ [n]

e
(

g
di

1 , g
bj

2

)

= g
di·bj

T = g
xiyj−γ sitj
T

since

�ai · �bj =

(

(

W−1
)

(

xi

γ si

))

·

(

W

(

yj

−tj

))

=

(

xi

γ si

)

W−1W

(

yj

−tj

)

= xiyj − γ sitj.

Therefore,

out = e(g
γ

1 , g
q(�s,�t)
2) ·

∏

i,j e(g
�ai

1 , g
�bi

2)qi,j = g
γ q(�s,�t)
T ·

g

∑

i,j qi,jxiyj−γ qi,jsitj

T = g
γ q(�s,�t)
T · g

q(�x,�y)−γ q(�s,�t)
T = g

q(�x,�y)
T

We refer the readers to [16], [18], and [22] for more

cryptographic details on IPFE and QFE schemes, respectively.

D. Neural Networks

The artificial neural network, often known as a neural

network, is an ML model that is hierarchical and nonlinear,

with several layers and several neurons in each layer. Each

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

PANZADE et al.: PRIVACY-PRESERVING MACHINE LEARNING USING FUNCTIONAL ENCRYPTION 7439

layer of a neural network processes the input provided by the

previous layer before passing it on to the next.

1) Input Layer: The preprocessed raw data or features

extracted from raw data in a particular format make up

the first layer of the neural network.

2) Hidden Layer: A neural network can have one or more

hidden layers. The first hidden layer’s neurons are linked

to the input layer and followed by an activation function.

Further hidden layers are fed with the previous layer’s

output. Weight values are associated with layers, and

they are updated during the forward and backpropaga-

tion processes until convergence.

3) Activation Function: The activation function of a neuron

in a neural network determines the output of that neuron

given a single or group of inputs. In ML, there are

several activation functions, such as sigmoid, rectified

linear unit (ReLU), and tanh. The ReLU activation

function is an example of one of the most frequently

used activation functions. If the input value is less than

zero, the ReLU activation function returns zero, and if

it is greater than zero, it returns the same input.

4) Output Layer: The output layer of a neural network is

the final layer of neurons that provides the network’s

output.

E. Polynomial Neural Network

Polynomial neural networks are the kinds of neural

networks that primarily facilitate linear components like fully

connected layers, convolutions with average pooling, and

activation functions approximated using polynomials. They

have demonstrated fairly high accuracy for the relatively

simple benchmarks in image recognition tasks [8], [23]. They

have also been used to propose the applicability of novel ML

protocols in various early-stage implementations, as presented

in [24] and [25]. The simplicity of the operations upon which

polynomial neural networks are built ensures high efficiency,

particularly for gradient computations. Research works, such

as [26], have demonstrated that they can reach convergence

rates comparable to those of networks with nonlinear activa-

tion functions.

III. SCOPE

Our analysis of the FE-based PPML methodologies is

divided into two parts. To begin, we conduct a thorough review

of existing methodologies and emphasize their salient features

and functions. Second, we evaluate these tools in practice

by comparing their usability, complexity, and performance

across various case study scenarios. The secure computation

ecosystem encompasses a wide variety of tools. On the low

level, there exist math libraries that facilitate the construction

of FE implementations, for example, by efficiently implement-

ing algorithms useful for generic lattice-based cryptography.

Then there are FE libraries that implement certain schemes

and provide slightly more advanced application programming

interfaces (APIs), such as setup, encrypt, key generation, and

decrypt. These libraries abstract away computation features

like parameter selection, encryption, and decryption by provid-

ing a higher level language in which developers can implement

their computation.

The primary objective of this work is to comprehend the

landscape of MLaaS in data-sensitive scenarios via PPML

computing, for example, when data supplied to third parties

for processing is encrypted. PPML ensures the privacy and

confidentiality of input data. Additionally, they alleviate exces-

sive pressures on the client endpoint in computing as the cloud

server does most of the computing part. Finally, they may

be used in ML situations where clients can contribute data

toward a training or inference goal. PPML is frequently used in

conjunction with other approaches. We discuss the application

of all PPML approaches based on FE just at these crossing

places. Although FHE is a widely used technique in PPML, we

only include FE-based approaches because of fewer available

articles to the research community on this topic.

The second problem is associated with the techniques’

deployability. Numerous frameworks and technologies make

advanced ML accessible to data scientists who are not neces-

sarily professionals in computer sciences. However, adopting

these frameworks for use with PPML is challenging. We

consider usability enhancements in this area if the proposal

fits one of the following two requirements. To start, it makes

the solution more adaptable to existing ML frameworks

(e.g., by giving tools that reduce total programming effort).

As such, our study incorporates works that propose APIs,

compilers, or other significant practical tools that aid in the

implementation and deployment of theoretical ideas into real

applications, hence increasing their usability. Second, when an

open-source implementation supplements the concept. Apart

from facilitating future revisions to the approach, open-source

implementations ensure that the results are reproducible.

Additionally, we verify whether the work contains references

to open-source implementations or is released independently

(e.g., by visiting the authors’ websites or GitHub repositories).

In summary, we examine the following for each of the

proposals utilizing FE-based PPML: 1) the problem being

addressed (training, inference, or both); 2) the ML model used;

3) the specific FE techniques involved (IPFE or QFE); and

4) the efficiency and usability considerations examined.

IV. OVERVIEW OF FE-BASED PPML MODELS

AND LIBRARIES

A. What Has Been Done?

There are two variations of the FE-based PPML method-

ologies available in the literature. The first one uses IPFE,

whereas the other one uses QFE. The IPFE-based method-

ologies involve training and inference, whereas the QFE

methodologies involve simply the inference stage of ML.

1) Inner Product FE-Based Machine Learning: In this

type of methodology, the inputs are encrypted using IPFE.

Then during the activation, inner products between encrypted

inputs and weight matrices are unfolded based on the special

property of FE. Later, the neural network operations are

done similarly to regular neural networks. Here, both forward

propagation and backpropagation can be made secure using

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

7440 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

FE. This methodology supports both training and prediction

over encrypted data, unlike the QFE-based approaches.

2) Quadratic FE-Based Machine Learning: In QFE-based

methodologies, the training phase happens similarly to the

regular neural networks. It is also worthwhile to note that they

train the neural networks with plain data. In the prediction

phase, encrypted data are fed to the neural network. It undergoes

the process of polynomial approximation, and then the other

steps are applied similar to regular neural networks. These

approaches are found to be faster than IPFE-based approaches.

B. Cryptography Libraries for Functional Encryption

Implementation

Presently, there are only two dedicated libraries that focus

on implementing state-of-the-art FE schemes. The first one

is called CiFEr, and the other is GoFE. Three entities are

involved in FE and decryption: 1) an encryptor; 2) a decryptor;

and 3) a key management authority. An encryptor encrypts

the data and obtains ciphertext. The decryptor decrypts the

ciphertext received from the encryptor. The key management

authority handles the responsibility of generating a variety of

cryptographic keys. In the FE scheme, based on the involvement

of encryptors, it can be either single-input or multi-input. We

detailed both of these libraries and supporting cryptography

libraries used in the FE-based PPML works as follows.

1) CiFEr: CiFEr1 [17] is an FE library developed by the

FENTEC group that is written in the C language. This library

allows developers to use functions to perform various FE

operations like encrypt, decrypt, and key generation. This

library is built in such a way that the predefined functions can

be directly called without setting many parameters. Here, the

cryptographic key generation is abstract to the user, and users

set the security parameters in terms of bits. It provides both

single-input and multi-input FE implementations commonly

observed in FE-based PPML approaches.

2) GoFE: GoFE2 [17] is another library provided by the

FENTEC group that is written in Golang. Like CiFEr, it also

provides an option to use FE functions. Both CiFEr and GoFE

have the same set of state-of-the-art FE implementations.

Their performance is based on the underlying programming

languages.

3) FLINT: FLINT3 [27] is a cryptography library that is

used for performing number theory-related operations. It is

written in C. Unlike GoFE and CiFEr, it does not dedicatedly

provide FE functionality. In some of the FE-based works, this

library is used for the implementation of FE schemes.

4) Charm: Charm4 [28] is a framework designed for

implementing various advanced cryptosystems. It is built using

Python to decrease development time and code complexity

while fostering component reuse.

5) PBC: Pairing-based cryptography (PBC)5 [29] is a

C library that enables rapid development of cryptosystems

1https://github.com/fentec-project/CiFEr
2https://github.com/fentec-project/gofe
3https://flintlib.org/
4https://github.com/JHUISI/charm
5https://crypto.stanford.edu/pbc/

based on pairings. It implements a bilinear cyclic group

abstractly, hiding the programmer from mathematical details.

Both PBC and Charm are used in some of the FE-based PPML

implementations.

V. INSIGHTS

Recall that we consider the FE-based PPML works

focused on training and/or inference over encrypted data.

The comparison details of these works in terms of func-

tionality and performance is given in Tables II and III,

respectively.

A. Threat Model

Assumption: In FE-based PPML, it is assumed that there

is a trusted independent key management authority that is

responsible for the generation of the required keys. Such

assumptions are common in all FE schemes [7], [18], [22],

[32]. FE-based PPML techniques adhere to an honest but

curious security model, in which both parties comply with

the protocol while attempting to gain as much information

as possible. In this case, the server follows the protocol but

tries to learn additional information. Typically, the approach

includes three primary components: 1) a key management

authority; 2) a server; and 3) a client. The key manage-

ment authority generates encryption and decryption keys.

FE requires three distinct keys, namely, master public key

(mpk), master secret key (msk), and FE key(skfe), that operate

slightly differently than public-key cryptography techniques as

discussed in Section II.

The research in this field assumes an MLaaS setting. In the

case of training, the client provides the encrypted data, and the

cloud server performs training using the provided encrypted

data and obtains a trained model. In the case of inference,

the server holds the trained model, and the client provides the

encrypted data to the server and receives the prediction results

in plaintext.

The client first encrypts the data using the master public

key before sending it to the server. In some scenarios,

the client may be required to preprocess the data before

encryption; this varies by application. For example, computer

vision applications may require scaling or transforming images

prior to encryption. Normalization and standardization may be

necessary in the case of structured data.

The server holds the model. The model is developed by

training the neural network using client-supplied data. Because

the server cannot see the data sent by the client, it must obtain

the FE secret key skfe in order to execute functionality-based

computations on the data. Either polynomial approximation

uses such computations for QFE-based methods or inner

product computation in IPFE-based methods discussed in the

later sections.

B. IPFE-Based PPML

Fig. 2 depicts IPFE-based PPML. Out of the available works

in this field dedicated to FE-based PPML [12], [13], and [15]

use IPFE schemes.

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

PANZADE et al.: PRIVACY-PRESERVING MACHINE LEARNING USING FUNCTIONAL ENCRYPTION 7441

TABLE II
COMPARISON OF FE-BASED PPML MODELS IN TERMS OF FUNCTIONALITY

Fig. 2. IPFE-based PPML.

1) Functional Encryption Scheme: The methodology

presented in [12] is founded on the FE scheme proposed

by [32]. In contrast, [13] adopts the FE scheme introduced

by [18]. Moreover, [15] leverages FE schemes derived from

both [18] and [19].

2) Training Phase: In the approach proposed by

Ligier et al. [12], Extremely Randomized Trees serve as the

ML model, functioning as an ensemble learning model based

on decision trees. Their training process involves plain data,

akin to regular ML models. For inference, the client obtains

encryption keys and then encrypts their input data using IPFE

and sends the ciphertext to the server. The server then decrypts

it with FE secret keys to compute inner products and performs

classification, without having access to inputs in plain.

The methodologies proposed in [13] and [15] employ a

5-layer neural network. In their IPFE-based approach, client

inputs are initially encrypted before transmission to the server.

The server, equipped with the FE key, executes the IPFE

decrypt function to compute activation results in the first

hidden layer.

The computation between the input vector and weight

matrix in the first hidden layer is expressed as

A = ReLU
(

skfe(W) · Encrypt(X) + b
)

.

The output from this first hidden layer cascades through

subsequent layers, indicating the feasibility of these method-

ologies functioning entirely on FE-encrypted data.

Training using encrypted data, as proposed by [13],

demands 57 h for the 5-layer neural network model, whereas

the same nonencrypted neural network under identical settings

Fig. 3. QFE-based PPML.

takes only 4 h. This significant difference underscores the

computational gap between encrypted and nonencrypted data

within neural networks.

In FENet proposed by Panzade and Takabi [15], alongside

IPFE, the FHIPE scheme is employed. Notably, the FHIPE

scheme enhances inner product computation while maintaining

functionality secrecy, as discussed in Section II-B. Their work

achieves over a 2× speedup compared to the approach in

CryptoNN [13], while preserving comparable accuracy.

3) Inference Phase: The methodology proposed in [12]

demonstrates the ability to make predictions on encrypted

data in less than 0.1 s, achieving a validation accuracy of

95.64%. Similarly, [13] conducts inference on encrypted data

by utilizing IPFE decryption functions, achieving a validation

accuracy of 95.49%. On the other hand, FENet [15] achieves

approximately 95% accuracy, with each inference taking less

than 3 s to perform on FE-encrypted data.

C. QFE-Based PPML

Fig. 3 depicts QFE-based PPML. Three works use QFE

schemes, which are defined and shown utilization toward ML

problems in [16], [30], and [31].

1) Functional Encryption Scheme: This type of research

works either uses the similar or modified approach proposed

by Baltico et al. [22]. Works proposed by [16] and [30] are

related to each other in terms of the FE scheme and neural

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

7442 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

networks used. They proposed a novel FE scheme that can be

used on multivariate quadratic polynomials.

2) Training Phase: The training phase in this type of

methodology is done on plain data similar to regular neural

networks [30] and [31]. In the work proposed by [16],

the adversarial training approach is used in order to avoid

information leakage after functional decryption. They opti-

mized both the primary classification objective and the

opposite of the collateral objective of a particular simulated

adversary simultaneously using adversarial training.

3) Inference Phase: In the inference phase of all the works

proposed in [16], [30], and [31], polynomial neural networks

are used. Here, they use two-layer neural networks. Wherever

QFE is used, a special type of neural network called the

polynomial neural network is used discussed in Section II-E.

The approaches based on QFE have not yet been used

for training the model over encrypted data because of the

complexities involved in the cryptographical aspects. Also, the

present FE is defined for the usage of degree 2 polynomials.

The methodology proposed by [16] and [30] requires less

than 3 s to produce a prediction result. Moreover, in the

case of QFE-based works, accuracy is shown a little higher.

References [16] and [30] obtain an accuracy of 97.54% and

97.7%, respectively.

D. Security

1) Selective Security: Selective security is a notion of

security for FE where the adversary commits to the challenge

messages before seeing the scheme’s public parameters. This

allows for more efficient constructions as security only needs

to hold for the predetermined challenge messages rather than

all messages [18].

2) Adaptive Security: Adaptive security is a strong notion

of security for FE where the adversary can query secret

keys and choose challenge messages adaptively after seeing

the scheme’s public parameters. This requires security to

hold for all possible messages, posing a greater challenge

for achieving efficient constructions compared to selective

security [16], [22].

3) Simulation-Based Security: Simulation-based security is

a concept that strengthens the notion of security by focusing

on the ability to simulate the actions of an adversary given

only limited access to specific information. It ensures that

the behavior of the encryption scheme in the real world is

indistinguishable from an idealized scenario [19].

Theorem 1: Under the DDH assumption, the IPFE scheme

given in Section II-A is selectively secure against chosen-

plaintext attacks (IND-IPFE-CPA).

Theorem 2: Under the matrix DDH (MDDH) assumption,

the QFE scheme given in Section II-C is adaptively secure

against chosen-plaintext attacks (IND-QFE-CPA).

Theorem 3: An FHIPE scheme �fhipe is SIM-secure if,

for all the effective adversaries A, there exists simulator

S in which the cases given in [19] are computationally

indistinguishable.

We refer the readers to [16], [18], [19], and [22] for the

security proofs of the theorems.

The security of the FE-based PPML approaches is

dependent on the cryptographic security of the underlying

FE schemes. As mentioned earlier, they offer three types

of security: 1) adaptive security; 2) selective security; and

3) simulation-based security against chosen-plaintext attacks

that can be found in more detail in [18], [19], and [22].

The approaches proposed in [12], [13], and [15] are selec-

tively secure whereas the approaches proposed in [16], [17],

and [30] show adaptive security based on the underlying crypto

schemes. In addition to selective security, FENet [15] also

offers sim-security.

E. Information Leakage and Attacks

Although FE schemes provide cryptographic security to the

ML models, there is a risk of information leakage. The outputs

obtained in the IPFE, FHIPE, and QFE-based models are in

plaintext after the FE decryptions are done. So, if the server

tries to retrieve part of the information from the obtained

plain data after FE computations, there is a possibility of

information leakage. Carpov et al. [31] discussed the type

of information leakage. Also, an adversarial training-based

approach proposed in [16] can avoid information leakage to

some extent. We believe there is a scope of attacks like

model inversion attacks [33] and direct inference attacks that

ML security researchers can study. In order to make the FE

models deployable, this potential threat should be taken into

consideration.

F. Implementation Details

Almost all of the methodologies use the MNIST data

set [34] for the experiments. MNIST contains 70 000 grayscale

images of size 28 × 28 pixels of handwritten single digits

from 0 to 9. Out of 70K images, the training set consists of

60K images, and the test set consists of 10K images. In [31],

Census Income Data set [35] is used in addition to the MNIST

data set. Census Income data was extracted from the 1994

Census Bureau database. It is a multivariate data set with

48 842 instances. There are 14 attributes like age, work class,

and education with categorical and integer data. The task here

is to predict whether a person’s income exceeds $50K/yr.

FE Libraries: Ligier et al. [12] implemented the IPFE

scheme using FLINT library [27] whereas Xu et al. [13]

used Charm library [28] for implementation of the IPFE

scheme. Panzade and Takabi [15] used the CiFEr library [17]

for FHIPE and IPFE implementation. Sans et al. [30] and

Ryffel et al. [16] used PBC [29] and [28] library for imple-

mentation of QFE scheme. We have already detailed these

libraries in Section IV-B.

Python Libraries: Ligier et al. [12] used sklearn [36]

in python for implementation of ML model. Methodologies

presented in [16] and [30] implemented the ML model in

Tensorflow [37] in Python. Approaches proposed in [13]

and [15] used just a Numpy [38] for the implementation of

the ML model whereas [31] used Keras [39] in python for the

implementation of ML model.

System Specifications: Table IV summarizes the machine

specifications used for performing experiments by the various

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

PANZADE et al.: PRIVACY-PRESERVING MACHINE LEARNING USING FUNCTIONAL ENCRYPTION 7443

TABLE III
COMPARISON OF FE-BASED PPML MODELS IN TERMS OF PERFORMANCE

TABLE IV
IMPLEMENTATION DETAILS

authors. The experiments done by all the research works are

on Intel CPUs. As CPUs are involved, there is an issue of

slow computation involved during training and prediction.

This presents a notable contrast to the faster computational

performance demonstrated by today’s GPU-based ML models.

VI. DISCUSSION

A. Tradeoffs in FE-Based PPML

To ensure a fully PPML system, both training and prediction

phases over encrypted data should be integrated into the

system. Our studies observe that for a perfect PPML system,

both training and prediction should be undergone over

encrypted data. By doing so, the system ensures the privacy

of the user’s data for both tasks. This interesting concept of

training and prediction without having access to plain data

helps us develop a fully PPML system. Presently, only [13]

and [15] focus on both of these tasks, but it is not efficient in

terms of time.

Considering information leakage and adaptive security

simultaneously is highly important. Security of the FE-based

PPML schemes is entirely dependent on the underlying

FE scheme. IPFE provides selective security, whereas QFE

provides selective as well as adaptive security against chosen-

plaintext attacks. In addition to selective security, FHIPE

also provides simulation-based security. There is a theoretical

advancement by [40] toward making IPFE adaptively secured,

but FE-based PPML works do not yet implement it. Also,

information leakage proposed by [31] is the only work that

discusses this concept. This work also follows the traditional

selective IPFE and adaptive QFE schemes. This raises a

high need to consider both information leakage and adaptive

security while building an FE-based PPML scheme.

There is no fit-for-all methodology. None of the existing

solutions considers all the criteria for a perfect PPML system.

However, we can rank the methodologies from each group,

i.e., one from the IPFE-based scheme and another from the

QFE-based scheme. In the IPFE-based scheme, [15] satisfies

most of the criteria, whereas [16] performs the best in QFE-

based methodologies. If prediction accuracy and privacy are

considered, then [16] leads, whereas the overall performance

of the system in terms of security, privacy, and accuracy is

concerned, then [15] leads over others. Also, they provide

more secure implementation based on FHIPE.

FE Versus FHE: Both FHE and FE cryptosystems are based

on post-quantum lattice-based cryptography. Apart from the

key distinction, i.e., the additional key requirement of FHE, FE

has some pros and cons. The FE can be the best choice when

the computation results on the encrypted data are expected to

be plain. Although this is an advantage, present FE schemes

support only inner product and quadratic computation on

encrypted data. In this regard, FHE wins over FE as it gives

computation capability for more complex polynomials. Both

cryptosystems have the overhead of time and space complexity

required for the encryption, decryption, and key generation

processes. FHE is more developed in engineering aspects as

leading companies like Microsoft [41] and IBM [42] have been

working on it. FE has not yet received attention and lacks

engineering aspects. Due to this, even though FE and FHE

have a set of complex operations, FHE uses available modern

hardware accelerator devices and engineering solutions and

wins over FE.

B. Challenges and Future Research Directions

1) Functionality Enhancement in the FE Scheme: The

current research done on FE is limited to two functionalities

on integers: 1) inner product and 2) bilinear maps. Recall

that functionality is a function computed over encrypted

data to obtain decrypted results. As discussed, inner product

functionality is used in the IPFE scheme, whereas bilinear

maps are used in the QFE scheme. Because of this limited

availability of functionalities, FE-based PPML methodolo-

gies still require enhancement. For example, QFE-based ML

methods can use only 2-degree polynomial networks. Also,

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

7444 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

FE cannot perform min/max and comparison operations. If

enhancement in FE functionality is done, it will be helpful

for PPML researchers to come up with practical solutions for

supervised and unsupervised ML problems. However, these

systems are not at a level to be used in real-world applications.

2) Improving Efficiency: Though FE-based PPML solu-

tions have shown promising results in partially encrypted ML,

there is a need to improve efficiency. Ciphertexts and keys

generated with larger security parameters are slower compared

to other cryptographic approaches. This becomes a threat when

computations are performed on large data sets. Therefore,

this efficiency issue stands as a big challenge in FE-based

PPML methodologies. Moreover, this can appear as a big

problem when FE-based PPML is considered in the case of

resource-constrained Internet of Things (IoT) devices. To solve

this problem, there is a need for lightweight FE schemes

that can be run with limited resources, eventually improving

efficiency.

3) Improvement in Security and Privacy of FE Scheme: As

discussed in the previous section, the FE-based PPML method-

ologies’ security depends on the underlying FE scheme.

IPFE schemes [18], [32] are selectively secured against

chosen-plaintext attacks under the DDH assumption. QFE

schemes [16], [22] are adaptively secured against chosen

plaintext attacks under MDDH assumption. These FE schemes

may lag in stricter security applications such as the defense

domain. Information leakage in FE-based PPML schemes

needs to be explored and improved. In addition to this, ML

attacks are also interesting to consider in this area.

4) Enhancing Privacy-Preserving Neural Networks:

Today’s FE-based works have shown their demonstration of

only up to 5-layer neural networks. There is a scope to enhance

the structure of neural networks. As discussed above, QFE-

based methods are limited to using only degree-2 polynomial

networks. So, the enhancement of these networks is somehow

dependent on the underlying FE scheme. Implementation

of various activation functions is also dependent on the

underlying FE scheme. Apart from this, FE is not at a level

to implement complex deep learning CNNs like VGGNet,

AlexNet, and GoogleNet. Methods like transfer learning can

be applied if there exists a functionality that can decrypt

the encrypted model and retrieve the saved parameters like

general CNNs.

5) Training-Centric PPML Systems: As the PPML is grow-

ing day by day, training over encrypted data is gaining

the attention of researchers [3]. Presently, FE-based PPML

schemes proposed in the literature are more inference-centric.

Although the work proposed in [13] and [15] has successfully

proposed a way for training a neural network using FE, they

lack computational efficiency. There is a high need for PPML

systems that can perform both training and inference over

encrypted data.

6) Training From Multiple Data Sources: As far as ML

is concerned, there are methodologies that focus on training

models from multiple data sources in [3]. The enhanced

versions of the FE scheme, like multi-input FE [43], [44],

can be used to serve this purpose. These schemes facilitate

using multiple vectors to perform computation based on

inner product functionality. Such schemes could leverage the

problem of training the model possessed by a cloud server for

training from multiple data sources.

7) Using Multiauthority and Decentralized Extensions of

FE: The FE scheme used in PPML services requires a trusted

third party or trusted authority to be involved in generating

the keys. The scheme proposed by [45] can be used to avoid

the involvement of trusted authorities. In addition to this,

there is a great scope for making the FE schemes used in

PPML decentralized by using the approaches proposed by [46]

and [47].

8) Need for Open-Source Library Support: FE has gained

widespread attention from researchers as far as the theoretical

aspects are concerned. However, it still lacks practical library

implementations compared to its predecessor, FHE. For exam-

ple, HElib [42] by the IBM research group, and SEAL [41] by

the Microsoft research group are great tools for performing the

FHE-related task. Presently, commendable efforts have been

taken by the FENTEC group [17] for providing C and Go

language versions of FE libraries, namely, CiFEr and GoFE.

These libraries are in the development stage and are not yet

ready to be deployed in production. So, there is a considerable

need for practically applicable FE libraries.

9) Need for Hardware Acceleration Support: In all the

implementations of FE-based PPML methodologies that have

been studied in this article, computations are carried out

on the CPU. Additionally, there has been no GPU support

available for FE implementation. Due to these limitations,

we lack the opportunity to leverage the highest GPU com-

puting power available today. Real-world ML applications

involve training on massive data sets. Therefore, performing

computations in such applications is highly time consum-

ing when done on the CPU. The work proposed by [48]

uses System-on-a-Chip (SoC) implementation to provide

acceleration support but requires special hardware. If easy-

to-use hardware acceleration support using widely available

GPUs or FPGAs were integrated into such applications, it

would significantly expedite computations. This acceleration

would eventually aid in making FE deployable in real-world

applications.

10) Improving Scalability and Application to Nonimage

Data Sets: Present works focused on FE-based PPML are

limited to using MNIST-like small data sets for their experi-

ments, and there are no implementations for larger data sets.

In addition to this, the applications to nonimage data sets like

text corpus may also be explored. Therefore, this stands as a

future research direction in improving FE utilization in real-

world applications.

VII. CONCLUSION

PPML has gained widespread attention among industry and

academic researchers in recent years. Although approaches

based on FHE and SMC have been extensively studied, FE-

based solutions are still less investigated. In this article, we

provide a summary and survey of PPML approaches based

on FE. Our analysis assessed the extent to which previous

work has addressed the PPML using FE and identified key

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

PANZADE et al.: PRIVACY-PRESERVING MACHINE LEARNING USING FUNCTIONAL ENCRYPTION 7445

weaknesses in this area. Additionally, our analysis demon-

strates that FE-based approaches could significantly contribute

to the PPML issues, but there exist challenges that should

be addressed to achieve practical solutions. We hope that this

effort paves the path for the research community to investigate

this emerging yet important topic.

REFERENCES

[1] M. Ribeiro, K. Grolinger, and M. A. Capretz, “MLaaS: Machine learning
as a service,” in Proc. IEEE 14th Int. Conf. Mach. Learn. Appl. (ICMLA),
2015, pp. 896–902.

[2] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving machine learning as a service,” in Proc. Privacy Enhanc.
Technol., 2018, pp. 123–142.

[3] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” in Proc. Privacy Enhanc.
Technol., 2019, pp. 26–49.

[4] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scalable
provably-secure deep learning,” in Proc. 55th Annu. Design Autom.
Conf., 2018, pp. 1–6.

[5] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput., 2009, pp. 169–178.

[6] P. Bogetoft et al., “Secure multiparty computation goes live,” in Proc.
Int. Conf. Financ. Cryptogr. Data Security, 2009, pp. 325–343.

[7] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions
and challenges,” in Proc. Theory Cryptogr. Conf., 2011, pp. 253–273.

[8] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201–210.

[9] E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep neural
networks over encrypted data,” 2017, arXiv:1711.05189.

[10] T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Machine
learning on encrypted data,” in Proc. Int. Conf. Inf. Security Cryptol.,
2012, pp. 1–21.

[11] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Security Privacy
(SP), 2017, pp. 19–38.

[12] D. Ligier, S. Carpov, C. Fontaine, and R. Sirdey, “Privacy preserving
data classification using inner-product functional encryption,” in Proc.
ICISSP, 2017, pp. 423–430.

[13] R. Xu, J. B. Joshi, and C. Li, “CryptoNN: Training neural networks
over encrypted data,” in Proc. IEEE 39th Int. Conf. Distrib. Comput.
Syst. (ICDCS), 2019, pp. 1199–1209.

[14] P. Panzade and D. Takabi, “Towards faster functional encryption for
privacy-preserving machine learning,” in Proc. 3rd IEEE Int. Conf. Trust,
Privacy Security Intell. Syst. Appl. (TPS-ISA), 2021, pp. 21–30.

[15] P. Panzade and D. Takabi, “FENet: Privacy-preserving neural network
training with functional encryption,” in Proc. 9th ACM Int. Workshop
Security Privacy Anal., 2023, pp. 33–43.

[16] T. Ryffel, E. Dufour-Sans, R. Gay, F. Bach, and D. Pointcheval,
“Partially encrypted machine learning using functional encryp-
tion,” 2019, arXiv:1905.10214.

[17] T. Marc, M. Stopar, J. Hartman, M. Bizjak, and J. Modic, “Privacy-
enhanced machine learning with functional encryption,” in Proc. Eur.
Symp. Res. Comput. Security, 2019, pp. 3–21.

[18] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval, “Simple
functional encryption schemes for inner products,” in Proc. IACR Int.
Workshop Public Key Cryptogr., 2015, pp. 733–751.

[19] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu,
“Function-hiding inner product encryption is practical,” in Proc. Int.
Conf. Security Cryptogr. Netw., 2018, pp. 544–562.

[20] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003.

[21] A. Joux, “A one round protocol for tripartite Diffie–Hellman,” J.
Cryptol., vol. 17, no. 4, pp. 263–276, 2004.

[22] C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay, “Practical func-
tional encryption for quadratic functions with applications to predicate
encryption,” in Proc. Annu. Int. Cryptol. Conf., 2017, pp. 67–98.

[23] A. A. Badawi et al., “The AlexNet moment for homomorphic encryp-
tion: HCNN, the first homomorphic CNN on encrypted data with
GPUs,” 2018, arXiv:1811.00778.

[24] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic
evaluation of deep discretized neural networks,” in Proc. Annu. Int.
Cryptol. Conf., 2018, pp. 483–512.

[25] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
Proc. Int. Conf. Theory Appl. Cryptol. Inf. Security, 2016, pp. 3–33.

[26] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 27, 2014, pp. 1–9.

[27] W. Hart, F. Johansson, and S. Pancratz. “FLINT: Fast library for number
theory, V. 2.4.3.” 2013. [Online]. Available: http://flintlib.org

[28] J. A. Akinyele, M. D. Green, and A. D. Rubin, “Charm: A framework
for rapidly prototyping cryptosystems,” J. Cryptograph. Eng., vol. 3,
no. 2, pp. 111–128, 2013.

[29] B. Lynn, PBC Library Manual 0.5.11, Stanford Univ., Stanford, CA,
USA, 2006.

[30] E. D. Sans, R. Gay, and D. Pointcheval, “Reading in the dark:
Classifying encrypted digits with functional encryption,” IACR,
Bellevue, WA, USA, Rep. 206/2018, 2018.

[31] S. Carpov, C. Fontaine, D. Ligier, and R. Sirdey, “Illuminating the dark
or how to recover what should not be seen in FE-based classifiers,” in
Proc. Privacy Enhanc. Technol., 2020, pp. 5–23.

[32] S. Agrawal, B. Libert, and D. Stehlé, “Fully secure functional encryption
for inner products, from standard assumptions,” in Proc. Annu. Int.
Cryptol. Conf., 2016, pp. 333–362.

[33] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Security, 2015,
pp. 1322–1333.

[34] Y. LeCun, C. Cortes, and C. J. Burges, (ATT Labs, Atlanta, GA,
USA). MNIST Handwritten Digit Database: Volume 2. (2010). [Online].
Available: http://yann.lecun.com/exdb/mnist

[35] R. Kohavi, “Scaling up the accuracy of naive-Bayes classifiers: A
decision-tree hybrid,” in Proc. KDD, vol. 96, 1996, pp. 202–207.

[36] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, no. 85, pp. 2825–2830, 2011.

[37] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous distributed systems,” 2015, arXiv:1603.04467.

[38] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array:
A structure for efficient numerical computation,” Comput. Sci. Eng.,
vol. 13, no. 2, pp. 22–30, 2011.

[39] F. Chollet et al., “Keras: The Python deep learning library,” Astrophys.
Source Code Library, 2018. [Online]. Available: https://ui.adsabs.
harvard.edu/abs/2018ascl.soft06022C/abstract

[40] S. Agrawal, B. Libert, M. Maitra, and R. Titiu, “Adaptive simulation
security for inner product functional encryption,” IACR, Bellevue, WA,
USA, Rep. 2020/209, 2020. [Online]. Available: https://eprint.iacr.org/
2020/209

[41] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library—
SEAL V2.1,” in Proc. Int. Conf. Financ. Cryptogr. Data Security, 2017,
pp. 3–18.

[42] S. Halevi and V. Shoup, “Algorithms in HElib,” in Proc. Annu. Cryptol.
Conf., 2014, pp. 554–571.

[43] M. Abdalla, R. Gay, M. Raykova, and H. Wee, “Multi-input inner-
product functional encryption from pairings,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptograph. Technol., 2017, pp. 601–626.

[44] Z. Brakerski, I. Komargodski, and G. Segev, “Multi-input functional
encryption in the private-key setting: Stronger security from weaker
assumptions,” J. Cryptol., vol. 31, no. 2, pp. 434–520, 2018.

[45] M. Ambrona, D. Fiore, and C. Soriente, “Controlled functional
encryption revisited: Multi-authority extensions and efficient schemes
for quadratic functions,” in Proc. Privacy Enhanc. Technol., 2021,
pp. 21–42.

[46] J. Chotard, E. D. Sans, R. Gay, D. H. Phan, and D. Pointcheval,
“Decentralized multi-client functional encryption for inner prod-
uct,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Security, 2018,
pp. 703–732.

[47] J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval,
“Dynamic decentralized functional encryption,” in Proc. Annu. Int.
Cryptol. Conf., 2020, pp. 747–775.

[48] M. Bahadori and K. Järvinen, “A programmable SoC-based accelerator
for privacy-enhancing technologies and functional encryption,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 10,
pp. 2182–2195, Oct. 2020.

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

7446 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Prajwal Panzade (Member, IEEE) received the
master’s degree in computer science and engineering
(focused on information security) from the Indian
Institute of Technology Dhanbad, Dhanbad, India,
in 2017. He is currently pursuing the Ph.D. degree
with the Department of Computer Science, INSPIRE
Center, Georgia State University, Atlanta, GA, USA.

He was a Lecturer with the National Institute of
Technology Andhra Pradesh, Tadepalligudem, India,
from 2017 to 2019. His research interests include
privacy-preserving machine learning, applied cryp-

tography, digital image forensics, machine learning, and federated learning.

Daniel Takabi (Member, IEEE) received the Ph.D.
degree in information science and technology from
the University of Pittsburgh, Pittsburgh, PA, USA,
in 2013.

He is currently a Professor and the Director
of the School of Cybersecurity and a Batten
Endowed Chair of Cybersecurity with Old Dominion
University, Norfolk, VA, USA. Prior to this, he
was the Founding Director of the Information
Security and Privacy: Interdisciplinary Research and
Education (INSPIRE) Center [designated as the

National Center of Academic Excellence in Cyber Defense Research (CAE-
R)], Georgia State University, Atlanta, GA, USA. His research interests
include various aspects of cybersecurity and privacy, including trustworthy AI,
privacy-preserving machine learning, adversarial learning, advanced access
control models, insider threats, and usable security and privacy.

Dr. Takabi has served as a Technical Program/Organizing Committee
Member for a number of conferences and workshops, including IEEE S&P,
ACM CCS, ACSAC, ACM CODASPY, ACM SACMAT, and PETS.

Zhipeng Cai (Fellow, IEEE) received the B.S.
degree from Beijing Institute of Technology, Beijing,
China, in 2001, the master’s degree in 2004 and the
Ph.D. degree from the Department of Computing
Science, University of Alberta, Edmonton, AB,
Canada, in 2008.

He is currently a Professor with the Department
of Computer Science, Georgia State University,
Atlanta, GA, USA. His research has received fund-
ing from multiple academic and industrial sponsors,
including the National Science Foundation and the

U.S. Department of State, and has resulted in over 100 publications in top
journals and conferences, with more than 14 500 citations, including over 80
IEEE/ACM transactions papers. His research expertise lies in the areas of
resource management and scheduling, privacy, networking, and big data.

Dr. Cai is the recipient of an NSF CAREER Award. He is the Editor-
in-Chief of Wireless Communications and Mobile Computing, an Associate
Editor-in-Chief of High-Confidence Computing (Elsevier), as well as an
Editor of various prestigious journals, such as IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING, IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, and IEEE TRANSACTIONS ON COMPUTATIONAL

SOCIAL SYSTEMS.

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

