7436

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Privacy-Preserving Machine Learning Using
Functional Encryption: Opportunities
and Challenges

Prajwal Panzade™, Member, IEEE, Daniel Takabi

Abstract—With the advent of functional encryption (FE),
new possibilities for the computation of encrypted data have
arisen. FE enables data owners to grant third-party access to
perform specified computations without disclosing their inputs.
It also provides computation results in plaintext, unlike fully
homomorphic encryption (FHE). The ubiquitousness of machine
learning (ML) has led to the collection of massive private
data in the cloud computing environment. This raises potential
privacy issues and underscores the need for more private and
secure computing solutions. Numerous efforts have been made in
privacy-preserving ML (PPML) to address security and privacy
concerns. There are approaches based on FHE, secure multiparty
computation (SMC), and, more recently, FE. Compared to FHE-
based PPML techniques, FE-based PPML is still in its infancy.
In this article, we provide a survey of PPML works based
on FE, summarizing state-of-the-art literature. We focus on
inner product-FE, function-hiding inner product encryption,
and quadratic-FE-based ML models for PPML applications.
We analyze the performance and usability of the available FE
libraries and their applications to PPML. We also discuss future
research directions for FE-based PPML approaches. To the best
of our knowledge, this is the first work to survey FE-based PPML
approaches.

Index Terms—Computation on encrypted data, functional
encryption (FE), privacy-preserving machine learning (PPML),
trustworthy AL

I. INTRODUCTION

ACHINE learning (ML) techniques have become

deeply integrated across domains like computer vision,
natural language processing, and speech processing, enabling
myriad applications. Increasingly, real-world ML relies on
a cloud-based framework, epitomizing ML as a Service
(MLaaS) [1]. Sectors with stringent regulations like bank-
ing, government, insurance, and healthcare are progressively
migrating their data and ML services to the cloud. This shift
highlights the escalating need for robust, secure computational

Manuscript received 11 October 2023; revised 15 November 2023; accepted
20 November 2023. Date of publication 1 December 2023; date of current
version 21 February 2024. This work was supported in part by the National
Science Foundation under Grant 2020636, Grant 2054968, Grant 2118083,
Grant 2315596, and Grant 2244219; and in part by the Microsoft Faculty
Fellowship Program. (Corresponding author: Prajwal Panzade.)

Prajwal Panzade and Zhipeng Cai are with the Department of Computer
Science, Georgia State University, Atlanta, GA 30302 USA (e-mail:
ppanzadel @student.gsu.edu; zcai @gsu.edu).

Daniel Takabi is with the School of Cybersecurity, Old Dominion
University, Norfolk, VA 23529 USA (e-mail: takabi@odu.edu).

Digital Object Identifier 10.1109/JI0T.2023.3338220

, Member, IEEE, and Zhipeng Cai*, Fellow, IEEE

solutions that safeguard data and model privacy in cloud-based
ML. Consequently, research has focused on privacy-preserving
ML (PPML) [2], [3], [4], targeting data and model privacy
issues throughout ML stages.

Established techniques like fully homomorphic encryption
(FHE) [5] and secure multiparty computation (SMC) [6]
are fundamental PPML methods. Concurrently, functional
encryption (FE) [7] is evolving. FHE allows computation
on encrypted data without decryption. SMC enables joint
computation while preserving individual privacy. In contrast,
FE permits computation on encrypted data, yielding plaintext
results.

Gilad-Bachrach et al. [8] proposed a pioneering method that
involves the transformation of a pretrained neural network into
a cryptographic model termed CryptoNet. This method enables
secure transmission of homomorphically encrypted data from
data owners to a central server, facilitating the reception
of an encrypted inference. Similarly, Hesamifard et al. [9]
introduced CryptoDL, a novel methodology utilizing FHE
for privacy-preserving inference on pretrained convolutional
neural networks (CNNs). In a distinct study, Graepel et al. [10]
detailed a binary classification technique in their work,
ML Confidential, which integrates polynomial approxima-
tions and FHE. Furthermore, Mohassel and Zhang [11]
presented SecureML, elaborating on an efficient two-party
protocol for training linear regression, logistic regression,
and neural network models while ensuring data privacy.
Wagh et al. [3] proposed a three-party computation protocol
specifically designed for privacy-preserving training and infer-
ence in CNNs in their study, SecureNN.

In this study, we explore PPML methodologies leveraging
FE. Within the MLaaS framework, the model resides on
the server, and one or more clients are responsible for the
training process. At times, the server may possess pretrained
models. Typically, in FHE-based ML, models are trained on
unencrypted data, with inferences derived from encrypted data.
In this scenario, a client transmits encrypted data to the server,
which conducts tasks such as classification using the pretrained
ML model on the client data and delivers the prediction
outcomes in the ciphertext. Notably, the server performs
computations on encrypted data without learning the inputs,
ensuring that only the data owner can access the actual result.
Contrastingly, in FE, the server generates computation results
in plaintext utilizing a specific key, enabling partial decryption
required for computation (refer to Fig. 1). The subsequent

2327-4662 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

PANZADE et al.: PRIVACY-PRESERVING MACHINE LEARNING USING FUNCTIONAL ENCRYPTION

7437

l

Il

Encrypted Data

Public key w
—® Functional

Encryption

[

Client —

Data

Key Generation

_,—> Authority

P
~
d N
/ -
- had ~
/

I > N

Functional \

Decrypted Results [«

Fig. 1. Overview of PPML using FE.

procedures closely parallel those of FHE. Within the realm
of PPML, the prospect of producing plaintext results over
encrypted data without full decryption is notably intriguing
for certain applications. It is worth noting that both FHE and
FE-based PPML necessitate high computational costs.

This study thoroughly examines multiple research papers on
FE-based PPML to provide a comprehensive overview to the
research community. Focusing on FE-based PPML approaches
amidst various existing methods, recent efforts have centered
on developing FE-based systems, broadly categorized into
inner product FE (IPFE)-based and quadratic FE (QFE)-based
methodologies. Ligier et al. [12] proposed an approach for
privacy-preserving classification on IPFE-encrypted data, and
Xu et al. [13] introduced an IPFE-based deep neural network
approach for image classification on the MNIST data set.
Additionally, Panzade and Takabi presented methods for faster
computation of secure activation functions using function-hiding
inner product encryption (FHIPE) for PPML [14] and a privacy-
preserving neural network training framework using IPFE and
FHIPE [15]. Ryffel et al. [16] developed a system using QFE
with adversarial training for privacy-preserving predictions.
Marc et al. [17] presented fully fledged FE libraries and their
applications in privacy-enhanced ML models.

The following are the primary contributions of this article.

1) We present a basic but substantial theoretical foundation
to help researchers understand current approaches to FE-
based PPML.

We provide a thorough review of the literature on
FE-based PPML, emphasizing the strengths and short-
comings of the various approaches to assess how they
supplement one another.

We examine the current constraints that prohibit the
implementation of existing FE-based PPML solutions in
real-world settings, mostly due to issues with efficiency
and usability.

We provide research directions to intensify existing
works in terms of time performance and security that the
research community may pursue in the coming years.

2)

3)

4)

== o — || -
< BECVREON rr socrer \
’ " -
/ L&Y ~
/ @ \

ML Model \

— e e e e i — ——

Cloud Server

II. BACKGROUND KNOWLEDGE

FE is a generalization of public-key encryption that allows
a key holder to compute a particular function of encrypted
data using constrained secret keys [7]. Here, this function
is called functionality. For example, an FE scheme may be
particularly designed to compute inner products; in this case,
the functionality becomes an inner product. In the FE scheme,
a key management authority with a master secret key generates
a secret key sky.; a decryptor can use that to compute a function
on an encrypted message x. The symbols and acronyms used
in this article are given in Table I. This section summarizes
the two major FE schemes, IPFE and QFE, used by PPML
approaches.

A. Inner Product Functional Encryption

The decisional Diffie-Hellman (DDH) assumption under-
pins the method outlined by Abdalla et al. [18]. Let
GroupGenerator be a probabilistic polynomial-time (PPT)
algorithm with input security parameter 1*, which produces a
triplet (G, p, g), where G is a group of order p created by
g in G. The tuples (g, g% g%, g) and (g, g% g°, g°) are
computationally indistinguishable, according to DDH, where
(G, p, g) < Groquenerator(l)‘), and a, b, ¢ € Z, are chosen
uniformly and independently at random.

The IMipte = (Setup, Encrypt, KeyDerivation, Decrypt) FE
scheme for IPFE in DDH is as follows.

Setup(1*, 1'): This algorithm samples (G, p, g)<
Groquenerator(l)‘) and s = (sq,...,8) <« ZL, sets mpk =
(hi = g%icry) and msk = s and finally returns a pair of
(mpk, msk).

Encrypt(mpk, x): This algorithm takes mpk and message x
= (x1,...,x)) € ZII7 as input, chooses random number r <«
Z,, computes Ctyp = g" and, for each i € [1], Ct; = h;". g"
and returns ciphertext Ct.

KeyDerivation(msk, y): This algorithm takes msk and vector
y=O1,...,¥1) € Zp, as input and outputs key skp.

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

7438

TABLE I
SYMBOLS AND ACRONYMS USED IN THIS ARTICLE

Acronym / symbol Description

mpk Master Public Key
msk Master Secret Key
skye FE Key for IPFE
skqe FE key for QFE

Ct Ciphertext

IND-CPA security against chosen-plaintext attacks
ERT Extremely Randomized Trees
IPFE Inner-product Functional Encryption
QFE Quadratic Functional Encryption
FHIPE Function-Hiding Inner Product Encryption

Decrypt(mpk, Ct, skg.): This algorithm takes the master
public key, ciphertext, and skg, for vector y as input and outputs
the discrete logarithm in basis g of

[Tiei €'/ th)kfe‘

Correctness: The method’s correctness is demonstrated as
follows [18]:

Y (mpk, msk) < Setup(l)‘, 1’), all y € Z;, and x € Zﬁ,

for sk, < KeyDerivation(msk, y) &Ct < Encrypt(mpk, x).

o
]‘[ie[l] (g5i7+x,')}’i

= gZie[l] Visit+ e y"xi*’(Ziem visi)

= gZie[lJ YiXi

Decrypt(mpk, Ct, skg) =

— g(x,y>)

B. Function Hiding Inner Product Encryption

Function hiding inner product encryption [19] is another
variant for computing inner products on encrypted data with
three key differences. First, FHIPE provides the special feature
of hiding the functionality. Second, it uses only one master
key for key derivation and encryption. Third, it is more secure
than IPFE as it provides simulation-based security in addition
to indistinguishability-based security (IND-CPA). The details
on security definitions are discussed in Section V-D. For more
information on FHIPE, we refer the readers to [19].

C. Quadratic Functional Encryption

A QFE scheme uses bilinear groups (also known as pairing
groups) and has been proposed by [20] and [21]. In the
case of QFE-based PPML, we refer to schemes proposed by
Ryffel et al. [16]. Here, GroupGenerator is a PPT algorithm
on inputting 1* returns PG = (G1,Ga,p, g1, 82,¢) of an
asymmetric bilinear group, where G| and G, are cyclic groups
of prime order p (for a 2A-bit prime p) and g; and g»
are generators of G; and Gg, respectively. The application
e : Gy x G — Gr is an admissible pairing, i.e., it
can be efficiently computable, nondegenerated, and bilinear:
e(gy, gg) = e(g1, gz)“ﬂ for any scalars «, B € Zp. Therefore,
gr = e(g1, g2) which makes the group Gr of order p, where

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

p is prime. For any s € {1,2,T},n euII\I, and vector u =
ui 8s
€ Z,, it is denoted by g¢ == : | € Gy.
Un ?n
Similarly, for any vectors u € ZI’;, Vv € Zg, It is denoted
by e(g}. g5) = [1,_; e(g1. 2™ = e(g1. 82)"" € Gr, since
u - v denotes the inner product between the vectors u and v,
that is, w-v ==Y i, uvi.

Ryffel et al. [16] built an efficient FE scheme shown below
for the set of functions defined, for all n, By, By, By € N*, as
FnB.B,,B; = {f : [=Bx. B]" X [=By, B,]" — Z} where the
functions f € ‘/—_.”va»Bquf are expressed as a set of bounded
coefficients {f;; € [—Bf, Bfl}ijen), and for all vectors x €
[_Bx’ Bx]",y € [_Byv By]

fey) =" fijxy).
i,jeln]

The FE scheme is explained as follows.

Setup(1*, F,.B,.B,.8;)-

PG = (G, Gy, p, g1, 82, ¢) < GroupGenenerator(1*),
S, t < ZZ, msk = (s, t),
mpk = (PG, g}, g))

Return (mpk, msk).

Encrypt(mpk,(x, y)):

y < Zp, W < GLg, for all i € [n],

. T i . Yi
a; = (W) ()/Si>’bi = W(—l‘,’)

Return Ct = (g}, {g{", gg’}ie[,,]) e Gy x (G% X G%)"

KeyDerivation(msk, f):

Return skge = (g];(s’t),f) e Gy x Fn,Bx,By,Bf

Decrypt(mpk, Ct == (g}, {g}’, g?)}ie[n]),
skge = (™" f)):

out = e(g, g};(s’t)) Tlijem e(g}, ggi)fi'j
Return log(out) € Z

Correctness:

For all i, € [n]

di b d;-bj Xiyj =V Silj
e(gll’ gz) =8r =8r

since
- T . T .
ai=() () (v(%)
! -
-
VSi =
Therefore,
5.1 G Dbivgi; 5.1
out = e(g)l/, gg(s [)) :]_[i,j e(g? » 8>)i = g;q(s N,

2 QXY= Y dijsity GD qG)—yqG.D *3)
g = glIGD | gED=raGh _ a3

T T
We refer the readers to [16], [18], and [22] for more
cryptographic details on IPFE and QFE schemes, respectively.

D. Neural Networks

The artificial neural network, often known as a neural
network, is an ML model that is hierarchical and nonlinear,
with several layers and several neurons in each layer. Each

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

PANZADE et al.: PRIVACY-PRESERVING MACHINE LEARNING USING FUNCTIONAL ENCRYPTION

layer of a neural network processes the input provided by the
previous layer before passing it on to the next.

1) Input Layer: The preprocessed raw data or features
extracted from raw data in a particular format make up
the first layer of the neural network.

2) Hidden Layer: A neural network can have one or more
hidden layers. The first hidden layer’s neurons are linked
to the input layer and followed by an activation function.
Further hidden layers are fed with the previous layer’s
output. Weight values are associated with layers, and
they are updated during the forward and backpropaga-
tion processes until convergence.

3) Activation Function: The activation function of a neuron
in a neural network determines the output of that neuron
given a single or group of inputs. In ML, there are
several activation functions, such as sigmoid, rectified
linear unit (ReLU), and tanh. The ReLU activation
function is an example of one of the most frequently
used activation functions. If the input value is less than
zero, the ReLLU activation function returns zero, and if
it is greater than zero, it returns the same input.

4) Output Layer: The output layer of a neural network is
the final layer of neurons that provides the network’s
output.

E. Polynomial Neural Network

Polynomial neural networks are the kinds of neural
networks that primarily facilitate linear components like fully
connected layers, convolutions with average pooling, and
activation functions approximated using polynomials. They
have demonstrated fairly high accuracy for the relatively
simple benchmarks in image recognition tasks [8], [23]. They
have also been used to propose the applicability of novel ML
protocols in various early-stage implementations, as presented
in [24] and [25]. The simplicity of the operations upon which
polynomial neural networks are built ensures high efficiency,
particularly for gradient computations. Research works, such
as [26], have demonstrated that they can reach convergence
rates comparable to those of networks with nonlinear activa-
tion functions.

III. SCOPE

Our analysis of the FE-based PPML methodologies is
divided into two parts. To begin, we conduct a thorough review
of existing methodologies and emphasize their salient features
and functions. Second, we evaluate these tools in practice
by comparing their usability, complexity, and performance
across various case study scenarios. The secure computation
ecosystem encompasses a wide variety of tools. On the low
level, there exist math libraries that facilitate the construction
of FE implementations, for example, by efficiently implement-
ing algorithms useful for generic lattice-based cryptography.
Then there are FE libraries that implement certain schemes
and provide slightly more advanced application programming
interfaces (APIs), such as setup, encrypt, key generation, and
decrypt. These libraries abstract away computation features

7439

like parameter selection, encryption, and decryption by provid-
ing a higher level language in which developers can implement
their computation.

The primary objective of this work is to comprehend the
landscape of MLaaS in data-sensitive scenarios via PPML
computing, for example, when data supplied to third parties
for processing is encrypted. PPML ensures the privacy and
confidentiality of input data. Additionally, they alleviate exces-
sive pressures on the client endpoint in computing as the cloud
server does most of the computing part. Finally, they may
be used in ML situations where clients can contribute data
toward a training or inference goal. PPML is frequently used in
conjunction with other approaches. We discuss the application
of all PPML approaches based on FE just at these crossing
places. Although FHE is a widely used technique in PPML, we
only include FE-based approaches because of fewer available
articles to the research community on this topic.

The second problem is associated with the techniques’
deployability. Numerous frameworks and technologies make
advanced ML accessible to data scientists who are not neces-
sarily professionals in computer sciences. However, adopting
these frameworks for use with PPML is challenging. We
consider usability enhancements in this area if the proposal
fits one of the following two requirements. To start, it makes
the solution more adaptable to existing ML frameworks
(e.g., by giving tools that reduce total programming effort).
As such, our study incorporates works that propose APIs,
compilers, or other significant practical tools that aid in the
implementation and deployment of theoretical ideas into real
applications, hence increasing their usability. Second, when an
open-source implementation supplements the concept. Apart
from facilitating future revisions to the approach, open-source
implementations ensure that the results are reproducible.
Additionally, we verify whether the work contains references
to open-source implementations or is released independently
(e.g., by visiting the authors’ websites or GitHub repositories).

In summary, we examine the following for each of the
proposals utilizing FE-based PPML: 1) the problem being
addressed (training, inference, or both); 2) the ML model used;
3) the specific FE techniques involved (IPFE or QFE); and
4) the efficiency and usability considerations examined.

IV. OVERVIEW OF FE-BASED PPML MODELS
AND LIBRARIES

A. What Has Been Done?

There are two variations of the FE-based PPML method-
ologies available in the literature. The first one uses IPFE,
whereas the other one uses QFE. The IPFE-based method-
ologies involve training and inference, whereas the QFE
methodologies involve simply the inference stage of ML.

1) Inner Product FE-Based Machine Learning: In this
type of methodology, the inputs are encrypted using IPFE.
Then during the activation, inner products between encrypted
inputs and weight matrices are unfolded based on the special
property of FE. Later, the neural network operations are
done similarly to regular neural networks. Here, both forward
propagation and backpropagation can be made secure using

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

7440

FE. This methodology supports both training and prediction
over encrypted data, unlike the QFE-based approaches.

2) Quadratic FE-Based Machine Learning: In QFE-based
methodologies, the training phase happens similarly to the
regular neural networks. It is also worthwhile to note that they
train the neural networks with plain data. In the prediction
phase, encrypted data are fed to the neural network. It undergoes
the process of polynomial approximation, and then the other
steps are applied similar to regular neural networks. These
approaches are found to be faster than IPFE-based approaches.

B. Cryptography Libraries for Functional Encryption
Implementation

Presently, there are only two dedicated libraries that focus
on implementing state-of-the-art FE schemes. The first one
is called CiFEr, and the other is GoFE. Three entities are
involved in FE and decryption: 1) an encryptor; 2) a decryptor;
and 3) a key management authority. An encryptor encrypts
the data and obtains ciphertext. The decryptor decrypts the
ciphertext received from the encryptor. The key management
authority handles the responsibility of generating a variety of
cryptographic keys. In the FE scheme, based on the involvement
of encryptors, it can be either single-input or multi-input. We
detailed both of these libraries and supporting cryptography
libraries used in the FE-based PPML works as follows.

1) CiFEr: CiFEr' [17] is an FE library developed by the
FENTEC group that is written in the C language. This library
allows developers to use functions to perform various FE
operations like encrypt, decrypt, and key generation. This
library is built in such a way that the predefined functions can
be directly called without setting many parameters. Here, the
cryptographic key generation is abstract to the user, and users
set the security parameters in terms of bits. It provides both
single-input and multi-input FE implementations commonly
observed in FE-based PPML approaches.

2) GoFE: GoFE? [17] is another library provided by the
FENTEC group that is written in Golang. Like CiFEr, it also
provides an option to use FE functions. Both CiFEr and GoFE
have the same set of state-of-the-art FE implementations.
Their performance is based on the underlying programming
languages.

3) FLINT: FLINT? [27] is a cryptography library that is
used for performing number theory-related operations. It is
written in C. Unlike GoFE and CiFFEr, it does not dedicatedly
provide FE functionality. In some of the FE-based works, this
library is used for the implementation of FE schemes.

4) Charm: Charm* [28] is a framework designed for
implementing various advanced cryptosystems. It is built using
Python to decrease development time and code complexity
while fostering component reuse.

5) PBC: Pairing-based cryptography (PBC)> [29] is a
C library that enables rapid development of cryptosystems

1 https://github.com/fentec-project/CiFEr
2https:// github.com/fentec-project/gofe

3 https://lintlib.org/

4https:// github.com/JHUISI/charm

5 https://crypto.stanford.edu/pbc/

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

based on pairings. It implements a bilinear cyclic group
abstractly, hiding the programmer from mathematical details.
Both PBC and Charm are used in some of the FE-based PPML
implementations.

V. INSIGHTS

Recall that we consider the FE-based PPML works
focused on training and/or inference over encrypted data.
The comparison details of these works in terms of func-
tionality and performance is given in Tables II and III,
respectively.

A. Threat Model

Assumption: In FE-based PPML, it is assumed that there
is a trusted independent key management authority that is
responsible for the generation of the required keys. Such
assumptions are common in all FE schemes [7], [18], [22],
[32]. FE-based PPML techniques adhere to an honest but
curious security model, in which both parties comply with
the protocol while attempting to gain as much information
as possible. In this case, the server follows the protocol but
tries to learn additional information. Typically, the approach
includes three primary components: 1) a key management
authority; 2) a server; and 3) a client. The key manage-
ment authority generates encryption and decryption keys.
FE requires three distinct keys, namely, master public key
(mpk), master secret key (msk), and FE key(sky.), that operate
slightly differently than public-key cryptography techniques as
discussed in Section II.

The research in this field assumes an MLaaS setting. In the
case of training, the client provides the encrypted data, and the
cloud server performs training using the provided encrypted
data and obtains a trained model. In the case of inference,
the server holds the trained model, and the client provides the
encrypted data to the server and receives the prediction results
in plaintext.

The client first encrypts the data using the master public
key before sending it to the server. In some scenarios,
the client may be required to preprocess the data before
encryption; this varies by application. For example, computer
vision applications may require scaling or transforming images
prior to encryption. Normalization and standardization may be
necessary in the case of structured data.

The server holds the model. The model is developed by
training the neural network using client-supplied data. Because
the server cannot see the data sent by the client, it must obtain
the FE secret key skf, in order to execute functionality-based
computations on the data. Either polynomial approximation
uses such computations for QFE-based methods or inner
product computation in IPFE-based methods discussed in the
later sections.

B. IPFE-Based PPML

Fig. 2 depicts IPFE-based PPML. Out of the available works
in this field dedicated to FE-based PPML [12], [13], and [15]
use IPFE schemes.

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

PANZADE et al.: PRIVACY-PRESERVING MACHINE LEARNING USING FUNCTIONAL ENCRYPTION

7441

TABLE II
COMPARISON OF FE-BASED PPML MODELS IN TERMS OF FUNCTIONALITY

Research works FE type Training Prediction =~ ML model Security
Ligier et al. [12] IPFE O @ ERT Selective IND-CPA
Xu et al. [13] IPFE @ @ 5 layer NN Selective IND-CPA
Sans et al. [30] QFE O) 2 layer NN Adaptive IND-CPA
Ryffel et al. [16] QFE O) 2 layer NN Adaptive IND-CPA
Carpov et al. [31] IPFE and QFE O . 2 layer NN Adaptive IND-CPA
Panzade et al. [15] IPFE and FHIPE . . 5 layer NN Selective IND-CPA and Simulation-based
g\ . @ \\.
Functional Encrypted Data (" Functional) (Functional | EnervetedData [Functional
['\ /’\ Encryption | | Decryption N /ﬂ Encryption Decryption |
Data /’/ Data ///
/
Q 1 Q .
Polynomial ‘
%) ‘ Neura ~ % ‘\Approxrimationﬁ‘
Client h | Network Client '
Decrypted results of the -
model .+ Decrypted results of the ™
model T —
Server Neural |
Network
Fig. 2. IPFE-based PPML.
Server
1) Functional Encryption Scheme: The methodology

presented in [12] is founded on the FE scheme proposed
by [32]. In contrast, [13] adopts the FE scheme introduced
by [18]. Moreover, [15] leverages FE schemes derived from
both [18] and [19].

2) Training Phase: In the approach proposed by
Ligier et al. [12], Extremely Randomized Trees serve as the
ML model, functioning as an ensemble learning model based
on decision trees. Their training process involves plain data,
akin to regular ML models. For inference, the client obtains
encryption keys and then encrypts their input data using IPFE
and sends the ciphertext to the server. The server then decrypts
it with FE secret keys to compute inner products and performs
classification, without having access to inputs in plain.

The methodologies proposed in [13] and [15] employ a
5-layer neural network. In their IPFE-based approach, client
inputs are initially encrypted before transmission to the server.
The server, equipped with the FE key, executes the IPFE
decrypt function to compute activation results in the first
hidden layer.

The computation between the input vector and weight
matrix in the first hidden layer is expressed as

A = ReLU(skz (W) - Encrypt(X) + b).

The output from this first hidden layer cascades through
subsequent layers, indicating the feasibility of these method-
ologies functioning entirely on FE-encrypted data.

Training using encrypted data, as proposed by [13],
demands 57 h for the 5-layer neural network model, whereas
the same nonencrypted neural network under identical settings

Fig. 3. QFE-based PPML.

takes only 4 h. This significant difference underscores the
computational gap between encrypted and nonencrypted data
within neural networks.

In FENet proposed by Panzade and Takabi [15], alongside
IPFE, the FHIPE scheme is employed. Notably, the FHIPE
scheme enhances inner product computation while maintaining
functionality secrecy, as discussed in Section II-B. Their work
achieves over a 2x speedup compared to the approach in
CryptoNN [13], while preserving comparable accuracy.

3) Inference Phase: The methodology proposed in [12]
demonstrates the ability to make predictions on encrypted
data in less than 0.1 s, achieving a validation accuracy of
95.64%. Similarly, [13] conducts inference on encrypted data
by utilizing IPFE decryption functions, achieving a validation
accuracy of 95.49%. On the other hand, FENet [15] achieves
approximately 95% accuracy, with each inference taking less
than 3 s to perform on FE-encrypted data.

C. QFE-Based PPML

Fig. 3 depicts QFE-based PPML. Three works use QFE
schemes, which are defined and shown utilization toward ML
problems in [16], [30], and [31].

1) Functional Encryption Scheme: This type of research
works either uses the similar or modified approach proposed
by Baltico et al. [22]. Works proposed by [16] and [30] are
related to each other in terms of the FE scheme and neural

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

7442

networks used. They proposed a novel FE scheme that can be
used on multivariate quadratic polynomials.

2) Training Phase: The training phase in this type of
methodology is done on plain data similar to regular neural
networks [30] and [31]. In the work proposed by [16],
the adversarial training approach is used in order to avoid
information leakage after functional decryption. They opti-
mized both the primary classification objective and the
opposite of the collateral objective of a particular simulated
adversary simultaneously using adversarial training.

3) Inference Phase: In the inference phase of all the works
proposed in [16], [30], and [31], polynomial neural networks
are used. Here, they use two-layer neural networks. Wherever
QFE is used, a special type of neural network called the
polynomial neural network is used discussed in Section II-E.
The approaches based on QFE have not yet been used
for training the model over encrypted data because of the
complexities involved in the cryptographical aspects. Also, the
present FE is defined for the usage of degree 2 polynomials.
The methodology proposed by [16] and [30] requires less
than 3 s to produce a prediction result. Moreover, in the
case of QFE-based works, accuracy is shown a little higher.
References [16] and [30] obtain an accuracy of 97.54% and
97.7%, respectively.

D. Security

1) Selective Security: Selective security is a notion of
security for FE where the adversary commits to the challenge
messages before seeing the scheme’s public parameters. This
allows for more efficient constructions as security only needs
to hold for the predetermined challenge messages rather than
all messages [18].

2) Adaptive Security: Adaptive security is a strong notion
of security for FE where the adversary can query secret
keys and choose challenge messages adaptively after seeing
the scheme’s public parameters. This requires security to
hold for all possible messages, posing a greater challenge
for achieving efficient constructions compared to selective
security [16], [22].

3) Simulation-Based Security: Simulation-based security is
a concept that strengthens the notion of security by focusing
on the ability to simulate the actions of an adversary given
only limited access to specific information. It ensures that
the behavior of the encryption scheme in the real world is
indistinguishable from an idealized scenario [19].

Theorem 1: Under the DDH assumption, the IPFE scheme
given in Section II-A is selectively secure against chosen-
plaintext attacks (IND-IPFE-CPA).

Theorem 2: Under the matrix DDH (MDDH) assumption,
the QFE scheme given in Section II-C is adaptively secure
against chosen-plaintext attacks (IND-QFE-CPA).

Theorem 3: An FHIPE scheme Ilfmipe is SIM-secure if,
for all the effective adversaries A, there exists simulator
S in which the cases given in [19] are computationally
indistinguishable.

We refer the readers to [16], [18], [19], and [22] for the
security proofs of the theorems.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

The security of the FE-based PPML approaches is
dependent on the cryptographic security of the underlying
FE schemes. As mentioned earlier, they offer three types
of security: 1) adaptive security; 2) selective security; and
3) simulation-based security against chosen-plaintext attacks
that can be found in more detail in [18], [19], and [22].
The approaches proposed in [12], [13], and [15] are selec-
tively secure whereas the approaches proposed in [16], [17],
and [30] show adaptive security based on the underlying crypto
schemes. In addition to selective security, FENet [15] also
offers sim-security.

E. Information Leakage and Attacks

Although FE schemes provide cryptographic security to the
ML models, there is a risk of information leakage. The outputs
obtained in the IPFE, FHIPE, and QFE-based models are in
plaintext after the FE decryptions are done. So, if the server
tries to retrieve part of the information from the obtained
plain data after FE computations, there is a possibility of
information leakage. Carpov et al. [31] discussed the type
of information leakage. Also, an adversarial training-based
approach proposed in [16] can avoid information leakage to
some extent. We believe there is a scope of attacks like
model inversion attacks [33] and direct inference attacks that
ML security researchers can study. In order to make the FE
models deployable, this potential threat should be taken into
consideration.

FE. Implementation Details

Almost all of the methodologies use the MNIST data
set [34] for the experiments. MNIST contains 70 000 grayscale
images of size 28 x 28 pixels of handwritten single digits
from 0 to 9. Out of 70K images, the training set consists of
60K images, and the test set consists of 10K images. In [31],
Census Income Data set [35] is used in addition to the MNIST
data set. Census Income data was extracted from the 1994
Census Bureau database. It is a multivariate data set with
48 842 instances. There are 14 attributes like age, work class,
and education with categorical and integer data. The task here
is to predict whether a person’s income exceeds $50K/yr.

FE Libraries: Ligier et al. [12] implemented the IPFE
scheme using FLINT library [27] whereas Xu et al. [13]
used Charm library [28] for implementation of the IPFE
scheme. Panzade and Takabi [15] used the CiFEr library [17]
for FHIPE and IPFE implementation. Sans et al. [30] and
Ryffel et al. [16] used PBC [29] and [28] library for imple-
mentation of QFE scheme. We have already detailed these
libraries in Section I'V-B.

Python Libraries: Ligier et al. [12] used sklearn [36]
in python for implementation of ML model. Methodologies
presented in [16] and [30] implemented the ML model in
Tensorflow [37] in Python. Approaches proposed in [13]
and [15] used just a Numpy [38] for the implementation of
the ML model whereas [31] used Keras [39] in python for the
implementation of ML model.

System Specifications: Table IV summarizes the machine
specifications used for performing experiments by the various

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

PANZADE et al.: PRIVACY-PRESERVING MACHINE LEARNING USING FUNCTIONAL ENCRYPTION

7443

TABLE III
COMPARISON OF FE-BASED PPML MODELS IN TERMS OF PERFORMANCE

Research works Year Training Prediction FE key generation Encryption Decryption Accuracy
Ligier et al. [12] 2017 NA < 0.1s 12 ms 150 ms 69 s 95.64%
Xu et al. [13] 2018 57 hrs not specified not specified not specified not specified 95.49%
Sans et al. [30] 2019 NA a few seconds 8 ms 8.1s 33s 97.54%
Ryffel et al. [16] 2019 NA <3s 94 £ 5 ms 12.1 + 0.3s 24 £ 9ms 97.7%
Carpov et al. [31] 2020 NA not specified not specified not specified not specified 90 %
Panzade et al. [15] 2023 26 hrs <3s not specified not specified not specified =~ 95%
TABLE IV
IMPLEMENTATION DETAILS
Research works Dataset FE Libraries Python Libraries System specifications
Ligier et al. [12] MNIST FLINT sklearn Intel Core i7-4650U, 8GB RAM
Xu et al. [13] MNIST Charm Numpy Intel Core i7, 8GB RAM
Sans et al. [30] MNIST PBC and Charm Tensorflow Intel Core i5-6440HQ, 8SGB RAM
Ryftel et al. [16] MNIST PBC and Charm Tensorflow Intel Core i7, 16GB RAM
Carpov et al. [31] MNIST, Census Income not specified Keras not specified
Panzade et al. [15] MNIST CiFEr Numpy Intel Xeon Gold 6230 R, 755 GB RAM

authors. The experiments done by all the research works are
on Intel CPUs. As CPUs are involved, there is an issue of
slow computation involved during training and prediction.
This presents a notable contrast to the faster computational
performance demonstrated by today’s GPU-based ML models.

VI. DISCUSSION
A. Tradeoffs in FE-Based PPML

To ensure a fully PPML system, both training and prediction
phases over encrypted data should be integrated into the
system. Our studies observe that for a perfect PPML system,
both training and prediction should be undergone over
encrypted data. By doing so, the system ensures the privacy
of the user’s data for both tasks. This interesting concept of
training and prediction without having access to plain data
helps us develop a fully PPML system. Presently, only [13]
and [15] focus on both of these tasks, but it is not efficient in
terms of time.

Considering information leakage and adaptive security
simultaneously is highly important. Security of the FE-based
PPML schemes is entirely dependent on the underlying
FE scheme. IPFE provides selective security, whereas QFE
provides selective as well as adaptive security against chosen-
plaintext attacks. In addition to selective security, FHIPE
also provides simulation-based security. There is a theoretical
advancement by [40] toward making IPFE adaptively secured,
but FE-based PPML works do not yet implement it. Also,
information leakage proposed by [31] is the only work that
discusses this concept. This work also follows the traditional
selective IPFE and adaptive QFE schemes. This raises a
high need to consider both information leakage and adaptive
security while building an FE-based PPML scheme.

There is no fit-for-all methodology. None of the existing
solutions considers all the criteria for a perfect PPML system.
However, we can rank the methodologies from each group,
i.e., one from the IPFE-based scheme and another from the

QFE-based scheme. In the IPFE-based scheme, [15] satisfies
most of the criteria, whereas [16] performs the best in QFE-
based methodologies. If prediction accuracy and privacy are
considered, then [16] leads, whereas the overall performance
of the system in terms of security, privacy, and accuracy is
concerned, then [15] leads over others. Also, they provide
more secure implementation based on FHIPE.

FE Versus FHE: Both FHE and FE cryptosystems are based
on post-quantum lattice-based cryptography. Apart from the
key distinction, i.e., the additional key requirement of FHE, FE
has some pros and cons. The FE can be the best choice when
the computation results on the encrypted data are expected to
be plain. Although this is an advantage, present FE schemes
support only inner product and quadratic computation on
encrypted data. In this regard, FHE wins over FE as it gives
computation capability for more complex polynomials. Both
cryptosystems have the overhead of time and space complexity
required for the encryption, decryption, and key generation
processes. FHE is more developed in engineering aspects as
leading companies like Microsoft [41] and IBM [42] have been
working on it. FE has not yet received attention and lacks
engineering aspects. Due to this, even though FE and FHE
have a set of complex operations, FHE uses available modern
hardware accelerator devices and engineering solutions and
wins over FE.

B. Challenges and Future Research Directions

1) Functionality Enhancement in the FE Scheme: The
current research done on FE is limited to two functionalities
on integers: 1) inner product and 2) bilinear maps. Recall
that functionality is a function computed over encrypted
data to obtain decrypted results. As discussed, inner product
functionality is used in the IPFE scheme, whereas bilinear
maps are used in the QFE scheme. Because of this limited
availability of functionalities, FE-based PPML methodolo-
gies still require enhancement. For example, QFE-based ML
methods can use only 2-degree polynomial networks. Also,

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

7444

FE cannot perform min/max and comparison operations. If
enhancement in FE functionality is done, it will be helpful
for PPML researchers to come up with practical solutions for
supervised and unsupervised ML problems. However, these
systems are not at a level to be used in real-world applications.

2) Improving Efficiency: Though FE-based PPML solu-
tions have shown promising results in partially encrypted ML,
there is a need to improve efficiency. Ciphertexts and keys
generated with larger security parameters are slower compared
to other cryptographic approaches. This becomes a threat when
computations are performed on large data sets. Therefore,
this efficiency issue stands as a big challenge in FE-based
PPML methodologies. Moreover, this can appear as a big
problem when FE-based PPML is considered in the case of
resource-constrained Internet of Things (IoT) devices. To solve
this problem, there is a need for lightweight FE schemes
that can be run with limited resources, eventually improving
efficiency.

3) Improvement in Security and Privacy of FE Scheme: As
discussed in the previous section, the FE-based PPML method-
ologies’ security depends on the underlying FE scheme.
IPFE schemes [18], [32] are selectively secured against
chosen-plaintext attacks under the DDH assumption. QFE
schemes [16], [22] are adaptively secured against chosen
plaintext attacks under MDDH assumption. These FE schemes
may lag in stricter security applications such as the defense
domain. Information leakage in FE-based PPML schemes
needs to be explored and improved. In addition to this, ML
attacks are also interesting to consider in this area.

4) Enhancing Privacy-Preserving Neural Networks:
Today’s FE-based works have shown their demonstration of
only up to 5-layer neural networks. There is a scope to enhance
the structure of neural networks. As discussed above, QFE-
based methods are limited to using only degree-2 polynomial
networks. So, the enhancement of these networks is somehow
dependent on the underlying FE scheme. Implementation
of various activation functions is also dependent on the
underlying FE scheme. Apart from this, FE is not at a level
to implement complex deep learning CNNs like VGGNet,
AlexNet, and GoogleNet. Methods like transfer learning can
be applied if there exists a functionality that can decrypt
the encrypted model and retrieve the saved parameters like
general CNNs.

5) Training-Centric PPML Systems: As the PPML is grow-
ing day by day, training over encrypted data is gaining
the attention of researchers [3]. Presently, FE-based PPML
schemes proposed in the literature are more inference-centric.
Although the work proposed in [13] and [15] has successfully
proposed a way for training a neural network using FE, they
lack computational efficiency. There is a high need for PPML
systems that can perform both training and inference over
encrypted data.

6) Training From Multiple Data Sources: As far as ML
is concerned, there are methodologies that focus on training
models from multiple data sources in [3]. The enhanced
versions of the FE scheme, like multi-input FE [43], [44],
can be used to serve this purpose. These schemes facilitate
using multiple vectors to perform computation based on

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

inner product functionality. Such schemes could leverage the
problem of training the model possessed by a cloud server for
training from multiple data sources.

7) Using Multiauthority and Decentralized Extensions of
FE: The FE scheme used in PPML services requires a trusted
third party or trusted authority to be involved in generating
the keys. The scheme proposed by [45] can be used to avoid
the involvement of trusted authorities. In addition to this,
there is a great scope for making the FE schemes used in
PPML decentralized by using the approaches proposed by [46]
and [47].

8) Need for Open-Source Library Support: FE has gained
widespread attention from researchers as far as the theoretical
aspects are concerned. However, it still lacks practical library
implementations compared to its predecessor, FHE. For exam-
ple, HEIib [42] by the IBM research group, and SEAL [41] by
the Microsoft research group are great tools for performing the
FHE-related task. Presently, commendable efforts have been
taken by the FENTEC group [17] for providing C and Go
language versions of FE libraries, namely, CiFEr and GoFE.
These libraries are in the development stage and are not yet
ready to be deployed in production. So, there is a considerable
need for practically applicable FE libraries.

9) Need for Hardware Acceleration Support: In all the
implementations of FE-based PPML methodologies that have
been studied in this article, computations are carried out
on the CPU. Additionally, there has been no GPU support
available for FE implementation. Due to these limitations,
we lack the opportunity to leverage the highest GPU com-
puting power available today. Real-world ML applications
involve training on massive data sets. Therefore, performing
computations in such applications is highly time consum-
ing when done on the CPU. The work proposed by [48]
uses System-on-a-Chip (SoC) implementation to provide
acceleration support but requires special hardware. If easy-
to-use hardware acceleration support using widely available
GPUs or FPGAs were integrated into such applications, it
would significantly expedite computations. This acceleration
would eventually aid in making FE deployable in real-world
applications.

10) Improving Scalability and Application to Nonimage
Data Sets: Present works focused on FE-based PPML are
limited to using MNIST-like small data sets for their experi-
ments, and there are no implementations for larger data sets.
In addition to this, the applications to nonimage data sets like
text corpus may also be explored. Therefore, this stands as a
future research direction in improving FE utilization in real-
world applications.

VII. CONCLUSION

PPML has gained widespread attention among industry and
academic researchers in recent years. Although approaches
based on FHE and SMC have been extensively studied, FE-
based solutions are still less investigated. In this article, we
provide a summary and survey of PPML approaches based
on FE. Our analysis assessed the extent to which previous
work has addressed the PPML using FE and identified key

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

PANZADE et al.: PRIVACY-PRESERVING MACHINE LEARNING USING FUNCTIONAL ENCRYPTION

weaknesses in this area. Additionally, our analysis demon-
strates that FE-based approaches could significantly contribute
to the PPML issues, but there exist challenges that should
be addressed to achieve practical solutions. We hope that this
effort paves the path for the research community to investigate
this emerging yet important topic.

[1]

[2]

[3]

[4]

[5]

[7]
[8]

[9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

REFERENCES

M. Ribeiro, K. Grolinger, and M. A. Capretz, “MLaaS: Machine learning
as a service,” in Proc. IEEE 14th Int. Conf. Mach. Learn. Appl. (ICMLA),
2015, pp. 896-902.

E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving machine learning as a service,” in Proc. Privacy Enhanc.
Technol., 2018, pp. 123-142.

S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” in Proc. Privacy Enhanc.
Technol., 2019, pp. 26-49.

B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scalable
provably-secure deep learning,” in Proc. 55th Annu. Design Autom.
Conf., 2018, pp. 1-6.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput., 2009, pp. 169—178.

P. Bogetoft et al., “Secure multiparty computation goes live,” in Proc.
Int. Conf. Financ. Cryptogr. Data Security, 2009, pp. 325-343.

D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions
and challenges,” in Proc. Theory Cryptogr. Conf., 2011, pp. 253-273.
R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201-210.

E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep neural
networks over encrypted data,” 2017, arXiv:1711.05189.

T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Machine
learning on encrypted data,” in Proc. Int. Conf. Inf. Security Cryptol.,
2012, pp. 1-21.

P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Security Privacy
(SP), 2017, pp. 19-38.

D. Ligier, S. Carpov, C. Fontaine, and R. Sirdey, “Privacy preserving
data classification using inner-product functional encryption,” in Proc.
ICISSP, 2017, pp. 423-430.

R. Xu, J. B. Joshi, and C. Li, “CryptoNN: Training neural networks
over encrypted data,” in Proc. IEEE 39th Int. Conf. Distrib. Comput.
Syst. (ICDCS), 2019, pp. 1199-1209.

P. Panzade and D. Takabi, “Towards faster functional encryption for
privacy-preserving machine learning,” in Proc. 3rd IEEE Int. Conf. Trust,
Privacy Security Intell. Syst. Appl. (TPS-ISA), 2021, pp. 21-30.

P. Panzade and D. Takabi, “FENet: Privacy-preserving neural network
training with functional encryption,” in Proc. 9th ACM Int. Workshop
Security Privacy Anal., 2023, pp. 33-43.

T. Ryffel, E. Dufour-Sans, R. Gay, F. Bach, and D. Pointcheval,
“Partially encrypted machine learning using functional encryp-
tion,” 2019, arXiv:1905.10214.

T. Marc, M. Stopar, J. Hartman, M. Bizjak, and J. Modic, “Privacy-
enhanced machine learning with functional encryption,” in Proc. Eur.
Symp. Res. Comput. Security, 2019, pp. 3-21.

M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval, “Simple
functional encryption schemes for inner products,” in Proc. IACR Int.
Workshop Public Key Cryptogr., 2015, pp. 733-751.

S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu,
“Function-hiding inner product encryption is practical,” in Proc. Int.
Conf. Security Cryptogr. Netw., 2018, pp. 544-562.

D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586-615, 2003.

A. Joux, “A one round protocol for tripartite Diffie—Hellman,” J.
Cryptol., vol. 17, no. 4, pp. 263-276, 2004.

C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay, “Practical func-
tional encryption for quadratic functions with applications to predicate
encryption,” in Proc. Annu. Int. Cryptol. Conf., 2017, pp. 67-98.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]
[36]
[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

7445

A. A. Badawi et al., “The AlexNet moment for homomorphic encryp-
tion: HCNN, the first homomorphic CNN on encrypted data with
GPUs,” 2018, arXiv:1811.00778.

F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic
evaluation of deep discretized neural networks,” in Proc. Annu. Int.
Cryptol. Conf., 2018, pp. 483-512.

I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
Proc. Int. Conf. Theory Appl. Cryptol. Inf. Security, 2016, pp. 3-33.
R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 27, 2014, pp. 1-9.

W. Hart, F. Johansson, and S. Pancratz. “FLINT: Fast library for number
theory, V. 2.4.3”” 2013. [Online]. Available: http://flintlib.org

J. A. Akinyele, M. D. Green, and A. D. Rubin, “Charm: A framework
for rapidly prototyping cryptosystems,” J. Cryptograph. Eng., vol. 3,
no. 2, pp. 111-128, 2013.

B. Lynn, PBC Library Manual 0.5.11, Stanford Univ., Stanford, CA,
USA, 2006.

E. D. Sans, R. Gay, and D. Pointcheval, “Reading in the dark:
Classifying encrypted digits with functional encryption,” IACR,
Bellevue, WA, USA, Rep. 206/2018, 2018.

S. Carpov, C. Fontaine, D. Ligier, and R. Sirdey, “Illuminating the dark
or how to recover what should not be seen in FE-based classifiers,” in
Proc. Privacy Enhanc. Technol., 2020, pp. 5-23.

S. Agrawal, B. Libert, and D. Stehlé, “Fully secure functional encryption
for inner products, from standard assumptions,” in Proc. Annu. Int.
Cryptol. Conf., 2016, pp. 333-362.

M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Security, 2015,
pp. 1322-1333.

Y. LeCun, C. Cortes, and C. J. Burges, (ATT Labs, Atlanta, GA,
USA). MNIST Handwritten Digit Database: Volume 2. (2010). [Online].
Available: http://yann.lecun.com/exdb/mnist

R. Kohavi, “Scaling up the accuracy of naive-Bayes classifiers: A
decision-tree hybrid,” in Proc. KDD, vol. 96, 1996, pp. 202-207.

F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, no. 85, pp. 2825-2830, 2011.

M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous distributed systems,” 2015, arXiv:1603.04467.

S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array:
A structure for efficient numerical computation,” Comput. Sci. Eng.,
vol. 13, no. 2, pp. 22-30, 2011.

F. Chollet et al., “Keras: The Python deep learning library,” Astrophys.
Source Code Library, 2018. [Online]. Available: https://ui.adsabs.
harvard.edu/abs/2018ascl.soft06022C/abstract

S. Agrawal, B. Libert, M. Maitra, and R. Titiu, “Adaptive simulation
security for inner product functional encryption,” IACR, Bellevue, WA,
USA, Rep. 2020/209, 2020. [Online]. Available: https://eprint.iacr.org/
2020/209

H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library—
SEAL V2.1,” in Proc. Int. Conf. Financ. Cryptogr. Data Security, 2017,
pp. 3-18.

S. Halevi and V. Shoup, “Algorithms in HElib,” in Proc. Annu. Cryptol.
Conf., 2014, pp. 554-571.

M. Abdalla, R. Gay, M. Raykova, and H. Wee, “Multi-input inner-
product functional encryption from pairings,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptograph. Technol., 2017, pp. 601-626.

Z. Brakerski, I. Komargodski, and G. Segev, “Multi-input functional
encryption in the private-key setting: Stronger security from weaker
assumptions,” J. Cryptol., vol. 31, no. 2, pp. 434-520, 2018.

M. Ambrona, D. Fiore, and C. Soriente, “Controlled functional
encryption revisited: Multi-authority extensions and efficient schemes
for quadratic functions,” in Proc. Privacy Enhanc. Technol., 2021,
pp. 21-42.

J. Chotard, E. D. Sans, R. Gay, D. H. Phan, and D. Pointcheval,
“Decentralized multi-client functional encryption for inner prod-
uct,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Security, 2018,
pp. 703-732.

J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval,
“Dynamic decentralized functional encryption,” in Proc. Annu. Int.
Cryptol. Conf., 2020, pp. 747-775.

M. Bahadori and K. Jirvinen, “A programmable SoC-based accelerator
for privacy-enhancing technologies and functional encryption,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, mno. 10,
pp- 2182-2195, Oct. 2020.

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

7446

Prajwal Panzade (Member, IEEE) received the
master’s degree in computer science and engineering
(focused on information security) from the Indian
Institute of Technology Dhanbad, Dhanbad, India,
in 2017. He is currently pursuing the Ph.D. degree
with the Department of Computer Science, INSPIRE
Center, Georgia State University, Atlanta, GA, USA.
He was a Lecturer with the National Institute of
Technology Andhra Pradesh, Tadepalligudem, India,
from 2017 to 2019. His research interests include
privacy-preserving machine learning, applied cryp-
tography, digital image forensics, machine learning, and federated learning.

Daniel Takabi (Member, IEEE) received the Ph.D.
degree in information science and technology from
the University of Pittsburgh, Pittsburgh, PA, USA,
in 2013.

He is currently a Professor and the Director
of the School of Cybersecurity and a Batten
Endowed Chair of Cybersecurity with Old Dominion
University, Norfolk, VA, USA. Prior to this, he
was the Founding Director of the Information
Security and Privacy: Interdisciplinary Research and
Education (INSPIRE) Center [designated as the
National Center of Academic Excellence in Cyber Defense Research (CAE-
R)], Georgia State University, Atlanta, GA, USA. His research interests
include various aspects of cybersecurity and privacy, including trustworthy Al,
privacy-preserving machine learning, adversarial learning, advanced access
control models, insider threats, and usable security and privacy.

Dr. Takabi has served as a Technical Program/Organizing Committee
Member for a number of conferences and workshops, including IEEE S&P,
ACM CCS, ACSAC, ACM CODASPY, ACM SACMAT, and PETS.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Zhipeng Cai (Fellow, IEEE) received the B.S.
degree from Beijing Institute of Technology, Beijing,
China, in 2001, the master’s degree in 2004 and the
Ph.D. degree from the Department of Computing
Science, University of Alberta, Edmonton, AB,
Canada, in 2008.

He is currently a Professor with the Department
of Computer Science, Georgia State University,
Atlanta, GA, USA. His research has received fund-
ing from multiple academic and industrial sponsors,
including the National Science Foundation and the
U.S. Department of State, and has resulted in over 100 publications in top
journals and conferences, with more than 14 500 citations, including over 80
IEEE/ACM transactions papers. His research expertise lies in the areas of
resource management and scheduling, privacy, networking, and big data.

Dr. Cai is the recipient of an NSF CAREER Award. He is the Editor-
in-Chief of Wireless Communications and Mobile Computing, an Associate
Editor-in-Chief of High-Confidence Computing (Elsevier), as well as an
Editor of various prestigious journals, such as IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING, IEEE TRANSACTIONS
ON VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS, and IEEE TRANSACTIONS ON COMPUTATIONAL
SOCIAL SYSTEMS.

Authorized licensed use limited to: Georgia State University. Downloaded on May 13,2024 at 02:23:20 UTC from IEEE Xplore. Restrictions apply.

