
BERN-NN: Tight Bound Propagation For Neural Networks Using
Bernstein Polynomial Interval Arithmetic
Wael Fatnassi

∗

University of California, Irvine

Dept. of Electrical Engineering and Computer Science

wfatnass@uci.edu

Haitham Khedr
∗

University of California, Irvine

Dept. of Electrical Engineering and Computer Science

hkhedr@uci.edu

Valen Yamamoto

University of California, Irvine

Dept. of Electrical Engineering and Computer Science

vyamamot@uci.edu

Yasser Shoukry

University of California, Irvine

Dept. of Electrical Engineering and Computer Science

yshoukry@uci.edu

ABSTRACT
In this paper, we present BERN-NN as an efficient tool to perform

bound propagation of Neural Networks (NNs). Bound propagation

is a critical step in wide range of NN model checkers and reachabil-

ity analysis tools. Given a bounded input set, bound propagation

algorithms aim to compute tight bounds on the output of the NN.

So far, linear and convex optimizations have been used to perform

bound propagation. Since neural networks are highly non-convex,

state-of-the-art bound propagation techniques suffer from intro-

ducing large errors. To circumvent such drawback, BERN-NN ap-

proximates the bounds of each neuron using a class of polynomials

called Bernstein polynomials. Bernstein polynomials enjoy several

interesting properties that allow BERN-NN to obtain tighter bounds

compared to those relying on linear and convex approximations.

BERN-NN is efficiently parallelized on graphic processing units

(GPUs). Extensive numerical results show that bounds obtained by

BERN-NN are orders of magnitude tighter than those obtained by

state-of-the-art verifiers such as linear programming and linear in-

terval arithmetic. Moreoveer, BERN-NN is both faster and produces

tighter outputs compared to convex programming approaches like

alpha-CROWN.

KEYWORDS
Neural Networks, Bernstein Polynomials, Abstraction Refinement

ACM Reference Format:
Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. 2023.

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein

Polynomial Interval Arithmetic. In Proceedings of the 26th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC ’23), May
09–12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3575870.3587126

∗
Both authors contributed equally to the paper

This work is licensed under a Creative Commons Attribution International

4.0 License.

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0033-0/23/05.

https://doi.org/10.1145/3575870.3587126

1 INTRODUCTION
Neural Networks (NNs) have become an increasingly central com-

ponent of modern, safety-critical, cyber-physical systems like au-

tonomous driving, autonomous decision-making in smart cities,

and even autonomous landing in avionic applications. Thus, there is

an increasing need to verify the safety and correctness [16, 31, 32]

of NNs when they are used to control physical systems.

The problem of NN Verification has been well studied in lit-

erature [25]. Most NN verifiers rely mainly on either using lin-

ear relaxation and optimization [10, 20, 24, 35, 37, 38] to falsify a

given property or prove its satisfaction, or reachability analysis

to compute an over-approximation of the output set. The latter is

specifically important for control applications where the property

of interest is defined over a time horizon. Both techniques rely on

overapproximation, hence, having tight output bounds is at the

core of NN verification as it allows reasoning about NN properties

in an efficient manner. For example, model checking the robustness

of NNs against adversarial perturbations can be done by simply

comparing the tight bounds of the outputs of the network. More-

over, networks used in control applications often involve multi-step

reachability, and hence computing tight bounds is crucial to har-

ness the accumulation of the error and hence be able to efficiently

reason about the safety of the system.

Due to the non-convexity and non-linearity of NNs, the problem

of finding the exact bounds of NN outputs is NP-hard[23]. Different

tools have been proposed to find tight overapproximations of NN

outputs. MILP-based methods [1, 3–6, 8, 15, 33] encode the non-

linear activations as linear and integer constraints. Reachability

methods [14, 19, 22, 34, 36, 39, 40] use layer-by-layer reachability

analysis (exact or overapproximation) of the network. Most of these

methods either rely on convex linear relaxation of the non-linear

activation functions to overapproximate the output of the NN, or

try to find the exact bounds which are often intractable.

In this work, we explore using polynomials to approximate non-

linear activations (e.g. ReLU). More specifically, we approximate

non-linear activations using Bernstein polynomials which are con-

structed as a linear combination of the Bernstein basis polynomi-

als [12]. The use of Bernstein polynomials is motivated by two

reasons. First, based on the Stone-Weierstrass approximation theo-

rem [7], Bernstein polynomials can uniformly approximate contin-

uous activation functions. Second and most importantly, bounding

https://doi.org/10.1145/3575870.3587126
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3575870.3587126
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575870.3587126&domain=pdf&date_stamp=2023-05-09

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry

a Bernstein polynomial is computationally cheap based on the in-

teresting properties of Bernstein polynomials discussed in section

3. The goal of using higher-order polynomials versus linear relax-

ation is to get tight bounds on NNs which is crucial for verifying a

large class of formal properties. This idea of using polynomials has

inspired other researchers [9, 11, 21], however, the proposed tools

suffer from scalability issues.

Our main contributions can be summarized as follows:

• We propose a tool that uses Bernstein polynomials to ap-

proximate ReLU activations and hence compute tighter NN

bounds than state-of-the-art.

• The tool is designed with scalability in mind; hence, the

entire operations can be accelerated using GPUs.

• We show that by using the proposed approximation, we

are able to compute tighter output sets than alpha-Crown

(winner of VNN22’ competition[2] for Formal Verification

of NNs) and other state-of-the-art bounding methods. For

instance, BERN-NN approximations are twice reduced com-

pared to alpha-Crown for actual NN’s controllers. Moreover,

Numerical results showed that Bern-NN can process neu-

ral networks with more than 1000 neurons in less than 2

minutes

2 PROBLEM FORMULATION
2.1 Notation:
General notation: We use the symbols N and R to denote the

set of natural and real numbers, respectively. We denote by 𝑥 =(
𝑥1, 𝑥2, · · · , 𝑥𝑛

)
∈ R𝑛 the vector of 𝑛 real-valued variables, where

𝑥𝑖 ∈ R. We denote by 𝐼𝑛 (𝑑, 𝑑) =
[
𝑑
1
, 𝑑1

]
× · · · ×

[
𝑑𝑛, 𝑑𝑛

]
⊂ R𝑛

the 𝑛-dimensional hyperrectangle where 𝑑 =
(
𝑑
1
, · · · , 𝑑𝑛

)
and 𝑑 =(

𝑑1, · · · , 𝑑𝑛
)
are the lower and upper bounds of the hyperrectangle,

respectively. We denote by 𝑥𝑇 and 𝐴𝑇 the transpose operation

of the vector 𝑥 and the matrix 𝐴. We denote by 0𝑛 a vector that

contains 𝑛 zero values and by 0𝑛×𝑚 the matrix of shape 𝑛 ×𝑚 that

contains zeros. Finally, 𝐴 ∗ 𝐵 stands for the element-wise product

between the multi-dimensional tensors 𝐴 and 𝐵, and 𝐴 ⊗ 𝐵 stands

for the Kronecker product between the matrices 𝐴 and 𝐵.

Notation pertaining to multivariate polynomials: For a real-
valued vector 𝑥 =

(
𝑥1, 𝑥2, · · · , 𝑥𝑛

)
∈ R𝑛 and an index-vector 𝐾 =

(𝑘1, · · · , 𝑘𝑛) ∈ N𝑛 , we denote by 𝑥𝐾 ∈ R the scalar 𝑥𝐾 = 𝑥
𝑘1
1

×
. . . × 𝑥𝑘𝑛𝑛 . Given two multi-indices 𝐾 = (𝑘1, · · · , 𝑘𝑛) ∈ N𝑛 and

𝐿 = (𝑙1, · · · , 𝑙𝑛) ∈ N𝑛 , we use the following notation throughout

this paper:

𝐾 + 𝐿 = (𝑘1 + 𝑙1, · · · , 𝑘𝑛 + 𝑙𝑛) ,(
𝐿

𝐾

)
=

(
𝑙1

𝑘1

)
× · · · ×

(
𝑙𝑛

𝑘𝑛

)
,∑︁

𝐾≤𝐿
=

∑︁
𝑘1≤𝑙1

· · ·
∑︁
𝑘𝑛≤𝑙𝑛

Finally, a real-valued multivariate polynomial 𝑝 : R𝑛 → R is de-

fined as:

𝑝 (𝑥1, . . . , 𝑥𝑛) =

𝑙1∑︁
𝑘1=0

𝑙2∑︁
𝑘2=0

. . .

𝑙𝑛∑︁
𝑘𝑛=0

𝑎 (𝑘1,...,𝑘𝑛)𝑥
𝑘1
1
𝑥
𝑘2
2
. . . 𝑥

𝑘𝑛
𝑛

=
∑︁
𝐾≤𝐿

𝑎𝐾𝑥
𝐾 ,

where 𝐿 = (𝑙1, 𝑙2, . . . , 𝑙𝑛) is the maximum degree of 𝑥𝑖 for all 𝑖 =

1, . . . , 𝑛.

Notation pertaining to neural networks: In this paper, we con-

sider 𝐻 -layer, feed-forward, ReLU-based neural networks NN :

R𝑛 → R𝑜 defined as:

NN(𝑥) =𝑊 (𝐻)𝑧 (𝐻−1) + 𝑏 (𝐻)

𝑧 (𝐻−1) = 𝜎
(
𝑊 (𝐻−1)𝑧 (𝐻−2) + 𝑏 (𝐻−1)

)
.
.
.

𝑧 (1) = 𝜎
(
𝑊 (1)𝑥 + 𝑏 (1)

)
where 𝜎 is the ReLU activation function (i.e., 𝜎 (𝑧) = max(0, 𝑧))
that operates element-wise,𝑊 (𝑖) ∈ Rℎ𝑖×ℎ𝑖−1 and 𝑏 (𝑖) ∈ Rℎ𝑖 with
𝑖 ∈ {1, · · · , 𝐻 } are the weights and the biases of the network.

For simplicity of notation, we use 𝑧
(𝑖)
𝑗

and 𝑧
(𝑖)
𝑗

to denote the pre-

activation (input) and the post-activation (output) of the 𝑗-th neuron

in the 𝑖-th layer.

2.2 Main Problem:
In this paper, we seek to find polynomials that upper and lower

approximate the NN’s outputs NN(𝑥) whenever the NN’s input 𝑥
is confined within a pre-defined hypercube, i.e. 𝑥 ∈ 𝐼𝑛 (𝑑, 𝑑).

Problem 1. Given a neural networkNN : R𝑛 → R𝑜 and an input
domain hypercube 𝐼𝑛 (𝑑, 𝑑) ⊂ R𝑛 . Find lower and upper approximate

polynomials
(
𝑝NN,1 (𝑥), 𝑝NN,1 (𝑥)

)
, . . .

(
𝑝NN,𝑜 (𝑥), 𝑝NN,𝑜 (𝑥)

)
,

such that:

𝑝NN,1 (𝑥) ≤ NN1 (𝑥) ≤ 𝑝NN,1 (𝑥)

.

.

.

𝑝NN,𝑜 (𝑥) ≤ NN𝑜 (𝑥) ≤ 𝑝NN,𝑜 (𝑥),

where with some abuse of notation, we use NN𝑖 (𝑥) to denote the 𝑖th
output of the neural network NN .

Note that the lower/upper bound polynomials(
𝑝NN,1 (𝑥), 𝑝NN,1 (𝑥)

)
, . . .

(
𝑝NN,𝑜 (𝑥), 𝑝NN,𝑜 (𝑥)

)
depend on

the input domain 𝐼𝑛 . That is, for each value of 𝐼𝑛 , we need to find

different lower/upper bound polynomials. However, for the sake of

simplicity of notation, we drop the dependency on 𝐼𝑛 .

3 TIGHT BOUNDS OF RELU FUNCTIONS
USING BERNSTEIN POLYNOMIALS

To solve Problem 1, we rely on a class of polynomials called Bern-

stein polynomials which are defined as follows:

Definition 1. (Bernstein Polynomials) Given a continuous func-
tion 𝑔 : R𝑛 → R, an input domain (hypercube) 𝐼𝑛 (𝑑, 𝑑) ⊂ R𝑛 , and a
multi-index 𝐿 = (𝑙1, · · · , 𝑙𝑛) ∈ N𝑛 , the polynomial:

𝐵𝑔,𝐿 (𝑥) =
∑︁
𝐾≤𝐿

𝑏
𝑔

𝐾,𝐿
𝐵𝑒𝑟𝐾,𝐿 (𝑥) , (1)

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

Figure 1: (Left) Bernstein polynomial approximations of ReLU ac-
tivation for different approximation’s order 𝐿 ∈ {1, 2, 8, 16}, in the
interval 𝐼1 (−6, 10) =

[
− 6, 10

]
. (Right) Bernstein polynomial ap-

proximations of ReLU and their associated approximation errors
for different approximation’s order 𝐿 ∈ {1, 2, 8, 16} in the interval
𝐼1 (−6, 10) =

[
− 6, 10

]
.

𝐵𝑒𝑟𝐾,𝐿 (𝑥) =
(
𝐿

𝐾

) (𝑥 − 𝑑
)𝐾 (

𝑑 − 𝑥
)𝐿−𝐾(

𝑑 − 𝑑
)𝐿 , (2)

𝑏
𝑔

𝐾,𝐿
= 𝑔

((
𝑑1 − 𝑑1

) 𝑘1
𝑙1

+ 𝑑
1
, · · · ,

(
𝑑𝑛 − 𝑑𝑛

) 𝑘𝑛
𝑙𝑛

+ 𝑑𝑛
)
, (3)

is called the 𝐿th order Bernstein polynomial of 𝑔, where 𝐵𝑒𝑟𝐾,𝐿 (𝑥)
and 𝑏𝑔

𝐾,𝐿
are called the Bernstein basis and Bernstein coefficients of 𝑔,

respectively.

Bernstein polynomials are known to be capable of approximat-

ing any continuous function. That is, Bernstein approximation has

an advantage compared to Taylor approximation because the lat-

ter relies on the function being differentiable. In this case, Taylor

model can not approximate ReLU activation functions because they

are not differentiable which makes Bernstein polynomials a good

option to approximate ReLU functions. Bernstein polynomials have

an interesting and useful property called range enclosing property
which is defined as follows:

Definition 2. (Range Enclosing Property [29]) Given a multi-
dimensional polynomial 𝑝 (𝑥) of order 𝐿 that it defined over

the region 𝐼𝑛

(
𝑑, 𝑑

)
with its Bernstein polynomial 𝐵𝑝,𝐿 =∑

𝐾≤𝐿
𝑏
𝑝

𝐾,𝐿
(𝑥) 𝐵𝑒𝑟𝐾,𝐿 (𝑥). The following holds for all 𝑥 ∈ 𝐼𝑛

(
𝑑, 𝑑

)
:

min

𝐾≤𝐿
𝑏
𝑝

𝐾,𝐿
≤ 𝑝 (𝑥) ≤ max

𝐾≤𝐿
𝑏
𝑝

𝐾,𝐿
. (4)

The range enclosing property states that the minimum (maxi-

mum) over all the Bernstein coefficients is a lower (upper) bound

for the polynomial 𝑝 over the region 𝐼𝑛

(
𝑑, 𝑑

)
. These bounds pro-

vided by the Bernstein coefficients are generally tighter than those

given by interval arithmetic and many centered forms [30]. Note

that the range enclosing property applies only when the Bernstein

polynomial is used to approximate other polynomials 𝑝 and other

continuous functions𝑔. Nevertheless, as we show in Section 4, these

bounds will be helpful to provide tight bounds on the polynomials

used to over/under approximate the individual neurons and hence

obtain tight polynomial bounds on the NN’s outputs.

3.1 Over-Approximating ReLU functions using
Bernstein Polynomials

We now study how to use Bernstein polynomials to over-

approximate the ReLU function 𝜎 : R → R defined as 𝜎 (𝑥) =

max(0, 𝑥). While Bernstein polynomials can approximate any con-

tinuous function 𝑔, there is no guarantee that this Bernstein ap-

proximation is either over-approximation or under-approximation.

The next result establishes an order between the ReLU function 𝜎

and its Bernstein approximation.

Proposition 1. Given an interval 𝐼1
(
𝑑, 𝑑

)
=

[
𝑑, 𝑑

]
, where 0 ∈[

𝑑, 𝑑
]
and any approximation order 𝐿 ≥ 1. The following holds for

all 𝑥 ∈ 𝐼1:
𝜎 (𝑥) ≤ 𝐵𝜎,𝐿 (𝑥) = 𝐵𝜎,𝐿 (𝑥) .

Proof. This follows directly by substituting the function 𝜎 in

the definition of Bernstein polynomials (1)-(3). □

In other words, Proposition 1 states that the Bernstein polyno-

mial of 𝜎 is a guaranteed over-approximation of 𝜎 . This even holds

for any approximation order 𝐿. Moreover, since the approximation

error between a function 𝑔 and its Bernstein approximation 𝐵𝑔,𝐿 is

known to decrease as 𝐿 increases [17]. Then another consequence

of Proposition 1 is that Bernstein polynomials produce a tighter

over-approximation for ReLU functions as 𝐿 increases.

Figure 1 emphasizes these conclusions pictorially where we

show the Bernstein polynomials of 𝜎 with orders 𝐿 = 1, 2, 8, 16.

As shown in Figure 1 (Left), the Bernstein polynomials 𝐵𝜎,𝐿 (𝑥)
for 𝐿 ∈ {1, 2, 8, 16} over-approximate the ReLU activation function

over the entire input range. Furthermore, the over-approximation

gets tighter to the actual ReLU by increasing the approximation

order 𝐿. We note that using 𝐿 = 1, the resulting Bernstein polyno-

mial produces the well-studied linear convexification of the ReLU

function which is used in state-of-the-art algorithms for bounding

neural networks including Symbolic Interval Arithmetic (SIA) [35]

and alpha-CROWN [41]. In other words, Bernstein polynomials

can be seen as a generalization of these techniques.

3.2 Under-approximating ReLU functions using
Bernstein polynomials

In addition to the over-approximation of the ReLU function 𝜎 , it is

essential to establish a Bernstein under-approximation of 𝜎 which

is captured by the following result.

Proposition 2. Given an interval 𝐼1
(
𝑑, 𝑑

)
=

[
𝑑, 𝑑

]
, where 0 ∈[

𝑑, 𝑑
]
, then the following holds for all 𝑥 ∈ 𝐼1:

𝐵𝜎,𝐿 (𝑥) = 𝐵𝜎,𝐿 (𝑥) − 𝐵𝜎,𝐿 (0) ≤ 𝜎 (𝑥) .

Proof. To prove the result, we define the approximation error

𝜖𝜎,𝐿 as:

𝜖𝜎,𝐿 (𝑥) = 𝐵𝜎,𝐿 (𝑥) − 𝜎 (𝑥).
We bound the maximum estimation error satisfies as follows:

max

𝑥∈[𝑑,𝑑]
𝜖𝜎,𝐿 (𝑥) = max

𝑥∈[𝑑,𝑑]

(
𝐵𝜎,𝐿 (𝑥) − 𝜎 (𝑥)

)
(5)

(𝑎)
= max

𝑥∈[𝑑,0]
𝐵𝜎,𝐿 (𝑥) (6)

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry

Figure 2: Illustrations of the over-approximation sets (shaded in gray) of the ReLU activation functions in the interval
[
− 6, 10

]
using different

approaches: Bernstein approach (Left), triangulation approach (Center), and zonotope approach (Right). Green (Red)-colored curves represent
the over-approximation (under-approximation) curves for every approach, respectively. 𝐴𝑖 , 𝑖 ∈ {1, 2, 3}, represents the over-approximation
set’s area for every approach.

(𝑏)
= 𝐵𝜎,𝐿 (0) (7)

where (𝑎) follows from the fact that 𝜎 (𝑥) = 0 for 𝑥 ∈ [𝑑, 0] and
𝜎 (𝑥) ≥ 0 for 𝑥 ∈ [0, 𝑑] and hence the maximum of the equation is

attained whenever 𝜎 (𝑥) = 0. Equation (𝑏) holds from the mono-

tonicity of 𝐵𝜎,𝐿 (𝑥) when 𝑥 ∈ [𝑑, 0]—the monotonicity follows

directly from the definition of 𝐵𝜎,𝐿 (𝑥)—and hence the maximum is

attained when 𝑥 = 0. It follows from the definition of 𝜖𝜎,𝐿 (𝑥) that:

𝜎 (𝑥) = 𝐵𝜎,𝐿 (𝑥) − 𝜖𝜎,𝐿 (𝑥) ≥ 𝐵𝜎,𝐿 (𝑥) − max

𝑥∈[𝑑,𝑑]
𝜖𝜎,𝐿 (𝑥)

= 𝐵𝜎,𝐿 (𝑥) − 𝐵𝜎,𝐿 (0) = 𝐵𝜎,𝐿
which concludes the proof. □

Proposition 2 shows that the maximum error between the Bern-

stein over-approximation polynomial 𝐵𝜎,𝐿 and the ReLU activation

function 𝜎 is equal to the value of the Bernstein polynomial at 0,

i.e., 𝐵𝜎,𝐿 (0). This result has a direct consequence on the efficiency

of our tool. It is enough to propagate over-approximation of the

ReLU function and one can get an under-approximation directly

by shifting the over-approximation polynomial.

Figure 1 (Right) emphasizes this fact pictorially. As it is shown

in the figure, the maximum error 𝜖𝜎,𝐿 (𝑥) = 𝐵𝜎,𝐿 − 𝜎 (𝑥) is reached
at 𝑥 = 0 and is equal to 𝐵𝜎,𝐿 (0).

Table 1: The area of the over-approximation set of the ReLU acti-
vation functions in the interval

[
− 6, 10

]
using different Bernstein

approach for different approximation order 𝐿.

Approx. Triangulation Zonotope Bernstein poly

Method 𝐿 = 2 𝐿 = 3 𝐿 = 8

error 80.0 80.0 37.5 28.1 16.9

3.3 Comparing Bernstein Approximation
Against Widely Used Approximations

The major advantage of using Bernstein polynomials is that they

produce a tighter approximation for the response function of ReLU

compared to the other state-of-the-art techniques. In particular,

existing techniques focus on “convexifying” the response of the

ReLU function through linear approximation/triangulation (Figure

2-middle) or zonotopes (Figure 2-right). Unlike these techniques,

Bernstein polynomials lead to tighter non-convex approximations

of the non-convex ReLU function. While it is direct to obtain a

closed-form expression for the difference in the approximation

error between Bernstein polynomials and triangulation/zonotope

approximations, we, instead support our conclusions with the nu-

merical example shown in Table 1 and highlighted in Figure 2. In this

example, we compute the approximation error (highlighted in gray)

which captures the quality of the over and under-approximations.

As captured by this example, it is direct to see that Bernstein polyno-

mials lead to tighter approximation. Moreover, such approximation

gets tighter as the approximation order 𝐿 increases.

4 ENCODING BASIC BERNSTEIN
POLYNOMIAL OPERATIONS USING
MULTI-DIMENSIONAL TENSORS

While using Bernstein polynomials to approximate individual ReLU

functions provides tighter bounds compared to other techniques,

computing Bernstein polynomials via its definition in (1)-(3) is time-

consuming. That is why state-of-the-art techniques have focused

on linear (or convex) relaxations to obtain tractable computations.

Nevertheless, in this section, we show that technological advances

in Graphics Processing Units (GPUs) can be used to perform all the

required operations to efficiently compute Bernstein polynomial

approximations of individual neurons along with propagating these

polynomials from one layer of the neural network to the next layer.

Our main contribution of this section is to encode all necessary

operations over Bernstein polynomials into additions and multipli-

cation of multi-dimensional tensors that can be easily performed

using GPUs.

4.1 Multi-dimensional tensor representation of
Bernstein polynomials

We represent the Bernstein polynomial:

𝐵𝑔,𝐿 (𝑥) =
∑︁
𝐾≤𝐿

𝑏
𝑔

𝐾,𝐿
𝐵𝑒𝑟𝐾,𝐿 (𝑥)

of function𝑔 and order 𝐿 as a multi-dimensional tensor Ten(𝐵𝑔,𝐿) of
𝑛 dimensions, and of a shape of 𝐿 = (𝑙1 + 1, · · · , 𝑙𝑛 + 1), where the
𝐾 = (𝑘1, · · · , 𝑘𝑛) component of Ten(𝐵𝑔,𝐿) is equal to the Bernstein

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

coefficient 𝑏
𝑔

𝐾,𝐿
. The multi-dimensional tensor Ten(𝐵𝑔,𝐿) represent

all the Bernstein coefficients 𝑏
𝑔

𝐾,𝐿
of 𝑔, ∀𝐾 ≤ 𝐿.

Example 1. Consider the two-dimensional Bernstein polynomial:

𝐵𝑔,𝐿 (𝑥1, 𝑥2) =
2∑︁

𝑘1=0

3∑︁
𝑘2=0

𝑏
𝑔

(𝑘1,𝑘2),𝐿𝐵𝑒𝑟 (𝑘1,𝑘2),𝐿 (𝑥1, 𝑥2)

with orders 𝐿 = (2, 3). Its two-dimensional tensor representation is
written as follows:

Ten
(
𝐵𝑔,𝐿

)
=


𝑏
𝑔

(0,0),𝐿 𝑏
𝑔

(0,1),𝐿 𝑏
𝑔

(0,2),𝐿 𝑏
𝑔

(0,3),𝐿
𝑏
𝑔

(1,0),𝐿 𝑏
𝑔

(1,1),𝐿 𝑏
𝑔

(1,2),𝐿 𝑏
𝑔

(1,3),𝐿
𝑏
𝑔

(2,0),𝐿 𝑏
𝑔

(2,1),𝐿 𝑏
𝑔

(2,2),𝐿 𝑏
𝑔

(2,3),𝐿

 . (8)

In a similar manner, we represent a multi-dimensional polyno-

mial of order 𝐿 written in the power series form 𝑝 (𝑥) = ∑
𝐾≤𝐿

𝑎𝐾𝑥
𝐾

as a multi-dimensional tensor Ten (𝑝) of 𝑛 dimensions, and of a

shape of 𝐿 = (𝑙1 + 1, · · · , 𝑙𝑛 + 1), where the 𝐾 = (𝑘1, · · · , 𝑘𝑛) com-

ponent of Ten (𝑝) is equal to the coefficient 𝑎𝐾 .

4.2 Multiplication of two multi-variate
Bernstein polynomials

Multiplying two polynomials represented in the power series form

on GPUs has been widely studied in the literature. Unlike power

series, multiplying two Bernstein polynomials need extra han-

dling [28]. In this subsection, we propose how to encode the mul-

tiplication of Bernstein polynomials using GPU implementations

that were designed for power-series polynomials.

Given two multivariate polynomials written in a power series

form, 𝑝1 =
∑

𝐾≤𝐿1
𝑎1
𝐾
𝑥𝐾 and 𝑝2 =

∑
𝐾≤𝐿2

𝑎2
𝐾
𝑥𝐾 , and their tensor rep-

resentation, Ten (𝑝1) and Ten (𝑝2), we use an efficient algorithm

[26] that performs multivariate polynomial multiplications. We de-

note by Prod (Ten (𝑝1) ,Ten (𝑝2)) the tensor resulting from such

multiplication, i.e.:

Ten (𝑝1𝑝2) = Prod (Ten (𝑝1) ,Ten (𝑝2)) .

Applying power-series-based algorithms to multiply two Bern-

stein polynomials produce incorrect results. Different algorithms

were proposed for the case when the Bernstein polynomials are

functions of one variable 𝑥1 [13] and two variables 𝑥1, 𝑥2 [28]. Be-

low, we generalize the procedure in [28] to account for Bernstein

polynomials in 𝑛 variables.

Proposition 3. Given two multivariate Bernstein polyno-
mials 𝐵𝑔1,𝐿1 (𝑥) =

∑
𝐾≤𝐿1

𝑏
𝑔1
𝐾,𝐿1

𝐵𝑒𝑟𝐾,𝐿1 (𝑥) and 𝐵𝑔2,𝐿2 (𝑥) =∑
𝐾≤𝐿2

𝑏
𝑔2
𝐾,𝐿2

𝐵𝑒𝑟𝐾,𝐿 (𝑥). The tensor representation of the Bernstein poly-

nomial 𝐵𝑔1,𝐿1 (𝑥)𝐵𝑔2,𝐿2 (𝑥) can be computed as follows:

Ten
(
𝐵̃𝑔1,𝐿1

)
= Ten

(
𝐵𝑔1,𝐿1

)
∗𝐶𝐿1 , (9)

Ten
(
𝐵̃𝑔2,𝐿2

)
= Ten

(
𝐵𝑔2,𝐿2

)
∗𝐶𝐿2 , (10)

Ten
(
𝐵𝑔1,𝐿1𝐵𝑔2,𝐿2

)
=

1

𝐶𝐿1+𝐿2
∗ Prod

(
Ten

(
𝐵̃𝑔1,𝐿1

)
, Ten

(
𝐵̃𝑔2,𝐿2

))
.

(11)

where 𝐶𝐿 is the multi-dimensional binomial tensor where its 𝐾th
component is equal to

(𝐿
𝐾

)
, i.e., (𝐶𝐿)𝐾 =

(𝐿
𝐾

)
. With some abuse of

notation, we use 1/𝐶𝐿 to denote the multi-dimensional binomial tensor
where its 𝐾th component is equal to 1

(𝐿𝐾)
.

The proof of Proposition 3 generalizes the argument in [28] to

multi-dimensional inputs and is omitted for brevity. The Bernstein

polynomials in (9) and (10) are called scaled Bernstein polynomi-

als [28] and enjoy the fact that their multiplication corresponds

to the multiplication of power series polynomials. Hence we can

use the power series Prod in (11) followed by the element-wise

multiplication with the
1

𝐶𝐿
1
+𝐿

2

tensor to remove the effect of the

scaling. Recall that we use 𝐴 ∗ 𝐵 to denote the element-wise multi-

plication between the tensors 𝐴 and 𝐵, which can also be carried

over using GPUs efficiently which renders all the steps in equa-

tions (9)-(11) to be efficiently implementable on GPUs. We refer to

the equations (9)-(11) as Prod_Bern(𝐵𝑔1,𝐿1 , 𝐵𝑔2,𝐿2).
Using Prod_Bern, one can compute the tensor corresponding to

raising the function 𝑔 to power 𝑖 , where 𝑖 ∈ N is an integer power,

denoted by Ten(𝐵𝑔𝑖 ,𝐿) by applying the Prod_Bern procedure 𝑖

times. We refer to this procedure as Pow_Bern(Ten(𝐵𝑔,𝐿), 𝑖).

4.3 Addition between two Bernstein
polynomials

The authors in [13] studied how to add two Bernstein polynomials.

However, their study is restricted to one-dimensional polynomials

which are defined over the unity interval 𝐼1 (𝑥) = [0, 1]. We extend

the argument to the general case with 𝑛 inputs and any interval

𝐼𝑛 (𝑑, 𝑑) using the following result.
Proposition 4. Given two Bernstein polynomials 𝐵𝑔1,𝐿1 (𝑥) and

𝐵𝑔2,𝐿2 (𝑥) with two different orders 𝐿1 =
(
𝑙1
1
, · · · , 𝑙1𝑛

)
and 𝐿2 =(

𝑙2
1
, · · · , 𝑙2𝑛

)
. Define 𝐿𝑠𝑢𝑚 = max(𝐿1, 𝐿2), where the max operator

is applied element-wise. The tensor representation of 𝐵𝑔1+𝑔2,𝐿𝑠𝑢𝑚 can
be computed as:

𝐿𝑠𝑢𝑚 = (max(𝑙1
1
, 𝑙2
1
), . . . ,max(𝑙1𝑛, 𝑙2𝑛)) (12)

Ten
(
𝐵𝑔1,𝐿𝑠𝑢𝑚

)
= Prod_Bern

(
Ten

(
𝐵𝑔1,𝐿1

)
, 1𝐿𝑠𝑢𝑚−𝐿1+1

)
(13)

Ten
(
𝐵𝑔2,𝐿𝑠𝑢𝑚

)
= Prod_Bern

(
Ten

(
𝐵𝑔2,𝐿2

)
, 1𝐿𝑠𝑢𝑚−𝐿2+1

)
(14)

Ten
(
𝐵𝑔1+𝑔2,𝐿𝑠𝑢𝑚

)
= Ten

(
𝐵𝑔1,𝐿𝑠𝑢𝑚

)
+ Ten

(
𝐵𝑔2,𝐿𝑠𝑢𝑚

)
(15)

where 1𝐿𝑒−𝐿+1 is a multi-dimensional tensor of a shape 𝐿𝑒 − 𝐿 + 1

that contains just ones.

The proof of Proposition 4 generalizes the argument in [13] and

is omitted for brevity. The operation in (13) and (14) is referred

to as degree elevation in which we change the dimensions of the

tensors ... Once both tensors are of the same dimension, we can

add them element-wise. We denote by Sum_Bern the procedure

defined by (12)-(15). Again, we note that all the operations in the

Sum_Bern entail tensor element-wise multiplication and addition

5 BERN-NN ALGORITHM
In this section, we provide the details of our tool, named BERN-NN.

BERN-NN uses the tensor encoding discussed in Section 4 to prop-

agate Bernstein polynomials that over- and under-approximate

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry

the different neurons in the network until over- and under-

approximation polynomials for the final output of the network

are computed.

5.1 Propagating bounds through single neuron
We first discuss how to propagate over- and under-approximations

through neurons. Recall our notation that we use 𝑧
(𝑖)
𝑗

and 𝑧
(𝑖)
𝑗

to

denote the input and output of the 𝑗-th neuron in the 𝑖-th layer.

For ease of notation, we drop the 𝑖 and 𝑗 from the notation in this

subsection.

Assume that we already computed the over- and under-

approximations for the input of one of the hidden neurons, denoted

by 𝐵𝑧,𝐿𝑧̂ (𝑥) and 𝐵𝑧,𝐿𝑧̂ (𝑥), respectively. The objective is to compute

the over- and under-approximations for the output of such a neu-

ron, denoted by 𝐵𝑧,𝐿𝑧 (𝑥) and 𝐵𝑧,𝐿𝑧 (𝑥), respectively. We proceed as

follows.

Step 1: Compute input bounds for the neuron. Recall that the
Bernstein coefficients depend on the input bounds of the function

it aims to approximate. Since our aim is to approximate the scalar

ReLU function of a neuron, we start by computing the bounds on

the input to that neuron as follows:

𝑙𝑜 = min

𝑥∈𝐼𝑛 (𝑑,𝑑)
𝐵𝑧,𝐿𝑧̂

(𝑥), ℎ𝑖 = max

𝑥∈𝐼𝑛 (𝑑,𝑑)
𝐵𝑧,𝐿𝑧̂ (𝑥) (16)

Thanks to the enclosure property (4), we can solve the optimization

problems (16) by finding the minimum and the maximum coeffi-

cients of 𝐵𝑧,𝐿𝑧̂
and 𝐵𝑧,𝐿𝑧̂ .

Step 2: Compute the polynomials 𝐵𝜎,𝐿 and 𝐵𝜎,𝐿 that approx-
imate the ReLU function. Given a user-defined approximation

order 𝐿, the next step is to compute the Bernstein polynomials that

over- and under-approximate the ReLU activation function 𝜎 de-

noted by 𝐵𝜎,𝐿 and 𝐵𝜎,𝐿 . These polynomials can be computed using

the knowledge of 𝑙𝑜 and ℎ𝑖 along with the definition of the Bern-

stein polynomial in (3). To facilitate the computations of the next

step, we need to convert these polynomials into the corresponding

power series form. This can be done by following the procedure

in [27] to obtain:

𝑝
𝐵𝜎,𝐿

(𝑥) =
∑︁
𝐾≤𝐿

𝑎
𝐵𝜎,𝐿
𝐾

𝑥𝐾 , 𝑝𝐵𝜎,𝐿
(𝑥) =

∑︁
𝐾≤𝐿

𝑎
𝐵𝜎,𝐿
𝐾

𝑥𝐾 (17)

Step 3: Propagate the bounds through the decomposition
of polynomials. First, note that the following holds due to the

monotonicity of the ReLU function 𝜎 and the fact that 𝑧 = 𝜎 (𝑧):

𝐵𝑧,𝐿𝑧̂
(𝑥) ≤ 𝑧 (𝑥) ≤ 𝐵𝑧,𝐿𝑧̂ (𝑥) ⇒ (18)

𝐵𝑧,𝐿𝑧
(𝑥) ≤ 𝜎

(
𝐵𝑧,𝐿𝑧̂

(𝑥)
)
≤ 𝜎

(
𝑧 (𝑥)

)
︸ ︷︷ ︸
𝑧 (𝑥)

≤ 𝜎
(
𝐵𝑧,𝐿𝑧̂ (𝑥)

)
≤ 𝐵𝑧,𝐿𝑧 (𝑥)

(19)

In other words, the post-bounds of the neuron, denoted by

𝐵𝑧,𝐿𝑧 (𝑥) and 𝐵𝑧,𝐿𝑧 (𝑥) can be computed by composing the func-

tion 𝜎 with the under- and over-approximations of the neuron

input 𝐵𝑧,𝐿𝑧̂
(𝑥) and 𝐵𝑧,𝐿𝑧̂ (𝑥). Indeed such composition is hard to

compute due to the nonlinearity in 𝜎 . Instead, we perform such

composition with the over- and under-approximations of 𝜎 , 𝑝
𝐵𝜎,𝐿

and 𝑝𝐵𝜎,𝐿
, computed in Step 2, as:

𝐵𝑧,𝐿𝑧
(𝑥) =

∑︁
𝐾≤𝐿

𝑎
𝐵𝜎,𝐿
𝐾

(
𝐵𝑧,𝐿𝑧̂

(𝑥)
)𝐾

(20)

𝐵𝑧,𝐿𝑧 (𝑥) =
∑︁
𝐾≤𝐿

𝑎
𝐵𝜎,𝐿
𝐾

(
𝐵𝑧,𝐿𝑧̂ (𝑥)

)𝐾
(21)

Given the tensor representation𝑇𝑒𝑛(𝐵𝑧,𝐿𝑧̂) and𝑇𝑒𝑛(𝐵𝑧,𝐿𝑧̂), we can
use the Pow_Bern and Sum_Bern procedures to perform the com-

putations in (20) and (21) to calculate 𝑇𝑒𝑛(𝐵𝑧,𝐿𝑧) and 𝑇𝑒𝑛(𝐵𝑧,𝐿𝑧)
with 𝐿𝑧 = 𝐿𝑧 ∗ 𝐿.

5.2 Propagating the bounds through one layer
Next, we discuss how to propagate the under- and over-

approximation polynomials of the outputs of the 𝑖 − 1 layer de-

noted by 𝐵
𝑧
(𝑖−1)
𝑗

, 𝐿𝑧
, 𝐵
𝑧
(𝑖−1)
𝑗

, 𝐿𝑧
, 𝑗 ∈ {1, . . . , ℎ𝑖−1} to compute under-

and over-approximation of the inputs of the neurons in the 𝑖th

layer 𝐵
𝑧
(𝑖)
𝑚 , 𝐿𝑧̂

, 𝐵
𝑧
(𝑖)
𝑚 , 𝐿𝑧̂

,𝑚 ∈ {1, . . . , ℎ𝑖 } of the neural network.

Such bound propagation entails composing the under- and over-

approximation polynomials 𝐵
𝑧
(𝑖−1)
𝑗

, 𝐿𝑧
, 𝐵
𝑧
(𝑖−1)
𝑗

, 𝐿𝑧
with the weights

of the 𝑖th layer of the neural network𝑊 (𝑖) , 𝑏 (𝑖) . To that end, we

define the set of positive and negative weights as:

𝑊
(𝑖)
+ = max

(
𝑊 (𝑖) , 0𝑖×(𝑖−1)

)
𝑊 (𝑖)

− = min

(
𝑊 (𝑖) , 0𝑖×(𝑖−1)

)
.

Similarly, for the outputs of the 𝑖 −1 layer of the network, we define

the vector of over-approximation polynomials and vector of the

under-approximation polynomials as:

𝐵𝑧 (𝑖−1) , 𝐿𝑧 =

[
𝐵
𝑧
(𝑖−1)
1

,𝐿𝑧
. . . , 𝐵

𝑧
(𝑖−1)
ℎ𝑖−1

,𝐿𝑧

]𝑇
,

𝐵𝑧 (𝑖−1) , 𝐿𝑧
=

[
𝐵
𝑧
(𝑖−1)
1

,𝐿𝑧
. . . , 𝐵

𝑧
(𝑖−1)
ℎ𝑖−1

,𝐿𝑧

]𝑇
,

and for the inputs of the 𝑖the layer as:

𝐵𝑧 (𝑖) , 𝐿𝑧̂
=

[
𝐵
𝑧
(𝑖)
1
,𝐿𝑧̂

. . . , 𝐵
𝑧
(𝑖)
ℎ𝑖
,𝐿𝑧̂

]𝑇
𝐵𝑧 (𝑖) , 𝐿𝑧̂

=

[
𝐵
𝑧
(𝑖)
1
,𝐿𝑧̂

. . . , 𝐵
𝑧
(𝑖)
ℎ𝑖
,𝐿𝑧̂

]𝑇
Hence, the over- and under-approximations of the inputs of the 𝑖th

layer can be efficiently computed as:

𝑇𝑒𝑛

(
𝐵𝑧 (𝑖) ,𝐿𝑧̂

)
=𝑊

(𝑖)
+ ×𝑇𝑒𝑛

(
𝐵𝑧 (𝑖−1) ,𝐿𝑧

)
+𝑊 (𝑖)

− ×𝑇𝑒𝑛
(
𝐵𝑧 (𝑖−1) ,𝐿𝑧

)
+ 𝑏 (𝑖)

(22)

𝑇𝑒𝑛

(
𝐵𝑧 (𝑖) ,𝐿𝑧̂

)
=𝑊

(𝑖)
+ ×𝑇𝑒𝑛

(
𝐵𝑧 (𝑖−1) ,𝐿𝑧

)
+𝑊 (𝑖)

− ×𝑇𝑒𝑛
(
𝐵𝑧 (𝑖−1) ,𝐿𝑧

)
+ 𝑏 (𝑖)

(23)

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

Figure 3: Mechanism of BERN-NN Polynomial Interval Arithmetic.

5.3 Mechanism of BERN-NN Polynomial
Interval Arithmetic

We finally describe the proposed BERN-NN Polynomial Inter-

val Arithmetic algorithm, depicted in Figure 3. For a neural net-

work with 𝑛 inputs 𝑥1, . . . , 𝑥𝑛 , we initialize an over- and under-

approximation Bernstein polynomials for each of the inputs, i.e.,:

𝐵
𝑧
(0)
𝑖
,1
= 𝐵

𝑧
(0)
𝑖
,1
= 𝐵

𝑧
(0)
𝑖
,1

𝑖 ∈ {1, . . . , 𝑛}.

Note that in the equation above, we used 𝑧
(0)
𝑖

as a replacement of

𝑥𝑖 to unify the notation with the remainder of the operations (see

Figure 3). To compute the Bernstein polynomials 𝐵
𝑧
(0)
𝑖
,1
and 𝐵

𝑧
(0)
𝑖
,1
,

we recall that the coefficients of such polynomials depend on the

input domain. Hence, given a hypercube 𝐼𝑛 (𝑑, 𝑑) that bounds the
input𝑥 of the neural network, we compute the tensor representation

of these polynomials as:

𝑇𝑒𝑛

(
𝐵
𝑧
(0)
1
,1

)
= 𝑇𝑒𝑛

(
𝐵
𝑧
(0)
1
,1

)
=

[
𝑑
1

𝑑1

]
⊗
[
1

1

]
⊗ . . . ⊗

[
1

1

]
(24)

𝑇𝑒𝑛

(
𝐵
𝑧
(0)
2
,1

)
= 𝑇𝑒𝑛

(
𝐵
𝑧
(0)
2
,1

)
=

[
1

1

]
⊗
[
𝑑
2

𝑑2

]
⊗ . . . ⊗

[
1

1

]
(25)

.

.

.

𝑇𝑒𝑛

(
𝐵
𝑧
(0)
𝑛 ,1

)
= 𝑇𝑒𝑛

(
𝐵
𝑧
(0)
𝑛 ,1

)
=

[
1

1

]
⊗
[
1

1

]
⊗ . . . ⊗

[
𝑑𝑛
𝑑𝑛

]
(26)

Next, we propagate these over- and under-approximation polyno-

mials to the inputs of the first layer in the neural network using (22)

and (23). Given a user-defined approximation order 𝐿, we propa-

gate the polynomial approximations through the ReLU function

using (20) and (21) for each of the neurons in layer 1. The produced

over- and under-approximations of the outputs of all neurons are

aggregated together in one tensor which is then propagated to

the next layer. This process continues until we compute the over-

and under-approximation polynomials of the outputs of the neural

network, denoted by 𝐵
𝑧
(𝐻)
𝑗

,𝐿𝐻−1 (𝑥), 𝐵𝑧 (𝐻)
𝑗

,𝐿𝐻−1 (𝑥) for 𝑗 = 1, . . . , 𝑜 .

These polynomials are used as the solution of Problem 1.

It is important to note that the final Bernstein polynomials

𝐵
𝑧
(𝐻)
𝑗

,𝐿𝐻−1 (𝑥), 𝐵𝑧 (𝐻)
𝑗

,𝐿𝐻−1 (𝑥) have orders of 𝐿𝐻−1
where 𝐿 is the

user-defined order of approximation of the ReLU function and 𝐻

is the number of layers. This polynomial order increases exponen-

tially with the number of hidden layers. Similarly, the shape of

their multi-dimensional tensor representations is equal to 𝐿𝐻−1 + 1

which increases exponentially with the number of hidden layers. To

alleviate this problem, we introduce a parameter called 𝐿𝑖𝑛. Based

on this parameter, we drop the orders of the post-bound over- and

under-approximation polynomials to [1, · · · , 1]. In other words, we

linearize the approximation polynomials every 𝐿𝑖𝑛 hidden layers.

We use the algorithm in [18] to perform such linearization of the

Bernstein polynomial. Luckily, this algorithm, like all the other

operations in our BERN-NN involves tensor multiplications and

additions and hence can be parallelized over GPUs efficiently.

Finally, note that one can always obtain absolute bounds on the

inputs or outputs of any of the neurons (including the outputs of

the neural network), thanks to the enclosure property of Bernstein

polynomials (4). Such absolute bounds are useful for reachability

analysis and model checkers.

5.4 GPU Implementation Details
To get the performance increase of GPUs without the complications

of low-level languages, we implemented this tool in PyTorch. As

mentioned above, we represent n-dimensional Bernstein polyno-

mials as dense n-dimensional tensors. The tool becomes memory

bound very quickly as the number of input nodes increases, making

the number of dimensions in the tensors larger. In order to com-

bat this, we use as many in-place operations as possible to avoid

repeatedly allocating large chunks of memory during computation.

Similarly, the multinomial coefficients used for degree elevation

are used multiple times throughout the tool, and we cache each

the first time they are generated to avoid spending time re-doing

calculations and allocating additional memory.

We parallelized the tool on a node level: at each layer, the out-

puts of the last layer are passed to each node, which then can run

independently of each other on separate GPUs. However, because

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry

the tensors become large very quickly, the gains in computation

time only offset the overhead of copying tensors between GPUs

when the neural network is particularly large. We collect and stack

the outputs of all the nodes in one tensor and pass it to the next

layer. When the polynomials are being composed with the ReLU

approximation, each term is elevated to the highest degree expected

of a composition between these two polynomials. This both en-

sures that the outputs of all the neurons can be stacked, as they

are all the same shape and size, and also allows the multiplication

of the stacked outputs of the last layer by the incoming weights

to be a simple broadcasting multiplication, which is then easily

parallelizable on a GPU.

We achieved additional performance gains by rewriting for-loops

as element-wise tensor operations and by batching linear algebra

operations like matrix multiplications and calculating the least-

square solutions of matrices, both of which allow operations to be

easily parallelized on GPUs and reduce the amount of time spent

allocating many small patches of memory, instead doing a single

large allocation.

6 NUMERICAL RESULTS
In this section, we perform a series of numerical experiments to

evaluate the scalability and effectiveness of our tool. First, we con-

duct an ablation study to check the effect of varying different pa-

rameters (e.g., neural network width, neural network depth, ReLU

approximation order) on the performance of our tool. We utilize

two metrics:

• Execution time: which measures the time (in seconds)

needed to compute the final Bernstein polynomials. Indeed,

smaller values indicate better performance.

• Relative volume of the output set: this metric mea-

sures the “tightness” of the produced over- and under-

approximation polynomials. Without loss of generality, we

focus on neural networks with one output 𝑧 (𝐻)
and we com-

pute this metric as:

Vol_relative =
Vol_Output

Vol_Input

(27)

Vol_Input =

𝑛∏
𝑖=1

(
𝑑𝑖 − 𝑑𝑖

)
(28)

Vol_Output =

∫
· · ·

∫
𝐼𝑛

(
𝐵𝑧 (𝐻) (𝑥) − 𝐵𝑧 (𝐻) (𝑥)

)
𝑑𝑥1 . . . 𝑑𝑥𝑛 (29)

Indeed, smaller values of this metric indicate tighter approx-

imations of the output set.

After the ablation study, we compare our tool with a set of state-

of-the-art bound computation tools—including the winner of the

last 2022 Verification of Neural Network (VNN) competition [2]—to

study the relative performance.

Setup: We implemented our tool in Python3.9 using PyTorch

for all tensor arithmetic. We run all our experiments using a single

GeForce RTX 2080 Ti GPU and two 24-core Intel(R) Xeon(R).We like

to note that the throughput of the tool can be increased by utilizing

multiple GPU to process different neurons in parallel in a batch-

processing fashion. However, in this section, we focus on using

2 3 4 5 6

0

2

4

6

Execution time (seconds) vs ReLU approx. order 𝐿

2 3 4 5 6

1,000

2,000

3,000

4,000

Relative volume vs ReLU approx. order 𝐿

Figure 4: Effect of varying the ReLU’s order of approximation 𝐿
for a NN architecture [2, 20, 20, 1] on the execution time of our tool
(top) and the relative volume of the output set (bottom). We set 𝑛 = 2,
𝐼𝑛 = [−1, 1]𝑛 , and 𝐿𝑖𝑛 = 0. The weights and biases are generated
randomly following uniform distribution between −5 and 5. The
reported results are generated for 50 experiments.

only one GPU and we leave the generalization of our algorithm to

utilize multiple GPUs for future work.

6.1 Ablation study
6.1.1 The effect of varying the ReLU’s order of approximation: We

study the effect of varying the ReLU’s order of approximation 𝐿

for a fixed NN architecture on the execution time and the output’s

relative volume space of our tool. In Figure 4, we report the statisti-

cal results for 50 random networks of a fixed architecture. Figure 4

(top) shows that increasing the approximation order increases the

execution time. On the other hand, Figure 4 (bottom) shows that

the relative volume of the output set significantly decreases with

increasing the order of approximation. The results of both figures

highlight the trade-off between the tightness of the output bounds

and the execution time as a function of the ReLU approximation

order 𝐿.

6.1.2 The effect of varying the input’s dimension: We study the

effect of varying the input’s dimension𝑛, for a fixed NN architecture

on the execution time of our tool. Figure 5 shows that the execution

time for computing the output set grows linearly for smaller values

of 𝑛 but seems to grow more rapidly after 𝑛 = 7. This suggests

that the proposed tool can be used efficiently for many control

applications.

6.1.3 The effect of increasing the number of neurons per layer: We

study the effect of varying the number of neurons per layer 𝑁𝑒 ,

for a fixed NN architecture [3, 𝑁𝑒 , 𝑁𝑒 , 1] on the execution time of

our tool. Figure 6 summarizes the execution times with a varying

number of neurons per layer. The results show that increasing the

number of neurons per layer highly affects the execution time. This

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

2 3 4 5 6 7 8

0

2

4

6

Execution time (seconds) vs input dimension 𝑛

Figure 5: Effect of varying the input’s dimension 𝑛 for a NN ar-
chitecture [𝑛, 20, 20, 1] on the execution time our tool. We set 𝐿 = 2,
𝐼𝑛 = [−1, 1]𝑛 , and 𝐿𝑖𝑛 = 0. The weights and biases are generated
randomly following uniform distribution between −5 and 5. The
reported results are generated for 50 experiments.

10 20 40 60 80 100

0

10

20

Execution time (seconds) vs number of neurons per layer 𝑁𝑒

Figure 6: Effect of varying the number of neurons per layer 𝑁𝑒 for
a NN architecture [2, 𝑁𝑒 , 𝑁𝑒 , 1] on the execution time of our tool. We
set 𝑛 = 2, 𝐿 = 2, 𝐼𝑛 = [−1, 1]𝑛 , and 𝐿𝑖𝑛 = 0. The weights and biases
are generated randomly following uniform distribution between −5
and 5. The reported results are generated for 50 experiments.

is due to the expensive arithmetic and memory operations for large

tensors that represent the Bernstein polynomials. Nevertheless, this

increase in execution time can be harnessed by using multiple GPUs

to compute bounds for different nodes in parallel along with using

the same GPU to process multiple nodes simultaneously.

6.1.4 The effect of increasing the number of hidden layers: We study

the effect of varying the number of hidden layers 𝑛ℎ , with 20 neu-

rons in every hidden layer, on the execution time of our tool. Unlike

the effect of increasing the number of neurons per layer, the results

in Figure 7 show that the execution time almost grows linearly with

the number of hidden layers.

6.1.5 Scalability analysis of Bern-NN:. We finally try to study the

execution time of Bern-NN for relatively large neural networks. In

this study, we add extra layers with 100 neurons each and report

the execution time in Figure 8 for random neural networks. As

shown in the figure, Bern-NN can process neural networks with

more than 1000 neurons in less than 2 minutes.

6.2 Comparison against other tools
In this subsection, we compare the performance of our tool in terms

of execution time and the output set’s relative volume compared

to bound propagation tools such as Symbolic Interval Analysis

(SIA)[35], alpha-CROWN [41], and reachability analysis tool such

1 2 3 4 5

0

2

4

6

Execution time (seconds) vs number of layers 𝑛ℎ

Figure 7: Effect of varying the number of hidden layers 𝑛ℎ , for a NN
architecture [2, 20, .., 20, 1] with 20 neurons in every hidden layer on
the execution time of our tool. We set 𝑛 = 2, 𝐿 = 2, 𝐼𝑛 = [−1, 1]𝑛 , and
𝐿𝑖𝑛 = 0. The weights and biases are generated randomly following
uniform distribution between −5 and 5. The reported results are
generated for 50 experiments.

200 400 600 800 1,000
0

50

100

Execution time (seconds) vs total number of neurons

Figure 8: Scalability of the Bern-NN tool as a function of increasing
the total number of neurons.

as POLAR [21]. We note that alpha-CROWN [41] was the winner

of the 2022 VNN competition and we compare Bern-NN against

the bound propagation algorithm used within alpha-CROWN as a

representative tool for all the bound propagation techniques. More-

over, alpha-CROWN is also designed to harness the computational

powers of GPUs. We compare Bern-NN against POLAR since it also

uses polynomials (Taylor Model with a Bernstein error correction)

to compute bounds on the output of neural networks. POLAR [21]

outperforms other reachability-based tools and hence is a represen-

tative tool for such techniques.

6.2.1 Comparison against SIA and alpha-CROWN for random NN.
We compare the performance of our tool to SIA and alpha-CROWN

for random neural networks with [2, 20, 20, 1] architecture for dif-
ferent hyperrectangle input spaces (Figure 9). We also compare

the performance as the input dimension of the network increases

(Figure 10). The results show that SIA is the fastest in terms of

execution time for all different input hyperrectangles due to the

simplicity of its computations. However, its relative volume is the

highest. On the other hand, Bern-NN’s relative volume is the small-

est for all different input spaces thanks to its tight higher-order

ReLU approximations. Compared to alpha-CROWN (which also

runs on GPUs), Bern-NN is both faster and produces tighter bounds

leading to an average of 25% reduction in execution time with an

average of 10% reduction in the relative volume metric. This shows

the practicality of Bern-NN for control applications.

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry

input1 input2 input3 input4

0

2

4

A
v
e
r
a
g
e
e
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
)

SIA alpha-CROWN BERN-NN

input1 input2 input3 input4

0

0.5

1

1.5
·105

A
v
e
r
a
g
e
r
e
l
a
t
i
v
e
v
o
l
u
m
e

Figure 9: Performance results in terms of average execution
times (top) and relative volume (bottom) for BERN-NN, SIA, and
alpha-CROWN for different input spaces. The NN’s architecture
is [2, 20, 20, 1]. The ReLU’s order of approximation is 𝐿 = 4, and
𝐿𝑖𝑛 = 0. The weights and biases are generated randomly following
uniform distribution between −5 and 5. Input1 = 𝐼𝑛 = [−5, 5]2, Input2
= 𝐼𝑛 = [−10, 10]2, Input3 = 𝐼𝑛 = [−20, 20]2, Input4 = 𝐼𝑛 = [−40, 40]2.

dim1 dim2 dim3

0

2

4

A
v
e
r
a
g
e
e
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
)

SIA alpha-CROWN BERN-NN

dim1 dim2 dim3

2

4

6

·104

A
v
e
r
a
g
e
r
e
l
a
t
i
v
e
v
o
l
u
m
e

Figure 10: Performance results in terms of average execution
times (top) and relative volume (bottom) for BERN-NN, SIA, and
alpha-CROWN for input’s dimensions 𝑛. The NN’s architecture is
[𝑛, 20, 20, 1]. the input’s space is [−10, 10]𝑛 . The ReLU’s order of ap-
proximation is 𝐿 = 4, 𝐿𝑖𝑛 = 0. The weights and biases are generated
randomly following uniform distribution between −5 and 5. dim1 =
𝑛 = 2, dim2 = 𝑛 = 3, dim3 = 𝑛 = 4.

6.2.2 Case Study for Control Benchmarks. In this experiment, we

test different tools on benchmarks of NN controllers (used by PO-

LAR) to evaluate the tightness of their estimated bounds. POLAR

and BERN-NN use different Bernstein polynomials to approximate

ReLU functions. Proposition 2 shows the maximum error of ReLU’s

Bernstein overapproximation equals the Bernstein approximation

at 0. This error is the smallest for ReLU’s Bernstein overapproxima-

tion. However, POLAR approximates the ReLU using samples and

adds a symmetric error bound estimated using the Lipschitz con-

stant of ReLU functions. Such a method is conservative and leads

to additional errors for each ReLU function. Table 2 represents

six standard benchmarks used by the authors in [21] to evaluate

the POLAR tool. Every benchmark represents a trained NN con-

troller for a closed-loop system. Numbers in the square brackets

refer to NN architecture, e.g., [2,20,20,1] means the NN has an in-

put layer of two neurons, two hidden layers of 20 neurons, and

an output layer of 1 neuron. Table 2 summarizes the performance

of the tools with respect to the average execution time and aver-

age relative volume for six control benchmarks. The results show

that Bern-NN provides the tightest estimate for the output set for

all benchmarks except Benchmark 3. We would like to highlight

that the tight approximation provided by Bern-NN is important for

control applications because the specification of interest is usually

defined over a time horizon and require multi-step reachability,

hence, tighter bounds at each step are crucial. Lastly, Bern-NN is

faster than alpha-CROWN over all benchmarks except Benchmark

5. However, SIA and POLAR are faster than Bern-NN but provide

looser bound estimates. Each benchmark is run with five different

hyperrectangles that are all centered around zero and have a radius

𝑟 ∈ {1, 1.5, 2, 2.5, 3}.

Table 2: Performance results in terms of average execution times
and volume for BERN-NN, SIA, alpha-CROWN, and POLAR, for 5
different input’s spaces 𝐼𝑛

(
𝑑,𝑑

)
for 6 benchmarks [21]. The ReLU’s

order of approximation is 𝐿 = 2, 𝐿𝑖𝑛 = 0.

Tool

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 Benchmark 5 Benchmark 6

[2,20,20,1] [2,20,20,1] [2,20,20,1] [3,20,20,1] [3,100,100,1] [4,20,20,20,1]

time volume time volume time volume time volume time volume time volume

𝑆𝐼𝐴 0.01 2.544 0.02 6.05 0.01 1.02 0.01 9.41 0.02 53.38 0.02 2.03

𝐶𝑅𝑂𝑊𝑁 2.9 3.1 3.49 5.50 3.54 0.73 3.13 17.04 3.80 77.72 4.10 2.4

𝐵𝑒𝑟𝑛 − 𝑁𝑁 0.84 1.62 1.30 5.4 1.09 0.81 1.15 6.21 41.7 35.85 3.25 1.38
𝑃𝑂𝐿𝐴𝑅 0.21 25.43 0.284 51.80 0.29 18.81 0.42 33.32 5.52 432.75 0.81 7.00

7 CONCLUSION
In conclusion, we presented Bern-NN, a tool for computing higher-

order tight bounds for NNs by approximating non-linear ReLU

activations using Bernstein polynomials. We provided GPU-based

computational machinery to handle tensor arithmetic for manipu-

lating polynomials as well as bounding them using the properties

of Bernstein polynomials. We conducted extensive experiments to

evaluate the scalability of our tool as well as compare its estimated

bounds with state-of-the-art methods. The results showed that our

tool can process neural networks with thousands of neurons in a

few minutes. These results also show that our tool outperforms

state-of-the-art tools in terms of computing tighter bounds while

reducing the execution time compared to other tools.

BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

ACKNOWLEDGMENTS
This work was partially sponsored by the NSF awards #CNS-

2002405 and #ECCS-2139781 and the C3.AI Digital Transformation

Institute.

REFERENCES
[1] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and

Juan Pablo Vielma. 2020. Strong mixed-integer programming formulations

for trained neural networks. Mathematical Programming 183, 1 (2020), 3–39.

https://doi.org/10.1007/s10107-020-01474-5

[2] Stanley Bak, Changliu Liu, and Taylor T. Johnson. 2021. The Second International

Verification of Neural Networks Competition (VNN-COMP 2021): Summary and

Results. CoRR abs/2109.00498 (2021), 1–15.

[3] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,

Aditya Nori, and Antonio Criminisi. 2016. Measuring Neural Net Robustness

with Constraints. In Advances in Neural Information Processing Systems, Vol. 29.
Association for Computing Machinery, Barcelona, Spain, 2613–2621.

[4] Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth

Misener. 2020. Efficient verification of relu-based neural networks via dependency

analysis. Proceedings of the AAAI Conference on Artificial Intelligence 34, 4 (2020),
3291–3299.

[5] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, P Kohli, P Torr, and P Mudigonda. 2020.

Branch and bound for piecewise linear neural network verification. Journal of
Machine Learning Research 21, 42 (2020), 1–39.

[6] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. 2017. Maximum

Resilience of Artificial Neural Networks. In Automated Technology for Verification
and Analysis, Deepak D’Souza and K. Narayan Kumar (Eds.). Springer, 251–268.

https://doi.org/10.1007/978-3-319-68167-2_18

[7] Louis De Branges. 1959. The stone-weierstrass theorem. Proc. Amer. Math. Soc.
10, 5 (1959), 822–824.

[8] Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, and Ashish

Tiwari. 2019. Sherlock-a tool for verification of neural network feedback systems:

demo abstract. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control. 262–263.

[9] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachability

analysis for neural feedback systems using regressive polynomial rule inference.

In Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control. 157–168.

[10] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann,

and Pushmeet Kohli. 2018. A Dual Approach to Scalable Verification of Deep

Networks.. In Uncertainty in Artificial Intelligence, Amir Globerson and Ricardo

Silva (Eds.), Vol. 1. 550–559.

[11] Jiameng Fan, Chao Huang, Xin Chen, Wenchao Li, and Qi Zhu. 2020. Reachnn*:

A tool for reachability analysis of neural-network controlled systems. In Interna-
tional Symposium on Automated Technology for Verification and Analysis. Springer,
537–542.

[12] Rida T Farouki. 2012. The Bernstein polynomial basis: A centennial retrospective.

Computer Aided Geometric Design 29, 6 (2012), 379–419.

[13] Rida T Farouki and VT Rajan. 1988. Algorithms for polynomials in Bernstein

form. Computer Aided Geometric Design 5, 1 (1988), 1–26.

[14] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George

Pappas. 2019. Efficient and accurate estimation of lipschitz constants for deep

neural networks. In Advances in Neural Information Processing Systems, H. Wal-

lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),

Vol. 32. Curran Associates, Inc., 11423–11434.

[15] Matteo Fischetti and Jason Jo. 2018. Deep neural networks and mixed integer

linear optimization. Constraints 23, 3 (2018), 296–309. https://doi.org/10.1007/

s10601-018-9285-6

[16] Daniel J Fremont, Johnathan Chiu, Dragos D Margineantu, Denis Osipychev, and

Sanjit A Seshia. 2020. Formal analysis and redesign of a neural network-based

aircraft taxiing system with VerifAI. In International Conference on Computer
Aided Verification. Springer, 122–134.

[17] Jürgen Garloff. 1985. Convergent bounds for the range of multivariate polynomi-

als. In International Symposium on Interval Mathematics. Springer, 37–56.
[18] Jürgen Garloff and Andrew P Smith. 2007. Guaranteed affine lower bound func-

tions for multivariate polynomials. In PAMM: Proceedings in Applied Mathematics
and Mechanics, Vol. 7. Wiley Online Library, 1022905–1022906.

[19] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat

Chaudhuri, and Martin Vechev. 2018. AI2: Safety and robustness certification of

neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 3–18. https://doi.org/10.1109/SP.2018.00058

[20] Patrick Henriksen and Alessio Lomuscio. 2021. DEEPSPLIT: An efficient splitting

method for neural network verification via indirect effect analysis. In IJCAI.

2549–2555.

[21] Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. 2022. Polar:

A polynomial arithmetic framework for verifying neural-network controlled

systems. In International Symposium on Automated Technology for Verification
and Analysis. Springer, 414–430.

[22] Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee.

2019. Verisig: verifying safety properties of hybrid systems with neural network

controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC ’19). Association for Computing Ma-

chinery, New York, NY, USA, 169–178. https://doi.org/10.1145/3302504.3311806

[23] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.

2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In

Computer Aided Verification (Cham, 2017) (Lecture Notes in Computer Science),
Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing,

97–117. https://doi.org/10.1007/978-3-319-63387-9_5

[24] Haitham Khedr, James Ferlez, and Yasser Shoukry. 2021. PEREGRiNN: Penalized-

Relaxation Greedy Neural Network Verifier. In Computer Aided Verification,
Alexandra Silva and K. Rustan M. Leino (Eds.). Springer International Publishing,

Cham, 287–300.

[25] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark

Barrett, Mykel J Kochenderfer, et al. 2021. Algorithms for verifying deep neural

networks. Foundations and Trends® in Optimization 4, 3-4 (2021), 244–404.

[26] Diana Andreea Popescu and Rogelio Tomas Garcia. 2016. Multivariate polynomial

multiplication on GPU. Procedia Computer Science 80 (2016), 154–165.
[27] Shashwati Ray and PSVNataraj. 2012. AMatrixMethod for Efficient Computation

of Bernstein Coefficients. Reliab. Comput. 17, 1 (2012), 40–71.
[28] Javier Sánchez-Reyes. 2003. Algebraic manipulation in the Bernstein form made

simple via convolutions. Computer-Aided Design 35, 10 (2003), 959–967.

[29] Andrew Paul Smith. 2009. Fast construction of constant bound functions for

sparse polynomials. Journal of Global Optimization 43, 2 (2009), 445–458.

[30] Volker Stahl. 1995. Interval methods for bounding the range of polynomials and
solving systems of nonlinear equations. Ph. D. Dissertation. Johannes Kepler

University Linz.

[31] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal verification of

neural network controlled autonomous systems. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control. 147–156.

[32] Xiaowu Sun and Yasser Shoukry. 2022. Neurosymbolic motion and task planning

for linear temporal logic tasks. arXiv preprint arXiv:2210.05180 (2022).
[33] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019. Evaluating Robustness of

Neural Networks with Mixed Integer Programming. In International Conference
on Learning Representations.

[34] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,

Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson. 2020.

NNV: The Neural Network Verification Tool for Deep Neural Networks and

Learning-Enabled Cyber-Physical Systems. In Computer Aided Verification, Shu-
vendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, 3–17.

https://doi.org/10.1007/978-3-030-53288-8_1

[35] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.

Efficient formal safety analysis of neural networks. In Advances in Neural Infor-
mation Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. 6367–6377.

[36] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.

Formal security analysis of neural networks using symbolic intervals. In Pro-
ceedings of the 27th USENIX Conference on Security Symposium (SEC’18). USENIX
Association, 1599–1614. https://doi.org/10.5555/3277203.3277323

[37] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and

J Zico Kolter. 2021. Beta-CROWN: Efficient Bound Propagation with Per-neuron

Split Constraints for Neural Network Robustness Verification. In Advances in
Neural Information Processing Systems.

[38] Eric Wong and Zico Kolter. 2018. Provable defenses against adversarial examples

via the convex outer adversarial polytope. In International conference on machine
learning. 5286–5295.

[39] Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. 2018. Output reachable

set estimation and verification for multilayer neural networks. IEEE transactions
on neural networks and learning systems 29, 11 (2018), 5777–5783. https://doi.

org/10.1109/TNNLS.2018.2808470

[40] Weiming Xiang, Hoang-Dung Tran, Joel A. Rosenfeld, and Taylor T. Johnson.

2018. Reachable Set Estimation and Safety Verification for Piecewise Linear

Systems with Neural Network Controllers. In 2018 Annual American Control
Conference (ACC). 1574–1579.

[41] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and

Cho-Jui Hsieh. 2021. Fast and Complete: Enabling Complete Neural Network

Verification with Rapid and Massively Parallel Incomplete Verifiers. In ICLR.

https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.5555/3277203.3277323
https://doi.org/10.1109/TNNLS.2018.2808470
https://doi.org/10.1109/TNNLS.2018.2808470

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Notation:
	2.2 Main Problem:

	3 Tight bounds of ReLU Functions Using Bernstein Polynomials
	3.1 Over-Approximating ReLU functions using Bernstein Polynomials
	3.2 Under-approximating ReLU functions using Bernstein polynomials
	3.3 Comparing Bernstein Approximation Against Widely Used Approximations

	4 Encoding Basic Bernstein Polynomial Operations Using Multi-Dimensional Tensors
	4.1 Multi-dimensional tensor representation of Bernstein polynomials
	4.2 Multiplication of two multi-variate Bernstein polynomials
	4.3 Addition between two Bernstein polynomials

	5 BERN-NN algorithm
	5.1 Propagating bounds through single neuron
	5.2 Propagating the bounds through one layer
	5.3 Mechanism of BERN-NN Polynomial Interval Arithmetic
	5.4 GPU Implementation Details

	6 Numerical Results
	6.1 Ablation study
	6.2 Comparison against other tools

	7 Conclusion
	Acknowledgments
	References

