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Abstract— This paper proposes an algorithm for Federated
Learning (FL) with a two-layer structure that achieves both
variance reduction and a faster convergence rate to an optimal
solution in the setting where each agent has an arbitrary
probability of selection in each iteration. The first layer of
our algorithm corresponds to the model parameter propagation
across agents done by the server. In the second layer, each
agent does its local update with a stochastic and variance-
reduced technique called Stochastic Variance Reduced Gradient
(SVRG). We leverage the concept of variance reduction from
stochastic optimization when the agents want to do their local
update step to reduce the variance caused by stochastic gradient
descent (SGD). The special attention in this paper is on FL
operation where the agents’ participation in the update process
in each round is probabilistic and non-uniform. We provide
a convergence bound for our algorithm which improves the
rate from O(\/%) to O(+) by using a constant step-size
when the cost ls strongly convex. For non-convex costs, we
establish a O(3=) to a stationary point using a vanishing
stepsize. We demonstrate the performance of our algorithm
using numerical simulations.

I. INTRODUCTION

In recent years, with the technological advances in modern
smart devices, each phone, tablet, or smart home system,
generates and stores an abundance of data, which, if har-
vested collaboratively with other users’ data, can lead to
learning models that support many intelligent applications
such as smart health and image -classification [1], [2].
Standard traditional machine learning approaches require
centralizing the training data on one machine, cloud, or in
a data center. However, the data collected on modern smart
devices are often of sensitive nature that discourages users
from relying on centralized solutions. Federated Learning
(FL) [3], [4] has been proposed to decouple the ability to
do machine learning from the need to store the data in
a centralized location. The idea of Federated Learning is
to enable smart devices to collaboratively learn a shared
prediction model while keeping all the training data on
the device.

Figure 1 shows a schematic representation of an FL archi-
tecture. In FL, collaborative learning without data sharing is
accomplished by each agent receiving a current model weight
from the server. Then, each participating learning separately
updates the model by implementing a stochastic gradient
descent (SGD) [5] using its own locally collected datasets.
Then, the participating agents send their locally calculated
model weights to a server/aggregator, which often combines
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Fig. 1: Federated Learning structure with non-uniform probability
of agent selection in each iteration.

the models through a simple averaging, as in FedAvg [4],
to be sent back to the agents. The process repeats until
a satisfactory model is obtained. Federated learning relies
heavily on communication between learner agents (clients)
and a moderating server. Engaging all the clients in the
learning procedure at each time step of the algorithm results
in huge communication cost. On the other hand, poor channel
quality and intermittent connectivity can completely derail
training. For resource management, in the original popular
FL algorithms such as FedAvg in [4], at each round of
the algorithm, a batch of agents are selected uniformly at
random to receive the updated model weights and perform
local learning. FedAvg and similar FL algorithms come
with convergence guarantees [6]-[9] under the assumption
of availability of the randomly selected agents at each round.
However, in practice due to factors such as energy and time
constraints, agents’ availability is not ubiquitous at all times.
Thus, some works have been done to solve this problem
via device scheduling [10]-[14]. Nevertheless, the agents’
availability can be a function of unforeseen factors such as
communication channel quality, and thus is not deterministic
and known in advance.

To understand the effect of an agent’s stochastic availability
on the FL, recent work such as [15] proposed to move from
random batch selection to an FL model where the agents
availability and participation at each round are probabilistic,
see Fig. 1. In this paper, we adopt this newly proposed
framework and contribute to devising an algorithm that
achieve faster convergence and lower error covariance. Our
focus will be on incorporating a variance reduction procedure
into the local SGD procedure of participating learner agents
at each round. The randomness in SGD algorithms induces
variance of the gradient, which leads to decay learning rate
and sub-linear convergence rate. Thus, there has been an
effort to reduce the variance of the stochastic gradient, which
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resulted in the so-called Stochastic Variance Reduced Gra-
dient (SVRG) methods. It is shown that SVRG allows using
a constant learning rate and results in linear convergence
in expectation.

In this paper, we incorporate an SVRG approach in an FL
algorithm where agents’ participation in the update process
in each round is probabilistic and non-uniform. Through
rigorous analysis, we show that the proposed algorithm
has a faster convergence rate. In particular, we show that
our algorithm results in a practical convergence in expec-
tation with a rate O(+), which is an improvement over
the sublinear rate of O(#) in [15]. We demonstrate the
effectiveness of our proposed algorithm through a set of
numerical studies and by comparing the rate of convergence,
covariance, and the circular error probable (CEP) measure.
Our results show that our algorithm drastically improves
the convergence guarantees, thanks to the decrease in the
variance, which results in faster convergence.

Organization: Section II introduces our basic notation, and
presents some of the properties of smooth functions. Sec-
tion III presents the problem formulation and the structure
behind it. Section IV includes the proposed algorithm and
its scheme. Section V contains our convergence analysis for
the proposed algorithm and provides its convergence rate.
Section VI presents simulations and Section VII gathers our
conclusions and ideas for future work. For the convenience
of the reader, we provide some of the proofs in the Appendix.

II. PRELIMINARIES

In this section, we introduce our notations and terminologies
used throughout the paper. We let R, R, R>(, denote
the set of real, positive real numbers. Consequently, when
x € R, |z| is its absolute value. For x € R?, ||x|| = vVxTx
denotes the standard Euclidean norm. We let (.,.) denotes
an inner product between two vectors for two vectors x and
y € R9. A differentiable function f: R? — R is Lipschitz
with constant L € Ry, or simply L-Lipschitz, over a set
C C RYif and only if | f(x) — f(y)] < L|z -yl for
x,y € C. Furthermore, if the function is differentiable,
we have f(y) < f(z)+ V[T (y — )+ 5|y — | for all
xz,y € C [16]. Lastly, we recall Jensen’s inequality, which
states [17]:
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III. PROBLEM STATEMENT

This section formalizes the problem of interest. Consider a
set of N agents (clients) that communicate with a server to
learn parameters of a model that they want to fit into their
collective data set. Each agent has its own local data which
can be distributed either uniformly or non-uniformly. The
learning objective is to obtain the learning function weights
6 € R? from

N Ly
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where f,, is possibly a convex or non-convex local learning
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Fig. 2: SVRG update steps.

training data set {(qn.i, Jn.i)}i7y C R4 x R (supervised
learning). Examples include [18]

2

s

o square loss fp i(0) = || (Un. - Gn.i0)
 10g 1055 f,,1(0) = log(1 + e~indni0).

Assumption 1 (Assumption on L-smoothness of local cost
functions): The local loss functions have L-Lipschitz gradi-
ents, ie., for any agent n € {1,--- | N} we have

IV f(0) = V. (0)]| < LJI6— 0| 3)

for any 0,0 € R? and L € R+,.
This assumption is technical and common in the literature.

Problem (2) should be solved in the framework of FL in
which agents maintain their local data and only interact with
the server to update their local learning parameter vector
based on a global feedback provided by the server. The
server generates this global feedback from the local weights
it receives from the agents. In our setting, at each round &
of the FL algorithm, each agent n € {1,---, N} becomes
active to perform local computations and connect to the
server with a probability of p®. We denote the active state
by 1% € {0,1}; thus,

pF =Prob(1F =1).

The activation probability at each round can be different.

IV. FEDERATED LEARNING WITH VARIANCE REDUCTION

To solve (2), we design the FedAvg-SVRG Algorithm 1,
which has a two-layer structure. In this algorithm, each agent
has its own probability to be active or passive in each round
which is denoted by p” for agent n at iteration k.

Algorithm 1 is initialized with §° by the server. We denote
the number of the FL iterations by K. At each round
k € {1,---, K}, the set of active agents is denoted by .A*
(line 5), which is the set of agents for which lfl = 1. Then,
each active agent receives a copy of the learning parameter
6% from the server. Afterward, active agents perform their
local updates according to steps 7 to 18. For resource
management local update in FL algorithms, e.g., [15], follow
an SGD update. However, the SGD update suffers from
a high variance because of the randomized search of the
algorithm, so instead of using the SGD update step, which
results in a decaying step size and slow convergence, we use
the SVRG update step which is stated in lines 7 to 18. In
the SVRG update, we calculate the full batch gradient of the
agents at some points, which are referred to as snapshots.
Then, between every two snapshots, each agent does its
local update. A schematic of SVRG update steps is shown
in Fig. 2.
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Algorithm 1 FedAvg-SVRG with non-uniformly agent sam-
pling

1: Input: 4, K, 6°, {pk}, S, M

2. Output: 0%

3: for k< 0,..., K —1do

4: Determine the active agents (sample 1% ~ pF)
s: AF < set of active agents

6 for n € A* do

7: ﬁ)k 0= =gk

8 for s « 0,..,5—1do

9: w = wﬁys

10 fi= g i Vi)

11 wk o =w

12: for m « 0,. —1do

13: Randomly p1ck # from € {1,...,L,}
14: wﬁ,s,m-‘rl = wfb,s,m - 6U£,s,m

15: where vf = Vfa(w),..)

= Vfu(w) + i

16: end for

17: set wf (. =wk

18: end for

19: end for N
20 ortt = g N Don=1 :Tg(wﬁ,s—l,zvf - wa,O)
21: end for

We denote the number of snapshots in our SVRG method
by S. We let M be the number of local SVRG up-
dates in between two snapshots for each active agent
before aggregation. Line 10 of Algorithm 1 corresponds
to computing the full batch gradient of each agent at
the snapshot points, then in line 12, each agent does
1ts local update w1th substituted gradient term denoted as
O om = Vgl ) = Vfu(w)+ i Note the gradient
substituted term in the SVRG update is an unbiased estima-
tor. After completing the SVRG update, each agent updates
its snapshot, which is mentioned in line 17 [19] [5]. In the
end, in line 20, the model parameter gets updated. It should
be noted that the weight for updating the model parameter
denoted by p? makes the gradient to be unbiased when
the model parameter wants to be updated because, by this
fraction, agents with a low probability of being selected for
each iteration still have an adequate impact on a model
parameter when they play a part at each iteration. Unlike
SGD, the stepsize § for the SVRG update does not have to
decay in line 14. Hence, it gives rise to a faster convergence
as one can choose a large stepsize.

V. CONVERGENCE ANALYSIS

In this section, we study the convergence bound for the
proposed algorithm which is applicable for both convex and
non-convex cost functions.

Assumption 2 (Assumption on unbiased stochastic gradi-

ents):
E[V fy(w)|w] =V fr(w) 4)

for any w and # € {1,..,L,}. As a vresult,

our subsntuted gradient term denoted by
O o = Vg (wf n sm) — Vfu(0) + fi becomes unbiased

where [i = 1n Zz:l V fni(W).
Assumption 3 (Bound on the substituted gradient term):

[ansm( )||2] < GQ,Vw,mS,m fOr some G > 0(5)

Assumption 4 (Assumption on pu-strongly convex local cost
functions): The local cost functions are strongly convex with
parameter [, i.e.,

fn(92) > fn(91> +an(91)T(92 - 91)

Also, we should point out that 1% and 1%, are independent
for n # n’, and the agent activation for each iteration is
independent of random function selection. In other words,
1% and V f4(w) are completely independent.

+Ll6:- 0112 ©

Theorem 5.1 (Convergence bound for the proposed algo-
rithm for both convex and non-convex cost functions): Let
Assumptions 1 and 2 hold. Then Algorithm 1 results in
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Furthermore, if assumption (5) holds, then Algorithm 1
results in

1 K—1 2

= E k < 0y _ px
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where [* is the optimal solution to (2).

Due to space limitation the proof of Theorem 5.1 appears
elsewhere. The Auxiliary lemmas to establish the proof are
given in the appendix.

Remark: Accordlng to (8) a rate of convergence of the
algorithm is determined by min{s%,é% 2}. In order to
select the convergence rate of our algorlthrn we can derive
it by choosing 6 = KE Then, the rate of convergence is
chosen from min{++—, &5, 1} By selecting e = 1 =
max{l — €, 2¢} the best convergence rate can be obtained,
which is of order O( \/Ki) Thus, using the decaying step-

size (§ = =) allows us obtain O( \/IT) convergence to the
optimal point for both convex and non-convex cost functions.

Proposition 5.1: If in additional to the assumptions made
in Theorem 5.1, Assumption (4) holds, then Algorithm 1
satisfies
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Fig. 3: Error of cost function for the first case (S = 5 and M = 2)
over 20 Monte Carlo iterations (thicker line correspond to the mean
of Monte Carlo iterations, vertical axis is limited for the purpose
of better visualization).
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where D is a constant and o = h(u,L,0, M) < 1 with a
proper choice of constant §.
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Due to space limitation the proof of Theorem 5.1 appears in
[20]. For details regarding o and D see [20]. By incorporat-
ing a SVRG approach in our FL algorithm, Proposition 5.1
for strongly convex costs guarantees that we can use a fixed
size step-size J and achieve a convergence rate of O(%)
The improvement is due to the fact that the SVRG update
step does not need to have a decaying stepsize throughout
the learning process. Thus, using a constant and larger
stepsize leads the algorithm to faster convergence. This is an
improvement over the existing algorithm [15] in which they
guarantee O(LK) as the convergence rate of the algorithm
by using the SGD method for their local update step.

VI. NUMERICAL SIMULATIONS

In this section, we analyze and demonstrate the perfor-
mance of the Algorithm 1 by solving a regression problem
(quadratic loss function). In this study, we compare the
performance of our algorithm to that of the FedAvg in [15].
We used a real medical insurance data set of 900 persons in
the form of (y,v) € R x R'*5. Then, to observe the effect
of stochastic optimization, we distribute the data among 18
agents. Thus, each agent owns 50 quadratic costs. In other
words, we seek to solve the following convex optimization

problem:
in £(0) = S (0 10
[nin £(6) = Nznzl fn(0), (10)

1 n
@)= 737 Fi®), Fi(0) = 400 — il

where in our problem, IV, and L,, are 18 and 50, respectively.
Here, 9,,; € R, and 6 is the learning parameter (weight)
which is a column vector with 5 elements.We conduct 20
Monte Carlo simulation in all of which we initialize our
algorithm at ° = [0.5,...,0.5] 7, and we use the fixed step-

size § = —= in all rounds. We also simulate the FedAvg
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Fig. 4: \Variance of cost function for the first case
(S=5and M =2) over 20 Monte Carlo iterations (thicker
line correspond to the mean of Monte Carlo iterations, vertical
axis is limited for the purpose of better visualization).
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Fig. 5: CEP graph for the second case (S = 5 and M = 2) over
20 Monte Carlo iterations. The results for our algorithm is in the
right while the result for algorithm of [15] is shown on the left.

algorithm of [15] with the same initialization but using the
decaying stepsize of LK as mentioned in [15]. For our

algorithm we consider two cases: (1) (S = 5, M = 2) and
) (S =10, M = 5).

The simulation results for the first case are shown in Fig. 3—
Fig.5, while the results for the second case are shown in
Fig. 6-Fig.8. Figures 3 and 6 show that in both cases our
algorithm has a faster convergence to the optimal cost (the
value is 0.01).

Figures 4 and 7 show the variance caused by the two
algorithms. The variance of our algorithm is significantly
lower than that of the algorithm of [15]. In order to show
the variance of our algorithm, we put a logarithmic axis on
y axis. Also, the variance of our algorithm decreases as the
number of iterations increases as opposed to the algorithm
of [15], which suffers from a high variance.

Figure 5 and 8 show the circular error probable (CEP) to
observe the variance in the last iteration (K = 100) for
our algorithm and the FedAvg algorithm in [15]. CEP is
a measure used in navigation filters. It is defined as the
radius of a circle, centered on the mean, whose perimeter is
expected to include the landing points of 50% of the rounds;
said otherwise, it is the median error radius [21]. Here,
then, CEP demonstrates how far the means of the Monte
Carlo runs are from 50% of the Monte Carlo iterations for
both algorithms. As a result, less radius means less variance
from the mean of the Monte Carlo runs. This plot shows
not only our algorithm reaches a closer neighborhood to the
optimal cost, but also, it has less CEP radius in comparison
to that of the algorithm of [15]; this is another indication
that our algorithm has less variance compared to the FedAvg
algorithm in [15]. For our algorithm, the CEP radius in the
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Fig. 6: Error of cost function for the second case

(S =10 and M = 5) over 20 Monte Carlo iterations (thicker line
correspond to the mean of Monte Carlo iterations, y axis is limited
for the purpose of better visualization).
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Fig. 7: Variance of cost function for the second case
(S =10 and M = 5) over 20 Monte Carlo iterations (thicker line
correspond to the mean of Monte Carlo iterations, y axis is limited
for the purpose of better visualization).
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Fig. 8: CEP graph for the second case (S = 10 and M = 5) over
20 Monte Carlo iterations. The results for our algorithm is in the
right while the result for algorithm of [15] is shown on the left.

first and the second cases are respectively 0.0029 and 0.0077,
while these values of the algorithm of [15] are respectively
0.0059 and 0.0201.

To complete our simulation study, we also compare the
convergence performance of our algorithm to that of the Fe-
dAvg of [4], which uses a uniform agent selection. Figure 9
demonstrates the results when we use the batch size of 5 of
the FedAvg of [4] and use the parameters corresponding to
the first case for our algorithm. As we can see, our algorithm
outperforms the FedAvg of [4] both in mean and variance.

VII. CONCLUSIONS

We have proposed an algorithm in the FL framework in the
setting where each agent can have a non-uniform probability
of becoming active (getting selected) in each FL round. The
algorithm possesses a doubly-layered structure as the original
FL algorithms. The first layer corresponds to distributing the
server parameter to the agents. At the second layer, each

10%
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16t —— FedAvg with Uniform Selection (5 Agents)
—— Proposed Algorithm
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=107t
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0 20 40 60 80 100

Iteration

Fig. 9: Comparing the results of the cost function for three
algorithms over 20 Monte Carlo iterations (thicker line correspond
to the mean of Monte Carlo iterations, y axis is limited for the
purpose of better visualization).

agent updates its copy of the server parameter through an
SVRG update. Then after each agent sends back its update,
the server parameter gets updated. By leveraging the SVRG
technique from stochastic optimization, we constructed a
local updating rule that allowed the agents to use fixed
stepsize. We characterized an upper bound for the gradient
of the expected value of the cost function, which showed
our algorithm converges to the optimal solution with the
rate of no less than O(%) for strongly convex costs. This
showed an improvement over the existing results that only
have a convergence rate of O(LK) We demonstrated the

performance of our algorithm through a detailed simulation
study. We used various statistical measures to show our
algorithm’s faster convergence and low variance compared
to existing state-of-the-art FL algorithms. Future work will
investigate the extension of the result to allow non-uniform
selection of snapshots inside the SVRG update for computing
the full batch gradient of the agents.
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APPENDIX

This appendix gives the auxiliary lemmas that are used in
the main proofs.

Lemma A.1: Algorithm 1 results in
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Proof: By using Jensen’s inequality we get the follow-
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ing inequalities:
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which concludes the proof. [ ]
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which concludes the proof.

Lemma A.2: Algorithm 1. results in

—5E[<Vf9k Z VIl nsm)ﬂ
_53L2 —1) imz:& { & 2}
QEH‘Vf(Gk) 2] (A.12)

Proof: We start by noting that
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