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A Study of Privacy Preservation in Average
Consensus Algorithm via Deterministic
Obfuscation Signals

Navid Rezazadeh

Abstraci—This article is a study on the use of addi-
tive obfuscation signals to keep the reference values of
the agents in the continuous-time Laplacian average con-
sensus algorithm private from eavesdroppers. Obfuscation
signals are perturbations that agents add to their local
dynamics and their transmitted-out messages to conceal
their private reference values. An eavesdropper is an agent
inside or outside the network that has access to some
subset of the interagent communication messages, and its
knowledge set also includes the network topology. Rather
than focusing on using a zero-sum and vanishing additive
signal, our work determines the necessary and sufficient
conditions that define the set of admissible obfuscation
signals that do not perturb the convergence point of the
algorithm from the average of the reference values of the
agents. Of theoretical interest, our results show that this
class includes nonvanishing signals as well. Given this
broader class of admissible obfuscation signals, we define
a deterministic notion of privacy preservation. In this defi-
nition, privacy preservation for an agent means that neither
the private reference value nor a finite set of values to which
the private reference value of the agent belongs to can
be obtained. Then, we evaluate the agents’ privacy against
eavesdroppers with different knowledge sets.

Index Terms—Consensus algorithm, network systems,
privacy preservation.

[. INTRODUCTION
E CONSIDER the Laplacian average consensus algo-
rithm
N
Ft) ==Y ay('(t) -2l (1), 2'(0)=r (1)
j=1
i€V ={1,...,N}, over a strongly connected and weight-

balanced digraph G(V, €, A),! which drives % of each agent i
to 4 Zj\[:l rf ast — oo [2]; r’ represents the reference value of
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agent ¢ € V. This algorithm lacks privacy preservation because
the reference value r’ is trivially revealed to all the in-neighbors
of each agent 7 € VV and any external agent listening to the
communication messages. Laplacian average consensus is a
basic primitive algorithm that enables many other in-network
distributed operations, e.g., sensor fusion [3] and distributed
learning [4], [5]. Therefore, devising a privacy preservation
augmentation for this algorithm is of importance in the literature.
Our aim is to investigate whether in a network of N > 3 agents,
the agents’ reference value can be concealed from eavesdroppers
by adding the obfuscation signals £ and ¢’ to, respectively, the
internal dynamics and the transmitted signal of each agenti € V),
ie.,

N
i'(t) = — Z ai; (') -y (1) + f(t)  (a)

y'(t) =a'(t) +g'(t), 2'(0)=r' (2b)
while still guaranteeing that ' — < Zjvzl rl ast — oo.
Definition 1 (eavesdropper): An eavesdropper is an agent
inside (internal agent) or outside (external agent) the network
that stores and processes the accessible interagent communi-
cation messages y’(t), t € Rsq, of all agents j € O CV in
a network that implements (2) to obtain the private reference
value of the other agents in the network, without interfering with
the execution of algorithm (2). For an internal eavesdropper, O
is the set of one-hop agents that communicate their outputs to
the eavesdropper. For an external eavesdropper, O is the set of
agents; it can intercept their outgoing messages. |
The use of additive obfuscation signals has already been
considered for privacy preservation for the average consensus al-
gorithm, but there are some limiting assumptions. For example,
adding a sequence of well-constructed vanishing stochastic ob-
fuscation signals to the transmitted communication messages of
the agents has been investigated in the literature for discrete-time
implementation of (1) over connected undirected graphs [6], [7].
These results ensure the privacy preservation of the agents with
respect to internal eavesdroppers that do not have access to at
least one of the agent’s transmitted-in signals. When deviation
from the exact consensus value is tolerated, the authors in [8]
and [9] have shown that the reference value of all the agents can
be made private by perturbing the transmitted-out signal using
a zero-mean randomly generated Gaussian or Laplacian noise.
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Fig. 1. Agent 1’s (eavesdropper) maximum likelihood estimator’s nor-

malized error covariance when the method of [7] is used over graph
of Fig. 2(b). Agent 4’s privacy is not preserved because the estimator
error covariance converges to zero. Even though agent 5’s privacy is
preserved due to the nonzero estimator error covariance, the privacy
preservation might be limited because the estimator’s error covariance
is very small.

The deviation from the desired average is not quantified in [8],
but is explained in [9] using the e-differential privacy framework
introduced in [10]. Additive obfuscation noises have also been
used as a privacy preservation mechanism in other distributed
algorithms such as distributed optimization [11]; distributed
estimation [12], [13]; and distributed games [14]. Even though
our focus in this article is on privacy preservation via additive
obfuscation signals for alternative implementations of Laplacian
average consensus algorithm (1), it is worth noting that the
point-to-point gossip algorithm, secret massage passing, and
encryption have also been used in the literature to provide pri-
vacy preservation for algorithm (1)’s discrete-time implementa-
tion [15], [16], [17], [18], [19], [20], [21], [22], [23]. Alternating
communication signals using vanishing masking functions [24],
as well as rewiring the graph and point-to-point communication
to induce privacy preservation [25], [26], [27], [28], [29], [30],
have also been explored in the literature. However, in practice,
rewiring may be restrictive. The scheme of adding virtual nodes
to the communication graph was also explored in [31].

The existing privacy preservation algorithms including our
perliminary work [1] that use additive obfuscation signals are
based on the assumption that the signals should be vanishing
and zero-sum. These constraints are widely used as sufficient
conditions to ensure the exact convergence of the algorithm. The
existing results also use stochastic noise with shared parameters.
These constrained choices can limit privacy guarantees. For
example, the privacy guarantee in [7] is defined as a nonzero
estimation covariance including relatively small nonzero values
(see Fig. 1).

This article conducts a careful analysis of the use of admissible
obfuscation signals for privacy preservation for the Laplacian
average consensus algorithm (1) against internal and external
eavesdroppers that know the network topology. We define the
admissible obfuscation signals as integrable signals that do not
perturb the algorithm’s exact convergence. To make the study
thorough, we add the obfuscation signals to the transmitted-out
signals and also to the system dynamics, as shown in (2). A com-
mon trait of privacy preservation mechanisms that are intended
not to perturb the exact convergence of the algorithm is that
each uses a particular class of vanishing noises or perturbation

functions [6], [7], [24]. One is then left to wonder whether
stronger privacy preservation guarantees are achievable if a
broader class of signals was considered. This article intends to
answer this question. Thus, instead of using only a prespecified
class of vanishing obfuscation signals, we investigate and obtain
the necessary and sufficient conditions that define the set of
admissible additive obfuscation signals that do not perturb the
convergence point of the algorithm. A theoretical finding we
arrive at is that the admissible obfuscation signals do not have to
be necessarily vanishing. We conduct our study with respect to
locally chosen signals from the admissible set. Understanding
the nature of the admissible obfuscation signals is crucial in
privacy preservation evaluations. It is rational to assume that the
eavesdroppers are aware of the necessary conditions on such sig-
nals and use them to breach the privacy of the agents. We show
that such knowledge enables the eavesdroppers that have access
to all the transmitted-in and transmitted-out communication sig-
nals of a targeted agent to employ an observer to asymptotically
reconstruct the targeted agent’s reference value. Interestingly,
we show that in this case, the privacy breach is inevitable even
if the agent uses nonvanishing admissible obfuscation signals.
Our analysis leads to the necessary and sufficient condition for an
agent to stay private that at least one of its transmitted-in signals
is not available to the eavesdropper. We define our notion of
privacy preservation as follows.

Definition 2 (Privacy preservation): Consider an eaves-
dropper, as defined in Definition 1, that has access to yj (1),
t € Rsg, of all agents j € O CV in a network that imple-
ments (2) with locally chosen admissible perturbation signals
(f', "), 1 € V. We say that the privacy of an agent i € V is
preserved if for any arbitrary large v € R+, there exists a
tuple (z”'(0) = r'', f'(t), 9% (t)), with locally chosen admis-
sible perturbations (%' (t), ¢ (t)) and |r’’ — r| > ~, such that
Y (t) = 37" (1), t € Rsg, forall j € O.

Adhering to this privacy definition means that the eavesdrop-
per will be neither able to estimate the private reference value
nor a finite set of values to which the private reference value
of an agent belongs. This means that our approach to design
admissible perturbation signals leads to a privacy preservation
guarantee that is stronger than the privacy preservation in the
stochastic approaches such as [7], where even though the exact
reference value is concealed, an estimate with a quantifiable
confidence interval on the reference value can be obtained; see
Fig. 1 and Section V for more discussion.

II. NOTATION AND DEFINITIONS

The Euclidean norm of vector x € R™ is ||x|| = vx"x, and
the (essential) supremum norm of a signal f : R"” — Ryq is
I/ lless = (ess)sup{||f(¢)||,t > 0}. The set of measurable es-
sentially bounded functions f : R™ — R is denoted by L:°.
The set of measurable functions f : R™ — R that satisfy
fot || f(7)||dT < oo is denoted by LL. For sets A and B, the
relative complement of B in A is A\B={x € A|z ¢ B}.
To distinguish and emphasize that a variable in a network is
local to an agenti € V = {1,..., N}, we use superscripts, €.g.,
in (2), (f*, g*) are the local obfuscation signals of agent i € V.
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If p* € R is a variable of agent i € V), the aggregated p*’s of the
network is the vector p = [p!,...,p"N]" € RV,

Graph theory: a weighted directed graph (digraph) is a
triplet G = (V, &, A), where V = {1,..., N} is the node set,
E CV x Visthe edge setand A = [a;j] € RV*N is a weighted
adjacency matrix with the property thata,;; > 0if (¢, j) € £ and
a;; = 0, otherwise. A weighted digraphis undirectedifa;; = aj;
for all 7, 7 € V. We follow [32] in definition of in-neighbor and
out-neighbor: an edge from i to j, denoted by (¢, j), means that
agent ¢ can read/obtain information from agent j; then, 7 is called
an in-neighbor of j and j is called an out-neighbor of i. The set
of the out-neighbors of an agent i € V is N, i.e., the set of
agents that agent i has access to their information, N is the
set of in-neighbors of agent i, i.e., the set of agents that have
access to agent i’s information. We define V%, ; = NV, U {i}
and V], = Nii U {i}. A digraph is called strongly connected
if for every pair of vertices, there is a directed path connect-
ing them. We refer to a strongly connected and undirected graph
as a connected graph. The weighted out-degree and weighted
in-degree of a node i, are respectively, d! = Zjvzl aj; and
diy, = D20 ai;. We let d3% = max(dl ... dY,). A di-
graph is weight-balanced if d’ ,, = d{_ at each node i € V (al-
though they might be different across different nodes). The (out-)
Laplacian matrix is L = [¢;;] is L = D**" — A, where D" =
Diag(dl,,...,dY,) € RV*N Note that L1y = 0. A digraph
is weight-balanced iff1 L = 0. For a strongly connected and
weight-balanced digraph, rank(L) = N — 1, rank(L + L") =
N — 1, and L has one zero eigenvalue A; = 0 and the rest of its
eigenvalues have positive real parts. We let R € RV*(V-1) be a
matrix whose columns are normalized orthogonal complement
of 1. Then

0 o

TLT —
T LT = L+

T = {%ﬁlN R},U:RTLR. 3)

For a strongly connected and weight-balanced digraph, —L ™ is
a Hurwitz matrix.

I1l. ADMISSIBLE OBFUSCATIONS

We start our study by determining the space of the admissible
obfuscation signals f(t) and g*(¢). Understanding the nature
of these admissible signals for which the desired convergence
point of the algorithm is preserved is crucial in evaluating the
privacy guarantees of algorithm (2).

Definition 3 (Admissible obfuscation signals): We refer
to the set of obfuscation signals { f7 € £53°,¢7 € L} in(2)
that does not perturb the convergence of the algorithm, i.e.,
limy o0 2°(t) = & Z;VZI 27 (0) = & Z;\Ll r/ foranyi € V), as
the admissible obfuscation signals.

The following theorem, whose proof is given in Appendix B,
gives the necessary and sufficient conditions that define the set
of the admissible obfuscation signals. We only require this set to
be a subset of the integrable and essentially bounded signals so
that the differential (2a) has a unique solution. Contrary to the
common practice in the literature, the signals are not required to
be vanishing.

Theorem 3.1 (The set of necessary and sufficient condi-
tions on the admissible obfuscation signals): Consider algo-
rithm (2) over a strongly connected and weight-balanced digraph
with obfuscation signals f?, g* € £3°, i € V. Then, the trajec-
tory t — x*(t) of all agents i € V converges to 1 Zjvzl 27 (0) =
+ Zjvzl r ast — oo if and only if

lim
t—00

t N
> (0 r) + dby gk (n)) dr =0 (42)

0 p=1

t
lim [ eV CTRT(f(r) + Ag(r))dr =0  (4b)
t—oo [

for any R and L™ as defined in (3). |

The necessary and sufficient conditions (4) show that the
choice of admissible signals is highly coupled among the agents.
However, the agents must choose the admissible signals pri-
vately and without cooperation with others. The next theorem,
whose proof is given in Appendix B, offers a way for each agent
i €V to choose its own admissible signals (%, g%) privately
without revealing them explicitly to others.

Theorem 3.2 (Linear algebraic coupling): Consider algo-
rithm (2) over a strongly connected and weight-balanced di-
graph. Let each agent 7 € V choose its local obfuscation signals
fi, g* € L3 such that

i
lim
t—00 0

(Fi(r)+diyg' (1) dr =5 5)

where b’i € R. Then, the necessary and sufficient conditions to
satisfy (4) are

N
> Bt=0 (62)
k=1
t
lim e Ngi(r)dr=aecR ieV. (6b)
0
[

By enforcing condition (5), Theorem 3.2 shows that the cou-
pling between the agents is a set of linear algebraic constraints.
Now, if we set up the modified algorithm (2) in a way that
each agent i € ) for example uses 3* = 0, and a common value
a € R, which can readily be o = 0, each agent can choose its
admissible obfuscation signals locally/privately according to (5)
and (6b) and still guarantee convergence to the exact average
consensus.

Definition 4 (Set of locally chosen admissible signals):
For any given « and 3s satisfying (6a), P(si,a)» t € V, denotes
the set of integrable function tuples (f¢, g*) satisfying (5) and (6).

Choosing signals that satisfy condition (5) is rather easy.
However, condition (6b) appears to be more complex. The result
below, whose proof is given in Appendix B, identifies three
classes of signals that are guaranteed to satisfy condition (6b).

Lemma 3.1 (Signals that satisfy (6b)): For a given
a€eR, let g=g1+g2 € L satisfy one of the con-
ditions: (a) limy o g(t) = a; (b) limy o g1(t) = @ and
lim; o fot g2(7)dT = g < 00; and (¢) lims_, g1(t) = « and
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fot o(]g2(7)|)dT < oo for ¢t € Rsp, where o is any class Ko
function. Then, limy_, fot e~ ("g(r)dr = a. [ |

Of theoretical interest, Lemma 3.1 reveals a relaxation on the
commonly seen condition in the literature, which requires the ad-
ditive signal to be vanishing. Lemma 3.1 shows that admissible
obfuscation signals {(f7,g7) € Pgs q)};=, should not neces-
sarily be vanishing signals even for a = 0 and 3* =0, i € V.
For example, g1 () = 0 and g(t) = sin(¢g + 27 (5t + wot)),
which is a waveform with linear chirp function [33], where
wy is the starting frequency at time ¢t = 0, ¢ € R is the chirpi-
ness constant, and ¢y is the initial phase, satisfy condition (b)
of Lemma 3.1 with &« = 0. When a nonzero « is used, the
choices for nonvanishing ¢ satisfying (6b) are much broader,
e.g., according to condition (b) of Lemma 3.1, any function that
asymptotically converges to o can be used.

Remark 3.1 (Admissible signals for discrete-time imple-
mentation): We can discretize the continuous-time Laplacian
consensus algorithm (2) with time step 6 € (0, 1/d23*) [2] as

x(k + 1) = (1— 6L)x(k) + 6f (k) + 6Ag(k).  (7)

Similar argument to those in the proof of Theorem 3.1 leads to
the following conditions on the admissible obfuscation signals

(fi(k),g"(k)), i€ V:

k N . ‘ ‘
SOS () + di g (D) =0

lim (8a)
ke 15 i

k—1
lim » (I—6L")'RT(f(k—1-1)+Ag(k—1-1))=0.
k—o00

(8b)

The algorithms in [6] and [7] are special cases of (7), which
use fi(k) = g*(k). They choose the obfuscation signals from a
particular class of zero sum, which trivially satisfies (8a), and
vanishing, which satisfies (8b), stochastic signals.

IV. PRIVACY PRESERVATION ANALYSIS

In light of Theorem 3.2, our proposed privacy preservation
mechanism is as follows.

Definition 5 (Privacy preservation mechanism via addi-
tive obfuscation signals): Each agent ¢ € }V implements (2),
for which it chooses its own obfuscation signals (f?,g%) lo-
cally/privately from Pgi o).

« and f's are the preset parameters of the modified al-
gorithm (2). The complexity of choosing them is similar to
choosing the algorithm parametersin [7], [ 18], [19], and [20]. As
mentioned earlier, the straightforward choice is 3* = 0,4 € V,
and o = 0.

To start the privacy preservation analysis, we first explicitly
define the knowledge set of an eavesdropper that it uses to infer
the private reference value of the other agents.”> Without loss
of generality, we assume that the internal eavesdropper is agent
1 € V and the external agent is agent ext.

2We conduct our privacy preservation analysis from a single eavesdropper’s
point of view. The extension of our theoretical results to multiple collaborative
and noncollaborative eavesdroppers is straightforward.

Definition 6 (Knowledge set of an eavesdropper): The
knowledge set of the internal eavesdropper agent 1 and external
eavesdropper agent ext is

K* = {Y*(0),G(V,&,A),
conditions (5) and (6), a, { 3"}/, } 9)

a € {1,ext}. V(1) = {o (1), 4" (7). {0 () biews, Vo I the
set of signals available to agent 1. Let and O C V be the set
of agents that external eavesdropper ext has access to it. Thus,
V(1) = {{y' () }ico}o- 0=

The reader should notice that parameters « and 5 of every
agent ¢ € ) are part of the eavesdropper’s knowledge set, indi-
cating that the privacy preservation guarantees we provide do
not depend on the lack of information on the value of these
parameters.® For any given « and 37, P(si,q) is an infinite set
of integrable function tuples (f*, g*). Each agent ¢ € ) decides
locally/privately which (f*, g*) it chooses from P(s: ). Thus,
the probability of an eavesdropper (internal or external) knowing
what admissible pair of (f*,g") € P(4i ) agent i has chosen
locally converges to zero as the cardinality of the set P(gi o) is
infinity. This is in contrast to the stochastic methods such as [7],
which instruct the agents to choose their obfuscation signals
from a specific probability distribution, limiting the privacy
guarantees; see Section V for more discussions.

Identifying the initial condition of the agents in the presence of
unknown additive obfuscation signals may appear to be related
to the classical concept of strong observability/detectability in
control theory [35], [36]. However, the necessary conditions on
the unknown admissible obfuscation signals (5) and (6) provide
additional information to the eavesdropper. Such information
is not being captured by the strong observability/detectability
framework, rendering it inadequate for our study.

Consider the internal eavesdropper, agent 1, when it intends to
obtain the initial condition of one of the agents = € V. The critical
part of the knowledge set of an eavesdropper when it targets an
agent is the signals that it has access to. Intuitively, when an
eavesdropper agent does not have direct access to all the signals
in{y7(t)}e i, ,» arational strategy appears to be that the eaves-
dropper agent estimates the states of the agents; it does not have
access to their outputs. If those agents also have out-neighbors
that their output signals are not available to the eavesdropper
agent, then the eavesdropper agent should estimate the state of
those agents as well, until the only inputs to the dynamics that
it observes are the additive admissible perturbation signals. For
example, in Fig. 2(a), to obtain the reference value of agent 6,
agent | compensates for the lack of direct access to y” (), which
enters the dynamics of agent 6, by estimating the state of all the
agents in subgraph ggl. Our results below; however, show that
this strategy is not effective. In fact, we show that an eavesdrop-
per agent (internal or external) is able to uniquely identify the
reference value of an agent: € V if and only if it has direct access
to {y? (t)} e Nirs forall ¢t € R>. To study privacy preservation

3The interested reader can find our extended results in [34] on privacy
preservation against eavesdroppers that have various degrees of knowledge about
« and B's.
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Fig. 2. (a) and (b) depict graphs G that node 1, the eavesdropper, is
an articulation point of the undirected representation of G. The islands
of G induced by node 1 are highlighted by closed dashed curves. (c) kth
induced island of node 1.

for agent ¢ € V), we partition the graph into islands whose nodes
are classified into different groups based on their information
exchange by the eavesdropper and its out-neighbors (see Fig. 2).
For that, note that removing eavesdropper agent 1 and its incident
edges results in 7! > 1 disjoint strongly connected subgraphs
g_i = ()_/,%, 6%) C GV, €), ke{l,...,n'}. Adding agent 1 in
subgraph g% and including its incident edges to this subgraph
results in an island graph Q% = (V,%, 5,%) Cc GV, €), where
Vi=ViU{1} and & = {(I,4) € €|l € Vi, j € Vi-}. Every
island of agent 1 is connected to the rest of the digraph G
only through agent 1 [see Fig. 2(c)]. Thus, any information
coming out of or going into any island of the eavesdropper goes
through the eavesdropper. To simplify the notation, without loss
of generality, carry out the subsequent study for agents in island
k=1,eg., gll. Based on how each agent interacts with agent 1,
we divide the agents of island gll into the following three groups
[see Fig. 2(c)]:

D Viy = {i € Vi € N, Niww & N |-

2) Vi = {ievt]ig N}

3) Vi = {i € Vi |i € N Niw € N }-

Vl% 4 1s the set of agents, in which agent 1 has direct access to

all their communication signals, while Vi 5 and Vl% 5 are the sets
of agents, in which some of interagent communication between
them is not available to agent 1. Without loss of generality, in
what follows, we assume that the agents in the network are
labeled according to the ordered set (1, V% 25 V% 3 Vl% LS V\VD).
We let the aggregated states and obfuscation signals of the
agents in Vil, 1€{2,3,4}, be x; = [mz]ievl%l, g = [g"]ievil,
and f; = | fl]ievlll' Similarly, we let the aggregated states and

obfuscation signals of the agents in V\Vll be x5 = [Ii]i,el}\vl ,

g = [giLGV\V% and f5 = [fi]ievw%' We partition L, A, and

D", respectively, to subblock matrices L;;’s, A;;’s, and Df}"’s
in a comparable manner to the partitioned aggregated state
(2!, x2, %3, X4, X5) (see [34, Lemma 4.2]). By definition, L;; =
—A;;. 4,5 €{1,...,5}, i # j. With the right notation at hand,
we present the following result that provides the privacy guaran-
tee according to Definition 2 for the agents belonging to Vl%2 and

Vl% 3. Because every agent in Q% is connected to the rest of the
agents in digraph G only through agent 1, all the out-neighbors
and in-neighbors of agent 2 are necessarily in Qll. The proof is
given in Appendix B.

Lemma 4.1 (A case of indistinguishable admissible initial
conditions for an internal eavesdropper): Let agent 1 be
the internal eavesdropper whose knowledge set is as Defini-
tion 6. Let Gt = (V1 EL) be an island of agent 1 that satis-
fies Vll,Z # {}. Consider the modified static average consensus
algorithm (2) over a strongly connected and weight-balanced
digraph G where the agents are implementing {(z¢(0) =
ri, £, 9"}, with the locally chosen admissible obfuscation
signals (f*, g%)€ P(si «)- Consider also an alternative execution

of (2) with { (2% (0), /', ¢"")} N, satisfying
2" (0) = '(0), x,(0) = x4(0), x5(0) = x5(0)
x5(0) — x2(0) = —AgzLz; (x5(0) — x3(0))
2'(0) R, je€ Vi, (10)

and
£ = £i(),

£ = 11(8) = [Aage ™5 (x5(0) = x3(0)],_, i € Viy
(1

i€V\ Vi,

(12)
Then
Y (t) =" (t), teRs, i€V\Vis.  (13)
Moreover
N N N
, _
> o2 0)=Y 2l 0)=>_r (14)
i=1 =1 =1
1 N
. il - i .
Jim « (t)fN2r, i€y (15)
(f"',gi/) € Pgi s iev. (16)
[ |

Remark 4.1 (Lemma 4.1 leads to privacy preservation in
accordance with Definition 2): Notice that by virtue of (16),
(f”,g"),i € V, generated by (11) and (12), satisfies the locally
chosen admissible obfuscation signals conditions (5) and (6) for
the same « and (3¢ used to generate {f%, g}~ ;. Next, notice
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that according to (10) and ngl being full rank and A3 having
rows with at least one none zero entry, for any arbitrary v € R,
there always exists xi/(O) for i € (V%2 U V%S) that satisfies
|z7(0) — 27(0)| >~ and (f”, g") € P(si ), While signals re-
ceived by the eavesdropper, as stated in (13), are identical for
the execution of the algorithm using {(z?(0) = r%, f%, g*)} ¥,
and {(z%(0), f, g"")}¥,. This means that the privacy of all
the agents in (V%2 U Vll,3) is preserved in accordance with
Definition 2. u

We can develop similar results, as stated in the following
corollary, for an external eavesdropper that does not have direct
access to the output signal of some of the out-neighbors of
agenti € V.

Corollary 4.1 (A case of indistinguishable admissible ini-
tial conditions for an external eavesdropper): Let agent ext
be the external eavesdropper whose knowledge set is as Defini-
tion 6 where the eavesdropper has access only to yl‘(t), leOC
V.Let O={jeV|j¢gOandJi € Ost.ic N} CO} be a
nonempty set. Consider the modified static average consensus
algorithm (2) over a strongly connected and weight-balanced
digraph G, where the agents are implementing {z¢(0) =
ri, fi,g' Y|, with the locally chosen admissible obfuscation
signals (f?, g')€ P(gi o). For any k € O, consider also an al-

ternative execution of (2) with {z"'(0), /', g" }N | satisfying

!

2" (0) = 2'(0) i€ V\Afiﬁﬂc

2'(0) — 2'(0) = — 2K (¥ (0) — 2*(0)) @ € N

- db,
2 (0) eR (17)
and
£ = i) i € V\Niniy
F(t) = F1(t) — age ! (2" (0) — 2F(0) i e NE (18)
and
g =g'(t) ieV\NE,
g"(t) = g'(t) +e %t (@ (0) = 2H(0) i€ N (19
Then
yit)=y"(t), teRs, i€V}  (20)
Moreover,
N N N
da )= 20 =3 r @1
i=1 =1 =1
, 1 M
lim 2”'(t) = v ; v i€y (22)
(fi’,g”’) € Pigi.a), iev. (23)
]

The proof of Corollary 4.1 is given in Appendix B. A sim-
ilar assertion to that of Remark 4.1 about privacy preservation

compliance in accordance to Definition 2 can be made about
the agents whose privacy is preserved by virtue of Corollary 4.1
with respect to an external eavesdropper.

Through Lemma 4.1 and Corollary 4.1, we have established
that the privacy of agents when the eavesdropper, either internal
or external, does not have access to at least one signal that is
transmitted in to the agent is preserved. The next result, whose
proof is given in Appendix B, shows that such a guarantee does
not hold for agents whose incoming and outgoing signals are in
the knowledge set of the eavesdropper.

Lemma 4.2 (Observer design for eavesdroppers with the
knowledge set (9)): Consider the modified static average con-
sensus algorithm (2) with a set of locally chosen admissible
obfuscation signals (f?, g*) € P(gi o), © €V, over a strongly
connected and weight-balanced digraph G. Let the knowledge
set of the eavesdroppers be as in Definition 6. An external eaves-
dropper ext and internal eavesdropper agent 1 that has access to
the output signals of agent ¢+ € V and all its out-neighbors can
employ, respectively, observer

N
(= a; (¥ —v), CO)=-p"-a (24a)

j=1
n=—n+y’, n(0) € R (24b)
vE(t) = C(t) +n(t) (24¢)

and observer
. N ) ) .
b= ay (v —y'), v(0)=-p (252)
j=1

Vl(t) =Y(t) + $1(t> (25b)

to asymptotically obtain r’, i € V,i.e., v — r’,a € {ext, 1} as
t — oco. Moreover, at any time ¢ € R, the estimation error of
the observers, respectively, satisfies

Ve”(t)*ri:n(t)*xi(tH/o (F(T)+dowg' (1) dr—B'—a
(26a)

t t
n(t) :e*tno—i—/ e*(t*T)a:"(T)d7'+/ e T gi(r)dr
0

’ (26b)
and
SO = O 0+ [ (70 g0 dr — 5
(27)
[ ]

The reader may have noticed the subtle difference between
the computational cost of the observers for internal and external
eavesdroppers. To construct observer (25), the internal eaves-
dropper uses its local state. To compensate for the lack of internal
dynamics, the external eavesdropper is forced to employ a higher
order observer (24) and invoke condition (6b), which the internal
eavesdropper does not need.
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Building on our results of eavesdropper observer design in
Lemma 4.2 and indistinguishable reference values in Lemma 4.1
and Corollary 4.1, we establish the necessary and sufficient
condition under which an eavesdropper with knowledge set (9)
can discover the reference value of an agent ¢ € V.

Theorem 4.1 (Privacy preservation using the modified
average consensus algorithm (2) when the knowledge set
of the eavesdroppers is given by Definition 6): Consider the
modified static average consensus algorithm (2) with a set of
locally chosen admissible obfuscation signals {f?, g*}¥.| over
a strongly connected and weight-balanced digraph G. Let the
knowledge set of the internal eavesdropper 1 and external agent
extbe (9). Then, (a) agent 1 can reconstruct the exact initial value
of agenti € V\{1} ifand only if i € N}, and N7, C N} qs
and (b) the external agent ext can reconstruct the exact initial
value of agent 7 € V if and only if {{yj(T)}]GA/Om+I}T 0 C
yext( OO)

Proof: Proof of statement (a): Lemma 4.1 shows that if
i & Ny or Ny & Ngyiq, then agent 1 cannot uniquely iden-
tify the reference value r’ of agent i. Next, if i € N}, and

tut € Nowiy1, Lemma 4.2 guarantees that agent 1 can employ
an observer to obtain the reference value of agent 7. Next, sup-
pose agent i € V\{1} satisfies i ¢ N}, (respectlvely, i € No
and N, ¢ N 1). Without loss of generahty, let V1 be the is-
land of agent 1 that contains this agent ¢. Consequently, ¢ € Vf 3

(respectively, i € V% 5)- Then, by virtue of Lemma 4.1, we know
that there exists an infinite number of alternative admissible ini-
tial conditions and corresponding admissible obfuscation signals
for any agents in Vig U ViQ, for which the time histories of
each signal transmitted to agent 1 are identical. Therefore, agent
1 cannot uniquely identify the initial condition of any agents in
V%’ 3 U V% 5. In light of Corollary 4.1 and Lemma 4.2, the proof
of statement (b) is similar to that of statement (a) and is omitted
for brevity. |

Theorem 4.1 is of value from a transparency perspective. In
using algorithm (2), the agents now know what other agents may
discover their reference value. If privacy preservation is a must
and it is important to not to deviate from the exact average, one
also knows that the solution is to make sure that every agent
has an exclusive out-neighbor that is not the out-neighbor of its
out-neighbors. There are several classes of undirected graphs for
which any two agents on the graph have an exclusive neighbor
with respect to the other. Thus, by Theorem 4.1, the privacy of
all the agents is preserved from any internal eavesdropper when
they implement algorithm (2). Examples include cyclic bipartite
undirected graphs, 4-regular ring lattice undirected graphs with
N > 5, planar stacked prism graphs, directed ring graphs, and
any biconnected undirected graph that does not contain a cycle
with three edges (see [37] for the formal definition of these graph
topologies). Theorem 4.1 also presents an opportunity to make
agents private with respect to a particular or all the other agents
by rewiring the graph so that the conditions of the theorem are
satisfied.

Remark 4.2 (An eavesdropper cannot estimate the ref-
erence value of a private agent or a finite set of values
to which the private reference value of an agent belongs):

For any given admissible 3% and «, the cardinality of Psi,a)
is infinity. Each agent chooses its own (f*, g*) privately from
the infinite set P( B:,)- On the other hand, given any A € R+,
according to the discussion in Remark 4.1, for any agent i €
( ,%’3 U V%‘Q), ke {1,...,na'}, there exists an infinite set of

possible alternatives {(1:2( )s (f1:90) € P(gi,a)) Yooy, satisty-
mgz 1xg( )= Z _, 27(0) such that
A <[a'(0) =21 (0)| <[a'(0) —3(0)] <-- - <|2"(0) —}(0)]
(28)

¢ — oo for which y7(t) =y (t) for all j € N ;. Now, let
2'(0) be the estimate of eavesdropper on the reference value
24 (0)=r i € (V,%’3 U V%J)' Given (28), agent 1 cannot have
more confidence on z/(0) = z(0) over /(0) = x%(0). There-
fore, the eavesdropper will not be able to estimate neither the
state nor a finite set of values to which the initial value of an agent
belongs. Similar argument can be made about privacy preser-
vation with respect to external eavesdropper. It is important to
note that Lemma 4.1 and consequently the stronger notion of the
privacy that is established here are due to the use of obfuscation
signals (f*, g*) and would have not been possible if we had used
f* = g%, where f? comes from a specific class of functions as in
existing literature [7]. |

We close our study by pointing out that even though agent
1 cannot obtain the initial condition of the individual agents in
1/,%72 # {} and V/%B’ k€ {1,...,a'}, it can obtain the average
of initial conditions of those agents. Without loss of generality,
we demonstrate our results for k = 1.

Proposition 4.1 (Island anonymity): Consider the dynamic
consensus algorithm (2) over a strongly connected and weight-
balanced digraph G in which V%Q #{}.Letngz = [V] , UV 4

and d}

ot = Zje(vlliwll‘él) aj; be the out-degree of agent 1 in

subgraph gf. Then, eavesdropper 1 with the knowledge set (9)
can employ the observer

N
Gi= Zaij(yi -y), G0)=-p, ieVi,

j=1
n=— > ay (' —v), > B

(vi.ovt,) jeVi\{1}
n(t) =20 G
ult) = ————— o)
n2.3

o have i 1(0) = 25 5 08,

The proof is given in Appendix B.

V. PRIVACY PRESERVATION DISCUSSION

The deterministic and stochastic approaches to privacy preser-
vation withhold different definitions of a private agent. In our
deterministic setup, privacy is preserved when an eavesdropper,
despite its knowledge set, ends up in an underdetermined system
of equations when it wants to obtain the reference value of an
agent. Therefore, the eavesdropper is left with infinite guesses
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of a private agent’s reference value, which it cannot favor any
of them more than the other (see Remark 4.2). However, the
stochastic privacy of an agent is preserved when the eavesdrop-
per’s estimate of the reference value yields a nonzero uncertainty.
For example, in [7], a maximum likelihood estimator is used by
the eavesdropper to estimate the reference value of the other
agents. It is shown that the variance of P(k) of this estimator
converges to a constant matrix P. The privacy statement deter-
mines that the agents’ privacy whose corresponding component
in P converges to zero is breached. More specifically, given
a vector ¢, a space of the agents’ initial condition ¢ x(0) is
disclosed to the eavesdropper if (" P¢ = 0 and if (" P¢ > 0,
it is interpreted as conserving the privacy of the subspace. In
this setting, for an agent whose corresponding component of P
is nonzero, the eavesdropper does not know the agent’s exact
reference value, but it has an estimate of it. Hence, we tend to
favor the deterministic notion of privacy over stochastic as the
deterministic approach reveals less information. Fig. | is the
replicate of the result of an example study over the graph in
Fig. 2(b) in [7], which shows the evolution of the covariance of
the maximum likelihood estimator of the eavesdropper. As ex-
pected, P4y converges to zero but P, and Pss5 not. Even though
P55 and P55 are nonzero, they are pretty small, indicating that the
eavesdropper can have a good estimate of the reference values
of these agents. In contrast, our privacy preservation ensures that
for agents whose privacy is preserved, the eavesdropper neither
can obtain the reference value nor establish an estimate.

Consider the network given in Fig. 2(b). To demonstrate over
results, consider the following three implementations of the
modified continuous-time Laplacian average consensus algo-
rithm (2) with the reference values and the additive obfuscation
signals as follows:

Case (1): r=[-3,5,1,-2,10]"

t t° T !
f(t) = |:—3, —2COS <t2—~—1) ,m, tan (Ztanh(t)) s —2tanh(t)]

2

t
g(t)= [1 +0.23e"", cos (107TM) ,(1+ e *sin(10¢)) tanh(t),

.
1+e D% Jog (e —e” (1 +sin(2))) } .
Case (2): r = [-3,15,—4,—-2,5]"

t IR
f(t) :|:_3,_2COS (M) ,_106 + t5+

7> tan (gtanh(t)) )
.
—10e~% — 2tanh(t)]

t2
g(t) = [1 +0.23¢", cos (107rt5+1> ;

5e %" 4+ (1+ e 'sin(10t)) tanh(t), 1 + e (=17

5e ' +log (e — (1 +sin(t))) ] .

—— Agent1 Agent2 Agent3 - Agent4 Agent5
104 154
\ 20\
s 10 \
:i, 5+ N 5_\ 104 \

o 22 ol 2 Y 22
—r ) —r———— 104 ;

3 45 01 2 3 45

S mu 10| 20'\\
5 Bl —— 5 104
A 32 o
0 0 32 (et
0 4 2 3 4 5.0 4 2 3 45 0 4 2 3 4 5
104, 20
= |\ 15-‘\
P! \
= 59\ 104 \
| 54 \.
(eSS 0 —
012345 01 2345
Case (2) Case (3)

Fig. 3.  Consensus results for three different cases.

Case (3): r =[—3,25,—9,-2,0]"

¢ -2t m
f(t) [3,2005 (752-&-1) ,—20e "+ ,tan (Ztanh(t)) ,

to+1

.
—20e % — 2tanh(t)}

2
g(t) = [1 +0.23e ", cos <1O7rt5+1) ,

10e 2 + (1 + e 'sin(10¢)) tanh(t), 1 + e (D%,

.
10e " +log (e — (1 + sin(t))) } :

Let Case (1) correspond to the actual operation case, and let
the other two cases be admissible alternative ones. Here, all the
admissible obfuscation signals are smooth, uniformly contin-
uous, and nonvanishing. They satisfy (5), (6a), and (6b) with
a=1land ' =0,i €V ={1,2,3,4,5}. The plots in the top
row of Fig. 3 confirms the convergence of the algorithm to the
exact average, as guaranteed by Theorem 2. The plots in the
second row of Fig. 3 show that the transmitted-out signal 3° of
each agent i € V satisfies lim;_,o ' (t) = + Z?]:l rl + a. Let
Sy'(t) be the communication signals difference between Case
(), 7 € {2, 3} and Case (1). As seen in the two bottom plots in
Fig. 3, only 6y2(t) is nonzero. This means that agent 1, in all three
cases, receives exactly the same transmission messages from its
neighbors, agents 3-5. This result, as predicted by Theorem 2,
shows that agent 1, the eavesdropper, cannot tell whether r? is
equal to 5 of Case (1), 15 of Case (2), or 25 Case (3). Moreover,
agent | is not able to say which one of these cases is more
probable. A similar statement can be made about agents 3 and 5
whose privacy is guaranteed in our framework. While the privacy
of agents 2, 3, and 5 is preserved, according to Lemma 4.2,
agent 1 can employ an observer of form (25) to asymptotically
estimate the reference value of agent 4. The response of this
estimator is shown in Fig. 4. Here, to make a comparison
study with respect to [7], we used the undirected graph of
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il i e e T —
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S 4 —— Reference value estimation of agent 4
" Reference value of agent 4
0 1 2 3 4 5
t

Fig. 4. Privacy breach of agent 4 in all three cases of Fig. 2(b).

Fig. 2(b). See [34] for a numerical simulation study using a
directed graph.

VI. CONCLUSION

In this article, we studied the extent of privacy preservation
that additive obfuscation signals can induce on the popular aver-
age consensus algorithm, when such signals are used to conceal
the reference value of the agents from eavesdroppers. In the
literature, a common trait of privacy preservation mechanisms
that do not perturb the exact convergence of the algorithm is that
each uses a particular class of vanishing noises or perturbation
functions [6], [7], [24]. Our intent was to study whether stronger
privacy preservation guarantees would be achievable if a broader
class of signals was considered. To conduct a thorough study,
we added obfuscation signals f? and ¢’ to both the state equa-
tion and transmitted-out signal of each agent ¢ € V [see (2)].
Previous work [6] and [7] used f? = g%. Our study showed that
privacy preservation still cannot be provided for agents, whose
transmitted-out and all transmitted-in communication messages
are available to the eavesdropper. However, using a broader class
of admissible obfuscation signals and nonidentical obfuscation
signals f% and g* for each agent i € V, we established a privacy
preservation analysis framework that led to a stronger notion
of privacy in the sense that an eavesdropper will be able to
estimate neither the state nor a finite set of values to which
the initial value of an agent belongs. We characterized the class
of admissible obfuscation signals with a set of functionals with
parameters o and 3, i € V. The existing results [6], [7], [24],
which use zero-sum and vanishing signals, are in fact using
a = 3" = 0. Thus, a = 8* = 0 are known to any eavesdropper,
internal or external. One can imagine that not every external
eavesdropper is fully informed. Our extended results in [34]
on privacy preservation against eavesdroppers that have various
degrees of knowledge about o and /3’s reveal, for example, that
if 3 corresponding to the locally chosen admissible obfuscation
signals of an agent ¢ € V is not known to an eavesdropper, the
privacy of the agent ¢ is preserved even if the eavesdropper
knows all the transmitted input and output signals of agent
¢ and the parameter «v. Finally, notice that our study of the
use of two obfuscation signals (f?, g*) as opposed to f = g°
leads to the theoretical finding that the obfuscation signals
can be nonvanishing. From a practical perspective, this finding

can be interesting with respect to, for example, a naive eaves-
dropper without processing power. The use of nonvanishing
signals conceals the final convergence value from this naive
eavesdropper. The more interesting case; however, is the case
of signals like chirp ¢*(t) = sin(¢o + 27(5t* + wot)) that we
identified through the results of Lemma 3.1. These signals lose
uniform continuity when ¢ — oo and, thus, may be considered
an impractical choice for an obfuscation signal. However, in
practice, the consensus algorithms are terminated in finite time
by tolerating some convergence error. As our example showed,
the effect of this type of nonvanishing signals on 2% (¢) diminishes
with time. Therefore, it is possible that we can have an acceptable
convergence error but still be able to fully disguise the final
convergence point even if the external eavesdropper knows o
and 3%. A formal study of the use of the chirp-type signals for
privacy preservation when the consensus algorithm is terminated
in finite time is left as our future work.

APPENDIX A
AUXILIARY RESULTS

To provide proofs for our lemmas and theorems, we rely on
a set of auxiliary results, which are given in this appendix.

Lemma 7.1 (Auxiliary result 1): Let L be the Laplacian
matrix of a strongly connected and weight-balanced digraph.

Recall LT = R'LR from (3). Let g(¢) = [g1(t), ..., 9.(t)]" €
L. Then
t
lim [ e IR Lg(r)dr =0 (29)
t—oo [

is guaranteed to hold if and only if

t

lim i e gi(r)dr=acR, ie{l,...,N}. (30)
Proof: Let
{=-L"¢+RTLg(t), ¢0)eRY @31
n=-n+RLg(t), n(0) € RV-1, (32)

The trajectories ¢t — ¢ and ¢ — m of these two dynamics for
t € Ry are given by

t
C(t) =eL¢(0) + / e VTR Lg(r)dr (33)
0
t
n(t) =e 'n(0) +R'L / e () g(r)dr. (34)
0

Let e = ¢ — m. Then, the error dynamics between (31) and (32)
is given by

é=—e+(I-L)¢ (35)

or equivalently

é=—Lte+ (LT +D)n. (36)

Let (29) hold. Since —L™ is a Hurwitz matrix, we have
lim;_,, ¢(t) = 0. Moreover, since g is essentially bounded,
the trajectories of ¢ are guaranteed to be bounded. Therefore,
considering error dynamics (35), by invoking the input-to-state
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stability results [38], we have the guarantees that lim;_,, e(t) =

0 and, consequently, lim; ,,, 1(t) = 0. As such, from (34),
we obtain

t

R'Llim [ e )

t—00 0

g(t)dr =0 (37)
The null space of R'L € RW-D*N s spanned by 1; there-
fore, limy_,no fot e "Tg(r)dr = aly, o € R, which vali-
dates (30). Now, let (30) hold. Then, using (34), we obtain
lim;_,~, M(t) = 0. Since g is essentially bounded, the trajecto-
ries of ¢ are guaranteed to be bounded. Thereby, considering
error dynamics (36), by invoking the input-to-state stability
results [38], we have the guarantees that lim;_,, e(t) = 0 and,
consequently, lim;_,, 17() = 0. Since —L™ is a Hurwitz matrix,
we obtain (29) from (33). |
Lemma 7.2 (Auxiliary result 2): Letu : R>o — R" beanes-
sentially bounded signal and E € R™*" be a Hurwitz matrix.

(@) If lim; oo u(t) =u € R™, and E € R™*", then

t

lim [ eBt¢u(r)dr = —E'a. (38)
t—o0 0
(b) If limy_, o fo 7)dT =0 € R", then
t
lim [ B¢ u(r)dr = o0. (39)
t—00 0

Proof: To prove statement (a) we proceed as follows. Let
wp(t) = u(t) — . Next, consider{“ E¢+ pand ((0) € R,
which gives ¢(t) = e®4¢(0) + [3 e~ p(7)dr, t > 0. Since
E is Hurwitz and p is an essentially bounded and vanishing
signal, by virtue of the input-to-state stable (ISS) results for
linear systems [38], we have lim;_,, ¢(¢) = 0. Consequently,
limy oo fot e® (=7 y(7)dr = 0, which guarantees (38).

To prove statement (b), we proceed as follows. Consider
C=un= En +u, ¢(0)=0,andn(0) € R™, whichresult
in ¢(t) = [y u(r)dr and

_ oEt ! E(tff)UT T
n(t) =e n(0)+/0 e (r)d

Given the conditions on u both ¢ and 7 are essentially bounded
signals (recall that E is Hurwitz). Let e = 1 — {. Then, we
can write ¢ = Ee + E( and e(0) = n(0) € R™. Since ¢ is
essentially bounded and satisfies lim;_,., E¢(¢t) = Eu, reason-
ing similar to that of the proof of statement (a), we can con-
clude lim;_,, €(t) = —u. As a result, lim;_,, (t) = 0. Con-
sequently, from (40), we obtain (39). |

Lemma 7.3 (Auxiliary result 3): Let G be a strongly con-
nected and weight-balanced digraph. Then, every island of any
agent ¢ is strongly connected and weight-balanced.

Proof: Without loss of generality, we prove our argument
by showing that the island gll of agent 1 is strongly connected
and weight-balanced. By construction, we know that there is
a directed path from every agent to every other agent in gll;
therefore, g% is strongly connected. Next, we show that g%
is weight-balanced. Let Vo = V%\{l} and V5 = V\Vs. Let the
nodes of G be labeled in accordance to (1, Vs, V3), respectively,

(40)

and partition the graph Laplacian L accordingly as

dl, —Aiz —Ag
—As; 0 L33

Since G is strongly connected and weight-balanced, we have
L1y = 0and 1L = 0, which guarantee that

—A
T 12 B o
L | L] =0 Ao |1 =0 @D
Therefore
—A
T 12 _ T - _
Wt | Ly, | T = 1\\/%\{ Ao Ln| 1,1 =0

which we can use to conclude that sum(A;,) = sum(Aj;).
Let the Laplacian matrix of g% be L%. Partitioning this
matrix according to order node set (1,)s), we obtain L% =

dowt  —Au 1,1
_;“;1 L, |’ where doy =" 0y, 215 = sum(A,). To
establish that (]1l is weight-balanced digraph, we next show that
—A
l‘Tl‘L1 = 0. From 1L = 0, it follows that: 1‘T 1L 2
Vi Vi 22

0. Therefore, to prove Ql is weight-balanced, we need to show
that d + sum(—Ay;) = 0, which follows immediately from

di! = sum(A],) and sum(A],) = sum(As). [ |
APPENDIX B

ProoF oF OuR MAIN RESULTS

Proof of Theorem 3.1: We prove first necessity. We write
the algorithm (2) in compact form

x=-Lx—Lg4+f+D"g=—-Lx+f+Ag (42)

Left multiplying both sides of (42) by 1 gives Z;VZI P (t) =
>y 1(f1( > i g (1), which results in 35, (1) =
SVl (0) + LN (Fi(r) +diy g(7)) dr. Because
24(0) = r’, to ensure limy_,o z'(t) = Zjvzl i, eV, we
necessarily need (4b).

Next, we apply the change of variable

P1
p =
L)wv

where T is defined in (3), to write (42) in the equivalent form

= Tx (43)

N
1 . . )
pr=—=_ (f+did") (44a)
VN i=1
Doy = —L puy +R(f+Ag). (44b)
The solution of (44) is
1
t)=—Y %0 45a
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Pa.n(t) =e " "oy (0)

t
+/ e " ORT(E(r) + Ag(r))dr. (45b)
0
Given (4a), (45a) results in limy_,, p1(t) = \/% Zfil 21(0) =
ﬁ SiL,ri.  Consequently, given (43), to ensure

limy o0 2°(t) = 4 Zj\;l r/,i €V, we need

lim py. v (t) = 0. (46)

Because for a strongly connected and weight-balanced digraph,
—L7 is a Hurwitz matrix, lim;_,~ e’ {poy.n (0) = 0. Then, the
necessary condition for (46) is (4b).

The sufficiency proof follows from noting that under (4),
the trajectories of (45) satisfy lim;_,, p1(t) = \/% Zfi L 2%(0)
and limy_,, py.n(t) = 0. Then, given (43) and 2°(0) = r’, we
obtain limy o 2%(t) = £ 0L i € V. [

Proof of Theorem 3.2: Given (9), it is straightforward to
see that (6a) is necessary and sufficient for (4a). Next, we
observe that using (5), we can write lim; fg R (f() +

-
D°t g(r))dr = RT [51 5N} Then, it fol-
lows from statement (b) of Lemma 7.2 that
limy oo [y et (TR (£(7) + D g(7))dr =0. As a
result, given f + A g = f + D°** g — L g, we obtain

t

lim [ e Y CIRT(£(r) + Ag(r)) dr
t—00 0
t
= —lim [ e Y ¢"DRTLg(r)dr. (47)
t—00 0
Given (47), by virtue of Lemma 7.1, (4b) holds if and only if (6b)
holds. =

Proof of Lemma 3.1: When condition (a) holds, the
proof of the statement follows from statement (a) of
Lemma 7.2. When condition (b) is satisfied, the proof
follows from statements (a) and (b) of Lemma 7.2,
which, respectively, give lim; fot e g (r)dr = a and
lim; oo fg e ("7 gy(7)dr = 0. When condition (c) is satis-
fied, the proof follows from statement (a) of Lemma 7.2,
which gives limy o fg e *"Tg(r)dr = a, and noting
that fg e (""" gy(7)dr is the zero state response of system
¢ =—C+ gs. Since go (t) is essentially bounded, this system
is ISS, and as a result, it is also integral ISS [38]. Then,
fot e =7 gy (1)dr = 0 follows from [38, Lemma 3.1]. [ ]

Proof of Lemma 4.1: Let the error variables of the two execu-
tion of (2) described in the statement be 6z (t) = z*'(t) — x(t),
5y (1) = 47 (1) — (1), 64" () = g7'(1) — g’ (1) and 5 (t) =
f(t) = f(t), i € V. Consequently

521(0) =0, x4 =0, 6x5(0)=0 (48a)
52(0) € R, ie(Vi,uviy) (48b)
3x2(0) = —AgsL339x3(0) (48¢)

and
Sgtt)=0, 5f'(t)=0 (49a)
og,(t) =0, 6f;(t) =0, 1e{3,4,5} (49b)

5go(t) = —e P2 5x,(0), 6F5(t) = —Agge L93L6x5(0).
(49¢)

Given the interagent interactions across the network based on
agent grouping in accordance to the definition of the island Qll
(see Fig. 2), the error dynamics pertained to the modified static
average consensus algorithm (2) reads as

5! . —An 0 —Au —Ay] [
) —Ay; Ly —Axz —Ayy O 0%
ox3| =—|—A31 —Azx Lz —Az O ox3
0xXy —-A;; —Ap O L4y 0 0X4
0xXs5 —-As; O 0 0 Lss O0Xs
L
0 Ap 0 Ay Al [dg! of!
Ay Ay Az Ay O 0gs ofy
+ |A31 Aszs Az3 Azyy O 0gs| + | of3 (50)
Ay A 0 Ay 0 | |dgy of4
A 0 0 0 Ayl loe| |0t

Since, for a strongly connected and weight-balanced digraph,
we have rank(L) = N — 1 and —(L 4+ L") < 0, the subblock
matrices —L33 and —L44 and —L55 satisfy —(L;; + LZ) <0,7¢€
{1,...,5}. Thereby, they are invertible and Hurwitz matrices.

To establish (21), we show that IJTV(SX(O) = 0. For this, note
that taking into account (48), we can write

00 0 00 0
0 0 —Ayz 0 Of [Ly30x3(0)
6x(0)=10 0 Lsz O O |Ly3ox3(0) (51)
00 0 00O 0
00 0 00O 0
B

Comparing B with the block partitioned L in (50), it is
evident that 1'B = 0 follows from 1'L = 0. Consequently,
we can deduce from (51) that 170x(0)=0. Next,
given (21), we validate (15) by invoking Theorem 3.2
and showing that the perturbation signals (f%',¢"), i €V,
satisfy the sufficient conditions in (6). For iEV\Vl%Q,
the sufficient conditions in (6) are trivially satisfied. To
show (6a) for i € V%_Q, we proceed as follows. First note

that since (f%,g'), i € Vi,, are admissible signals, they
necessarily satisfy (6a). Next, note that using (10), we can
write fg(—A23e’L3375X3 (0) + Dg;teiDggtT(SXQ (0))d7’ =
Agslzie L3tix5(0) — e P35 75x,(0). Let By = {6}
Then, in light of the aforementioned observations and
the fact that —Lsz and —D$5" are Hurwitz matrices,

we can write limy o [ (f5(7) + D35'gh(7))dr = By +
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limy_, o0 (Agslzie L5310x5(0) — e P35 73x,(0)) = By, which
shows that (f% g'"), i€ V%Q, also satisfy the sufficient
condition (6a). Establishing that gi/, 1€ Vi2, satisfies that the
sufficient condition (6b) follows from the admissibility of g,
xS V%Q, which ensures that it satisfies (6b), and direct calcula-
tions as shown in the following: lim;_,. fot e =T gi (1) dr =
o+ limy oo fg ~(t=7)e=d6u752%(0) dr = a. Here, we used
the fact that for a strongly connected digraph, we have d? , > 1.
Next, we assume that (13) or equivalently

Syt(t) = 6zt (t) +6g'(t) =0, t e R (52a)
0y (t) = 0xa(t) +682(1) =0, 1€ Rxo (52b)
0ya(t) = 0xa(t) +0g4(t) =0, teRxg (52c¢)
dys(t) = ox5(t) +0g5(t) =0, tE€R5o (52d)

hold. Then, for the given initial conditions (48), we identify the
perturbation signals that make the error dynamics (50) render
such an output. As we show in the following, these perturba-
tion signals are exactly the same as (49). Then, the proof is
established by the fact that given a set of initial conditions and
integrable external signals, the solution of any linear ordinary
differential equation is unique. That is, if we implement the
identified inputs, the error dynamics is guaranteed to satisfy (52).
If (52) holds, then the error dynamics (50) reads as

oit = —dl oxt +5f! (53a)
6%y = — D55 o + Ag3dxs + Agszdgs + 0fo (53b)
0%3 = —L33dx3 + As3dgs + 0f3 (53¢)
0%y = —DSYoxy + 0fy (53d)
6x5 = —D2E6x5 + of5. (53e)

Here, we used L;; = DS — A,;, i € {1,2,4,5}. Next, we
choose the perturbation signals according to (49). Then, for the
given initial conditions (48), from (53), we obtain

§i' = —dldzt, = 0z () =0 = Sy'(t) =0 (54a)
0k3 = — Lazdxz, = ox3(t) = e "2'ix3(0) (54b)
6%y = — D%y, = 6x4(t) =0,= Sy,(t) =0 (54c)
0k5 = — Dgtoxs, = Ox5(t) = 0,= Jys(t) = 0 (54d)

for t € Rsq. Substituting for x5 and 6f5 into (53b), we obtain

(5).(2 = —Dg;t(SXQ + Agge_LS?’t(SXg (0) — Agge_L?’?’t(SXg (0)

= —DYSx,, = 5xa(t) = e P 5%, (0) (55)
for t € R>¢. Finally using g5, in (49¢c), we obtain
8y (t) = 0x2 + 68y
= e P 5x,(0) — e P2 5x,(0) = 0 (56)

fort € Rxq. |
Proof of Corollary 4.1: The proof can be deduced from the
proof of Lemma 4.1. The proof trivially follows from (11), (12),

and (17) through singling out an agent in Vl% 5 and finding all of
its in-neighbors in Vll’ 9 [ |
Proof of Lemma 4.2: For an internal eavesdropper, given (2)
and (25), we can write ¢ + @' = f? +d¢ , ¢, which, because
of a:(O) =r’ and ((0) = -3, gives ¥(t) = —a'(t) +r' +
fo fi(r) +di,, g'(T))dr — B, t € Rsg. Then, using (2b) and
(25b), we obtain (27) as the estimation error. Subsequently,
because of (5) and since limHoo (x1(t) — 2%(t)) = 0, from (27),
we obtain lim; . () = r’. For an external eavesdropper,
given (2) and (24a), we can write C + it = fi+di, g%, which,
given °(0) = r® and ((0) = —3° — o, for t € R, gives
t
() ==a'(0) + 1+ [ (F(0)+ dipyg'(r)dr — 5~
0
(57

On the other hand, using (2b), ¢+ n(t) is obtained
from (26b). Then, tracking error (26a) is readily de-
duced from (24c) and (57). Next, given (5) and (6b)
and also limt_>OC e 'y =0, we obtain lim; . v(t) =r® +
limy o0 (—2 —i—fo ~=T i (1)dr).

Subsequently, since lim; ., °(t) = 4 Zjvzl r/, we can con-
clude our proof by invoking Lemma 7.2 that guarantees
limy o0 fot e~ Mgl (T)dr = limy o0 27 (t) = 4 E;\le r.

Proof of Proposition 4.1: Consider the aggregate dynamics
of n and x;, 7 € {2, 3,4}, which reads as

7 [dll —Ag 0 —A] [y
X2| _ [~Axa D3 Ay —Ag] |y,
X3 —A3; —Az; DY 0 Y3
X4 |—Au —Ay 0 D3 | Ly
Ly
[ 0
+ f2 + Dglzltgz
fs + Dg5'g,
[f4+ D%i'g,

Notice that L% is the Laplacian matrix of graph Qll. B
virtue of Lemma 7.3, we know that gll is a strongly
connected and weight-balanced digraph. Consequently,
left multiplying both sides of equation above with 17,

Vi

gives N+ Zje]/ll\{l} zt = Zjeyll\{l}<fj (t) + df)ut gj( ))

Thereby, g%ven n(0) = — Zjev%\{l}_/j and (0) =r,

we obtain n(t) = Z]EV%\{I} rl— Zjev%\{l} 2’ (t) +
7 7

2 jevtiny Jo(F(7) + & g7 (7))~ 2 jevtny B On

the other hand followmg the proof of Theorem 4.2,

we can conclude that Z'evl Gi(t) = Zievil o

Z:'L‘EVIl ( + Zze]}f fO fl + déut g ( ))dT -

Dt Bt Therefore, we can write ng3pu(t) =
eV )

Ljert vy " 2gertvty 1) T Lept,vty) B F
S eyt Jo (F(7) + dlu 6/ (D) + a5 (1),
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The proof then follows from the necessary condi-
tion (5) on the perturbation signals and the fact that
: 1 (1) —

limy oo n?)g xt(t) — ZjE(}/iQUVfg) 2'(t) =0 (recall that
limg o 2 (t) = limy o0 22 (t), Vi, j € V). [ |
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