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Khovanov homology and
exotic surfaces in the 4-ball

By Kyle Hayden at Newark and Isaac Sundberg at Bonn

Abstract. We show that the cobordism maps on Khovanov homology can distinguish
smooth surfaces in the 4-ball that are exotically knotted (i.e., isotopic through ambient homeo-
morphisms but not ambient diffeomorphisms). We develop new techniques for distinguishing
cobordism maps on Khovanov homology, drawing on knot symmetries and braid factorizations.
We also show that Plamenevskaya’s transverse invariant in Khovanov homology is preserved
by maps induced by positive ascending cobordisms.

1. Introduction

Much of the power of Khovanov homology [26] is derived from its functoriality under
link cobordisms. That is, an oriented cobordism X: Ly — L; between links in S3 induces
a cobordism map Kh(X): Kh(Lg) — Kh(L), which is well-defined up to sign and invariant
up to isotopy of X rel boundary [22].

This functoriality is key to the growing number of four-dimensional applications of
Khovanov homology. For example, it is used to prove that Rasmussen’s s-invariant of a knot
[42] (defined using Lee’s deformed theory [29]) gives a lower bound on (twice) the mini-
mal genus of any smooth, orientable surface the knot bounds in B*. Rasmussen’s invariant,
in turn, is key to several spectacular applications of Khovanov homology, such as Piccirillo’s
proof that the Conway knot is not slice [39] and Rasmussen’s reproofs of the Milnor conjec-
ture [42] and the existence of exotic smooth structures on R* (see [41]). To date, results using
Rasmussen-type invariants appear to be the only known applications of Khovanov homology to
the detection of exotic phenomena — differences between the smooth and topological categories
in dimension four. It remains a major goal to use Khovanov homology and its generalizations
to shed new light on 4-manifolds and the exotic phenomena they exhibit [13,32-34,36,37].

In this paper, we show that Khovanov homology can directly distinguish between exot-
ically knotted surfaces in B%, i.e., pairs of smooth surfaces that are topologically isotopic
through ambient homeomorphisms but not ambient diffeomorphisms. This provides a direct,
elementary, combinatorial approach to distinguishing exotic surfaces.
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Figure 1. The slice disks D and D’ bounded by the knot J are topologically isotopic rel boundary
yet induce distinct cobordism maps on Khovanov homology.

Theorem 1.1. For all integers g > 0, there are infinitely many knots K C S> that each
bound a pair of smooth, orientable, genus-g surfaces %, %' C B* that are topologically iso-
topic rel boundary yet induce different maps Kh(X) # + Kh(X'), hence are not smoothly
isotopic rel boundary. Moreover, K can be chosen to have trivial symmetry group, implying
there is no smooth isotopy of B* carrying X to .

The surfaces ¥ and ¥’ are modeled on a core pair of examples, drawn from [17] and
depicted in Figure 1. We distinguish their induced maps in Section 3.1.

Remark 1.2. Surprisingly, the disks in Figure 1 arise separately in [1], where they were
distinguished via Donaldson theory. These pairs of disks will be shown to be equivalent in [6].
Khovanov previously asked if these disks can be distinguished by their induced maps; this
paper gives an affirmative answer to this question.

Our strategy is simple and direct: viewing the surfaces X and X’ as link cobordisms
K — @, we distinguish the induced maps Kh(X) and Kh(X’) by finding an explicit homology
class ¢ € Kh(K) such that Kh(X)(¢) # 0 yet Kh(X')(¢) = 0. This approach is dual to that
of [45], where instead the surfaces are viewed as cobordisms § — K and the induced maps
are distinguished by their associated relative Khovanov—Jacobsson classes, i.e., the classes
in Kh(K) to which they map the generator of Kh(¥) = Z, modulo sign. These classes are
convenient to define but can be impractical as explicit obstructions, requiring significant com-
putational endurance to both calculate and distinguish. In contrast, viewing the surfaces as link
cobordisms K — @, we limit the computational complexity by choosing the class ¢ € Kh(K)
and can easily compare the integers Kh(X)(¢), Kh(Z')(¢). (Formally, these two approaches
reflect the duality of Khovanov homology under mirroring [26, §7.3].)

This shift to the dual perspective comes at a cost, as we must directly identify classes
¢ € Kh(K) that distinguish the surfaces bounded by K. We use two perspectives to help illumi-
nate classes in Kh(K) of topological/geometric significance. In Section 3, our constructions are
guided by studying symmetries of K that fail to extend over the surfaces it bounds. (See [5,31]
for deeper investigation of the equivariant perspective.) In Section 5, we offer a second per-
spective using braids and complex curves, as discussed below. These strategies have since been
successfully applied to other problems, e.g., distinguishing Seifert surfaces [20] and satellite
surfaces in [16], as well as Wall-type stabilization problems [19].
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Figure 2. Positively braided surfaces representing the disks D (left) and D’ (right).

Connections with braids and Plamenevskaya’s invariant. With an eye towards a
more systematic and geometric approach to these cobordism maps, we develop computational
techniques from a braid-theoretic perspective. A natural starting point is Plamenevskaya’s
invariant of transverse links [40], i.e., oriented links that are positively transverse to the planes
of the standard contact structure on S3. This detour through contact geometry is motivated
by the fact that many of our surfaces arise as the transverse intersection of a smooth complex
curve in C? with the unit 4-ball; the boundary is then a transverse link in S 3 (cf. [4, 18]). This
includes the disks in Figure 1 bounded by J = 17nh73, as well as those bounded by the knots
m(946) and 151103488 in Figure 4 and by 10148 in Figure 10. This connection between sur-
faces in B* and complex curves is expressed using Rudolph’s framework of braided surfaces
[43,44], which we review in Section 5; see Figure 2 for an example.

We show that Plamenevskaya’s invariant behaves naturally under the maps induced by
compact pieces of complex curves. This applies more broadly to ascending cobordisms with
positive critical points, a class of surfaces that generalize complex curves; see Section 5.

Theorem 1.3. Suppose ¥ C S3 x [0, 1] is an ascending cobordism with positive criti-
cal points between transverse links Lo and Ly in (S3,£y), viewed as a link cobordism from
Ly to Lg. The induced cobordism map Kh(X): Kh(L) — Kh(Lg) maps ¥ (L1) to £y (Lo),
where W (L;) denotes Plamenevskaya’s invariant in Kh(L;).

While Theorem 1.3 can be useful (e.g., implying certain cobordism maps are nonzero or
obstructing a surface from being isotopic to a complex curve), it also shows that the behavior
of Plamenevskaya’s invariant is too uniform to distinguish such surfaces.

Instead, we pursue a modified construction to produce Khovanov homology classes that
are tuned to individual surfaces. Plamenevskaya’s construction is based on expressing a link
as the closure of a braid, but it essentially depends only on the braid’s equivalence class in the
braid group (see Section 5.1). Our modified construction depends on a specific presentation of
the braid (known as a band factorization) that also encodes a braided surface bounded by the
link. To illustrate this approach, we give an alternate proof that the core disks D and D’ from
Figure 1 are distinct, as well as examples of distinct complex curves in B4 bounded by the
knot 1074s.

Connections with knot Floer homology. The TQFT structure of a perturbed version
of knot Floer homology has also been shown to distinguish exotically knotted surfaces of pos-
itive genus in the 4-ball [24]. (Roughly speaking, this perturbed theory replaces HFK (K)
with a perturbed group HFK (K) ® F»[Z?8].) The perturbed cobordism maps are sensitive
enough to detect the subtle effect of a twisted version of Fintushel-Stern’s rim surgery con-
struction [12]. We also note that an analog of Theorem 1.3 was established for the transverse
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invariant in knot Floer homology in [24], and it plays a key role in their detection of exotically
knotted surfaces.

On the other hand, the obstruction from [24] cannot distinguish between exotic pairs of
complex curves. These differences spark several questions about the TQFT structures of knot
Floer homology and Khovanov homology, including (1) can the cobordism maps in Khovanov
homology distinguish surfaces related by rim surgery? (2) Can the cobordism maps in the
standard (unperturbed) knot Floer theory distinguish exotically knotted surfaces in the 4-ball?
(3) Can any version of knot Floer homology distinguish exotically knotted pairs of disks or
complex curves in the 4-ball?

Remark 1.4. Questions (2)—(3) above have now been answered affirmatively [9].

2. Preliminaries

We begin with some background on link cobordisms and Khovanov homology, focusing
on the Khovanov chain complex and the chain maps induced by a given movie of the link
cobordism. Throughout the paper, we work with integral coefficients.

2.1. Link cobordisms. A [ink cobordism is a smooth, compact, oriented, properly em-
bedded surface ¥ C R3 x [0, 1] whose boundary is a pair of oriented links

LoUu—L; =2n(R3x{0,1}).

We often denote the link cobordism by 3: Lo — L.

To study a given link cobordism, we represent it as a movie, that is, a finite sequence of
link diagrams Do = Dy,, Dy, ..., Dy, = D1 having two properties: the boundary links Lg
and L of the link cobordism are represented by the first and last diagrams Do and D; in the
sequence; successive pairs of diagrams are related by a planar isotopy, Reidemeister move,
or Morse move. From an arbitrary link cobordism, one can write down an associated movie
(cf. [22, §3]); however, in practice, we often choose a movie and study the link cobordism
defined by the trace of the given moves.

2.2. Khovanov homology. Given a diagram D of an oriented link L and an enumer-
ation of its crossings, we associate a chain complex (€Kh(D), d) called the Khovanov chain
complex. We describe it here, attempting to avoid any cumbersome algebra.

A smoothing o is a planar 1-manifold obtained by replacing each crossing >{ in D with
either a 0-smoothing ) ( or a 1-smoothing >{. Using the enumeration of the crossings, o can
be represented as a binary sequence (oy,...,0,), where o; € {0, 1} indicates that the i-th
smoothing is o;-smoothed. We say a loop (i.e., connected component) in o is O-tracing (or
1-tracing) if it intersects a 0-smoothing (or 1-smoothing). A labeled smoothing o is a labeling
of the loops of the smoothing ¢ with a 1 or x. The chain group €Kh(D) is generated over Z
by the labeled smoothings of D.

The chain complex is bigraded €Kh4 (D) by homological grading h and quantum grad-
ing ¢g. Let n4 and n_ record the number of positive and negative crossings in D; let |o| record
the number of 1-smoothings in o; let v4 and v_ record the number of 1-labels and x-labels
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in og. Then 4 and ¢ are defined on oy by
h(ag) = |o| —n—, q(as) = vi(ag) —v—(ag) + hlag) + ny —n—.

For a labeled smoothing «,, the differential d(cy) will be a Z-linear combination of
labeled smoothings obtained as follows. First, consider the binary representation of the smooth-
ing 0 = (01,...,0,), and for each i such that o; = 0, let o' be the smoothing obtained by
setting 0; = 1. Note that o and o' cobound a surface that is a product away from the i-th
crossing, where it is a single Morse saddle. A labeled smoothing «: is obtained by applying
the corresponding Morse induced chain map from Table 1 to ;. Let & = 5 j<i 0j- We then
define the differential by the following formula:

dag)= Y (~Dfay.

{ilo; =0}

The homology Kh(D) of the chain complex (€Kh(D), d) is called the Khovanov homology.
Different diagrams for the same link yield isomorphic Khovanov homology groups. In later
sections, we will write Kh(L) in place of Kh(D); the diagram D in use will be clear from con-
text. We recycle the notation of a cycle ¢ € €Kh(D) for the homology class it represents
¢ € Kh(D), with membership being clear from context. In this work, we mainly consider
Khovanov homology classes represented by a single labeled smoothing. We use the follow-
ing to check whether a labeled smoothing is a cycle; it follows quickly from the definition of
the differential (cf. [10, Proposition 3.2]).

Proposition 2.1. A labeled smoothing oy is a cycle if and only if every 0-smoothing
in o, when changed to a 1-smoothing, merges two x-labeled loops.

For convenience, we will occasionally record the location of the 0-smoothings in a given
labeled smoothing o by decorating each 0-smoothing with a light gray arc that connects the
relevant strands in the smoothing (e.g., see Figure 3). To check if oy is a cycle, it suffices to
check if each arc connects a pair of distinct, x-labeled loops.

2.3. Induced maps on Khovanov homology. Given a pair of diagrams Do and D;
representing the boundary links Ly and L; of an oriented link cobordism 3: Lo — L1, we
may associate a bigraded chain map

EKh(Z): €Kh(Dg) — €Kn 4T (p )

with induced homomorphism Kh(X): Kh(Dg) — Kh(D). This paper hinges on the following
invariance theorem proven by Jacobsson (cf. [2,27]).

Theorem 2.2 ([22]). The homomorphism Kh(X): Kh(Dgy) — Kh(D1) is invariant up
to multiplication by £1 under smooth isotopy of X fixing 0% setwise.

Remark 2.3. In this work, we study smooth, compact, oriented, properly embedded
surfaces ¥ C B* with boundary L. = 0X. To tailor the Khovanov invariant to these surfaces,
we note that an analogous version of Theorem 2.2 was proven in [37] for surfaces in S> x [0, 1].
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Any isotopy of X through B* induces an isotopy of surfaces in S3 x [0, 1] (e.g., by removing
an open ball in the complement of the support of the isotopy), so invariance extends naturally
to our setting. However, note that the identification of 0B+ with S3 x {1} or S3 x {0} will
produce different link cobordisms, with the former yielding a link cobordism ¥: ¥ — L and
the latter 3: L — @. Given a movie for one of these link cobordisms, we may produce a movie
of the other by reversing the order of the diagrams.

We now discuss the definition of the chain map €Kh(X), attempting to avoid any cum-
bersome algebra. We follow the process outlined in [2]. The idea is to first define chain maps
induced by the three diagrammatic relations used in a movie of X. Then, given a movie
Do = Dy, Dy, ..., Dy, = D1 of X, we produce a collection of chain maps induced by suc-
cessive pairs of diagrams €Kh(Dy;) — €Kh(Dy, ). The desired chain map €Kh(X) is the
successive composition of these chain maps. It suffices to give explicit definitions for the
chain maps induced by each of the diagrammatic relations: planar isotopies, Morse moves,
and Reidemeister moves.

Isotopy induced chain maps. The chain map induced by an isotopy of diagrams is
defined on a labeled smoothing a; by applying the isotopy to the underlying smoothing o and
preserving the labeling from o of the components in o throughout this isotopy.

Ornaments. We pause to develop a convenient shorthand from [2]. The Morse and
Reidemeister moves only change a diagram locally within some tangle. As a result, for a labeled
smoothing «, it suffices to define the induced chain maps on the portion of oy within this
tangle, while leaving the rest of the labeled smoothing unchanged. In order to properly define
the chain map, we must account for all possible smoothings of the tangle, as well as all possible
labels for each smoothing. As a result, it is convenient to have a shorthand that simplifies the
amount of information necessary to express these maps. The idea is to reduce the definition to
the level of smoothings by defining a set of local ornaments that can be placed on a smoothing,
each of which corresponds to a predetermined chain map on the portion of the smoothing it
adorns. A chain map can then be defined on all possible labelings of a smoothing o by simply
decorating o with these ornaments: to any given labeled smoothing o, apply each of the
predetermined chain maps corresponding to the ornaments decorating o.

The ornaments we need correspond, perhaps not surprisingly, to the three Morse moves:
births, deaths, and saddles. A birth will locally add a crossingless unknot to an empty tangle; we
decorate a smoothing with the ornament I consisting of a crossingless unknot with 4 external
antennae to indicate this addition. Similarly, a death removes a crossingless unknot, in which
case we decorate the smoothing with the ornament ¢ consisting of 4 internal antennae adorning
the component being removed. A saddle acts on a tangle with two unknotted arcs ) ( by either
merging or splitting the component(s) to which the arcs belong; in either case, the result is
a tangle >X. We decorate the smoothing with the ornament ) consisting of a thin line that
perpendicularly intersects the two components being merged or split. In Table 1, we define the
chain maps m and A induced by this ornament under merging and splitting, respectively.

One additional decoration » will be needed, consisting of a dot on any component of the
smoothing. This decoration indicates the application of two saddles (one splitting and then one
re-merging) on the decorated component. Using Table 1, one can verify that the map induced by
this local cobordism kills an x-labeled arc, but sends a 1-labeled arc to twice an x-labeled arc.
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Morse move Ornament Chain map Definition of chain map
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Table 1. The chain maps induced by Morse moves.

Morse induced chain maps. The chain map induced by a Morse move is defined on
a labeled smoothing oy by decorating the smoothing o with the ornament corresponding to the
given Morse move.

Reidemeister induced chain maps. The chain map induced by a Reidemeister move
is defined on a labeled smoothing «; by decorating the smoothing ¢ with the ornaments given
in Tables 3-5 in Appendix B. As a given decoration can consist of multiple ornaments, there is
a natural question of the order in which the corresponding chain maps should be applied; this
will either be irrelevant (i.e., the moves and their induced maps commute) or clear from context
(e.g., a dotted arc on a birth requires the birth to occur before the map induced by the dotted
arc can be applied).

In this paper, we only use complexity-reducing Reidemeister I and II moves (those that
remove crossings). We list these chain maps here, in Table 2.

Remark 2.4. Note the % in the definition of the Reidemeister I induced chain map in
Table 2 does not conflict with Z as our coefficient group: the dotted arc will always produce an
even coefficient, so overall, the map will maintain an integral coefficient.
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Reidemeister move Smoothing Induced chain map

=) )0 )O
;) 0

XO-) D0 3()o-)0)
o

XA - " YOU IO

¢ o
)= o0

Table 2. The relevant chain maps induced by Reidemeister I and II moves.

2.4. Local knotting. The cobordism-induced maps are invariant under boundary-pre-
serving isotopy as well as another operation: a link cobordism is locally knotted if it can be
written as Z#S for a surface ¥ and a knotted 2-sphere S C R3 x [0, 1]. Locally knotting a sur-
face will generally change the boundary-preserving isotopy class of the surface. However, the
cobordism-induced maps on Khovanov homology are invariant under local knotting. Though
this may be known to experts, we include a proof below.

Proposition 2.5. Given a link cobordism X: Ly — L1 and a knotted 2-sphere S, the
induced maps Kh(X) and Kh(Z#S) agree up to multiplication by +1.

Proof. When Lo = 0, the induced map Kh(Lg) — Kh(L1) is determined by the rel-
ative Khovanov—Jacobsson class of the surface. By [45, Theorem 4.2], relative Khovanov—
Jacobsson classes are invariant under local knotting. This argument can be adapted to the case
where Lo # @. Let B be a 4-ball intersecting X#S along the disk S \ D? bounded by an
unknot U in 0B = §3. We may perform a boundary-preserving isotopy of Z#S that drags
B near L. It then suffices to show that locally knotting the product cobordism C: Lo — Ly
induces the identity map. We can isolate B so that C#S decomposes into a link cobordism
CuU(S\ D2) Lo — Lo U U followed by a saddle merging Lo and U. By [45], the map
induced by S \ D2 is identical to the map induced by the link cobordism induced by a standard
D? in B. Moreover, the map on Khovanov homology induced by a split cobordism will split
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as the tensor product of the individual cobordism-induced maps, so C L (S \ 132) induces the
same map as C L D?. Stacking the saddle on the latter cobordism yields a surface isotopic to
C rel boundary, so by Theorem 2.2, they induce the same map, as desired. |

3. Distinguishing cobordism maps

In this section, we obstruct the smooth, boundary-preserving isotopy of pairs of surfaces
3, ¥ bounded by a common knot K by viewing them as cobordisms K — @ and distin-
guishing their associated induced maps Kh(X), Kh(X'): Kh(K) — Z, which are invariants
of smooth boundary-preserving isotopy by Theorem 2.2. In particular, we provide a class
¢ € Kh(K) which is mapped to 1 under Kh(X) and 0 under Kh(X').

Remark 3.1. At present, producing such cycles ¢ is more art than science. We typically
began with the orientation-induced smoothing where O-tracing loops are x-labeled and all other
loops are 1-labeled." This labeled state is always a cycle lying in homological grading & = 0.
However, it may not have the desired quantum grading; a surface X induces a (0, y(X))-graded
map, so a cycle must lie in €Kh® X &) (K) in order for it to be mapped to the (0, 0)-supported
chain group €Kh(@) = Z. While the homological grading (and the underlying diagram) deter-
mines the overall balance of 0- and 1-resolutions, the quantum grading can be adjusted by
varying the specific choice of crossing resolutions (which may change the number of loops in
the smoothing) and the labeling of loops. We made these adjustments keeping in mind that the
result should be a cycle and should be killed by the map induced by one band move but not the
other. In our core cases, the slice disks are related by a symmetry of the knot; making asym-
metric adjustments to the orientation-induced smoothing helped produce the desired cycle.

3.1. A core example. We now distinguish the cobordism maps induced by the disks D
and D’ from Figure 1. The surfaces in Section 3.3 and Theorem 1.1 are all extensions of this
initial example, as are the Khovanov-theoretic computations that distinguish them.

Theorem 3.2. The disks D and D' induce distinct maps on Khovanov homology, hence
are not smoothly isotopic rel boundary.

Proof. The left side of Figure 3 depicts the knot J (decorated with bands b and b’
corresponding to the disks D and D), while the right side of the figure depicts a distinguished
chain element ¢ € €Kh(J). By Proposition 2.1, the chain ¢ is a cycle; in particular, all arcs
corresponding to 0-smoothings join two distinct x-labeled loops.

We claim that ¢ vanishes under the map induced by the cobordism D’:J — @. This
cobordism begins with a saddle move along the band ’. The associated cobordism map merges
two distinct x-labeled loops of ¢, hence maps ¢ to 0. On the other hand, we claim that ¢
is mapped to —1 € Z = €Kh(¥) under the map induced by the cobordism D:J — @. This
calculation is carried out in Figure 5. |

" In certain cases, this labeled smoothing corresponds to Plamenevskaya’s invariant.
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¢ € €Kh(J)

Figure 3. The knot J with band moves b and b’ describing the pair of slices D and D’, together
with a cycle ¢ distinguishing their induced maps on Khovanov homology.
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Figure 4. The knots (a) m(946) and (b) 151103488 with band moves describing slices for each knot,
distinguished by the behavior of their induced maps on the given cycle.

3.2. Further examples. A similar technique can be applied to other pairs of slices. We
give two such examples in Figure 4, which depicts pairs of slices of the knots m(94¢) and
151103488 (cf. [45, Theorem 6.3] and [17, Proposition 2.3]). In each case, we provide a knot
diagram decorated with a pair of bands describing the slices, as well as a cycle ¢ in the chain
complex associated to the diagram. As before, one slice will kill ¢ — 0 and the other sends
¢ — £1.

Further investigation shows that these slices can also be distinguished by their periph-
eral maps (borrowing terminology from [25, Definition 3.9]), i.e., the map on fundamental
groups induced by including the knot complement into the slice disk complement. (Details
of these calculations can be extracted from the proofs of [7, Theorem 5.2] and [17, Proposi-
tion 2.3], respectively.) It follows that these pairs of slices are not even topologically isotopic
rel boundary.

3.3. Ribbon concordance and higher-genus examples. The obstruction described
above is robust in the sense that it persists when a surface is enlarged by a ribbon concordance
(i.e., a link concordance that has no local maxima) or, in many cases, by adding positively
twisted bands to increase the genus of the surfaces.
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Figure 5. A movie description of the slice disk D and the behavior of the distinguished cycle
¢ € €Kh(J) under the cobordism map induced by this slice.
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Theorem 3.3 (Levine—Zemke [30]). If C is a ribbon concordance from Ly to Ly, the
induced map Kh(C): Kh(L1) — Kh(L>) is injective, with left inverse induced by the reverse
of C, viewed as a cobordism from Ly to L.

Corollary 3.4. Let ¥ and ¥’ be cobordisms from Lo to Ly and let C be a ribbon
concordance from Ly to Ly. If ¥ and ¥’ induce distinct maps Kh(Lo) — Kh(Ly), then the
cobordisms C o X and C o X/ induce distinct maps Kh(Lo) — Kh(L>).

Similarly, if the reverses of X and X' induce distinct maps Kh(L1) — Kh(Lg), then the
reverses of C o ¥ and C o ¥/ induce distinct maps Kh(L,) — Kh(Ly).

Proof. If ¥ and X’ induce distinct maps on Khovanov homology when viewed as cobor-
disms Ly — L1, there must be an element @ € Kh(Lg) such that Kh(X)(«) # Kh(Z')(@).
Since C induces an injective map Kh(L;) — Kh(L>), we have

Kh(C o £)(ar) — Kh(C o ')() = Kh(C)(Kh()(«) — Kh(Z')(«)) # 0.

An analogous argument applies to the reversed cobordisms, appealing instead to the surjectivity
of the map Kh(L;) — Kh(L ) induced by the reverse of C. ]

Remark 3.5. A similar (independently established) technique is used in [45] for finding
prime knots with arbitrarily many distinct (but non-exotic) slices. Moreover, a similar technique
appears in [25] for an invariant from [23] in knot Floer homology.

Example 3.6 (Asymmetric slice knots). For any m € Z, there is a ribbon concordance
C from J to the knot J,, depicted in Figure 6; there are a total of m full left-handed twists
on the left side of the knot (and one additional half-twist between these same strands, slightly
further to the right). In reverse, we obtain J from J,, by performing the gray band move, which
splits off an unknot that is capped with a disk. By Corollary 3.4, the slice disks D, and D},
obtained by gluing C to D and D’, respectively, induce distinct maps on Khovanov homology.
In fact, for m > 1, it is straightforward to identify a cycle ¢ € €Kh(J,,) that distinguishes
these maps (Figure 6), whereby D,,, and D}, are not smoothly isotopic rel boundary.

Unlike the examples in Sections 3.1-3.2, which involve slice knots with nontrivial sym-
metries, the knots J,, are asymmetric. That is, every self-diffeomorphism of the pair (S3, J,,;)
is isotopic (through diffeomorphisms of the pair) to the identity. This is proven in Section A.2
for m > 0, but similar arguments establish the claim for all m.

Example 3.7 (Higher-genus surfaces). Fix integers m,n > 0 and let J;;, , be the knot
shown on the left side of Figure 7; it is obtained from J,, by adding » full right-handed twists
on the right side of the diagram. Performing 2n saddle moves (along the gray bands shown
on the left side of Figure 7) yields a cobordism of genus n from Jy, , back to the knot J,
from Example 3.6. For m,n > 1, it is straightforward to check that the map induced by this
cobordism sends the cycle 8 € €Kh(J,,,) shown on the right side of Figure 7 to the cycle
¢ € €Kh(J,,). Gluing this cobordism to the disks D,, and D), bounded by J,, yields a pair
of slice surfaces of genus n for J », which we denote by X, , and X, ,, respectively. Com-
posing the cobordism maps, we see that Kh(2Z, »)(0) = 1 and Kh(X}, ,)(0) = 0; hence Xy, »
and Z;n’n are not smoothly isotopic rel boundary. In Section A.2, we show that, for eachn > 0,
the knots J, , are distinct for all m € Z and are asymmetric for m > 0.
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¢ € CKh(Jp)

Figure 6. An asymmetric version Jy,; of the knot J, having slices Dy, and Dj, distinguished by the
behavior of their induced maps on the given cycle.

0 € €Kh(Jm.n)

Figure 7. A higher-genus version Jy, 5 of Jy,, bounding surfaces X, , and E;n’n distinguished by
the behavior of their induced maps on the given cycle.

Example 3.8 (Boundary-sums). Our calculations all extend to boundary-sums. In the
above calculations, we give pairs of surfaces ¥ and ¥’ with boundary K distinguished by
a class ¢ € Kh(K). For n > 0, we encourage the reader to produce a cycle #,¢ € Kh(#, K)
that distinguishes the 2” surfaces bounded by #, K obtained by boundary-summing different
collections of ¥ and ¥'.

4. Exotically knotted surfaces

In this section, we prove Theorem 1.1. Our surfaces will be drawn from the examples
in Section 3, especially the core examples D and D’ from Figure 1; hence the Khovanov-
theoretic obstructions are already in place. Our discussion will focus on two remaining prob-
lems: (1) showing that the surfaces in question are topologically isotopic rel boundary, and
(2) distinguishing the surfaces up to smooth isotopies of B* that do not fix the boundary. For
the first task, we will rely on the following result of Conway and Powell?.

Theorem 4.1 ([7]). Any smooth, properly embedded disks in B* with the same bound-
ary and whose complements have w1 = Z are topologically isotopic rel boundary.

2 In Conway and Powell’s work, disks are required to be homotopy ribbon, meaning the inclusion-induced
map 71(S3\ D) — 71 (B*\ D) is surjective. This is always satisfied if 771 (B* \ D) = Z.
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<\:\) = \ \>
Figure 8. The exterior of D has the homotopy type of S, as shown by performing a homotopy of
the 2-handle’s attaching curve followed by isotopy of the modified diagram.

Proposition 4.2. The slice disks D and D' are topologically isotopic rel boundary.

Proof. By construction, the disks D and D’ have the same boundary. By Theorem 4.1,
it then suffices to show that the disk exteriors have 71 =~ Z.

A handle diagram for the first disk exterior B4 \ N (D) is shown on the left side of Fig-
ure 8, obtained using the recipe from [15, §6.2]. To simplify our calculation, we recall that
71 is not changed under homotopy of the attaching curves for 2-handles. After three crossing
changes of the 2-handle’s attaching curve, we obtain the second diagram in Figure 8. The right-
most diagram, obtained by further isotopy, shows that the modified 2-handle can be canceled
with a 1-handle. This leaves a single O-handle and 1-handle, representing S! x B3, which has
w1 = Z. It follows that 1 (B* \ D) = Z. A handle diagram for the exterior of D’ is obtained
from that of D by applying a 180° rotation through a vertical line, so an analogous argument
shows 71 (B*\ D’) = Z. 0

Combining Proposition 4.2 with Theorem 3.2 immediately yields the following.
Corollary 4.3. The slice disks D and D' are exotically knotted rel boundary.

To establish the stronger conclusions of Theorem 1.1, we wish to distinguish surfaces in
the 4-ball up to arbitrary ambient isotopy (and not merely isotopy rel boundary). Fortunately, if
a knot K has no nontrivial symmetries, then an ambient isotopy between surfaces bounded by
K can be promoted to an ambient isotopy rel boundary. To make this precise, let Diff(S3, K)
denote the group of diffeomorphisms of S3 that fix K setwise. The symmetry group of a knot
K in S3, denoted Sym(K), is the quotient of the group Diff(S?3, K) by the normal subgroup of
diffeomorphisms that are isotopic to the identity through diffeomorphisms of the pair (S3, K).

Lemma 4.4. Let K be a knot in S3 with trivial symmetry group Sym(K) = {id}. If K
bounds properly embedded surfaces ¥ and %' in B* that are ambiently isotopic, then ¥ and
Y/ are also ambiently isotopic rel boundary.

This lemma follows from a more general but more technical result (Proposition A.1) that
we prove in Section A.2. With these preliminaries in hand, Theorem 1.1 follows quickly.

Proof of Theorem 1.1. Consider again the knots Jy, , with n > 0 from Example 3.7.
We showed that the knot J;,_ , bounds a pair of smooth, oriented, properly embedded surfaces
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Ymn and X, of genus 1 in B* that induce distinct maps on Khovanov homology, hence are
not smoothly isotopic rel boundary.

Observe that the surface X, , is obtained from X, , by replacing the disk D C X »
with the disk D’. (In particular, the disks D, and D), are obtained by extending D and D’ by
a fixed concordance from J to J,,.) Since D and D’ are topologically isotopic rel boundary by
Proposition 4.2, we conclude that X, ,, and E;n’n are topologically isotopic rel boundary.

Finally, we address the stronger conclusion in the theorem. Using SnapPy [8] inside
Sage [49], we verify that Sym(J,, ) is trivial if m >> 0; see Section A.2. By Lemma 4.4, we
conclude that there is no smooth isotopy of B* carrying %, , to E;n’n for m > 0. (We also
verified the claim for m = 0, and we expect the claim to hold for all m.) o

5. A braid-theoretic approach

In this section, we develop braid-theoretic techniques for studying the cobordism maps
in Khovanov homology. Our starting point is Plamenevskaya’s invariant [40]; in Section 5.1,
we review Plamenevskaya’s construction and prove Theorem 1.3, establishing the behavior
of this invariant under a flexible class of link cobordisms that generalize complex curves. In
Section 5.2, we review Rudolph’s framework of braided surfaces and band factorizations [44],
which guides the construction of more refined classes in Khovanov homology that we can use
to distinguish pairs of surfaces.

5.1. Functoriality of Plamenevskaya’s invariant. Given a transverse link L in the
standard contact S3, Plamenevskaya defines a class ¥ (L) € Kh(L) that is invariant (up to sign)
under isotopies through transverse links [40]. Her construction leverages the correspondence
between transverse links up to transverse isotopy and closed braids up to braid isotopy and
positive Markov stabilization [3, 38, 48]. (For more background on transverse links, see [11].)

To define (L), choose an n-stranded braid 8 representing L. Consider the “braided”
smoothing of the diagram into n concentric circles by taking the oriented resolution at each
crossing (i.e., O-resolution at each positive crossing and 1-resolution at each negative crossing),
and label each circle with an x. Plamenevskaya shows that this is a cycle in bigrading # = 0 and
q = w — n, where w is the writhe of 8. To prove the resulting class (L) defines a transverse
link invariant, she shows 1 is preserved by braid isotopy and positive Markov stabilization. For
later use, we note that v is also preserved by positive crossing resolutions, which are simple
saddle cobordisms that correspond to deleting a positive crossing o; € B (see [40, Theorem 4]).

Next, we recall some background on ascending surfaces from [4, 18]. A smooth, oriented
link cobordism £ C §3 x [0, 1] is ascending if the projection p: $3 x [0, 1] — [0, 1] restricts to
a Morse function on X and, except at critical points of p|y, the level sets of p|y are transverse
to the standard contact structure on S3 x {¢}. At each critical point p € ¥ of p|yx, the tangent
plane 7, X coincides with the contact plane &,. The critical point is said to be positive or
negative according to whether the orientations on 7), X and &, agree or disagree, respectively.

To prove that the transverse invariant ¥ behaves well with respect to ascending cobor-
disms with positive critical points, we leverage a relationship between ascending surfaces
and braids. The following result can be extracted from the proofs of [18, Lemma 3.5 and
Theorem 4.3]; see [24, §7.5] for a similar application of [18].



16 Hayden and Sundberg, Khovanov homology and exotic surfaces in the 4-ball

N

Figure 9. The subcobordisms associated to a braided (a) birth and (b) positive saddle.

Theorem 5.1 ([18]). Let ¥ C S3 x[0,1] be an ascending cobordism with positive
critical points, and suppose that ¥ has a single critical point at height t. After an isotopy
(through ascending cobordisms) supported in a small neighborhood S x [t — €t + €], we
may assume that the regular level sets of X near S3 x {t} are braided. Moreover; the subcobor-
dism X N S3 x [t —€/2,t + €/2] between the braids B+ = X N S3 x {t + €/2} corresponds
to either a braided birth or a braided saddle move (with a right-handed half-twist) as depicted
in Figure 9.

Proof of Theorem 1.3. Let ¥ C S x [0, 1] be an ascending cobordism with positive
critical points, viewed as a cobordism from L; to Ly. We may perturb ¥ (using a small iso-
topy rel boundary through ascending surfaces) to ensure that each critical level set contains
a single critical point. Moreover, by a further isotopy rel boundary, we may assume that 3 has
the braided structure from Theorem 5.1 near each critical level set.

By subdividing ¥ and composing the associated cobordism maps, it suffices to consider
three cases. First, between critical level sets, X is a concordance swept out by a transverse
isotopy between transverse links. In this case, Kh(X) preserves the transverse invariant (up to
sign) by the proof of [40, Theorem 2].

Next we consider X near critical level sets, keeping in mind that we are viewing it “in
reverse” as a cobordism from Lj to Lg. The two remaining cases to consider are the cobor-
disms going from B4+ to B— in parts (a) and (b) of Figure 9. In part (a), the cobordism from
B+ to B— is a Morse death. In the Khovanov chain complexes associated to these braided
diagrams, the chains representing ¥ (8—) and ¥ (84) agree except for an x-labeled circle in
the latter that corresponds to the unknotted component that is killed by the Morse death. The
associated cobordism map is determined by applying the map ¢ to this distinguished x-labeled
circle; hence the induced map takes ¥ (B8+) to ¥ (8—). In part (b) of Figure 9, the cobordism
from B4 to f— is a positive crossing resolution, which is shown to take ¥ (8+) to ¥ (B8-)
in [40, Theorem 4]. O

5.2. Braided surfaces and Khovanov homology. Motivated by the above connections
between braids and Khovanov homology, we recall the framework of braided surfaces (Sec-
tion 5.2.1) and use this to develop further computational tools (Section 5.2.2). In what follows,
B, denotes the n-stranded braid group, and we will often use f to denote both an element
of B, and the link in S3 obtained as its closure.

5.2.1. Band factorizations and braided surfaces. Following Rudolph [44], a positive
band (resp., negative band) in By, is a word of the form wao; w! (resp., woi_l w™1), where o;
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Figure 10. The positively braided surfaces on the left and right correspond to the quasipositive braid
words (01_202012)(010201_1)022 and (01_302013)0201 (02_30103), respectively.

is a standard positive Artin generator and w is any word in B,. Any factorization of a braid
B € B, as a product of bands is called a band factorization and determines a ribbon-immersed
surface in S3 obtained from a collection of n parallel disks by attaching a half-twisted band for
each term wal.il w™!; see Figures 2 and 10 for examples. Pushing the interior of the surface
into B* yields a braided surface that is smooth and properly embedded in B* with boundary
the closure of the braid f.

In [44], Rudolph showed that any properly embedded ribbon surface in B* (i.e., one that
has no local maxima) is isotopic to a braided surface. Many examples of inequivalent surfaces
with the same boundary can be expressed using different band factorizations of the same braid
group element. (Indeed, by combining Rudolph’s work with Markov’s theorem [35], one can
show that any pair of ribbon surfaces with isotopic boundary can be related this way.)

Example 5.2. The positively braided surfaces in Figure 10 are both bounded by the
knot 101435. Below, we relate these braid words directly using braid group relations, including
o] 0,~+10i_1 = Ui_+11 0;0;+1 (the underlined terms are marked for later use):

— - - -2, —1 2
(0, 3@013)0201 (053%0103) = (07 30_20?)020102 (05 0102)03

= (01_3(2013)020102_2(010201_1)022

= (01_2(01_1201)012)020102_2(010201_1)022
= (Ul_z(azgaz_l)alz)azal02_2(010201_1)022
= 01_2020_1(02_101202)0102_2(010201_1)022
= 01_2020_1(0102201_1)0102_2(010201_1)022
= (al_zozﬂol)ozzol_l0*102_2(010201—1)022

-2 —1,.2
= (01 “020101)(010207 )03.

Remark 5.3. Work of Rudolph [43] and Boileau—Orevkov [4] shows that a surface in
B* is isotopic to a positively braided surface (i.e., with only positive bands) if and only if it is
isotopic to the intersection of a smooth complex curve with B4 C C?2.

5.2.2. Cobordism maps induced by braided surfaces. We highlight an elementary
lemma that simplifies calculations of cobordism maps induced by braided surfaces. Its proof is
a simple exercise using Table 2; see Figure 11 as well.

Lemma 5.4. The chain map induced by an oriented crossing resolution (of either sign)
sends any disoriented smoothing to zero. On oriented smoothings, it acts as the identity if the
crossing is positive and as + % (X — X) if the crossing is negative.
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Figure 11.  (Left) A positive crossing resolution in a braid as a composition of a saddle move and
Reidemeister I move. (Right) The induced map on smoothings.

Before formalizing our approach, we give an example illustrating the core ideas.

Proposition 5.5. Let ¥ and ¥’ denote the positively braided, genus-1 surfaces asso-
ciated to the band factorizations (oy 202012)(010201_ 1)022 and (oy 302013)0201 (0 301023),
respectively, for the knot 1014g. There is no smooth isotopy of B* carrying ¥ to ¥'.

Proof. Let B and B’ denote the braid diagrams for 1014g corresponding to the braid
factorizations underlying ¥ and X’. The cobordism X: 8 — @ is described by the sequence
of diagrams on the left side of Figure 12. The right side of Figure 12 begins with labeled
smoothing ¢ that is easily checked to be a cycle, then tracks it through the cobordism map
using Lemma 5.4 and Table 2 to conclude €Kh(X) = —1.

We cannot directly compare €Kh(X) and €Kh(X’) because they have different domains
€Kh(B) and €Kh(B’). However, if we take the isotopy from S’ to B exhibited in Example 5.2
and smoothly extend it over B4, we carry ¥’ to an isotopic surface ¥” bounded by B. Moreover,
by taking the saddle moves on B’ that correspond to X’ and tracking them through the braid
isotopy, we can locate saddle moves on f that correspond to X”. We do this for a chosen
positive crossing using the underlined terms in Example 5.2. The translated saddle move is
represented by the red band in Figure 12. The cobordism X”: 8 — @ begins by resolving this
crossing, which we note has been given the disoriented smoothing in the cycle ¢. It follows that
this positive crossing resolution cobordism kills ¢ by Lemma 5.4; hence €©Kh(X')(¢) = 0.

It follows that ¥ and ¥” are not smoothly isotopic rel boundary. Moreover, a direct
calculation in SnapPy [8] shows that the knot 10145 has trivial symmetry group, so Lemma 4.4
implies that there is no smooth isotopy of B# carrying £” to X. It follows that the same is true
of ¥’ and X since X’ is smoothly isotopic to X”. O

Let us formalize some of the ideas seen in the above proof. We say that a smoothing of

a braid B is compatible with a given band factorization of j if, for each band woijEl w L,

(i) the core crossing oiil is given the oriented smoothing (i.e., 0-smoothing for o; and 1-
smoothing for o;” 1), and

(ii) for each crossing in w and corresponding inverse crossing in w™!, either both have
oriented smoothings or both have disoriented smoothings.
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Figure 12. A sequence of diagrams illustrating key steps in the cobordism X:f8 — @ and the
behavior of a cycle ¢ € €Kh(f) under the induced map €Kh(X). The cobordism begins
with four positive crossing resolutions, followed by three Reidemeister II moves, and
ends with three Morse deaths.

We also say that a labeling o« € €Kh(f) of such a smoothing is compatible with the given band
factorization of . The cycle underlying Plamenevskaya’s invariant is a prototypical example,
and it is compatible with every band factorization because each crossing is given the oriented
smoothing. For an example of a compatible cycle that contrasts with Plamenevskaya’s cycle,
the cycle in Figure 12 from the proof of Proposition 5.5 has disoriented smoothings on all
conjugating crossings in the band factorization.
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Lemma 5.6. Let X be a braided surface given by a band factorization of B, and let
a € €Kh(B) be an incompatible labeled smoothing. Then €Kh(X)(«) = 0.

Proof. The cobordism X: f — @ naturally begins with a sequence of crossing resolu-
tions, each resolving the core crossing of a band wal.ilw_l. After passing these saddles, we
have a diagram for an unlink given by a product of braid words of the form ww™!. This is
simplified to the trivial braid by a sequence of Reidemeister II moves, each canceling the final
crossing in a word w with the first crossing in its inverse w~!. The cobordism ends with Morse
deaths deleting the components of the trivial braid.

Suppose « is incompatible with the braid factorization. If one of the core crossings in
a band is given the disoriented smoothing, then Lemma 5.4 says that « is killed by one of the
initial crossing resolutions, so €Kh(X)(«) = 0.

Next consider the case where there is a pair of corresponding inverse crossings in some
w and w~! such that one crossing is given the oriented smoothing and the other is given
the disoriented smoothing. We proceed in the cobordism until these crossings are adjacent
and are ready to be canceled with a Reidemeister II move. (Note that, after each previous
Reidemeister Il move, the diagram and underlying smoothing are unchanged away from the two
crossings being canceled — however, the labelings and connectivity of the loops may change.)
At the stage where we cancel the two crossings in question, the cobordism has the local form
shown in the bottom-left corner of Table 2 (or its mirror). The smoothings and chain map are
locally given by the bottom two rows on the right side of the table, and these are both zero
maps, so CKh(X)(x) = 0. O

The preceding observations help us identify chain elements in the kernel of a braided
surface’s cobordism map. But a similar perspective can also help identify elements in the sup-
port of the map, especially when considering positively braided surfaces. This provides the
following heuristic, which we demonstrate in Proposition 5.8 below.

Heuristic 5.7. Given a braided surface X associated to a band factorization
+1, —1
IB = 1_[ wko—ik wk ’

suppose Y’ is another surface with 0%’ = 8 whose movie begins by resolving a crossing ¢ in
a subword wy or w,:l.

(1) Identify a chain ¢ € €Kh(f) with disoriented resolution at ¢ satisfying €Kh(X)(¢) # 0.
(2) Search for a chain @ € ker €Kh(XZ) N ker €Kh(X') with da = 0¢.
The difference ¢ — « represents a cycle § € Kh(8) such that Kh(X)(8) # Kh(XZ')(§).

The first step of this strategy is often straightforward. In the second step, it is also
easy to identify many elements of ker €Kh(X) N ker €Kh(X'); in light of Lemma 5.6, it is
natural to consider the subcomplex of €Kh(f) generated by incompatible smoothings. Also
note that ker €Kh(X’) contains the subcomplex of €Kh(8) where the crossing ¢ is assigned
a disoriented smoothing.

To see this in practice, we will give an alternative argument that distinguishes the disks
from Figure 1 via their braided representatives in Figure 2. For convenience, we now let D and
D’ denote these latter braided representatives.
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Figure 13. A closed braid f representing J, together with chain elements ¢ and « satisfying Heuris-
tic 5.7.

Proposition 5.8. There is a braid isotopy between the boundaries of the braided disks
D and D' in Figure 2 that does not extend to any smooth isotopy of B*.

Proof.  Asshownin [17, §A.1], there is a braid isotopy from 0D’ to 0D that takes a band
from D’ to a band corresponding to the final oq-crossing (highlighted in red) in Figure 13.
For convenience, let D" denote the image of D’ under any smooth extension of this isotopy.
The chain element ¢ from Figure 13 satisfies (1) in Heuristic 5.7. The boundary d¢ consists
of a single term (corresponding to changing the O-resolution inside the outermost circle to a
1-resolution). Changing one of the other 1-resolutions in d¢ to a 0-resolution yields the chain
element o shown on the right-hand side of Figure 13, which satisfies (2) in Heuristic 5.7. The
difference of these chains represents a homology class that distinguishes the maps Kh(D) and
Kh(D"); hence the disks D and D" are not smoothly isotopic rel boundary. It follows that the
isotopy from 0D’ to 0D cannot extend to a smooth isotopy of B4. |

A. Isotopies and symmetry groups

A.1. Upgrading to isotopy rel boundary. Under certain conditions, an isotopy be-
tween surfaces with the same boundary can be upgraded to an isotopy rel boundary.
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Proposition A.1. Let Yo and X1 be properly embedded surfaces in B* bounded by the
same knot K in S3. Suppose there is an ambient isotopy of B* carrying Lo to X1, and let fi
denote the induced diffeomorphism of the pair (S3, K) at time t = 1. If f1 is isotopic to the
identity through diffeomorphisms of the pair (S3, K), then $o and %1 are ambiently isotopic
rel boundary.

Proof. To begin, let F; with ¢ € [0, 1] denote the ambient isotopy of B* carrying % to
Y1, and let f; denote the induced isotopy of the boundary S3. We take a moment to make some
simplifying assumptions. First, we may assume that the ambient isotopy fixes a point that is
disjoint from all the intermediate surfaces X; = F;(Zg). (This is a straightforward application
of the isotopy extension theorem?®, which allows us to produce a modified isotopy that agrees
with F; on a neighborhood of 9B* and (U, X but is the identity outside a larger neighborhood
of this subset.) It will be notationally convenient to remove this fixed point from B* and view
its complement as S> x (—oo, 1]. Since the surfaces ¥, are compact, they lie in a sufficiently
large compact collar neighborhood of the boundary. For convenience, we will assume that they
liein S3 x [—1, 1] and that the ambient isotopy is supported inside S3 x [—2, 1]. Finally, it will
also be technically convenient to assume that X, intersects the collar neighborhood S3 x [0, 1]
along the cylinder f;(K) x [0, 1].

We begin by modifying the isotopy so that its time-1 map restricts to the identity on
0B* = §3 x {1}. By hypothesis, the diffeomorphism f1:S3 — S3 at time ¢ = 1 is isotopic
to the identity through diffeomorphisms of the pair (S3, K). Let g;: (53, K) — (S3, K) be
such an isotopy from go = f1 back to g; = id. It is straightforward to extend g; to an isotopy
G;: B* — B*suchthat G,(X1) = X forall ¢ € [0, 1]: fix a small value € > 0 and a smooth,
monotone function p: [0, 1] — [0, 1] that equals 0 on [0, €] and equals 1 on [1 — €, 1]. We can
define G; by demanding that

(i) G, agrees with Fy outside S> x (0, 1] forall 7 € [0, 1] and
(i) at each point (x,s) € S3 x [0, 1], we have G;(x,s) = (&1p(s) (%), 5).

Concatenating the isotopies F; and G, yields an isotopy H, of B* that still carries o to ¥
and whose time-1 map H restricts to the identity on 0B*.

We will modify the entire isotopy by “wringing out” the boundary isotopy 4 of §3 x {1},
letting it run down over X;. Choose a smooth, monotone function u: (—oo, 1] — [0, 1] that
equals 0 on (—oo, —2] and equals 1 on [—1, 1], and set /;(x, s) = (ht_l}(s) (x),5). As hal = id,
the homotopy I, is supported on S3 x (=2, 1] C B*, and thus we can further extend /; to B*
so that it fixes the point at infinity.

We claim that I; o H; is an isotopy of B* that fixes 0B* and carries Yo to X;. To
that end, observe that /o and Hy are the identity on B*, so Io(Ho(Zg)) = Zo. To see that
I1(H1(Zp)) equals Xy, it suffices to show that /1(X;) = X;. In fact, since &y = id, the
diffeomorphism /; is the identity on S3 x [—1, 1] because

Ii(x,s) = (h'(x).8) = (x.5)

for s € [—1,1]. Since 1 lies in 3 x [—1, 1], we see that I1(H{(Zp)) = 11 (Z1) = 2.

3 For example, see [21, §8]. While Hirsch’s statements are phrased in terms of submanifolds lying entirely
in either the ambient manifold’s boundary or interior, the arguments carry over directly to our setting of properly
embedded surfaces in B*.
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(b)

Figure 14.  (a) A 3-component link consisting of Jo o and two unknotted link components (dashed)
on which we perform the indicated Dehn filling. (b) Exhibiting J;, , as the band sum of
a 2-component split link.

Finally, to see that /; o H, fixes 9B*, we plugins = 1,

I(He(x, 1) = Ie(he(x), 1) = (A (he(x)), 1) = (x, 1).

Thus we conclude that ¥y and 31 are ambiently isotopic rel boundary. |

A.2. Hyperbolic structures and symmetry groups. We show that, for m > 0, the
knots Jy, » from the proof of Theorem 1.1 (and Examples 3.6-3.7) are hyperbolic with trivial
symmetry group. Consider the three-component link L shown in Figure 14 (a). Observe that
the knot complement S3\ Jy, , is obtained from S3\ L by performing the indicated Dehn
filling on the two unknotted link components.

Lemma A.2. The link complement S3 \ L is hyperbolic with trivial isometry group.

Proof. 'We used SnapPy’s link editor to obtain a Dowker—Thistlethwaite code for L,

DT:[(34, —40, —26, —58, —22, 62, 50, —6, 38, —42, 54, —12, 60, 16, 66, 18,2, —20, 30,
—4,32,-36,—68,70, —8, 24, —64, —72, 48, 14, —52, 10), (28, —44), (=56, 46)].

Enter L into Sage using L=snappy.ManifoldHP(‘DT: [(...)]’) and produce a triangula-
tion of §3 \ L via R=L.canonical_retriangulation(verified=True). Verify the isom-
etry group is trivial via len(R.isomorphisms_to (R)), which returns 1. |

Proposition A.3. The following statements hold.

(@) Foranyn > 0and sufficiently large m > 0, the knot complement S3 \ Jm.n is hyperbolic
with trivial isometry group.

(b) Foranyn > 0and m # m', the knots Jpy n and Jyy 5 are distinct.

Proof. (a) Thurston’s hyperbolic Dehn surgery theorem [46] implies that, when |m| and
|n| are both sufficiently large, the Dehn-filled 3-manifold S3 \ Jp,  is hyperbolic and the cores
of the surgered solid tori are the unique shortest closed geodesics in S3 \ Jp, . In this case, any
isometry of S3 \ Jp » must fix these short geodesics setwise, hence restricts to an isometry of
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their complements, i.e., S 3 \ L (cf. [28, §5]). The latter has trivial isometry group, which in turn
implies that S3 \ J,,., has trivial isometry group when |m| and |n| are both sufficiently large.

We can use the work of Futer—Purcell-Schleimer [14] to quantify these thresholds and
extend the argument to all » > 0. As a preliminary step, we check that the systole length of
S3 \ L is at least 0.1428 (see [14, Lemma 7.26]). To do so, we continue with the Sage session
described above, entering L. length_spectrum(cutoff=1.0) to list all geodesics in §3 \ L
of length at most 1. This returned a single curve, which had length approximately 0.977. Thus
the systole length of S3 \ L is greater than 0.1428.

Next, let Y, denote the 3-manifold obtained from S3 \ L by performing only the (—1/n)-
filling along the unknotted component link component on the right. By [14, Theorem 7.28], if
the normalized length of the (—1/n)-filling slope is at least 10.1, then Y}, is hyperbolic and
the core of the surgered solid torus is the unique shortest closed geodesic in Y,. By the same
arguments as above, it will then follow that Y,, is hyperbolic with trivial isometry group for
all such n.

To determine the normalized length of a slope y, we fix a cusp C on which to measure
the length of y, then normalize it as Length(y)/+/Area(C). To measure these cusp areas, we
use L. cusp_areas(verified=True), which tells us that the area of the cusp in question is
approximately 7.840. Next we ask SnapPy for all of the slopes on the given cusp that have
length at most 29, which ensures a normalized length of

29 - 2
VArea(C) /8

as desired. We find these slopes using

~ 10.253 > 10.1,

L.short_slopes(verified=True,length=29)

SnapPy returns a list that includes the (—1/n)-slopes for 0 < n < 8. Therefore, for n > 8, it
follows that Y is hyperbolic with trivial isometry group. For 0 <n < 8, we run a loop to
directly determine the hyperbolicity and symmetry groups of Yy:

for n in range(0,9):

L.dehn_fill1((1,-n),2)
= L.filled_triangulation ()
= Y.canonical_retriangulation(verified=True)
R.with_hyperbolic_structure ()
.verify_hyperbolicity ()

H < < 3 <
I

en(R.isomorphisms_to(R))

For each value n = 0, 1,..., 8, this prints a confirmation that Y;, is hyperbolic and that its
isometry group is trivial.

(b) As illustrated in Figure 14 (b), the knot J;; , can be expressed as a band sum of a 2-
component split link. We claim that this band is nontrivial, i.e., the link cannot be split by an
embedded 2-sphere that intersects the band along a single arc. Indeed, if such a sphere exists,
we may assume it contains the dashed surgery curve encircling the band. In this case, the dashed
curve separates the sphere into disks, one of which is disjoint from the band and 2-component
link. Pulling this back to the surgery diagram in Figure 14 (a), this implies that the dashed
(1/m)-surgery curve bounds an embedded disk whose interior is disjoint from the 3-component
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link L. However, this implies that one of the components of L is a split unknot, contradicting
the fact that S3 \ L is hyperbolic. It follows that J,, 5 is a nontrivial band sum on a split link.
For each n € Z, the family of knots {J/;, » } mez is obtained by varying the number of full
twists in this band; hence these knots are distinguished by their Khovanov homology groups
for all m € Z by [47, Theorem 1.1]. O
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B. Reidemeister induced chain maps

In order to create a toolkit of explicitly defined Reidemeister induced chain maps, we list
them all here. It is easier to record the Reidemeister III induced chain maps as tables, interpreted
in the following manner. The top left cell of each table indicates the Reidemeister move: the
bottom left corner of the cell gives the starting (local) diagram and the top right corner gives
the ending. Similarly, the left column gives smoothings of the starting diagram, and the top
row gives smoothings of the ending diagram. The row associated to a smoothing of the starting
diagram defines the chain map on that smoothing (and any of its labelings): empty cells map
to 0; a cell with an I maps to the corresponding smoothing in that column by an isotopy; a cell
with a decoration of the smoothing is as expected (see Section 2.3).

For convenience, we have also given an enumeration of the crossings and labeled the
corresponding binary sequence for each smoothing (a different enumeration will not change
the map). Also, for convenience, we have listed two extra Reidemeister III moves: Table 5 (b)
and (d) are determined from Table 5 (a) and (c), respectively, by a rotation of the tangle (it is
generally a headache to apply this rotation as well as the desired chain map).
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