BERN-NN: Tight Bound Propagation For Neural Networks Using
Bernstein Polynomial Interval Arithmetic

Wael Fatnassi”
University of California, Irvine
Dept. of Electrical Engineering and Computer Science
wfatnass@uci.edu

Valen Yamamoto
University of California, Irvine
Dept. of Electrical Engineering and Computer Science
vyamamot@uci.edu

ABSTRACT

In this paper, we present BERN-NN as an efficient tool to perform
bound propagation of Neural Networks (NNs). Bound propagation
is a critical step in wide range of NN model checkers and reachabil-
ity analysis tools. Given a bounded input set, bound propagation
algorithms aim to compute tight bounds on the output of the NN.
So far, linear and convex optimizations have been used to perform
bound propagation. Since neural networks are highly non-convex,
state-of-the-art bound propagation techniques suffer from intro-
ducing large errors. To circumvent such drawback, BERN-NN ap-
proximates the bounds of each neuron using a class of polynomials
called Bernstein polynomials. Bernstein polynomials enjoy several
interesting properties that allow BERN-NN to obtain tighter bounds
compared to those relying on linear and convex approximations.
BERN-NN is efficiently parallelized on graphic processing units
(GPUs). Extensive numerical results show that bounds obtained by
BERN-NN are orders of magnitude tighter than those obtained by
state-of-the-art verifiers such as linear programming and linear in-
terval arithmetic. Moreoveer, BERN-NN is both faster and produces
tighter outputs compared to convex programming approaches like
alpha-CROWN.

KEYWORDS

Neural Networks, Bernstein Polynomials, Abstraction Refinement

ACM Reference Format:

Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. 2023.
BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein
Polynomial Interval Arithmetic. In Proceedings of the 26th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC °23), May
09-12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3575870.3587126

“Both authors contributed equally to the paper

This work is licensed under a Creative Commons Attribution International
4.0 License.

HSCC °23, May 09-12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0033-0/23/05.
https://doi.org/10.1145/3575870.3587126

Haitham Khedr*
University of California, Irvine
Dept. of Electrical Engineering and Computer Science
hkhedr@uci.edu

Yasser Shoukry
University of California, Irvine
Dept. of Electrical Engineering and Computer Science
yshoukry@uci.edu

1 INTRODUCTION

Neural Networks (NNs) have become an increasingly central com-
ponent of modern, safety-critical, cyber-physical systems like au-
tonomous driving, autonomous decision-making in smart cities,
and even autonomous landing in avionic applications. Thus, there is
an increasing need to verify the safety and correctness [16, 31, 32]
of NNs when they are used to control physical systems.

The problem of NN Verification has been well studied in lit-
erature [25]. Most NN verifiers rely mainly on either using lin-
ear relaxation and optimization [10, 20, 24, 35, 37, 38] to falsify a
given property or prove its satisfaction, or reachability analysis
to compute an over-approximation of the output set. The latter is
specifically important for control applications where the property
of interest is defined over a time horizon. Both techniques rely on
overapproximation, hence, having tight output bounds is at the
core of NN verification as it allows reasoning about NN properties
in an efficient manner. For example, model checking the robustness
of NNs against adversarial perturbations can be done by simply
comparing the tight bounds of the outputs of the network. More-
over, networks used in control applications often involve multi-step
reachability, and hence computing tight bounds is crucial to har-
ness the accumulation of the error and hence be able to efficiently
reason about the safety of the system.

Due to the non-convexity and non-linearity of NNs, the problem
of finding the exact bounds of NN outputs is NP-hard[23]. Different
tools have been proposed to find tight overapproximations of NN
outputs. MILP-based methods [1, 3-6, 8, 15, 33] encode the non-
linear activations as linear and integer constraints. Reachability
methods [14, 19, 22, 34, 36, 39, 40] use layer-by-layer reachability
analysis (exact or overapproximation) of the network. Most of these
methods either rely on convex linear relaxation of the non-linear
activation functions to overapproximate the output of the NN, or
try to find the exact bounds which are often intractable.

In this work, we explore using polynomials to approximate non-
linear activations (e.g. ReLU). More specifically, we approximate
non-linear activations using Bernstein polynomials which are con-
structed as a linear combination of the Bernstein basis polynomi-
als [12]. The use of Bernstein polynomials is motivated by two
reasons. First, based on the Stone-Weierstrass approximation theo-
rem [7], Bernstein polynomials can uniformly approximate contin-
uous activation functions. Second and most importantly, bounding

https://doi.org/10.1145/3575870.3587126
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3575870.3587126
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575870.3587126&domain=pdf&date_stamp=2023-05-09

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

a Bernstein polynomial is computationally cheap based on the in-
teresting properties of Bernstein polynomials discussed in section
3. The goal of using higher-order polynomials versus linear relax-
ation is to get tight bounds on NNs which is crucial for verifying a
large class of formal properties. This idea of using polynomials has
inspired other researchers [9, 11, 21], however, the proposed tools
suffer from scalability issues.
Our main contributions can be summarized as follows:

e We propose a tool that uses Bernstein polynomials to ap-
proximate ReLU activations and hence compute tighter NN
bounds than state-of-the-art.

e The tool is designed with scalability in mind; hence, the
entire operations can be accelerated using GPUs.

e We show that by using the proposed approximation, we
are able to compute tighter output sets than alpha-Crown
(winner of VNN22’ competition[2] for Formal Verification
of NNs) and other state-of-the-art bounding methods. For
instance, BERN-NN approximations are twice reduced com-
pared to alpha-Crown for actual NN’s controllers. Moreover,
Numerical results showed that Bern-NN can process neu-
ral networks with more than 1000 neurons in less than 2
minutes

2 PROBLEM FORMULATION
2.1 Notation:

General notation: We use the symbols N and R to denote the
set of natural and real numbers, respectively. We denote by x =
(xl, Xg, " ,x,,) € R" the vector of n real-valued variables, where
xi € R. We denote by I,,(d,d) = [41,31] X e X [Qn,gn] c R

the n-dimensional hyperrectangle where d = (d,, - ,d,) and d =

(31, e ,an) are the lower and upper bounds of the hyperrectangle,

respectively. We denote by x” and AT the transpose operation
of the vector x and the matrix A. We denote by 0, a vector that
contains n zero values and by 0, the matrix of shape n X m that
contains zeros. Finally, A = B stands for the element-wise product
between the multi-dimensional tensors A and B, and A ® B stands
for the Kronecker product between the matrices A and B.

Notation pertaining to multivariate polynomials: For a real-
valued vector x = (xl,xg, e ,xn) € R" and an index-vector K =

(k1,--- ,kn) € N, we denote by xK € R the scalar xK = xfl X

X xﬁ". Given two multi-indices K = (ky, - ,kn) € N and
L= (l1,---,lp) € N, we use the following notation throughout
this paper:

K+L=(ki+1l,-- kn+1ln),
L I "o x Iy
K k1 kn)

K<L ki<h kn<l,

Finally, a real-valued multivariate polynomial p : R” — R is de-
fined as:
LI

I
ki k: k
p(x1,...,xp) = Z Z Z Ay, k) X1 Xg oo Xy
=0

ki=0k2=0 kp

Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry

= Z agxX,
K<L
where L = (I3, 1y,...,1,) is the maximum degree of x; for all i =
1,...,n.
Notation pertaining to neural networks: In this paper, we con-
sider H-layer, feed-forward, ReLU-based neural networks NN :
R"™ — RO defined as:

AN (x) = wH) ZH=1) 4 p(H)
LJH-D _ g (W<H—1)Z(H—2> + b(H—l))

z(l). =0 (W(l)x + b(l))

where o is the ReLU activation function (i.e., 6(z) = max(0, z))
that operates element-wise, w @) e Rhixhi-1 and p(D) € RM with
i € {1,---,H} are the weights and the biases of the network.
For simplicity of notation, we use 2}(1‘) and z}i) to denote the pre-
activation (input) and the post-activation (output) of the j-th neuron

in the i-th layer.

2.2 Main Problem:

In this paper, we seek to find polynomials that upper and lower
approximate the NN’s outputs NN (x) whenever the NN’s input x
is confined within a pre-defined hypercube, i.e. x € I,(d, d).

PrOBLEM 1. Given a neural network NN : R" — R° and an input
domain hypercube I,,(d,d) C R". Find lower and upper approximate
polynomials (}—)NN,l (%), P AN (x)) e (ENN,o (%), P ANo (x)),

such that:

Pan) < AN (x) < P 1 (%)

ENN,O(X) < NNO(X) < I_JNN,O(X)’

where with some abuse of notation, we use NN;(x) to denote the ith
output of the neural network NN

Note that the lower/upper bound

(P I PANI) (B s) P ()
the input domain I,. That is, for each value of I;, we need to find

different lower/upper bound polynomials. However, for the sake of
simplicity of notation, we drop the dependency on I,.

polynomials

depend on

3 TIGHT BOUNDS OF RELU FUNCTIONS
USING BERNSTEIN POLYNOMIALS

To solve Problem 1, we rely on a class of polynomials called Bern-
stein polynomials which are defined as follows:

DEFINITION 1. (Bernstein Polynomials) Given a continuous func-
tiong : R" — R, an input domain (hypercube) I(d,d) c R", and a
multi-index L = (l, - -+ ,1,) € N", the polynomial:

By (x)=) by Bericp (x), (1)
K<L

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic

— olx)

— Boalx)
— Bo.2(x)
— Bos(x)

— Bo,16(x)

Figure 1: (Left) Bernstein polynomial approximations of ReLU ac-
tivation for different approximation’s order L € {1, 2,8, 16}, in the
interval I; (-6,10) = [-6, 10]. (Right) Bernstein polynomial ap-
proximations of ReLU and their associated approximation errors
for different approximation’s order L € {1,2,8,16} in the interval
I (-6,10) = [- 6,10].

L) (x —d) (d | "

9 g
kn

b?(,L :9((31 _11) /l<_11 +dy, e, (En —in) . +in)x (3

Berk 1 (x) = (

is called the Lth order Bernstein polynomial of g, where Berg 1 (x)
and b?(,L are called the Bernstein basis and Bernstein coefficients of g,
respectively.

Bernstein polynomials are known to be capable of approximat-
ing any continuous function. That is, Bernstein approximation has
an advantage compared to Taylor approximation because the lat-
ter relies on the function being differentiable. In this case, Taylor
model can not approximate ReLU activation functions because they
are not differentiable which makes Bernstein polynomials a good
option to approximate ReLU functions. Bernstein polynomials have
an interesting and useful property called range enclosing property
which is defined as follows:

DEFINITION 2. (Range Enclosing Property [29]) Given a multi-
dimensional polynomial p (x) of order L that it defined over

the region I (g 3) with its Bernstein polynomial Bp; =
> biL (x) Berk 1, (x). The following holds for all x € I, (gl, E)
K<L 7

< p(x) < max b’ (4)

s P
min b .
k<L KL

K<L KL
The range enclosing property states that the minimum (maxi-
mum) over all the Bernstein coefficients is a lower (upper) bound

for the polynomial p over the region I, (c_l, 3) These bounds pro-

vided by the Bernstein coefficients are generally tighter than those
given by interval arithmetic and many centered forms [30]. Note
that the range enclosing property applies only when the Bernstein
polynomial is used to approximate other polynomials p and other
continuous functions g. Nevertheless, as we show in Section 4, these
bounds will be helpful to provide tight bounds on the polynomials
used to over/under approximate the individual neurons and hence
obtain tight polynomial bounds on the NN’s outputs.

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

3.1 Over-Approximating ReLU functions using
Bernstein Polynomials

We now study how to use Bernstein polynomials to over-
approximate the ReLU function ¢ : R — R defined as o(x) =
max (0, x). While Bernstein polynomials can approximate any con-
tinuous function g, there is no guarantee that this Bernstein ap-
proximation is either over-approximation or under-approximation.
The next result establishes an order between the ReLU function ¢
and its Bernstein approximation.

ProprosITION 1. Given an interval I (g, 3) = [Q, 3] where 0 €

[d, E] and any approximation order L > 1. The following holds for
allx € It: _
0(x) < Bg,L(x) = Bo,L(x).

Proor. This follows directly by substituting the function o in
the definition of Bernstein polynomials (1)-(3). O

In other words, Proposition 1 states that the Bernstein polyno-
mial of ¢ is a guaranteed over-approximation of ¢. This even holds
for any approximation order L. Moreover, since the approximation
error between a function g and its Bernstein approximation By, is
known to decrease as L increases [17]. Then another consequence
of Proposition 1 is that Bernstein polynomials produce a tighter
over-approximation for ReLU functions as L increases.

Figure 1 emphasizes these conclusions pictorially where we
show the Bernstein polynomials of o with orders L = 1,2,38, 16.
As shown in Figure 1 (Left), the Bernstein polynomials By 1, (x)
for L € {1,2,8,16} over-approximate the ReLU activation function
over the entire input range. Furthermore, the over-approximation
gets tighter to the actual ReLU by increasing the approximation
order L. We note that using L = 1, the resulting Bernstein polyno-
mial produces the well-studied linear convexification of the ReLU
function which is used in state-of-the-art algorithms for bounding
neural networks including Symbolic Interval Arithmetic (SIA) [35]
and alpha-CROWN [41]. In other words, Bernstein polynomials
can be seen as a generalization of these techniques.

3.2 Under-approximating ReLU functions using
Bernstein polynomials

In addition to the over-approximation of the ReLU function o, it is
essential to establish a Bernstein under-approximation of ¢ which
is captured by the following result.

PROPOSITION 2. Given an interval I (Ql, 3) =[d 3], where 0 €

[Q, 3], then the following holds for all x € I:
B, 1(x) = BsL(x) = B, (0) < a(x).

Proor. To prove the result, we define the approximation error
€5 L as:

l€o’,L(x) = Bo’,L(x) - o(x).
We bound the maximum estimation error satisfies as follows:

max €, (x) = max (Bgr(x) - o(x)) 6
xe[dd] xe[d.d]
(a) =
= B, 6
xrer@ﬁ) | L(x) (6)

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry

Figure 2: Illustrations of the over-approximation sets (shaded in gray) of the ReLU activation functions in the interval [-6, 10] using different
approaches: Bernstein approach (Left), triangulation approach (Center), and zonotope approach (Right). Green (Red)-colored curves represent
the over-approximation (under-approximation) curves for every approach, respectively. A;, i € {1, 2,3}, represents the over-approximation

set’s area for every approach.

Y 35,100 %)

where (a) follows from the fact that o(x) = 0 for x € [d, 0] and
o(x) = 0 for x € [0, E] and hence the maximum of the equation is
attained whenever o(x) = 0. Equation (/) holds from the mono-
tonicity of I_BU,L (x) when x € [d, 0]—the monotonicity follows
directly from the definition of EJ’ 1, (x)—and hence the maximum is
attained when x = 0. It follows from the definition of €, 1, (x) that:

a(x) = EU,L(X) —égL(x) 2 EU,L(x) - max € r(x)
xe[dd]

= Eo‘,L (x) - Eo‘,L(O) = Eo—,L

which concludes the proof. O

Proposition 2 shows that the maximum error between the Bern-
stein over-approximation polynomial BU, 1, and the ReLU activation
function o is equal to the value of the Bernstein polynomial at 0,
ie., Eg, £(0). This result has a direct consequence on the efficiency
of our tool. It is enough to propagate over-approximation of the
ReLU function and one can get an under-approximation directly
by shifting the over-approximation polynomial.

Figure 1 (Right) emphasizes this fact pictorially. As it is shown

in the figure, the maximum error €4 1 (x) = By — o(x) is reached
at x = 0 and is equal to B, 1, (0).

Table 1: The area of the over-approximation set of the ReLU acti-
vation functions in the interval [-6, 10] using different Bernstein
approach for different approximation order L.

Approx. | Triangulation | Zonotope Bernstein poly
Method L=2|L=3|L=38
error 80.0 80.0 37.5 28.1 16.9

3.3 Comparing Bernstein Approximation
Against Widely Used Approximations

The major advantage of using Bernstein polynomials is that they
produce a tighter approximation for the response function of ReLU
compared to the other state-of-the-art techniques. In particular,
existing techniques focus on “convexifying” the response of the
ReLU function through linear approximation/triangulation (Figure

2-middle) or zonotopes (Figure 2-right). Unlike these techniques,
Bernstein polynomials lead to tighter non-convex approximations
of the non-convex ReLU function. While it is direct to obtain a
closed-form expression for the difference in the approximation
error between Bernstein polynomials and triangulation/zonotope
approximations, we, instead support our conclusions with the nu-
merical example shown in Table 1 and highlighted in Figure 2. In this
example, we compute the approximation error (highlighted in gray)
which captures the quality of the over and under-approximations.
As captured by this example, it is direct to see that Bernstein polyno-
mials lead to tighter approximation. Moreover, such approximation
gets tighter as the approximation order L increases.

4 ENCODING BASIC BERNSTEIN
POLYNOMIAL OPERATIONS USING
MULTI-DIMENSIONAL TENSORS

While using Bernstein polynomials to approximate individual ReLU
functions provides tighter bounds compared to other techniques,
computing Bernstein polynomials via its definition in (1)-(3) is time-
consuming. That is why state-of-the-art techniques have focused
on linear (or convex) relaxations to obtain tractable computations.
Nevertheless, in this section, we show that technological advances
in Graphics Processing Units (GPUs) can be used to perform all the
required operations to efficiently compute Bernstein polynomial
approximations of individual neurons along with propagating these
polynomials from one layer of the neural network to the next layer.
Our main contribution of this section is to encode all necessary
operations over Bernstein polynomials into additions and multipli-
cation of multi-dimensional tensors that can be easily performed
using GPUs.

4.1 Multi-dimensional tensor representation of
Bernstein polynomials
We represent the Bernstein polynomial:
By (x) = Z b?(,LBerK,L (x)
K<L

of function g and order L as a multi-dimensional tensor Ten(By, 1) of
n dimensions, and of a shape of L = (I + 1,-- - , I, + 1), where the
K = (k1,- -+, kn) component of Ten(B,,1) is equal to the Bernstein

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic

coefficient b?(;.- The multi-dimensional tensor Ten(By, 1) represent

all the Bernstein coefficients b% . ofg VK < L.

ExampLE 1. Consider the two-dimensional Bernstein polynomial:

2 3
By (x1,x2) = Z Z b!(}kbkz))LBer(kl,kz),L (1, x2)
k=0 k;=0

with orders L = (2,3). Its two-dimensional tensor representation is
written as follows:

00l Zonr P2 Y03).L
Ten (Bg,L) él 0).L il 1,L il 2).L il ol @
boonr Yent Pear Pesr

In a similar manner, we represent a multi-dimensional polyno-
% agxX

K<L

as a multi-dimensional tensor Ten (p) of n dimensions, and of a

shape of L= (I3 +1,---,l, + 1), where the K = (k1, - - , k) com-

ponent of Ten (p) is equal to the coefficient ag.

mial of order L written in the power series form p (x) =

4.2 Multiplication of two multi-variate
Bernstein polynomials

Multiplying two polynomials represented in the power series form
on GPUs has been widely studied in the literature. Unlike power
series, multiplying two Bernstein polynomials need extra han-
dling [28]. In this subsection, we propose how to encode the mul-
tiplication of Bernstein polynomials using GPU implementations
that were designed for power-series polynomials.

Given two multivariate polynomials written in a power series

> a}<xK and py =)] a2 K and their tensor rep-
K<L, K<L,

resentation, Ten (p1) and Ten (p2), we use an efficient algorithm
[26] that performs multivariate polynomial multiplications. We de-
note by Prod (Ten (p1), Ten (p2)) the tensor resulting from such
multiplication, i.e.:

Ten (p1p2) = Prod (Ten (p1), Ten (p2)) .

Applying power-series-based algorithms to multiply two Bern-
stein polynomials produce incorrect results. Different algorithms
were proposed for the case when the Bernstein polynomials are
functions of one variable x1 [13] and two variables x1, x2 [28]. Be-
low, we generalize the procedure in [28] to account for Bernstein
polynomials in n variables.

form, p; =

PROPOSITION 3. Given two multivariate Bernstein polyno-

mials Bg 1, (x) = > b?(l,LlBerK,Ll (x) and Bg, 1, (x) =
K<L,

> b BerK,L (x). The tensor representation of the Bernstein poly-

K<L,
nomial ngLl (x)Bg,,L,(x) can be computed as follows:

Ten(91 L1) = Ten (Bgl,Ll) * Cr,, 9)

Ten(2 Lz) = Ten (Bgz,Lz) *CL,, (10)

T (B B,): Pd(T (),T (B))
en|Bg, 1,Bg, L, Conts * Prod | Ten L,), Ten|Bg, 1,

(11)

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

where Cy, is the multi-dimensional binomial tensor where its Kth
component is equal to (Ijg) ie, (CL)k = (Ijé) With some abuse of
notation, we use 1/Cy. to denote the multi dimensional binomial tensor
where its Kth component is equal to —~ (3

K

The proof of Proposition 3 generalizes the argument in [28] to
multi-dimensional inputs and is omitted for brevity. The Bernstein
polynomials in (9) and (10) are called scaled Bernstein polynomi-
als [28] and enjoy the fact that their multiplication corresponds
to the multiplication of power series polynomials. Hence we can
use the power series Prod in (11) followed by the element-wise

multiplication with the oI 1+L tensor to remove the effect of the
1+7h2

scaling. Recall that we use A * B to denote the element-wise multi-
plication between the tensors A and B, which can also be carried
over using GPUs efficiently which renders all the steps in equa-
tions (9)-(11) to be efficiently implementable on GPUs. We refer to
the equations (9)-(11) as Prod_Bern(By, 1, By, 1,)-

Using Prod_Bern, one can compute the tensor corresponding to
raising the function g to power i, where i € N is an integer power,
denoted by Ten(By: 1) by applying the Prod_Bern procedure i
times. We refer to this procedure as Pow_Bern(Ten(By,1), i).

4.3 Addition between two Bernstein
polynomials

The authors in [13] studied how to add two Bernstein polynomials.
However, their study is restricted to one-dimensional polynomials
which are defined over the unity interval I; (x) = [0, 1]. We extend
the argument to the general case with n inputs and any interval
I (d, d) using the following result.

ProposITION 4. Given two Bernstein polynomials By, 1, (x) and
By, L, (x) with two different orders L; = (ll1 1,11) and Ly =
(112, -+, 12). Define Lsym = max(Ly, L), where the max operator

is applied element-wise. The tensor representation of By 44, 1,,.,, can
be computed as:

Lsum = (max(1},1%),...,

Ten (thLsum) = Prod_Bern (Ten (Bgl,Ll) A —L1+1) (13)

max(ly, I7)) (12)

Ten (Bgz,Lsum) = Prod_Bern (Ten (Bgz,Lz) AL —L2+1) (14)

Ten (Bgl+gz,Lsum) = Ten (ngLsum) + Ten (BngLsum) (15)

where 17, _1+1 is a multi-dimensional tensor of a shape Le — L + 1
that contains just ones.

The proof of Proposition 4 generalizes the argument in [13] and
is omitted for brevity. The operation in (13) and (14) is referred
to as degree elevation in which we change the dimensions of the
tensors ... Once both tensors are of the same dimension, we can
add them element-wise. We denote by Sum_Bern the procedure
defined by (12)-(15). Again, we note that all the operations in the
Sum_Bern entail tensor element-wise multiplication and addition

5 BERN-NN ALGORITHM

In this section, we provide the details of our tool, named BERN-NN.
BERN-NN uses the tensor encoding discussed in Section 4 to prop-
agate Bernstein polynomials that over- and under-approximate

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

the different neurons in the network until over- and under-
approximation polynomials for the final output of the network
are computed.

5.1 Propagating bounds through single neuron

We first discuss how to propagate over- and under-approximations
through neurons. Recall our notation that we use ') and zj(.i) to
denote the input and output of the j-th neuron in the i-th layer.
For ease of notation, we drop the i and j from the notation in this
subsection.

Assume that we already computed the over- and under-

approximations for the input of one of the hidden neurons, denoted
by Eé, L:(x) and B, L (x), respectively. The objective is to compute
the over- and under-approximations for the output of such a neu-
ron, denoted by Ez, r,(x)and B L, (x), respectively. We proceed as
follows.
Step 1: Compute input bounds for the neuron. Recall that the
Bernstein coefficients depend on the input bounds of the function
it aims to approximate. Since our aim is to approximate the scalar
ReLU function of a neuron, we start by computing the bounds on
the input to that neuron as follows:

max_ E.g’ L () (16)

lo= min BA,Lﬁ(x), hi =
x€l,(d.d)

- =z
x€l,(d.d)
Thanks to the enclosure property (4), we can solve the optimization
problems (16) by finding the minimum and the maximum coeffi-
cients of B L and Bz .

Step 2: Compute the polynomials EU, 1 and B ; that approx-
imate the ReLU function. Given a user-defined approximation
order L, the next step is to compute the Bernstein polynomials that
over- and under-approximate the ReLU activation function o de-
noted by Eg’ and B_ ;. These polynomials can be computed using
the knowledge of lo and hi along with the definition of the Bern-
stein polynomial in (3). To facilitate the computations of the next
step, we need to convert these polynomials into the corresponding
power series form. This can be done by following the procedure
in [27] to obtain:

B B,
pEJL(x) = Z ag ’LxK, PB,, (x) = Z ay LK (17)
' K<L K<L
Step 3: Propagate the bounds through the decomposition
of polynomials. First, note that the following holds due to the
monotonicity of the ReLU function o and the fact that z = o(2):

B;r. (x) < 2(x) < Ez,Lﬁ(x) = (18)
B,;. (x)<o (Eg,Lﬁ(x)) < U(f(x)) <o (Ef,Lé (x)) < 1_3z,Lz (x)
z(x)
(19)

In other words, the post-bounds of the neuron, denoted by
]_BZ, 1, (x) and B,1. (x) can be computed by composing the func-
tion o with the under- and over-approximations of the neuron
input B ;. (x) and Ef, 1, (x). Indeed such composition is hard to
compute’ due to the nonlinearity in o. Instead, we perform such

Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry

composition with the over- and under-approximations of o, pg .
and pp_ , computed in Step 2, as: ,

B, (x)= Z a%”L (1_32,L2 (x))K (20)
K<L

EZ,LZ (x) = Z aEU’L (EiL:% (X))K (21)
K<L

Given the tensor representation Ten(B; L;z) and Ten(Bg, L), We can
use the Pow_Bern and Sum_Bern procedures to perform the com-
putations in (20) and (21) to calculate Ten(éz,Lz) and Ten(EZ,LZ)
with L, = Ls = L.

5.2 Propagating the bounds through one layer

Next, we discuss how to propagate the under- and over-

approximation polynomials of the outputs of the i — 1 layer de-

noted by Ez“’” L ’Bz“’” L ,j €{1,...,hi—1} to compute under-
j > 'z j > 'z

and over-approximation of the inputs of the neurons in the ith
layer B L;Ez“) Lom € {1,...,h;} of the neural network.
Such bound prop';g’ation entails composing the under- and over-
approximation polynomials Ezj."_”, L’ Ez;i_”, L. with the weights

of the ith layer of the neural network W(i), b To that end, we
define the set of positive and negative weights as:

W_él) = max (W(l), OiX(i—l)) W_(l) = min (W(l), Oix(i—l)) .
Similarly, for the outputs of the i — 1 layer of the network, we define

the vector of over-approximation polynomials and vector of the
under-approximation polynomials as:

T

Bv p, = |:BZ§i—1)!LZ “-;BZI(’i'—l)’LZ
i-1

>

T

5

Ez(i_l), L, = [Eziiil),Lz o ’EZ;(;TI),LZ
i-1

and for the inputs of the ithe layer as:

B : B T
By p, = [Bii”,Li : "’Bi(i),Li]

hi

T
By, 1, = [in”,Lg " ’1—32,(1?,L2]

Hence, the over- and under-approximations of the inputs of the ith
layer can be efficiently computed as:

Ten (B:Z(i),Li) :W+(i) xTen (Bz“-l),Lz)"’W,(i) xTen (Ez“*”,Lz) +p®
(22)

Ten (Ef(”,Li) :W_fi) xXTen (Ez(i_l),Lz)+W_(i) xXTen (EZ“’I),LZ) + b(l)
(23)

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic

o - E”'L(ZAJ'U)) I Ea,L("m)

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

2"

S

w®

-/
)

Y
w

Figure 3: Mechanism of BERN-NN Polynomial Interval Arithmetic.

5.3 Mechanism of BERN-NN Polynomial
Interval Arithmetic

We finally describe the proposed BERN-NN Polynomial Inter-

val Arithmetic algorithm, depicted in Figure 3. For a neural net-

work with n inputs x, ..., x,, we initialize an over- and under-

approximation Bernstein polynomials for each of the inputs, i.e.,:

BZEO),l = EZEU),l = BZEO),I ie{l,...,n}.

Note that in the equation above, we used zl.(o) as a replacement of
x; to unify the notation with the remainder of the operations (see
Figure 3). To compute the Bernstein polynomials EZ@! , and EZ('O)’ »
we recall that the coeflicients of such polynomialsldepend on the
input domain. Hence, given a hypercube I,,(d, d) that bounds the
input x of the neural network, we compute the tensor representation
of these polynomials as:

= d; 1 1
Ten (Bzio),l) =Ten (Ezio),l) = 31:| ® [1] ® 24 [1] (24)
Ten (B =Ten|(B - Mo ! 25
en FURY en Boil=| ® % ®...® 1 (25)
Ten (B =Ten (B - ! dy 26
en(ZizO)sl) =1Ten (—zilo),l) =1 ® 1 ®...8 Eﬂ (26)

Next, we propagate these over- and under-approximation polyno-
mials to the inputs of the first layer in the neural network using (22)
and (23). Given a user-defined approximation order L, we propa-
gate the polynomial approximations through the ReLU function
using (20) and (21) for each of the neurons in layer 1. The produced
over- and under-approximations of the outputs of all neurons are
aggregated together in one tensor which is then propagated to
the next layer. This process continues until we compute the over-
and under-approximation polynomials of the outputs of the neural
network, denoted by Ez}H),LH* (x)’Ez(.H),LHfl (x)forj=1,...,0.

These polynomials are used as the solution of Problem 1.

It is important to note that the final Bernstein polynomials
BZ(H) LH-1 (x),ﬁzw) LH-1 (x) have orders of L1 where L is the

user-defined order of approximation of the ReLU function and H
is the number of layers. This polynomial order increases exponen-
tially with the number of hidden layers. Similarly, the shape of
their multi-dimensional tensor representations is equal to L1 +1
which increases exponentially with the number of hidden layers. To
alleviate this problem, we introduce a parameter called Lin. Based
on this parameter, we drop the orders of the post-bound over- and
under-approximation polynomials to [1,- - -, 1]. In other words, we
linearize the approximation polynomials every Lin hidden layers.
We use the algorithm in [18] to perform such linearization of the
Bernstein polynomial. Luckily, this algorithm, like all the other
operations in our BERN-NN involves tensor multiplications and
additions and hence can be parallelized over GPUs efficiently.

Finally, note that one can always obtain absolute bounds on the
inputs or outputs of any of the neurons (including the outputs of
the neural network), thanks to the enclosure property of Bernstein
polynomials (4). Such absolute bounds are useful for reachability
analysis and model checkers.

5.4 GPU Implementation Details

To get the performance increase of GPUs without the complications
of low-level languages, we implemented this tool in PyTorch. As
mentioned above, we represent n-dimensional Bernstein polyno-
mials as dense n-dimensional tensors. The tool becomes memory
bound very quickly as the number of input nodes increases, making
the number of dimensions in the tensors larger. In order to com-
bat this, we use as many in-place operations as possible to avoid
repeatedly allocating large chunks of memory during computation.
Similarly, the multinomial coefficients used for degree elevation
are used multiple times throughout the tool, and we cache each
the first time they are generated to avoid spending time re-doing
calculations and allocating additional memory.

We parallelized the tool on a node level: at each layer, the out-
puts of the last layer are passed to each node, which then can run
independently of each other on separate GPUs. However, because

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

the tensors become large very quickly, the gains in computation
time only offset the overhead of copying tensors between GPUs
when the neural network is particularly large. We collect and stack
the outputs of all the nodes in one tensor and pass it to the next
layer. When the polynomials are being composed with the ReLU
approximation, each term is elevated to the highest degree expected
of a composition between these two polynomials. This both en-
sures that the outputs of all the neurons can be stacked, as they
are all the same shape and size, and also allows the multiplication
of the stacked outputs of the last layer by the incoming weights
to be a simple broadcasting multiplication, which is then easily
parallelizable on a GPU.

We achieved additional performance gains by rewriting for-loops
as element-wise tensor operations and by batching linear algebra
operations like matrix multiplications and calculating the least-
square solutions of matrices, both of which allow operations to be
easily parallelized on GPUs and reduce the amount of time spent
allocating many small patches of memory, instead doing a single
large allocation.

6 NUMERICAL RESULTS

In this section, we perform a series of numerical experiments to
evaluate the scalability and effectiveness of our tool. First, we con-
duct an ablation study to check the effect of varying different pa-
rameters (e.g., neural network width, neural network depth, ReLU
approximation order) on the performance of our tool. We utilize
two metrics:

e Execution time: which measures the time (in seconds)
needed to compute the final Bernstein polynomials. Indeed,
smaller values indicate better performance.

o Relative volume of the output set: this metric mea-
sures the “tightness” of the produced over- and under-
approximation polynomials. Without loss of generality, we

(H)

focus on neural networks with one output z'*/ and we com-

pute this metric as:

Vol_Output
Vol_relative = P (27)
Vol_Input
n
Vol _Input = l—[(3, - 41) (28)

i=1

Vol_Outputz/-~-/ (Fz(m (x) = B, (x) | dxy ... dxn (29)
I,

Indeed, smaller values of this metric indicate tighter approx-
imations of the output set.

After the ablation study, we compare our tool with a set of state-
of-the-art bound computation tools—including the winner of the
last 2022 Verification of Neural Network (VNN) competition [2]—to
study the relative performance.

Setup: We implemented our tool in Python3.9 using PyTorch
for all tensor arithmetic. We run all our experiments using a single
GeForce RTX 2080 Ti GPU and two 24-core Intel(R) Xeon(R). We like
to note that the throughput of the tool can be increased by utilizing
multiple GPU to process different neurons in parallel in a batch-
processing fashion. However, in this section, we focus on using

Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry

Execution time (seconds) vs ReLU approx. order L

i [-

2 = L .

0 | | | | |
2 3 4 5 6
Relative volume vs ReLU approx. order L

4,000 T T T T T
3,000 - B
2,000 - -
1,000 |- % % B

|

2 3 4 5 6

Figure 4: Effect of varying the ReLU’s order of approximation L
for a NN architecture [2, 20, 20, 1] on the execution time of our tool
(top) and the relative volume of the output set (bottom). We set n = 2,
I, = [-1,1]", and Lin = 0. The weights and biases are generated
randomly following uniform distribution between —5 and 5. The
reported results are generated for 50 experiments.

only one GPU and we leave the generalization of our algorithm to
utilize multiple GPUs for future work.

6.1 Ablation study

6.1.1 The effect of varying the ReLU’s order of approximation: We
study the effect of varying the ReLU’s order of approximation L
for a fixed NN architecture on the execution time and the output’s
relative volume space of our tool. In Figure 4, we report the statisti-
cal results for 50 random networks of a fixed architecture. Figure 4
(top) shows that increasing the approximation order increases the
execution time. On the other hand, Figure 4 (bottom) shows that
the relative volume of the output set significantly decreases with
increasing the order of approximation. The results of both figures
highlight the trade-off between the tightness of the output bounds
and the execution time as a function of the ReLU approximation
order L.

6.1.2 The effect of varying the input’s dimension: We study the
effect of varying the input’s dimension n, for a fixed NN architecture
on the execution time of our tool. Figure 5 shows that the execution
time for computing the output set grows linearly for smaller values
of n but seems to grow more rapidly after n = 7. This suggests
that the proposed tool can be used efficiently for many control
applications.

6.1.3 The effect of increasing the number of neurons per layer: We
study the effect of varying the number of neurons per layer N,
for a fixed NN architecture [3, Ne, Ne, 1] on the execution time of
our tool. Figure 6 summarizes the execution times with a varying
number of neurons per layer. The results show that increasing the
number of neurons per layer highly affects the execution time. This

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic

Execution time (seconds) vs input dimension n

jllggéé |

Figure 5: Effect of varying the input’s dimension n for a NN ar-
chitecture [n, 20, 20, 1] on the execution time our tool. We set L = 2,
I, = [-1,1]", and Lin = 0. The weights and biases are generated
randomly following uniform distribution between —5 and 5. The
reported results are generated for 50 experiments.

Execution time (seconds) vs number of neurons per layer N,

20 | | | | | Q -
i
=

0 == =+ | | | |
10 20 40 60 80 100

Figure 6: Effect of varying the number of neurons per layer N, for
a NN architecture [2, N, N, 1] on the execution time of our tool. We
setn=2,L =21, =[-11]" and Lin = 0. The weights and biases
are generated randomly following uniform distribution between —5
and 5. The reported results are generated for 50 experiments.

is due to the expensive arithmetic and memory operations for large
tensors that represent the Bernstein polynomials. Nevertheless, this
increase in execution time can be harnessed by using multiple GPUs
to compute bounds for different nodes in parallel along with using
the same GPU to process multiple nodes simultaneously.

6.1.4 The effect of increasing the number of hidden layers: We study
the effect of varying the number of hidden layers ny, with 20 neu-
rons in every hidden layer, on the execution time of our tool. Unlike
the effect of increasing the number of neurons per layer, the results
in Figure 7 show that the execution time almost grows linearly with
the number of hidden layers.

6.1.5 Scalability analysis of Bern-NN:. We finally try to study the
execution time of Bern-NN for relatively large neural networks. In
this study, we add extra layers with 100 neurons each and report
the execution time in Figure 8 for random neural networks. As
shown in the figure, Bern-NN can process neural networks with
more than 1000 neurons in less than 2 minutes.

6.2 Comparison against other tools

In this subsection, we compare the performance of our tool in terms
of execution time and the output set’s relative volume compared
to bound propagation tools such as Symbolic Interval Analysis
(SIA)[35], alpha-CROWN [41], and reachability analysis tool such

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

Execution time (seconds) vs number of layers ny,

j é@é

di 1

Figure 7: Effect of varying the number of hidden layers n,, for a NN
architecture [2, 20, .., 20, 1] with 20 neurons in every hidden layer on
the execution time of our tool. Wesetn=2,L=2,1,, = [-1,1]", and
Lin = 0. The weights and biases are generated randomly following
uniform distribution between —5 and 5. The reported results are
generated for 50 experiments.

Execution time (seconds) vs total number of neurons

T T T T T
100 n

50 - n

o= ! ! ! !
200 400 600 800 1,000

Figure 8: Scalability of the Bern-NN tool as a function of increasing
the total number of neurons.

as POLAR [21]. We note that alpha-CROWN [41] was the winner
of the 2022 VNN competition and we compare Bern-NN against
the bound propagation algorithm used within alpha-CROWN as a
representative tool for all the bound propagation techniques. More-
over, alpha-CROWN is also designed to harness the computational
powers of GPUs. We compare Bern-NN against POLAR since it also
uses polynomials (Taylor Model with a Bernstein error correction)
to compute bounds on the output of neural networks. POLAR [21]
outperforms other reachability-based tools and hence is a represen-
tative tool for such techniques.

6.2.1 Comparison against SIA and alpha-CROWN for random NN.
We compare the performance of our tool to SIA and alpha-CROWN
for random neural networks with [2, 20, 20, 1] architecture for dif-
ferent hyperrectangle input spaces (Figure 9). We also compare
the performance as the input dimension of the network increases
(Figure 10). The results show that SIA is the fastest in terms of
execution time for all different input hyperrectangles due to the
simplicity of its computations. However, its relative volume is the
highest. On the other hand, Bern-NN’s relative volume is the small-
est for all different input spaces thanks to its tight higher-order
ReLU approximations. Compared to alpha-CROWN (which also
runs on GPUs), Bern-NN is both faster and produces tighter bounds
leading to an average of 25% reduction in execution time with an
average of 10% reduction in the relative volume metric. This shows
the practicality of Bern-NN for control applications.

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

) [0s1A 10 alpha-CROWN [l 1 BERN-NN

: 4 | | | |

g

g

2 2

=

o

P

o

% 0| — —

5 T T T T

% inputl input2 input3 input4
g -10°
E s

o

>
g 1 |
=

g 05 D B
; 0

£ | Hme N

> T T T T
< inputl input2 input3 input4

Figure 9: Performance results in terms of average execution
times (top) and relative volume (bottom) for BERN-NN, SIA, and
alpha-CROWN for different input spaces. The NN’s architecture
is [2,20,20,1]. The ReLU’s order of approximation is L = 4, and
Lin = 0. The weights and biases are generated randomly following
uniform distribution between —5 and 5. Input1 = I,, = [-5, 5]%, Input2
= I, = [-10,10]?, Input3 = I,, = [-20, 20]?, Input4 = I,, = [-40,40].

) |0os1A 0 alpha-CROWN | JBERN-NN

:)/ | | |

E

= 4

S

8

& 0| — — —

g T T T

Z dim1 dim2 dim3

g 10t

=1

S 6 3
>

%

=

s 4 H i
g

< 2

;"= 1] |

3

dim1 dim2 dim3

Figure 10: Performance results in terms of average execution
times (top) and relative volume (bottom) for BERN-NN, SIA, and
alpha-CROWN for input’s dimensions n. The NN’s architecture is
[n, 20, 20, 1]. the input’s space is [—10,10]". The ReLU’s order of ap-
proximation is L = 4, Lin = 0. The weights and biases are generated
randomly following uniform distribution between -5 and 5. dim1 =
n=2,dim2=n=3,dim3=n=4.

Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry

6.2.2 Case Study for Control Benchmarks. In this experiment, we
test different tools on benchmarks of NN controllers (used by PO-
LAR) to evaluate the tightness of their estimated bounds. POLAR
and BERN-NN use different Bernstein polynomials to approximate
ReLU functions. Proposition 2 shows the maximum error of ReLU’s
Bernstein overapproximation equals the Bernstein approximation
at 0. This error is the smallest for ReLU’s Bernstein overapproxima-
tion. However, POLAR approximates the ReLU using samples and
adds a symmetric error bound estimated using the Lipschitz con-
stant of ReLU functions. Such a method is conservative and leads
to additional errors for each ReLU function. Table 2 represents
six standard benchmarks used by the authors in [21] to evaluate
the POLAR tool. Every benchmark represents a trained NN con-
troller for a closed-loop system. Numbers in the square brackets
refer to NN architecture, e.g., [2,20,20,1] means the NN has an in-
put layer of two neurons, two hidden layers of 20 neurons, and
an output layer of 1 neuron. Table 2 summarizes the performance
of the tools with respect to the average execution time and aver-
age relative volume for six control benchmarks. The results show
that Bern-NN provides the tightest estimate for the output set for
all benchmarks except Benchmark 3. We would like to highlight
that the tight approximation provided by Bern-NN is important for
control applications because the specification of interest is usually
defined over a time horizon and require multi-step reachability,
hence, tighter bounds at each step are crucial. Lastly, Bern-NN is
faster than alpha-CROWN over all benchmarks except Benchmark
5. However, SIA and POLAR are faster than Bern-NN but provide
looser bound estimates. Each benchmark is run with five different
hyperrectangles that are all centered around zero and have a radius
re{1,1.5,225,3}

Table 2: Performance results in terms of average execution times
and volume for BERN-NN, SIA, alpha-CROWN, and POLAR, for 5

different input’s spaces I, (d, E) for 6 benchmarks [21]. The ReLU’s

order of approximation is L = 2, Lin = 0.

k 1 t k2 t k3 T k4 | Bencl k5 b k 6
Tool [2.:20,20.1] [2,20,20,1] [2.20,20,1] [3.20,20.1] [3.100,100,1] 4,20,20,20,1]
time | volume | time [volume [time | volume | time | volume | time | volume | time | volume
SIA 0.01 [2544 [002 [605 [001[102 [001] 941 [002] 5338 | 0.02] 203
CROWN 2.9 3.1 3.49 5.50 3.54 0.73 3.13 17.04 3.80 771.72 4.10 2.4
Bern—NN | 084 | 162 | 1.30 5.4 1.09 | 081 [115] 621 [417 [3585 | 325 [1.38
POLAR 0.21 25.43 0.284 | 51.80 0.29 18.81 0.42 33.32 5.52 | 43275 | 0.81 7.00

7 CONCLUSION

In conclusion, we presented Bern-NN, a tool for computing higher-
order tight bounds for NNs by approximating non-linear ReLU
activations using Bernstein polynomials. We provided GPU-based
computational machinery to handle tensor arithmetic for manipu-
lating polynomials as well as bounding them using the properties
of Bernstein polynomials. We conducted extensive experiments to
evaluate the scalability of our tool as well as compare its estimated
bounds with state-of-the-art methods. The results showed that our
tool can process neural networks with thousands of neurons in a
few minutes. These results also show that our tool outperforms
state-of-the-art tools in terms of computing tighter bounds while
reducing the execution time compared to other tools.

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic HSCC °23, May 09-12, 2023, San Antonio, TX, USA

ACKNOWLEDGMENTS

This work was partially sponsored by the NSF awards #CNS-
2002405 and #ECCS-2139781 and the C3.AlI Digital Transformation
Institute.

REFERENCES

[1] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and

Juan Pablo Vielma. 2020. Strong mixed-integer programming formulations

for trained neural networks. Mathematical Programming 183, 1 (2020), 3-39.

https://doi.org/10.1007/s10107-020-01474-5

Stanley Bak, Changliu Liu, and Taylor T. Johnson. 2021. The Second International

Verification of Neural Networks Competition (VNN-COMP 2021): Summary and

Results. CoRR abs/2109.00498 (2021), 1-15.

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,

Aditya Nori, and Antonio Criminisi. 2016. Measuring Neural Net Robustness

with Constraints. In Advances in Neural Information Processing Systems, Vol. 29.

Association for Computing Machinery, Barcelona, Spain, 2613-2621.

Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth

Misener. 2020. Efficient verification of relu-based neural networks via dependency

analysis. Proceedings of the AAAI Conference on Artificial Intelligence 34, 4 (2020),

3291-3299.

[5] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, P Kohli, P Torr, and P Mudigonda. 2020.
Branch and bound for piecewise linear neural network verification. Journal of
Machine Learning Research 21, 42 (2020), 1-39.

[6] Chih-Hong Cheng, Georg Nithrenberg, and Harald Ruess. 2017. Maximum
Resilience of Artificial Neural Networks. In Automated Technology for Verification
and Analysis, Deepak D’Souza and K. Narayan Kumar (Eds.). Springer, 251-268.
https://doi.org/10.1007/978-3-319-68167-2_18

[7] Louis De Branges. 1959. The stone-weierstrass theorem. Proc. Amer. Math. Soc.
10, 5 (1959), 822-824.

[8] Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, and Ashish
Tiwari. 2019. Sherlock-a tool for verification of neural network feedback systems:
demo abstract. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control. 262-263.

[9] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachability
analysis for neural feedback systems using regressive polynomial rule inference.
In Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control. 157-168.

[10] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann,
and Pushmeet Kohli. 2018. A Dual Approach to Scalable Verification of Deep
Networks.. In Uncertainty in Artificial Intelligence, Amir Globerson and Ricardo
Silva (Eds.), Vol. 1. 550-559.

[11] Jiameng Fan, Chao Huang, Xin Chen, Wenchao Li, and Qi Zhu. 2020. Reachnn*:
A tool for reachability analysis of neural-network controlled systems. In Interna-
tional Symposium on Automated Technology for Verification and Analysis. Springer,
537-542.

[12] Rida T Farouki. 2012. The Bernstein polynomial basis: A centennial retrospective.
Computer Aided Geometric Design 29, 6 (2012), 379-419.

[13] Rida T Farouki and VT Rajan. 1988. Algorithms for polynomials in Bernstein

form. Computer Aided Geometric Design 5, 1 (1988), 1-26.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George

Pappas. 2019. Efficient and accurate estimation of lipschitz constants for deep

neural networks. In Advances in Neural Information Processing Systems, H. Wal-

lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),

Vol. 32. Curran Associates, Inc., 11423-11434.

Matteo Fischetti and Jason Jo. 2018. Deep neural networks and mixed integer

linear optimization. Constraints 23, 3 (2018), 296-309. https://doi.org/10.1007/

510601-018-9285-6

Daniel] Fremont, Johnathan Chiu, Dragos D Margineantu, Denis Osipychev, and

Sanjit A Seshia. 2020. Formal analysis and redesign of a neural network-based

aircraft taxiing system with VerifAL In International Conference on Computer

Aided Verification. Springer, 122-134.

Jurgen Garloff. 1985. Convergent bounds for the range of multivariate polynomi-

als. In International Symposium on Interval Mathematics. Springer, 37-56.

Jirgen Garloff and Andrew P Smith. 2007. Guaranteed affine lower bound func-

tions for multivariate polynomials. In PAMM: Proceedings in Applied Mathematics

and Mechanics, Vol. 7. Wiley Online Library, 1022905-1022906.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat

Chaudhuri, and Martin Vechev. 2018. AI2: Safety and robustness certification of

neural networks with abstract interpretation. In 2018 IEEE Symposium on Security

and Privacy (SP). IEEE, 3-18. https://doi.org/10.1109/SP.2018.00058

[20] Patrick Henriksen and Alessio Lomuscio. 2021. DEEPSPLIT: An efficient splitting
method for neural network verification via indirect effect analysis. In IJCAL

&

(3

=

[4

=

[14

(15

[16

=
=

(18

[19

2549-2555.

Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. 2022. Polar:
A polynomial arithmetic framework for verifying neural-network controlled
systems. In International Symposium on Automated Technology for Verification
and Analysis. Springer, 414-430.

Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee.
2019. Verisig: verifying safety properties of hybrid systems with neural network
controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC ’19). Association for Computing Ma-
chinery, New York, NY, USA, 169-178. https://doi.org/10.1145/3302504.3311806
Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In
Computer Aided Verification (Cham, 2017) (Lecture Notes in Computer Science),
Rupak Majumdar and Viktor Kuncak (Eds.). Springer International Publishing,
97-117. https://doi.org/10.1007/978-3-319-63387-9_5

Haitham Khedr, James Ferlez, and Yasser Shoukry. 2021. PEREGRINN: Penalized-
Relaxation Greedy Neural Network Verifier. In Computer Aided Verification,
Alexandra Silva and K. Rustan M. Leino (Eds.). Springer International Publishing,
Cham, 287-300.

Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark
Barrett, Mykel J Kochenderfer, et al. 2021. Algorithms for verifying deep neural
networks. Foundations and Trends® in Optimization 4, 3-4 (2021), 244-404.
Diana Andreea Popescu and Rogelio Tomas Garcia. 2016. Multivariate polynomial
multiplication on GPU. Procedia Computer Science 80 (2016), 154-165.
Shashwati Ray and PSV Nataraj. 2012. A Matrix Method for Efficient Computation
of Bernstein Coefficients. Reliab. Comput. 17, 1 (2012), 40-71.

Javier Sanchez-Reyes. 2003. Algebraic manipulation in the Bernstein form made
simple via convolutions. Computer-Aided Design 35, 10 (2003), 959-967.
Andrew Paul Smith. 2009. Fast construction of constant bound functions for
sparse polynomials. Journal of Global Optimization 43, 2 (2009), 445-458.
Volker Stahl. 1995. Interval methods for bounding the range of polynomials and
solving systems of nonlinear equations. Ph.D. Dissertation. Johannes Kepler
University Linz.

Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal verification of
neural network controlled autonomous systems. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control. 147-156.
Xiaowu Sun and Yasser Shoukry. 2022. Neurosymbolic motion and task planning
for linear temporal logic tasks. arXiv preprint arXiv:2210.05180 (2022).

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019. Evaluating Robustness of
Neural Networks with Mixed Integer Programming. In International Conference
on Learning Representations.

Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,
Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson. 2020.
NNV: The Neural Network Verification Tool for Deep Neural Networks and
Learning-Enabled Cyber-Physical Systems. In Computer Aided Verification, Shu-
vendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, 3-17.
https://doi.org/10.1007/978-3-030-53288-8_1

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Efficient formal safety analysis of neural networks. In Advances in Neural Infor-
mation Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. 6367-6377.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal security analysis of neural networks using symbolic intervals. In Pro-
ceedings of the 27th USENIX Conference on Security Symposium (SEC’18). USENIX
Association, 1599-1614. https://doi.org/10.5555/3277203.3277323

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and
J Zico Kolter. 2021. Beta-CROWN: Efficient Bound Propagation with Per-neuron
Split Constraints for Neural Network Robustness Verification. In Advances in
Neural Information Processing Systems.

Eric Wong and Zico Kolter. 2018. Provable defenses against adversarial examples
via the convex outer adversarial polytope. In International conference on machine
learning. 5286-5295.

Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. 2018. Output reachable
set estimation and verification for multilayer neural networks. IEEE transactions
on neural networks and learning systems 29, 11 (2018), 5777-5783. https://doi.
org/10.1109/TNNLS.2018.2808470

Weiming Xiang, Hoang-Dung Tran, Joel A. Rosenfeld, and Taylor T. Johnson.
2018. Reachable Set Estimation and Safety Verification for Piecewise Linear
Systems with Neural Network Controllers. In 2018 Annual American Control
Conference (ACC). 1574-1579.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and
Cho-Jui Hsieh. 2021. Fast and Complete: Enabling Complete Neural Network
Verification with Rapid and Massively Parallel Incomplete Verifiers. In ICLR.

https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.5555/3277203.3277323
https://doi.org/10.1109/TNNLS.2018.2808470
https://doi.org/10.1109/TNNLS.2018.2808470

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Notation:
	2.2 Main Problem:

	3 Tight bounds of ReLU Functions Using Bernstein Polynomials
	3.1 Over-Approximating ReLU functions using Bernstein Polynomials
	3.2 Under-approximating ReLU functions using Bernstein polynomials
	3.3 Comparing Bernstein Approximation Against Widely Used Approximations

	4 Encoding Basic Bernstein Polynomial Operations Using Multi-Dimensional Tensors
	4.1 Multi-dimensional tensor representation of Bernstein polynomials
	4.2 Multiplication of two multi-variate Bernstein polynomials
	4.3 Addition between two Bernstein polynomials

	5 BERN-NN algorithm
	5.1 Propagating bounds through single neuron
	5.2 Propagating the bounds through one layer
	5.3 Mechanism of BERN-NN Polynomial Interval Arithmetic
	5.4 GPU Implementation Details

	6 Numerical Results
	6.1 Ablation study
	6.2 Comparison against other tools

	7 Conclusion
	Acknowledgments
	References

