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Abstract—This paper proposes a novel solution for the dis-
tributed unconstrained optimization problem where the total
cost is the summation of time-varying local cost functions
of a group networked agents. The objective is to track the
optimal trajectory that minimizes the total cost at each time
instant. Our approach consists of a two-stage dynamics, where
the first one samples the first and second derivatives of the
local costs periodically to construct an estimate of the descent
direction towards the optimal trajectory, and the second one
uses this estimate and a consensus term to drive local states
towards the time-varying solution while reaching consensus.
The first part is carried out by a weighted average consensus
algorithm in the discrete-time framework and the second part
is performed with a continuous-time dynamics. Using the
Lyapunov stability analysis, an upper bound on the gradient
of the total cost is obtained which is asymptotically reached.
This bound is characterized by the properties of the local
costs. To demonstrate the performance of the proposed method,
a numerical example is conducted that studies tuning the
algorithm’s parameters and their effects on the convergence
of local states to the optimal trajectory.

Keywords—Unconstrained Optimization, Distributed Optimiza-
tion, Time-varying Optimization

I. INTRODUCTION

This paper considers a distributed time-varying uncon-
strained optimization problem, where a group of N net-
worked agents want to track the optimal solution that
minimizes their total cost by interacting over a connected
graph. The total cost is the summation of agents’ local time-
varying costs. Distributed optimization problems appear in
many applications, e.g., sensor networks [1], smart grids [2],
robotics [3] and learning systems [4]. Most distributed
optimization algorithms are for static optimization problems
where the total cost is constant and does not change with
time, see e.g., [5]. However, there are many in-network
optimization problems that the cost can be time-varying.
One example is the time-varying distributed linear regression
problem where the agents learn a model that best fits an ever
changing stream of data; see e.g., [6]-[8] for related works.
Another example is when a group of networked robots want
to use their relative range measurements from a target to
localize a moving target. This problem can be cast as an
optimization problem where local costs vary over time.

The time-varying in-network optimization problem we con-
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sider in this paper is

1 N
x*(t) := argminxeRnN Zizl fl(x,t), t>0, (1)

where f? represents agent i’s local cost and x € R" is the
decision variable and t is the time.

In case that there is a supervisor or a trusted third-party with
the knowledge of all local f%’s in (1) which can distribute
the optimal trajectory to the agents online, a central solu-
tion can be implemented. Some prediction-correction-based
algorithms both in continuous-time and discrete-time have
been proposed as the central solution [9] to track the optimal
trajectory x*. By incorporating the second derivative of the
costs (also called Hessian of the cost), i.e., Vyx f¢(x, ), this
method asymptotically converges to the exact optimal trajec-
tory. However, in many applications, due to privacy concerns
or the distribution of data among multiple agents, employing
a central solver is not desired or even feasible. Such settings
require a distributed solver where agents are only allowed
to communicate with their neighbors. Therefore, distributed
algorithms have been proposed in the literature which take
into account the limitations of a fully decentralized network.
Some works consider network topology as the time-variant
part of the problem [10]-[12] and some other, discussed
below, consider the costs to vary over time.

Authors of [13] have addressed this problem by suggesting
an algorithm where exact convergence is achieved in finite
time by using the signum function, which limits the solution
to the continuous-time setting. Moreover, agents need to
compute the inverse of the Hessian locally at each time
instant, which requires an O(n?) computational complexity.
In other works [14]-[16], using the alternating direction
method of multipliers (ADMM), the authors propose a
solution in the discrete-time framework for time-varying
optimization problems. The approach used in [16] is in-
spired by the ADMM methods applied in static optimization
problems, where asymptotic convergence is achieved if the
objective function varies sufficiently low over time. Some
other works, e.g. [17] and [8], consider only optimization
problems with time-varying quadratic costs, due to their
popularity in applications such as economic dispatch. How-
ever, this limitation disallows them to be implemented for
other classes of strongly-convex cost functions. Resource
allocation problems are also a great part of economic
dispatch that can be cast as constrained time-varying op-
timization problems; see [18]-[23] for related works. Note
that unconstrained optimization, which is addressed in this
paper, involves optimizing a function without any limitations
on the variables, while constrained optimization involves
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optimizing a function subject to constraints on the variables,
such as in out previous work [18].

In this paper, we address the distributed optimization prob-
lem with time-varying local costs in the continuous-time
framework. Each agent communicates only with their neigh-
bors over a connected graph and shares local information
to solve this problem. By incorporating a weighted average
consensus algorithm, agents track the descent direction to-
wards the optimal trajectory and drive their local states to
the time-varying optimal solution. This technique allows the
agents to asymptotically converge to a neighborhood of the
solution without using the signum function which prevents
discrete-time implementations and also reduces the compu-
tational complexity to O(n?). A Lyapunov stability analysis
is conducted to prove convergence for strongly-convex and
lipschitz-continuous local cost functions. In the numerical
example section, we show the performance of the proposed
method with different values of algorithm parameters.

Notations: We follow [24] for graph theoretic terminologies.
The interaction topology of N in-network agents is modeled
by the undirected connected graph G(V,E, A) where V is
the node set, £ C V x V is the edge set and A = [a;;] is the
adjacency matrix defined such that a;; > 0, if (i,7) € &,
otherwise a;; = 0. A graph is undirected if a;; = aj; for all
1,7 € V. Moreover, a graph is connected if there is a directed
path from every node to every other node. The degree of
each node i € Vis d* = Z 1 a” and the Laplacian matrix
of a graph G is L = Diag(d1 ,d¥) — A. Furthermore,
For a connected graph, we denote the eigenvalues of L by
Aty -0, AN, where Ay = 0 and \; < Ay, for 7 < j and Ao
and Ay are, respectively, the smallest nonzero eigenvalue
and maximum eigenvalue of L. Finally, given an edge (3, j),
1 is called a neighbor of j, and vice versa. We let 1y denote
the vector of N ones, and denote by Iy the N x N identity
matrix. We also define v = #NlN, M € RVXV-1) and

T=[c R, suchthat [« %] [QH - [mi} [ =] =1Iy.
Note that T'T = TT' = I, and for a connected graph,
TLT = 8 LO+]’ where LT = LR LT is a
positive definite matrix with eigenvalues {\;}Y, € R.o.

For brevity and ease of presentation, the following nota-
tions are used alternatively: Vyiyi f{ = Viyixi f/(X'(t),1),

Vi fi = Vi f1(x (1), 1) and Vi fi = Vi f1(x'(2), 1)

II. PROBLEM SETTING

Our objective is to design an algorithm that drives local
states towards the optimal trajectory, i.e., x*(¢) which is
the solution of the unconstrained optimization problem (1).
The total cost is the summation of each agent ¢’s strongly-
convex local costs f%. In a fully decentralized setting, local
costs are private information that are only available to the
agent solely. Therefore, a distributed solution is presented
in this paper to let agents track x*(¢). In this section,
we provide the insights needed for proposing our novel
algorithm. Let us first consider solving problem (1) where

the case is that the agents are aware of the local costs
f%, for all i € V. This can be done by implementing a
central solver, e.g. using the prediction-correction method
in [9], where a descent direction drives the state x towards
the optimal trajectory. Next, we discuss how this descent
direction can be estimated distributively in a setting where
agents are limited to communicate with their neighbors only.
Inspired by the central solution in [9], each agent can use the
descent direction VxxF* x,t) (Ve F(x,t) + Vi F(%,1))
where F(x(t),t) = + Y., f{(x(t),t), to asymptotically
converge to the solution. Therefore, by implementing the dy-
namics

x'(t) = — VXXF_l‘(xi(t), t) (Vi F(x'(t),t)
+ VXtF(Xl (t)a t))v (2)

all the states x‘, for i € V, converge to x* asymptotically.
In a central manner, since all the states converge to the
solution asymptotically, naturally, they also converge to a
single trajectory. Therefore, consensus is achieved without
any further manipulation. In the proposed method, we build
an estimate of the global descent direction denoted as

dt = (Zi:1 inxiftl)71 Zizl(vxiftl + vxitftz)a (3)

by utilizing a weighted average consensus algorithm. How-
ever, (3) is different than the one in the dynamics (2). In the
former, only the values of the first and second derivatives,
calculated with local states as the input, are available to the
agents, and in the latter, the total cost derivatives are avail-
able as functions to every agent and therefore, each agent
can compute the exact local descent direction by using its
local state as the input. Since the former is estimated in the
proposed algorithm, agents converge to a single trajectory
only in the case where initial conditions are similar globally.
Therefore, we design a dynamics where a consensus term is
added that reduces the difference between state values and
minimize the total cost while reaching consensus in x*’s.

III. MAIN RESULT

In this section, we introduce a novel algorithm that solves the
distributed time-varying (1) over connected graphs. In this
algorithm, agents collaborate to estimate locally the descent
direction (3) using a weighted average consensus algorithm
in discrete-time, and use this direction to converge to a
neighborhood of the optimal solution while also trying to
achieve consensus in their states. We propose the algorithm

Vi(k+1) = vi(k) + 0. I (PP (k) — p7 (k)
zi(k + 1) = 2 (k) — 6. (F' (k)p’ (k) —g' (k)
—h (k) + 0N (P (k) — P2 (k) + (Vi (B) — Vi (K))),

p'(k) =z'(k) + gi(k) + hi(k), k€ Zxo,

(4a)

) N
x'(t) = )= > (%

i=1

t)—x’(t), t>0, (4b)
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with v*(0),z%(0 ) x'(0) € R™i € V. In this algo-
rithm, Hl( ) = xx ft ’ gz(k) = Vx"’ftlS? hl(k) =
Vit [l Z(t) = pi(sk), for t € [ts,tsy1),ts = Os and
s = {0,1,---} are switching signals that their roles is
explained in the following. Here, (4a) constructs an estimate
of the local descent direction by the state p’(k) and (4b)
drives the states using updates of p’(k). These updates are
passed to (4b) every k steps that (4a) takes. While (4a) takes
k steps, (4b) proceeds d, > 0 in time. Therefore, v’ (t) is
a switching signal where at times ¢ is updated by p (sk)
sampled from every k steps that (4a) takes; q‘(t) is therefore
constant in the time range t € [ts,ts11) and is switched to
the next value at each time instant ¢;. Note that J; is the
time span between the switchings of 1)*(t). Moreover, at
the same time instant ¢ = ¢, the consensus Algorithm (4a)
updates its reference values H'(k),g’(k) and h'(k) using
x!(t = t,) every k steps With this mechanism, (4a) tracks
the weighted average (3", H'(k))~ (N gi(k)+hi(k))
while (4b) uses the updates p’(sk) from (4a) to track the
optimal trajectory x*(¢).

The algorithm presented in (4a) is inspired by a weighted
average consensus algorithm in literature [25] where by
incorporating the local Hessian matrix H' (k) as the weight
and g'(k) + h'(k) as the time-varying reference sig-
nal, each p’ converges to a neighborhood of the signal
(lel H' (k) (i, g'(k) + h'(k)). As noticed, this
value is not exactly the one in (3); however, by consider-
ing some common assumptions, we characterize the error
between the estimate and the actual value of d; and show
that by passing the updates p(sk) to (4b), x* converges to
a neighborhood of the optimal trajectory. In order to prove
convergence, some common conditions presented in e.g., [9]
and [13], are required which are stated as following. The first
assumption considers lower and upper bounds on the second
derivative of the cost functions.

Assumption 1. Each local cost function f’(x t) is twice
differentiable and uniformly in t. Also, f* is m'-strongly
convex and 1*-Lipschitz continuous, i.e.,

m'T < Vi ff <I'T, x*€R",t>0.
We also define m = min{m‘} and | = max{i'} for i € V.
The second assumption, considers bounds on the first deriva-
tives of the cost functions.

Assumption 2. Local cost functions f*(x',t) are sufficiently
smooth in X" and t, and the following bounds on the first
derivatives of the local cost functions exist:

IV fill < Co, IVaiefill < Ch,
where Cy, C7 > 0.

teV.

By presenting the second assumption, it is also deduced that
the variations of the first and second derivatives of the costs
are bounded. Based on the requirements in Assumptions 1
and 2, we can trivially calculate the bound on (3) as ||d;|| <
Cyq, t > 0, where Cy = %(CO + C1). This result is later
used to characterize the bound of the tracking error.

Let us first examine the convergence of (4a) to a neigh-
borhood of the local descent direction (3). We consider
the following definitions for the proof of convergence.
The weighted average to be tracked in (4a) is p(k) =
(S, HY (k)TN (i, & (k) + h' (k) with its aggregated
vector p(k) = p(k) ® 1n. Again, p(k) is updated every k
steps which is equal to d; time in (4b). Its variation over
consecutive steps is Ap(k) = p(k+1) —p(k). The diagonal
matrix of Hessians is H(k) = diag(H'(k),--- ,HY (k)).
The gradient variations is defined as AVf(k) = Vf(k+1)—
V£ (k) where VFf(k) is the aggregated vector of gi(k)+h' (k)
for i+ € V; and finally, w(k) = Vf(k) — H(k)p(k) and

Aw(k) = w(k+1) —w(k). Using the definitions above, the
compact form of (4a) is
v(k+1) =v(k)+ d.Lp(k), (52)
z(k + 1) = z(k)—dc(H(k)p(k) — V(k) +L(p(k) +v(k))
(5b)
p(k) = z(k) + VF(k). (5¢)

TT(p — p) and
[ql q;N]T = TT(Lv —w), (5) is equivalent to

Using the change of variable e =

q;(k+1) =qy(k), (6a)
&(k+1) - a(k - [AVE(k)—Ap(k
[q:N(k + 1>} = (I+0:A(R)) {qffvgm] +B { (Av)vtk) P )}
(6b)

T 0
where A(k) = T elHkE)+LeTel [In(Nl)H and

[0 LTLT®I] 0
.
B m?] ® I. We now obtain the admissible step size

B =
dc to prove the internal stablhty of (6), i.e., the matrix I+
5.A(k) is Schur for k = {0,1,2,---}.

Lemma IIL.1. Under the Assumption (1) and by the virtue
of the results in [25, Lemma 2] and [25, Lemma 3], if 0. €

(0,5) in which 6§ = min{{_QRe("/i,k) ?lel}

e where
|'Y'i,k-| = kEZ

_ >0
Viok are the set of eigenvalues of A(k), then every
subsystem 1+6.A(k), k € Z>q is Schur. Moreover, we define
¢ = max{||T+ 6.A(k)| }kez o where we know that ¢ < 1.

2N1

The proof is present in [25]. The result above, provided
internal stability for the transformed algorithm in (6). We
now seek a bound on the error between the trajectories
of p‘(k) and the weighted average p(k). Since the first
derivatives of the local costs are bounded according to
Assumption 2, p‘(k)’s converge to a neighborhood of the
weighted average with a maximum error characterized in
the next result.

Theorem IIL.2. Let the agents of an undirected connected
graph G, implement (5) where the first gradients of lo-
cal costs satisfy Assumption 2. Considering the result in
Lemma IIL1, ie., 0. € (0,9), we have

(k) 1+ ¢

1— g2’
where C is defined in (8).

-pk)| < NC (7)
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Proof: To prove convergence of p(k) to a neighborhood
of the weighted average p(k), we use the Lyapunov stability
analysis. We consider the transformed dynamics (6) and
define the Lyapunov function as a quadratic product of the

states
i =[] o)

Here, we seek to prove that the variation of the Lyapunov
function V' (k) at each step is negative and obtain a bound
on the convergence error. Therefore, by defining AV (k) =

V(k+1) — V(k), we have
AV(E) =y (K) (1 + 5.AK) T (1+ 5.AK))y(k)
oy (k) (145, A(K) B [AW o )]

Aw(k)
—y ' (k)y(k),

. [AVf(k)—Ap(k)]T 5 {AW( e

?()]

where y = is the aggregated vector of the states.

2:
Based on the results we have from Lemma III.1, by choosing
the step size in the admissible range J. € (0,¢), then it is
true that I+ 6.A(k) is Schur. By incorporating the bounds
IB]] < 1 and the ones in Assumptions 1 and 2 and their
results, we can write

AV (k) < (¢* = Dly(R)[1* + 20N Clly(k) || + N*C?,
where
C =8(Co+ Cy) +2(1 +21)Cy. ®)

Since ¢ < 1, according to the inequality above, if the
norm ||y|| is sufficiently large, the variation of the Lyapunov
function becomes negative. In addition, if AV (k) < 0,
then ||y|| decreases. Therefore, the value |ly|| is bounded.

By using the Lyapunov stability analysis, we find that
lyll < NC{=%. Given that ||p(k) — p(k) (F)[l, we
can establish tﬁe tracking error in (7). [ |

In the statement above, we obtained an upper bound on
the error between the trajectories p(k) and the weighted
average p(k). Let us now consider W = [¢1T, e ,wNT]T
(aggregated vector of ') which is samples of p’(k) for
every k steps. Before we establish the final result, we want
to characterize a bound on the error between ¥ (t) and
d; = d; ® 15 denoted as

€ — ‘U(t) - dt' (9)

Trivially, by the virtue of Theorem III.2 and the fact that
Ip(k) —d¢]] < 2NCy (as a result of Assumption 2) for any
t > 0and k € Z>(, we can conclude that ||q(t) — d¢|| =
le]] < Ne where € = 2Cy + C1= 4z Let us now present
the final statement.

Theorem II1.3. Let the agents of an undirected connected
graph G implement the Algorithm (4) to track the optimal

trajectory x*(t), the solution of the unconstrained optimiza-
tion problem (1). Provided that §. € (0,0), we can prove
that the gradient of the total cost asymptotically converges
toa neighborhood of the origin with the bound

Zv fi(x ——ZVf ), t)

< Cvg

(10)
where Cvy is defined in (12).

Proof: To simplify the presentation, we demonstrate
the proof for when the cost functions are univariant, i.e.,
the decision variable x* is scalar and therefore, z* € R,
1 € V. Also, Hy, V,f; and Vf; are aggregated matrix and
vectors of the local Hessians and first derivatives of costs
fi(x(t),t). We implement the results from Theorem I11.2
and use a Lyapunov stability analysis in the continuous-
time framework to prove convergence. Consider the dynam-
ics (4b) which can be presented in the compact form

x(t) = —=W(t) — Lx(1). (11)
Let us define the Lyapunov function
V(x(t),t) = (15 Vifi)? + ax " (t)Lx(t),
where a > 0 is a positive scalar; for the rest of the proof,
we use x; and V; as replacements of x(¢) and V(x(t),t),
respectively. Under the assumption (2), the Lyapunov func-
tion is bounded by the states x in the dynamics (11) by

0 < V; < C? + aln||x¢||?. Taking the derivative of the
Lyapunov function, we have

Vi = Vif [ 1IN1N (Hixe + Viefe) + ax/ Lxy,

where by substituting x,, W and d; by the equations (11),
(9) and (3), respectively, we get

Vi = =V f] 11NV, —
— Vuf/ In1 HLx, —

By subtraction and addition of similar terms, the equality
above can be rewritten as

Vi=-V fT1T1Nv f, —
|| H 1n14 Vo, + /BLx|)?

foz—lNl;Hth

ax/ Le; — ax; Lx,.

\% fT]_N]_EHtEt

\f

+—5fole1 Hl1y1 fo+§XTL2
o ay 1,2
— Fx||* + — —x/ L?x
||fet+f a4 g€l et G
— ax/ Lx,,

where 3,y > 0. Using the Assumptions (1) and (2), we can
derive the inequality

aN 22

Vi< —(1-— )||1Nv £L1% + INe| 1L Vo f,

_(a_a%%’
2

)%, Lx; —

§|| fet + VAkx|?

—fH\FH ANINVife + /Blxg |,
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Fig. 1: The graph indicated above is an undirected connected graph
with adjacency weights of a;; = 1, if (¢,7) € &, otherwise a;; =
0. Each agent ¢« € {1,2,---,5} is endowed with a local cost
Fi (), t) = i(z*(t))? + sin(iwt)z (t).

. . g . 2

in which, for stability, we have the requirements o < lz, 8>
2 2 . . .

%,7 < 2 - zl—a which is always feasible. Based on the
inequality above, we can conclude that the summation of
the gradients, asymptotically converges to a neighborhood

of the origin with the bound

2 4 a(g_ 12
I+ l+‘$(2 ﬁ)

1
Iy LNVl <

where by defining

L+, /12 + 22— 5)

Cv = B ; 12)

B
and using the fact that = SN |V, fi(x*(t),t) = 0 we get
the final result in (10). [ |

IV. NUMERICAL EXAMPLE

To demonstrate the performance of the proposed method,
we study convergence of Algorithm (4) in presence of
local time-varying costs. Many problems such as ones in
economic dispatch or linear regression are formulated as
optimization problems with quadratic costs of the form
f(z(t),t) = La(t)(z(t)? + b(t)z(t) + c(t). In many cases,
for example, due to parameter oscillations of local generators
in economic dispatch or updates in local data sets in linear
regression, the problem at hand is time-varying, and conse-
quently, agents are required to track a time-variant solution
rather than converging to a single minimum point. Therefore,
we consider solving an unconstrained quadratic optimization
problem in the following of this section.

Let a network of N = 5 agents interact with each other
to solve problem (1). The topology of the network is an
undirected connected graph illustrated in Fig. 1. Each agent
is endowed with a local cost

Fi'(t),t) = i(z*(t))* + sin(iwt)z’(t),

where w = 0.05 controls the frequency of the time-
varying costs. Trivially, one can solve the problem z*(t) =
argmin, +- Zle i(x(t))? + sin(iwt)z(t) analytically and
derive the optimal solution as the time-varying trajectory

* 1 S5 sin(iwt) L. . .

x*(t) = 2 S The objective is to implement
i=1 —

Algorithm (4) to track x*(¢) with different values of &

and observe its effect on the convergence error. In this

=
I
—_
=
I
(3]

A
05 x10
0
—
o
= -05
=2
-1
15
0 10 20 30 40 50 0 10 20 30 40 50
ot k=5 k=10
0.5
0
—
4o
— -05
=2
-1
15
0 10 20 30 40 50 0 10 20 30 40 50
t t

Fig. 2: Trajectories of the states x*(¢) for i € {1,2,---,5} are
shown above for different values of k. As k increases, there is more
consensus between the states z°(t) and the optimal trajectory is
tracked more accurately.

example, §; = 0.1 is fixed. We set k = {1,2,5,10} and
measure the state values % (¢) and the tracking error, defined
as e(t) = ||x(t) — z*(t)15]]2, in the range ¢t € [0,7]
with T' = 50. Moreover, to review the overall effect on
convergence, a separate figure is plotted to show the average

. — :T .
of the tracking error & = e(7) over the time span

T_J1=0
t € [0,T], for each case of k.

By plotting the states z'(t) over t € [0,7T], for i €
{1,2,---,5}, we can observe that convergence to the opti-
mal trajectory has improved. While using k = 1 the agents
can still track the optimal solution, increasing k£ to 5 and
10 results in more consensus between the states at each
time instant {. Evidently, we can see from Fig.3(a) that
convergence error is reduced when k = 10 compared to
when k£ = {1,2}. Intuitively, as & grows, agents obtain a
more accurate estimate of the current descent direction d;}
and drive their local states towards a tighter neighborhood
of the optimal trajectory. As a result, Fig. 3(b) indicates that
the average tracking error € is lower in cases with higher
values of k.

V. CONCLUSION

We proposed a method to solve a distributed unconstrained
optimization problem with time-varying cost. In this setting,
the total cost to be optimized consists of the sum of the
time-varying local costs that each agent of a network is
endowed with and therefore, the solution is an optimal
trajectory rather than a minimum point. In our approach,
we implemented the discrete-time version of a weighted
average consensus algorithm to derive an estimate of the de-
scent direction, and constructed a continuous-time dynamics
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Fig. 3: (a) Left figure: Represents the tracking error in the time
interval ¢ € [0, 7] for k = {1, 2,5, 10}. The error oscillates due to
the nature of the local cost functions, however, when k is higher,
there is less tracking error at each time instant. (b) Right figure:
Represents the average tracking error € for k = {1,2,5,10}. A
similar conclusion is depicted here.

where this estimate was used to drive local states towards
the optimal trajectory while reaching consensus. Under some
common assumptions and with the use of the Lyapunov
stability analysis, a bound on the asymptotic tracking error of
the total cost gradient was achieved. To show the effect of the
parameters used in the algorithm, a numerical example was
provided where convergence to the optimal trajectory was
studied with different values of these parameters. In future
work we will investigate a fully discretized implementation
of our proposed algorithm.
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