
IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024 2749

Neurosymbolic Motion and Task Planning for Linear
Temporal Logic Tasks

Xiaowu Sun , Graduate Student Member, IEEE, and Yasser Shoukry , Senior Member, IEEE

Abstract—This article presents a neurosymbolic framework to
solve motion planning problems for mobile robots involving tem-
poral goals. The temporal goals are described using temporal logic
formulas, such as bounded linear temporal logic (LTL) and co-safe
LTL to capture complex tasks. The proposed framework trains
neural network (NN)-based planners that enjoy strong correctness
guarantees when applying to unseen tasks, i.e., the exact task
(including workspace, temporal logic formula, and errors in the
dynamical models of the robot) is not available during the training
ofNNs.Our approach to achieving theoretical guarantees and com-
putational efficiency is based on two insights. First, we incorporate
a symbolic model into the training of NNs such that the resulting
NN-based planner inherits the interpretability and correctness
guarantees of the symbolic model. Moreover, the symbolic model
serves as adiscrete “memory,”which is necessary for satisfying tem-
poral logic formulas. Second, we train a library of NNs offline and
combine a subset of the trainedNNs into a single NN-based planner
at runtimewhen a task is revealed. In particular, we develop a novel
constrained NN training procedure, named formal NN training,
to enforce that each NN in the library represents a “symbol” in
the symbolic model. As a result, our neurosymbolic framework
enjoys the scalability and flexibility benefits of machine learning
and inherits the provable guarantees from control-theoretic and
formal-methods techniques. We demonstrate the effectiveness of
our framework in both simulations and on an actual robotic vehicle
and show that our framework can generalize to unseen tasks where
state-of-the-art meta-reinforcement learning techniques fail.

Index Terms—Formal methods, meta-reinforcement learning,
neural networks (NNs).

I. INTRODUCTION

D EVELOPING intelligent machines with a considerable
level of cognition dates to the early 1950 s.With the current

rise of machine learning (ML) techniques, robotic platforms
are witnessing a breakthrough in their cognition. Nevertheless,
regardless of how many environments they were trained (or
programmed) to consider, such intelligent machines will always
face new environments, which the human designer failed to
examine during the training phase. To circumvent the lack of
autonomous systems to adapt to new environments, several

Manuscript received 15 September 2023; revised 27 February 2024; accepted
8 April 2024. Date of publication 22 April 2024; date of current version 6 May
2024. This paper was recommended for publication by Associate Editor S. L.
Smith and Editor D. Hsu upon evaluation of the reviewers’ comments. This work
was sponsored by the NSF under Grant #CNS-2002405, Grant #CNS-2013824,
and Grant #CNS-2313104. (Corresponding author: Yasser Shoukry.)

The authors are with the Department of Electrical Engineering and Computer
Science, University of California, Irvine, CA 92697 USA (e-mail: xiaowus@
uci.edu; yshoukry@uci.edu).

Digital Object Identifier 10.1109/TRO.2024.3392079

researchers asked whether we could build autonomous agents
that can learn how to learn. In other words, while conventional
ML focuses on designing agents that can perform one task,
the so-called meta-learning aims instead to solve the problem
of designing agents that can generalize to different tasks that
were not considered during the design or the training of these
agents. For example, in the context of meta-reinforcement learn-
ing (meta-RL), given data collected from a multitude of tasks
(e.g., changes in the environments, goals, and robot dynamics),
meta-RL aims to combine all such experiences and use them
to design agents that can quickly adapt to unseen tasks. While
the current successes of meta-RL are undeniable, significant
drawbacks of meta-RL in its current form are as follows:
1) the lack of formal guarantees on its ability to generalize

to unseen tasks;
2) the lack of formal guarantees with regards to its safety;
3) the lack of interpretability due to the use of black-box deep

learning techniques.
In this article, we focus on the problem of designing neural

network (NN)-based task and motion planners that are guar-
anteed to generalize to unseen tasks, enjoy strong safety guar-
antees, and are interpretable. We consider agents who need to
accomplish temporal goals captured by temporal logic formulas,
such as bounded linear temporal logic (BLTL) [1] and co-safe
LTL (scLTL) [2]. The use of BLTL/scLTL in task and motion
planning has been widely studied (e.g., [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14]) due to the ability of BLTL/scLTL
formulas to capture complex goals, such as “eventually visit
regionA followed by a visit to region B or region Cwhile always
avoiding hitting obstacle D.” On the one hand, motion and task
planning using symbolic techniques enjoy the guarantees of sat-
isfying task specifications in temporal logic. Nevertheless, these
algorithms need an explicit model of the dynamic constraints of
the robot and suffer from computational complexity whenever
such dynamic constraints are highly nonlinear and complex. On
the other hand, ML approaches are capable of training NN plan-
ners without the explicit knowledge of the dynamic constraints
and scale favorably to highly nonlinear and complex dynamics.
Nevertheless, these data-driven approaches suffer from the lack
of safety and generalization guarantees. Therefore, in this work,
we aim to design a novel neurosymbolic framework for motion
and task planning by combining the benefits of symbolic control
and ML techniques.
At the heart of the proposed framework is using a symbolic

model to guide the training of NNs and restricting the behav-
ior of NNs to “symbols” in the symbolic model. Specifically,

1941-0468 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9216-0866
https://orcid.org/0000-0002-8224-8477
mailto:xiaowus@uci.edu
mailto:xiaowus@uci.edu
mailto:yshoukry@uci.edu

2750 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

our framework consists of offline (or training) and online (or
runtime) phases. During the offline phase, we assume access
to a “nominal” simulator that approximates the dynamic con-
straints of a robot. We assume no knowledge of the exact task
(e.g., workspace, BLTL/scLTL formula, and exact dynamic con-
straints of a robot). We use this information to train a “library”
of NNs through a novel NN training procedure, named formal
NN training, which enforces each trained NN to represent a
continuous piece-wise affine (CPWA) function from a chosen
family of CPWA functions. Our focus on CPWA functions is
motivated by the fact that any NN with a rectifier linear unit
(ReLU) nonlinearity represents a CPWA function [15]. While
standard NN training can not restrict the NN to a particular
CPWA function, our proposed formal NN training enjoy such a
guarantee. The exact task becomes available only during the
online (or runtime) phase. Given the dynamic constraints of
a robot, we compute a finite-state Markov decision process
(MDP) as our symbolicmodel. Thanks to the formalNN training
procedure, the symbolic model can be constructed so that each
of the trained NNs in the library represents a transition in the
MDP (and hence a symbol in this MDP). By analyzing this
symbolic model, our framework selects NNs from the library
and combines them into a single NN-based planner to perform
the task and motion planning.
In summary, the main contributions of this article are as

follows.
1) We propose a neurosymbolic framework that integrates

ML and symbolic techniques in training NN-based plan-
ners for an agent to accomplish unseen tasks. Thanks to the
use of a symbolic model, the resulting NN-based planners
are guaranteed to satisfy the temporal goals described in
linear temporal logic formulas, which cannot be satisfied
by existing NN training algorithms.

2) We develop a formal training algorithm that restricts the
trained NNs to specific local behavior. The training proce-
dure combines classical gradient descent training of NNs
with a novel NN weight projection operator that modifies
the NN weights as little as possible to ensure the trained
NN belongs to a chosen family of CPWA functions. We
provide theoretical guarantees on the proposed NNweight
projection operator in terms of correctness and upper
bounds on the error between the NN before and after the
projection.

3) We provide a theoretical analysis of the overall neurosym-
bolic framework. We show theoretical guarantees that
govern the correctness of the resulting NN-based planners
when generalizing to unseen tasks, including workspaces,
temporal logic formulas, and errors in the robot’s dynam-
ical model.

4) We pursue the high performance of the proposed frame-
work in fast adaptation to unseen tasks with efficient
training. For example,we accelerate the trainingofNNsby
employing ideas from transfer learning and constructing
the symbolic model using a data-driven approach. We
validate the effectiveness of the proposed framework on
an actual robotic vehicle and demonstrate that our frame-
work can generalize to unseen tasks where state-of-the-art

meta-RL techniques are known to fail (e.g., when the tasks
are chosen from across homotopy classes [16]).

The rest of this article is organized as follows. After the
problem formulation in Section II, we present the formal NN
training algorithm in Section III. In Section IV, we introduce
the neurosymbolic framework that uses the formal NN training
algorithm to obtain a library of NNs and combines them into a
single NN-based planner at runtime. In Section V, we provide
theoretical guarantees of the proposed framework. In SectionVI,
we present some key elements for performance improvement
while maintaining the same theoretical guarantees. Experimen-
tal results are given in Section VII. Finally, Section VIII con-
cludes this article. All proofs can be found in the appendix.
Comparison with the preliminary results: A preliminary ver-

sion of this article was presented in [17]. In [17], we confined
our goal to generating collision-free trajectories, whereas in
this work, we consider agents that need to satisfy general tem-
poral logic formulas, such as BLTL/scLTL. Also, we assume
that temporal logic formulas and the exact robot dynamics
are unavailable during the training of NNs. In this article, we
present for the first time the formal NN training algorithm (see
Section III). Moreover, we present a theoretical analysis of the
proposed framework (see SectionV).All the speedup techniques
in Section VI, the implementation of our framework on an actual
robotic vehicle, and the performance comparison with meta-RL
algorithms are also new in this article.
Related work: The literature on the safe design of ML-based

motion and task planners can be classified according to three
broad approaches, namely, as follows.
1) Incorporating safety in the training ofML-based planners.
2) Post-training verification of ML models.
3) Online validation of safety and control intervention.
Representative examples of the first approach include reward-

shaping [18], [19], Bayesian and robust regression [20], [21],
[22], and policy optimization with constraints [23], [24], [25].
Unfortunately, these approaches do not provide provable guar-
antees about the safety of the trained ML-based planners.
To provide strong safety and reliability guarantees, several

works in the literature focus on applying formal verification
techniques (e.g., model checking) to verify pretrained MLmod-
els against formal safety properties. Representative examples
of this approach include the use of SMT-like solvers [26],
[27], [28], [29], [30], [31] and hybrid-system verification [32],
[33], [34]. However, these techniques only assess a given
ML-based planner’s safety rather than design or train a safe
agent.
Due to the lack of safety guarantees on the resultingML-based

planners, researchers proposed several techniques to restrict the
output of the ML models to a set of safe control actions. Such
a set of safe actions can be obtained through Hamilton–Jacobi
analysis [35], [36] and barrier certificates [37], [38], [39], [40],
[41], [42], [43]. Unfortunately, methods of this type suffer from
being computationally expensive, specific to certain controller
structures, or requiring assumptions on the systemmodel. Other
techniques in this domain include synthesizing a safety layer
(shield) based on model predictive control with the assump-
tion of safe terminal sets [44], [45], [46], logically-constrained

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

SUN AND SHOUKRY: NEUROSYMBOLIC MOTION AND TASK PLANNING FOR LINEAR TEMPORAL LOGIC TASKS 2751

reinforcement learning [47], [48], [49], and Lyapunov meth-
ods [50], [51], [52] that focus on providing stability guarantees
rather than safety or general temporal logic guarantees.
Another line of related work is the integration of logical

reasoning with reinforcement learning. In particular, the work
reported in [53], [54] focuses on transforming logical constraints
(e.g., temporal logic mission constraints) into reward machines
with the guarantee that finding a policy that achieves their global
optima leads to the satisfaction of the logicalmission constraints.
Unfortunately, current RL algorithms do not enjoy guarantees in
terms of achieving the global optima except when restricted to
searching over a finite set of states and control actions.Moreover,
these techniques assume the knowledge of the mission task
during the training of the RL agent and do not enjoy generaliza-
tion guarantees to unseen tasks. Another direction—to integrate
logical reasoning with RL—is reported in [55], [56], [57], and
[58],where the target is to compose different RL agents to satisfy
temporal logic constraints. Unfortunately, the work in [55] and
[58] is restricted to scenarios with finite state and control action
spaces while the work in [56] and [57] does not guarantee the
ability of the composed RL agents to generalize to all unseen
LTL tasks unless additional RL controllers are learned. On the
contrary, the framework proposed in this paper is designed for
systems with continuous state and action spaces. Moreover, this
framework guarantees the ability to generalize to unseen LTL
tasks without the need to train additional NNs at the expense
of performing some computations when the unseen LTL task is
revealed. Finally, thework reported in [59] offers insights onhow
to perform transfer learning in RL between different temporal
logic missions for finite state and action spaces and is restricted
to the case when the logical formulas are “close enough.” Unlike
all these works, our approach can be applied to systems with
continuous state and control action spaces, capable of training
NNs with guarantees that allow them to be composable, and
can perform transfer learning between any temporal logic tasks
while satisfying strongguarantees that are not enjoyed by current
transfer learning algorithms [60].
The idea of learning neurosymbolic models is studied in

works [61], [62], [63] that use NNs to guide the synthesis of
control policies represented as short programs. The algorithms
in [61], [62], and [63] train an NN controller, project it to the
space of program languages, analyze the short programs, and
lift the programs back to the space of NNs for further training.
Theseworks focus on tasks given during the training ofNNs, and
the final controller is a short program. Another related work is
reported in [64] and [65],which studies the problemof extracting
a finite-state controller from a recurrent NN. Unlike the above
works, we consider temporal logic specifications and unseen
tasks, and our final planner is NNs in tandem with a finite-state
MDP.

II. PROBLEM FORMULATION

A. Notations

Let R, R+, and N be the set of real numbers, positive real
numbers, and natural numbers, respectively. For a nonempty set
S, let 2S be the power set ofS, 1S be the indicator function ofS,

and Int(S) be the interior ofS. Furthermore, we useSn to denote
the set of all finite sequences of length n ∈ N of elements in S.
The product of two sets is defined as S1 × S2 := {(s1, s2)|s1 ∈
S1, s2 ∈ S2}. Let ||x|| be the Euclidean norm of a vector x ∈
R

n, ||A|| be the induced two-norm of a matrix A ∈ R
m×n, and

||A||max = maxi,j |Aij | be the max norm of a matrix A. Any
Borel spaceX is assumed to be endowed with a Borel σ-algebra
denoted by B(X).

B. Assumptions and Information Structure

We consider a meta-RL setting that aims to train NNs for con-
trolling a robot to achieve tasks that were unseen during training.
To be specific, we denote a task by a tuple T = (g, ϕ,W, X0),
where g captures the error in the robot’s dynamical model (see
Section II-C), ϕ is a BLTL/scLTL formula that defines the
mission for a robot to accomplish (see Section II-D), W is a
workspace (or an environment) in which a robot operates, and
X0 contains the initials states of a robot. During training, we
assume the availability of an approximation of the dynamical
model t (see Section II-C for details). The mission specification
ϕ, the workspace W, and the set of initial states X0 are not
available during training and only become available at runtime.
Despite the limited knowledge of tasks during training, we aim
to design provably correct NNs for unseen tasks T.

C. Dynamical Model

We consider robotic systems that can be modeled as stochas-
tic, discrete-time, nonlinear dynamical systems with a transition
probability of the form

Pr(x′ ∈ A|x, u) =
∫
A

t(dx′|x, u) (1)

where states of a robotx ∈ X and control actionsu ∈ U are from
continuous state and action spaces X ⊂ R

n and U ⊂ R
m, re-

spectively. In (1), we use t : B(X)×X × U → [0, 1] to denote
a stochastic kernel that assigns to any state x ∈ X and action
u ∈ U a probability measure t(·|x, u). Then, Pr(x′ ∈ A|x, u)
is the probability of reaching a subset A ∈ B(X) in one-time
step from state x ∈ X under action u ∈ U . We assume that
t consists of a priori known nominal model f and a model
error g capturing the unmodeled dynamics. We assume the
model error g is captured by a Gaussian process (GP) regression
model GP(μg, σ

2
g), where μg and σ2

g are the posterior mean and
variance functions, respectively [66]. Hence, we can rewrite (1)
as

Pr(x′ ∈ A|x, u) =
∫
A

N(dx′|f(x, u) + μg(x, u), σ
2
g(x, u))

(2)
which is an integral of the normal distribution N(f(x, u) +
μg(x, u), σ

2
g(x, u)) and hence can be easily computed.

We assume the nominal model f is available during the NN
training phase, while the model-error g is evaluated at runtime,
and hence the exact stochastic kernel t only becomes available
at runtime. This allows us to apply the trained NN to various

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

2752 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

robotic systems with different dynamics captured by the model
error g.
Remark: We note that our algorithm does not require the

knowledge of the function f in a closed-form/symbolic rep-
resentation. Access to a simulator would suffice.

D. Temporal Logic Specification and Workspace

A well-known weakness of RL and meta-RL algorithms is
the difficulty in designing reward functions that capture the
exact intent of designers [47], [48], [67]. Agent behavior that
scores high according to a user-defined reward function may
not be aligned with the user’s intention, which is often referred
to as “specification gaming” [68]. To that end, we adopt the
representation of an agent’s mission in temporal logic specifica-
tions, which have been extensively demonstrated the capability
to capture complex behaviors of robotic systems.
In particular, we consider mission specifications defined in

either BLTL [1] or syntactically scLTL [2]. Let AP be a finite
set of atomic propositions that describe a robotic system’s states
with respect to a workspace W. For example, these atomic
propositions can describe the location of a robot with respect
to the obstacles to avoid and the goal location to achieve. Given
AP , any BLTL formula can be generated according to the
following grammar:

ϕ := σ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U[k1,k2] ϕ2

where σ ∈ AP and time steps k1 < k2. Given the above gram-
mar, we can define ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), false = ϕ ∧
¬ϕ, and true = ¬false. Furthermore, the bounded-time even-
tually operator can be derived as ♦[k1,k2]ϕ = true U[k1,k2] ϕ
and the bounded-time always operator is given by �[k1,k2]ϕ =
¬♦[k1,k2]¬ϕ.

Given a set of atomic propositions AP , the corresponding
alphabet is defined as A := 2AP , and a finite (infinite) word
ω is a finite (infinite) sequence of letters from the alphabet
A, i.e., ω = ω(0)ω(1) . . . ω(H) ∈ A

H+1. The satisfaction of a
word ω to a specification ϕ can be determined based on the
semantics of BLTL [1]. Given a robotic system and an alphabet
A, let L : X → A be a labeling function that assigns to each
state x ∈ X the subset of atomic propositions L(x) ∈ A that
evaluate true at x. Then, a robotic system’s trajectory ξ satis-
fies a specification ϕ, denoted by ξ |= ϕ, if the corresponding
word satisfies ϕ, i.e., L(ξ) |= ϕ, where ξ = x(0)x(1) . . . x(H) ∈
XH+1 and L(ξ) = L(x(0))L(x(1)) . . . L(x(H)) ∈ A

H+1. Sim-
ilarly, we can consider scLTL specifications interpreted over
infinite words based on the fact that any infinite word that
satisfies a scLTL formula ϕ contains a finite “good” prefix such
that all infinite words that contain the prefix satisfy ϕ [2].
Example 1 (Reach-avoid Specification): Consider a robot

that navigates a workspace W = {Xgoal, O1, . . . , Oc}, where
Xgoal ⊂ X is a set of goal states that the robot would like
to reach and O1, . . . , Oc ⊂ X are obstacles that the robot
needs to avoid. The set of atomic propositions is given by
AP = {x ∈ Xgoal, x ∈ O1, . . . , x ∈ Oc}, where x is the state
of the robot. Then, a reach-avoid specification can be expressed

asϕ = ϕliveness ∧ ϕsafety, whereϕliveness = ♦[0,H](x ∈ Xgoal) re-
quires the robot to reach the goal Xgoal in H time steps and
ϕsafety = �[0,H]

∧
i=1,...,c ¬(x ∈ Oi) specifies to avoid all the

obstacles during the time horizon H . Let ξ = x(0)x(1) . . . x(H)

be a trajectory of the robot, then the reach-avoid specification ϕ
is interpreted as

ξ |= ϕliveness ⇐⇒ ∃k ∈ {0, . . . H}, x(k) ∈ Xgoal

ξ |= ϕsafety ⇐⇒ ∀k ∈ {0, . . . H},∀i ∈ {1, . . . , c}, x(k) �∈ Oi.

E. Neural Network

To account for the stochastic behavior of a robot, we aim
to design a state-feedback NN NN : X → U that can achieve
temporal motion and task specifications ϕ. An F -layer rectified
linear unit (ReLU) NN is specified by composing F layer
functions (or just layers). A layer l with il inputs and ol outputs
is specified by a weight matrix W (l) ∈ R

ol×il and a bias vector
b(l) ∈ R

ol as follows:

Lθ(l)

: z
→ max{W (l)z + b(l), 0} (3)

where the max function is taken element-wise, and θ(l) �
(W (l), b(l)) for brevity. Thus, an F -layer ReLU NN is specified
by F layer functions {Lθ(l)

: l = 1, . . . , F} whose input and
output dimensions are composable: that is, they satisfy il = ol−1,
l = 2, . . . , F . Specifically

NN θ(x) = (Lθ(F) ◦ Lθ(F−1) ◦ · · · ◦ Lθ(1)

)(x) (4)

where we index a ReLU NN function by a list of parameters
θ � (θ(1), . . . , θ(F)).As a commonpractice,we allow the output
layerLθ(F)

to omit themax function. For simplicity of notation,
we drop the superscript θ inNN θ whenever the dependence on
θ is obvious.

F. Main Problem

We consider training a finite set (or a library) of ReLU NNs
(during the offline phase) and designing a selection algorithm
(during the online phase) that can select the correct NNs once
the exact task T = (g, ϕ,W, X0) is revealed at runtime. Before
formalizing the problem under consideration, we introduce the
following notion of NN composition.
Definition II.1: Given a set (or a library) of NNs NN =

{NN1,NN2, . . . ,NNd} along with an activation map Γ :
X → {1, . . . , d}, the composed NN NN[NN,Γ] is defined as:
NN[NN,Γ](x) = NNΓ(x)(x).
In other words, the activation map Γ selects the NN that needs

to be activated at each statex ∈ X . Let ξxNN[NN,Γ]
be a closed-loop

trajectory of a robot that starts from the statex ∈ X0 and evolves
under the composed NN NN[NN,Γ]. We define the problem of
interest as follows.
Problem II.2: Given the nominal dynamics f , the state space

X and the control space U , train a library of ReLU NNs NN
without the knowledge of the task T = (g, ϕ,W, X0). When
the task T = (g, ϕ,W, X0) is revealed at runtime, compute an
activation map Γ such that the composed NNNN[NN,Γ] satisfies

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

SUN AND SHOUKRY: NEUROSYMBOLIC MOTION AND TASK PLANNING FOR LINEAR TEMPORAL LOGIC TASKS 2753

the specificationϕwith probability at leastp, i.e., Pr(ξxNN[NN,Γ]
|=

ϕ) ≥ p for any x ∈ X0.

G. Overview of the Neurosymbolic Framework

Our approach to designing the NN-based planner NN[NN,Γ]

can be split into two stages: offline training and runtime selec-
tion. During the offline training phase, our algorithm obtains a
library of networks NN. At runtime, and to fulfill unseen tasks
using a finite set of NNs NN, our neurosymbolic framework
bridges ideas from symbolic LTL-based planning andML. Sim-
ilar to symbolic LTL-based planning, our framework uses a hier-
archical approach that consists of a “high-level” discrete planner
and a “low-level” continuous controller [8], [9], [12]. The “high-
level” discrete planner focuses on ensuring the satisfaction of the
temporal logic specification. At the same time, the “low-level”
controllers compute control actions that steer the robot to satisfy
the “high-level” plan. Unlike symbolic LTL-based planners, our
framework uses NNs as low-level controllers, thanks to their
ability to handle complex nonlinear dynamic constraints. In
particular, the “high-level” planner chooses the activation map
Γ to activate particular NNs.
Nevertheless, to ensure the correctness of the proposed frame-

work, it is essential to ensure that each NN inNN satisfies some
“formal” property. This “formal” property allows the high-level
planner to abstract the capabilities of each of the NNs in NN
and hence choose the correct activation map Γ. To that end,
in Section III, we formulate the subproblem of “formal NN
training” that guarantees the trained NNs satisfy certain formal
properties, and solve it efficiently by introducing a NN weight
projection operator. The solution to the formal training is used in
Section IV-A to obtain the library of networksNN offline. The
associated formal property of each NN is used in Section IV-B
to design the activation map Γ.

III. FORMAL TRAINING OF NNS

In this section, we study the subproblem of training NNs
that are guaranteed to obey certain behaviors. In addition to the
classical gradient-descent update of NN weights, we propose
a novel “projection” operator that ensures the resulting NN
obeys the selected behavior. We provide a theoretical analysis
of the proposed projection operator in terms of correctness and
computational complexity.

A. Formulation of Formal Training

We start by recalling that every ReLUNN represents a CPWA
function [15]. Let ΨCPWA : X → R

m denote a CPWA function
of the form

ΨCPWA(x) = K ′
ix+ b′i if x ∈ Ri, i = 1, . . . , L (5)

where the collection of polytopic subsets {R1, . . . ,RL} is
a partition of the set X ⊂ R

n such that
⋃L

i=1 Ri = X and
Int(Ri) ∩ Int(Rj) = ∅ if i �= j. We call each polytopic subset
Ri ⊂ X a linear region, and denote by LΨCPWA the set of linear
regions associated to ΨCPWA, i.e., LΨCPWA = {R1, . . . ,RL}. In
this article, we confine our attention to CPWA controllers (and

Algorithm 1: FORMAL-TRAIN (q,P, J).
1: Initialize neural network NN θ, i = 1
2: while i ≤ max_iter do
3: NN θ = gradient− descent(NN θ,P, J)
4: Ŵ (F), b̂(F) = ΠP(NN θ)

5: Set the output layer weights of NN θ be Ŵ (F), b̂(F)

6: i = i+ 1
7: end while
8: Return NN θ

henceNNcontrollers) that are selected fromaboundedpolytopic
setPK × Pb ⊂ R

m×n × R
m, i.e., we assume thatK ′

i ∈ PK and
b′i ∈ Pb. For simplicity of notation, we use PK×b ⊂ R

m×(n+1)

to denote the polytopic set PK × Pb, and use Ki(x) with a
single parameterKi ∈ PK×b to denoteK ′

ixi + b′i with the pair
(K ′

i, b
′
i) = Ki.

Let P ⊆ PK×b be a bounded polytopic subset of the param-
eters Ki, then with some abuse of notation, we use the same
notation P to denote the subset of CPWA functions whose
parameters Ki are chosen from P. In other words, a CPWA
function ΨCPWA ∈ P if and only if Ki ∈ P at all linear regions
Ri ∈ LΨCPWA , where the CPWA function ΨCPWA is in the form
of (5).
Using this notation,we define the formal training problem that

ensures the trained NNs belong to subsets of CPWA functions
P ⊆ PK×b as follows.
Problem III.1: Given a bounded polytopic subset q ⊆ X ,

a bounded subset of CPWA functions P ⊆ PK×b, and a cost
functional J , find NN weights θ∗ such that

θ∗ = argmin
θ

J(NN θ) s.t. NN θ|q ∈ P. (6)

In Problem III.1, we use NN θ|q to denote the restriction of
NN θ to the subset q, i.e., NN θ|q(x) = NN θ(x) for x ∈ q.
Consider the CPWA function NN θ is in the form of (5), then
the constraint NN θ|q ∈ P requires that Ki ∈ P whenever the
corresponding linear regionRi intersects the subset q, i.e.,

NN θ|q∈P ⇐⇒ Ki∈P ∀Ri∈{R∈LNN θ |R ∩ q �= ∅}.
(7)

B. NN Weight Projection

To solve Problem III.1, we introduce a NN weight projection
operator that can be incorporated into the training of NNs.
Algorithm 1 outlines our procedure for solving Problem III.1.
As a projected-gradient algorithm, Algorithm 1 alternates the
gradient descent based training (line 3 in Algorithm 1) and the
NN weight projection (lines 4 and 5 in Algorithm 1) up to a pre-
specified maximum iteration max_iter. Given a subset of CPWA
functionsP ⊆ PK×b,wedenote byΠP theNNweight projection
operator that enforces a network NN θ to satisfy NN θ|q ∈ P,
i.e., the constraints (7). In the following, we formulate this NN
weight projection operator ΠP as an optimization problem.
Consider a NN NN θ with F layers, including F − 1 hidden

layers and an output layer. Let W (F) and b(F) be the weight

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

2754 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

matrix and the bias vector of the output layer, respectively, i.e.,

θ =
(
θ(1), . . . , θ(F−1), (W (F), b(F))

)
. (8)

Then, the NN weight projection ΠP updates the output layer
weightsW (F), b(F) to Ŵ (F), b̂(F) (lines 4 and 5 inAlgorithm1).
As a result, the projected NN weights θ̂ are given by

θ̂ =
(
θ(1), . . . , θ(F−1), (Ŵ (F), b̂(F))

)
. (9)

We formulate the NN weight projection operator ΠP as the
following optimization problem:

argmin
̂W (F),̂b(F)

max
x∈q

||NN ̂θ(x)−NN θ(x)||1 (10)

s.t. K̂i ∈ P, ∀Ri ∈ {R ∈ LNN θ | R ∩ q �= ∅}. (11)

In the constraints (11), we use K̂i to denote the affine function
parameters of the CPWA function NN ̂θ.
The optimization problem (10) and (11) tries to minimize

the change of the NN’s outputs due to the weight projection,
where the change is measured by the largest 1-norm difference

between the outputs given byNN ̂θ andNN θ across the subset

q ⊆ X , i.e., maxx∈q ||NN ̂θ(x)−NN θ(x)||1. In the following
two sections, we first upper bound the objective function (10) in
terms of the change of the NN’s weights, and then show that the
optimization problem (10) and (11) can be solved efficiently.

C. Bounding the Change of Control Actions

First, we note that it is common to omit the ReLU activa-
tion functions from the NN’s output layer. Since the proposed
projection operator only modifies the output layer weights, it is
straightforward to show that the NN weight projection operator
does not affect the set of linear regions, i.e., L

NN θ̂
= LNN θ ,

but only updates the affine functions defined over these re-
gions. The following proposition shows the relation between the
change in the NN’s outputs and the change made in the output
layer weights. The proof of this proposition can be found in
Appendix B.
Proposition III.2: Consider two F -layer NNs NN θ and

NN ̂θ where θ and θ̂ are as defined in (8) and (9). Then, the
largest difference in the NNs’ outputs across a subset q ⊆ X is
upper bounded as follows:

max
x∈q

||NN ̂θ(x)−NN θ(x)||1

≤ max
x∈Vert(LNN θ∩q)

m∑
i=1

oF−1∑
j=1

|ΔW
(F)
ij |hj(x) +

m∑
i=1

|Δb
(F)
i |.

(12)

In Proposition III.2, m is the dimension of the NN’s output,
ΔW

(F)
ij andΔb

(F)
i are the (i, j)th and the ith entry ofΔW (F) =

Ŵ (F) −W (F) and Δb(F) = b̂(F) − b(F), respectively. With
the notation of layer functions (3), we use a single function
h : Rn → R

oF−1 to represent all the hidden layers, i.e., h(x) =
(Lθ(F−1) ◦ Lθ(F−2) ◦ · · · ◦ Lθ(1))(x), where oF−1 is the number

of neurons in the (F − 1)-layer (the last hidden layer). Further-
more, we use LNN θ∩q to denote the intersected regions between
the linear regions inLNN θ and the subset q ⊆ X , i.e.,LNN θ∩q =
{R ∩ q|R ∈ LNN θ ,R∩ q �= ∅}. Let Vert(R) be the set of ver-
tices of a region R, then Vert(LNN θ∩q) =

⋃
R∈LNN θ∩q

Vert(R)

is the set of vertices of all regions in LNN θ∩q.

D. Efficient Computation of the NN Projection Operator

Now, we focus on how to compute the NN weight projection
operator ΠP efficiently. In particular, Proposition III.2 proposes
a direct way to solve the intended projection operator. In order
to minimize the change of the NN’s outputs (10) due to the
weight projection, we minimize its upper bound given by (12).
Accordingly, we compute theNNweight projection operatorΠP
by solving following optimization problem:

argmin
̂W (F),̂b(F)

max
x∈Vert(LNN θ∩q)

m∑
i=1

oF−1∑
j=1

∣∣ΔW
(F)
ij

∣∣hj(x)+

m∑
i=1

∣∣Δb
(F)
i

∣∣
(13)

s.t. K̂i ∈ P, ∀Ri ∈ {R ∈ LNN θ | R ∩ q �= ∅}. (14)

Thenext result establishes the computational complexity of solv-
ing the optimization problemabove. The proof of the proposition
is given in Appendix B.
Proposition III.3: The optimization problem (13) and (14) is

a linear program.
While Proposition III.3 ensures that solving the optimization

problem can be done efficiently, we note that identifying the
set of linear regions LNN θ of a ReLU NN NN θ needs to
enumerate the hyperplanes represented by NN θ. For shallow
NNs and other special NN architectures, this can be done in
polynomial time (e.g., Ferlez and Shoukry [69] used a POSET
for the enumeration). For generalNNs, identifying linear regions
may not be polynomial time, but there exist efficient tools such
as NNENUM [70] that use star sets to enumerate all the linear
regions. Moreover, as we will show in the following sections,
each NN in the library NN can contain a limited number of
weights (and hence a limited number of linear regions), but their
combination leads to NNs with a large number of linear regions
and hence capable of implementing complex functions.
We conclude this section with the following result whose

proof follows directly fromProposition III.3 and the equivalence
in (7).
Theorem III.4: Given a bounded polytopic subset q ⊆ X and

a bounded subset ofCPWAfunctionsP ⊆ PK×b. Consider aNN
NN θ whose output layer weights are given by the NN weight
projection operatorΠP (i.e., the solution to (13) and (14)). Then,
the network NN θ satisfies the constraint in (6), i.e., NN θ|q
∈ P. Furthermore, the optimization problem (13) and (14) is a
linear program.

IV. NEUROSYMBOLIC LEARNING FRAMEWORK

As discussed in Section II-G, our approach to designing the
NN-based planner NN[NN,Γ] and solving Problem II.2 is split
into two stages: offline training and runtime selection. During

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

SUN AND SHOUKRY: NEUROSYMBOLIC MOTION AND TASK PLANNING FOR LINEAR TEMPORAL LOGIC TASKS 2755

the offline training phase, our algorithm obtains a library of net-
works NN, where each NN is trained using the formal training
Algorithm 1. At runtime, when the exact task T = (g, ϕ,W, X0)
is observed, we use dynamic programming (DP) to compute an
activation map Γ, which selects a subset of the trained NNs and
combines them into a single planner.We provide details on these
two stages in the following two sections separately.

A. Offline Training of a Library NN

Similar to standard LTL-based motion planners [9], [10],
[11], [12], [13], [14], we partition the continuous state space
X ⊂ R

n into a finite set of abstract states X = {q1, . . . , qN},
where each abstract state qi ∈ X is an infinity-norm ball in R

n

with a prespecified diameter ηq ∈ R
+ (Theorem V.2 captures

the effect of ηq on the correctness of the obtained controller
and Section VI-C discusses how to choose ηq). The partitioning
satisfies X =

⋃
q∈X q and Int(qi) ∩ Int(qj) = ∅ if i �= j. Let

abs : X → Xmap a state x ∈ X to the abstract state abs(x) ∈ X

that contains x, i.e., x ∈ abs(x), and ctX : X → X map an ab-
stract state q ∈ X to its center ctX(q) ∈ X , which is well-defined
since abstract states are inifinity-norm balls. With some abuse
of notation, we denote by q both an abstract state, i.e., q ∈ X,
and a subset of states, i.e., q ⊆ X .
As mentioned in the above section, we consider CPWA con-

trollers (and hence NN controllers) selected from a bounded
polytopic set (namely a controller space) PK×b ⊂ R

m×(n+1).
We partition the controller spacePK×b ⊂ R

m×(n+1) into a finite
set of controller partitions P = {P1, . . . ,PM} with a prespeci-
fied grid size ηP ∈ R

+ (Theorem V.2 captures the effect of ηP
on the correctness of the obtained controller and Section VI-C
discusses how to choose ηP). Each controller partition Pi ∈ P

is an infinity-norm ball centered around someKi ∈ PK×b such
that PK×b =

⋃
P∈P P and Int(Pi) ∩ Int(Pj) = ∅ if i �= j. Let

ctP : P → PK×b map a controller partition P ∈ P to its center
ctP(P) ∈ PK×b. Asmentioned in Section III-A,we use the same
notationP to denote both a subset of the parametersKi ∈ PK×b

and a subset of CPWA functions whose parameters Ki are
chosen from P.

Algorithm 2 outlines the training of a library of NNs NN.
Without knowing the exact robot dynamics (i.e., the stochastic
kernel t), the workspaceW, and the specification ϕ, we use the
formal training Algorithm 1 to train one NN NN θ

(qj ,Pi)
corre-

sponding to each combination of controller partitions Pi ∈ P

and abstract states qj ∈ X (line 5 in Algorithm 2). Thanks to the
NN weight projection operator ΠP, the NNs NN θ

(qj ,Pi)
satisfy

the constraint in (6), i.e., NN θ
(qj ,Pi)

|qj ∈P. In the following,
we use the notation NN(q,P) by dropping the superscript θ for
simplicity and refer to each NN NN(qj ,Pi) a local network.
To train the local NNs, we implement the training approach

gradient− descent (line 3 in Algorithm 1) based on proxi-
mal policy optimization (PPO) [71] with the reward function as
follows:

ri(x, u) = −w1c(x, u)− w2||u− κ(Pi)|| (15)

where w1, w2 ∈ R
+ are prespecified weights. The function

c : X × U → R is a user-defined state-action cost function. As

Algorithm 2: TRAIN-LIBRARY-NNS (X,P, w1, w2, c(x, u)).

1: NN = {}
2: for qj ∈ X do
3: for Pi ∈ P do
4: Construct the reward function ri as in (15) and the

corresponding Ji
5: NN(qj ,Pi) = Formal− Train(qj ,Pi, Ji)
6: NN = NN ∪ {NN(qj ,Pi)}
7: end for
8: end for
9: Return NN

an example, the cost function c can be the controller’s energy
||u||2 or a loss function L(u, y) that measures the difference
between the controller’s output u and some desired output y
(e.g., imitation learning). The second term in (15) motivates
the NN to select control signals that are within the controller
partition Pi by penalizing the difference between the control
signals u and the center of the assigned controller partition
Pi ∈ P, denoted by κ(Pi) = ctP(Pi). Using the reward function
ri in (15), one can define theNN training cost functionalJi as the
discounted, average reward over the trajectories of the dynamical
system [71].
We assume access to a “nominal” simulator (i.e., the nominal

dynamics f in (2)) for updating the robot states. Algorithm 2
returns a library NN of M ×N local networks, where M and
N are the number of abstract states and the number of controller
partitions, respectively. In Section VI, we reduce the number
of local networks that need to be trained by employing transfer
learning.

B. Runtime Selection of Local NNs

In this section, we present our selection algorithm used at
runtime when an arbitrary task T = (g, ϕ,W, X0) is given. The
selection algorithm assigns one local NN in the setNN to each
abstract state {q1, . . . , qN} in order to satisfy the given spec-
ification ϕ. Given a stochastic kernel t (composed of nominal
dynamics f and model error g), our algorithm first computes a
finite-state MDP that captures the closed-loop behavior of the
robot under all possible CPWA controllers. Transitions in this
finite-state MDP correspond to different subsets of CPWA func-
tions in P = {P1, . . . ,PM}. Thanks to the fact that the NNs in
the libraryNNwere trained using the formal training algorithm
(Algorithm 1), each NN now represents a transition (symbol) in
the finite-state MDP. In other words, although NNs are hard to
interpret due to their construction, the formal training algorithm
ensures the one-to-one mapping between these black-box NNs
and the transitions in the finite-state symbolic model.
Next, we use standard techniques in LTL-based motion plan-

ning to construct a finite-state automaton that captures the sat-
isfaction of mission specifications ϕ. By analyzing the product
between the finite-stateMDP (that abstracts the robot dynamics)
and the automaton corresponding to the specification ϕ, our
algorithm decides which local networks in the set NN need

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

2756 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

to be activated. We present details on the selection algorithm in
the three steps below.
Step 1. Compute symbolic model: We construct a finite-state

MDP Σ̂ = (X,X0,P, t̂) of the robotic systemΣ = (X,X0, U, t)
as follows:
1) X = {q1, . . . , qN} is the set of abstract states;
2) X0 = {q ∈ X | q ⊆ X0} is the set of initial states;
3) P = {P1, . . . ,PM} is the set of controller partitions;
4) The transition probability from state q ∈ X to state q′ ∈ X

with label P ∈ P is given by

t̂(q′|q,P) =
∫
q′
t(dx′|z, κ(z)) (16)

where z = ctX(q) and κ = ctP(P).
As explained in Section II-C, the integral (16) can be eas-

ily computed since the stochastic kernel t(·|x, u) is a normal
distribution, and we show techniques to accelerate the con-
struction of the symbolic model Σ̂ in Section VI. Such fi-
nite symbolic models have been used heavily in state-of-the-
art LTL-based controller synthesis. Nevertheless, and unlike
state-of-the-art LTL-based controllers, the control alphabet in
Σ̂ is controller partitions (i.e., subsets of CPWA functions).
This is in contrast to LTL-based controllers in the literature
(e.g., [13], [14]) that use subsets of control signals as their control
alphabet.
We emphasize that our trainedNN controllers are used to con-

trol the robotic systemΣwith continuous state and action spaces,
and the theoretical guarantees that we provide in Section V are
also for the robotic systemΣ, not for the finite-state MDP Σ̂. As
the motivation to introduce the symbolic model Σ̂, our approach
provides correctness guarantees for the NN-controlled robotic
system Σ through 1) analyzing the behavior of the finite-state
MDP Σ̂ (in this section), and 2) bounding the difference in
behavior between the finite-state MDP Σ̂ and the NN-controlled
robotic system Σ (in Section V). Critical to the latter step is the
ability to restrict the NN’s behavior thanks to the formal training
proposed in Section III.
Step 2. Construct product MDP: Given a mission specifi-

cation ϕ encoded in BLTL or scLTL formula, we construct
the equivalent deterministic finite-state automaton (DFA)Aϕ =
(S, S0,A, G, δ) as follows:

1) S is a finite set of states;
2) S0 ⊆ S is the set of initial states;
3) A is an alphabet;
4) G ⊆ S is the accepting set;
5) δ : S × A → S is a transition function.
Such translation of BLTL and scLTL specifications to the

equivalent DFA can be done using off-the-shelf tools (e.g., [72]
and [73]).
Given the finite-state MDP capturing the robot dynamics

Σ̂ = (X,X0,P, t̂) and the DFA Aϕ = (S, S0,A, G, δ) of the
mission specification ϕ, we construct the product MDP Σ̂⊗
Aϕ = (X⊗,X⊗

0 ,P,X
⊗
G, t̂

⊗) as follows:
1) X

⊗ = X× S is a finite set of states;
2) X

⊗
0 = {(q0, δ(s0, L̂(q0))|q0 ∈ X0, s0 ∈ S0} is the set of

initial states, where L̂ : X → A is the labeling function

that assigns to each abstract state q ∈ X the subset of
atomic propositions L̂(q) ∈ A that evaluate true at q;

3) P is the set of controller partitions;
4) X

⊗
G = X×G is the accepting set;

5) The transition probability from state (q, s) ∈ X
⊗ to state

(q′, s′) ∈ X
⊗ under P ∈ P is given by:

t̂⊗(q′, s′|q, s,P) =
{
t̂(q′|q,P) if s′ = δ(s, L̂(q′))
0 else.

Step 3. Select local NNs by DP:Once constructed the product
MDP Σ̂⊗Aϕ, the next step is to assign one local network
NN(q,P) ∈ NN to each abstract state q ∈ X. In particular, the
selection of NNs aims to maximize the probability of the finite-
state MDP Σ̂ satisfying the given specification ϕ. This can be
formulated as finding the optimal policy that maximizes the
probability of reaching the accepting setX⊗

G in the productMDP
Σ̂⊗Aϕ. To that end, we define the optimal value functions
V̂ ∗
k : X⊗ → [0, 1] that map a state (q, s) ∈ X

⊗ to the maximum
probability of reaching the accepting set X⊗

G in H − k steps
from the state (q, s). When k = 0, the optimal value function
V̂ ∗
0 yields the maximum probability of reaching the accepting

setX⊗
G inH steps, i.e., the maximum probability of Σ̂ satisfying

ϕ. The optimal value functions can be solved by the following
DP recursion:

Q̂k(q, s,P) = 1G(s) (17)

+ 1S\G(s)
∑

(q′,s′)∈X⊗

V̂ ∗
k+1(q

′, s′)t̂⊗(q′, s′|q, s,P)

V̂ ∗
k (q, s) = max

P∈P
Q̂k(q, s,P) (18)

with the initial condition V̂ ∗
H(q, s) = 1G(s) for all (q, s) ∈ X

⊗,
where k = H − 1, . . . , 0. The recursion in (17) and (18) is
solved for all the states (q, s) ∈ X

⊗ and controller partitions
P ∈ {P1, . . . ,PM}.

Algorithm 3 summarizes the above three steps for select-
ing local NNs. Given a task T = (g, ϕ,W, X0) at runtime,
Algorithm 3 first computes the symbolic model Σ̂ based on the
stochastic kernel t, translates the mission specification ϕ to a
DFA Aϕ using off-the-shelf tools, and constructs the product
MDP Σ̂⊗Aϕ (lines 1–3 in Algorithm 3). Then, Algorithm 3
solves the optimal policy for the productMDP Σ̂⊗Aϕ using the
DP recursion (17) and (18) (lines 4–20 in Algorithm 3). At time
step k, the optimal controller partition P∗ at state (q, s) ∈ X

⊗ is
given by the maximizer of Q̂k(q, s,P) (line 16 in Algorithm 3).
The last step is to assign a corresponding NN to be applied given
the robot states x ∈ X and the DFA states s ∈ S. To that end,
let

Γk(x, s) = Γ̂k(abs(x), s)

where Γ̂k maps the product MDP’s states (q, s) ∈ X
⊗ to NN’s

indices (q,P∗) (line 17 in Algorithm 3). In other words, given
the robot states x ∈ X and the DFA states s ∈ S at time step
k, we first find the abstract state q ∈ X that contains x, i.e.,
q = abs(x), and then use the NN NN(q,P∗) ∈ NN to control

the robot at x, where Γ̂k(q, s) = (q,P∗). Recall that the NNs

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

SUN AND SHOUKRY: NEUROSYMBOLIC MOTION AND TASK PLANNING FOR LINEAR TEMPORAL LOGIC TASKS 2757

Fig. 1. Toy example of a robot that navigates a 2-D workspace and needs to satisfy reach-avoid specifications ϕ = ϕliveness ∧ ϕsafety (see more details in
Section IV-C).

Algorithm 3: Runtime-Select (T = (g, ϕ,W, X0)).

1: Compute the symbolic model Σ̂ = (X,X0,P, t)
2: Translate ϕ to a DFA Aϕ = (S, S0,A, G, δ)

3: Construct the product MDP Σ̂⊗Aϕ

4: for (q, s) ∈ X
⊗ do

5: V̂ ∗
H(q, s) = 1G(s)

6: end for
7: k = H − 1
8: while k ≥ 0 do
9: for (q, s) ∈ X

⊗ and P ∈ {P1, . . . ,PM} do
10: if s ∈ G then
11: Q̂k(q, s,P) = 1
12: else
13: Q̂k(q, s,P) =∑

(q′,s′)∈X⊗
V̂ ∗
k+1(q

′, s′)t̂⊗(q′, s′|q, s,P)

14: end if
15: V̂ ∗

k (q, s) = max
P∈P

Q̂k(q, s,P)

16: P∗ = argmax
P∈P

Q̂k(q, s,P)

17: Γ̂k(q, s) = (q,P∗)
18: end for
19: k = k − 1
20: end while
21: Return {Γ̂k}k∈{0,...,H−1}, V̂

∗
0 , Σ̂⊗Aϕ

in NN are indexed as (q,P) and hence the function Γ(x, s) =
Γ̂k(abs(x), s) computes such indices.

C. Toy Example

We conclude this section by providing a toy example in
Fig. 1. Consider a mobile robot that navigates a 2-D workspace.
We partition the state space X ⊂ R

2 into six abstract states
X = {q1, . . . , q6} and discretize the controller space PK×b into
two controller partitionsP = {P1,P2}. Fig. 1(a) shows the state
space (top) and the abstract states q1, . . . , q6 resulted from the

partitioning (bottom), where the centers of abstract states are
ctX(q1), . . . , ctX(q6).

During the offline training (Section IV-A), we use the formal
training Algorithm 1 to obtain a library NN consisting of 12
NNs, i.e.,NN = {NN(qi,Pj)|i ∈ {1, . . . , 6}, j ∈ {1, 2}}.

We consider three different tasks T1, T2, and T3 that only
become available at runtime after all the NNs in NN have
been trained. Fig. 1(b)–(d) shows the workspaces for these three
tasks, respectively. The specifications for these three tasks are
ϕ1 = ♦[0,3](x ∈ q6) ∧�[0,3]¬(x ∈ q4), ϕ2 = ♦[0,4](x ∈ q5) ∧
�[0,4]¬(x ∈ q3), and ϕ3 = ♦[0,3](x ∈ q5) ∧�[0,3]¬(x ∈ q3),
respectively. Finally, the three tasks have different robot dy-
namics t. Fig. 1(b)–(d) also depicts the transitions in the result-
ing symbolic models, where we assume that all the transition
probabilities t̂ are 1 for simplicity [the transition probabilities
t̂ are computed as the integral of t in (16)]. Thanks to the
formal training Algorithm 1, the NNs in NN are guaranteed
to be members of the CPWA functions in {P1,P2}. Hence,
we label the transitions in the MDPs in Fig. 1(b)–(d) using
NN(qi,Pj) instead of {P1,P2}. While the transitions in the
MDPs in Fig. 1(b) and (c) are the same, the MDP in Fig. 1(d) is
different from that in Fig. 1(b) and (c) due to the difference in
the robot dynamics in this task.
When the tasks T1, T2, and T3 become available, we use

the runtime selection algorithm (Algorithm 3) to obtain the
selection functions Γk. In Fig. 1(b)–(d), the selected NNs are
the labels of the transitions marked in red. For example, in
Fig. 1(b), our algorithm selectsNN(q1,P1) to be used at all states
x ∈ q1. It is clear from the figures that the selected NNs are
guaranteed to satisfy the given specifications ϕ1, ϕ2, and ϕ3,
respectively, regardless of the difference in the workspaces and
robot dynamics.

V. THEORETICAL GUARANTEES

In this section, we study the theoretical guarantees of the
proposed approach. We first provide a probabilistic guarantee
for our NN-based planners on satisfying mission specifications
given at runtime, then bound the difference between the NN-
based planner and the optimal controller that maximizes the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

2758 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

probability of satisfying the given specifications. The proof of
the theoretical guarantees (Theorems V.1 and V.2) can be found
in Appendix A.

A. Generalization to Unseen Tasks

For an arbitrary task T = (g, ϕ,W, X0), letNN[NN,Γ] be the
corresponding NN-based planner, where the library of networks
NN is trained by Algorithm 2 without knowing the task T, and
the activation map Γ denotes the time-dependent functions Γk

obtained from Algorithm 3. As a key feature of NN[NN,Γ], the
activation map Γ selects NNs based on both the robot states and
the states of the Aϕ DFA. This allows the NN-based planner
NN[NN,Γ] to take into account the specification ϕ by tracking
states of the DFA Aϕ. In comparison, a single state-feedback
NNNN : X → U is not able to track the DFA states and hence
cannot be trained to satisfy BLTL or scLTL specifications in
general.
We denote by ξ

(x,s)
NN[NN,Γ]

the closed-loop trajectory of a robot
under the NN-based planner NN[NN,Γ] with the robot starting
from state x ∈ X0 and the DFA Aϕ starting from state s ∈ S0.
Notice that though the symbolic model Σ̂ is a finite-state MDP,
the NN-based planner NN[NN,Γ] is used to control the robotic
system Σ with continuous state and action spaces. The fol-
lowing theorem provides a probabilistic guarantee for the NN-
controlled robotic system to satisfy mission specifications given
at runtime.
Theorem V.1: Let V̂ ∗

0 be the optimal value function returned
by Algorithm 3. For arbitrary states x ∈ X0 and s ∈ S0, the
probability of the closed-loop trajectory ξ(x,s)NN[NN,Γ]

satisfying the
given mission specification ϕ is bounded as follows:∣∣∣Pr(ξ(x,s)NN[NN,Γ]

|= ϕ
)
− V̂ ∗

0 (q, s)
∣∣∣ ≤ HZΔNN (19)

where q = abs(x) and

ΔNN = max
i∈{1,...,N}

(
Λiηq +BiLiηq +

√
m(n+ 1)LXBiηP

)
.

(20)
Recall that ηq and ηP are the grid sizes used for partitioning

the state space and the controller space, respectively. The upper
bound HZΔNN in Theorem V.1 can be arbitrarily small by
tuning the grid sizes ηq and ηP. In (19) and (20), H is the time
horizon,N = |X| is the number of abstract states, andZ = |S| is
the number of theAϕ DFA states. The parametersΛi andBi are
given by Λi =

∫
X λi(y)μ(dy) andBi =

∫
X βi(y)μ(dy), where

λi(y) and βi(y) are the Lipschitz constants of the stochastic
kernel t : B(X)×X × U → [0, 1], i.e. ∀x, x′ ∈ qi ∀u ∈ U

|t(dy|x′, u)− t(dy|x, u)| ≤ λi(y)||x′ − x||μ(dy)

and ∀x ∈ qi ∀u, u′ ∈ U

|t(dy|x, u′)− t(dy|x, u)| ≤ βi(y)||u′ − u||μ(dy).

Furthermore, Li is the Lipschitz constant of the local NNs at
abstract state qi ∈ X, i.e., ∀P ∈ P ∀x, x′ ∈ qi:

||NN(qi,P)(x)−NN(qi,P)(x
′)|| ≤ Li||x− x′||.

Finally, supx∈X ||x|| ≤ LX , supK∈PK×b ||K|| ≤ LP, and n, m
are the dimensions of X ⊂ R

n, U ⊂ R
m, respectively.

B. Optimality Guarantee

Next, we compare our NN-based planner NN[NN,Γ] with the
optimal controller (not necessarily a NN) that maximizes the
probability of satisfying the given specification ϕ. To that end,
we provide an upper bound on the difference in the probabil-
ities of satisfying ϕ without explicit computing of the opti-
mal controller. Let C∗ϕ : X × S → U be the optimal controller

and ξ
(x,s)
C∗ϕ be the closed-loop trajectory of the robotic system

Σ = (X,X0, U, t) controlled by C∗ϕ. Similar to the NN-based
planner NN[NN,Γ], the optimal controller C∗ϕ applies to the
robotic system Σ with continuous state and action spaces, and
takes the DFA states s ∈ S into consideration when computing
control actions. Synthesizing the optimal controller C∗ϕ for a
mission specification ϕ is computationally prohibitive due to
the continuous state and action spaces. Without explicitly com-
puting C∗ϕ, the following theorem tells how close our NN-based
planner NN[NN,Γ] is to the optimal controller C∗ϕ in terms of
satisfying the specification ϕ. By tuning the grid sizes ηq and
ηP, our NN-based planner NN[NN,Γ] can be arbitrarily close to
the optimal controller C∗ϕ.

Theorem V.2: For arbitrary states x ∈ X0 and s ∈ S0, the
difference in the probabilities of the closed-loop trajectories
ξ
(x,s)
NN[NN,Γ]

and ξ
(x,s)
C∗ϕ satisfying the given mission specification

ϕ is upper bounded as follows:∣∣∣Pr(ξ(x,s)NN[NN,Γ]
|= ϕ

)
− Pr

(
ξ
(x,s)
C∗ϕ |= ϕ

)∣∣∣ ≤ HZ(ΔNN +Δ∗)

(21)
where ΔNN is given by (20) and

Δ∗ = max
i∈{1,...,N}

(
Λiηq +BiLPηq + 2

√
m(n+ 1)LXBiηP

)
.

(22)

VI. EFFECTIVE ADAPTATION

In this section, we focus on practical issues of the proposed
approach and present some key elements for performance im-
provement while maintaining the same theoretical guarantees
as Section V. First, we show that the proposed composition
of NNs leads to an effective way to adapt previous learning
experiences to unseen tasks. In particular, instead of training the
whole library of NNsNN in Algorithm 2, we only train a subset
of networksNNpart ⊆ NN based on tasks provided for training.
Obtaining this subsetNNpart can be viewed as a systematic way
to store learning experiences, which are adapted to unseen tasks
via transfer learning (see Section VI-A). Second, we propose
a data-driven approach to accelerate the construction of the
symbolic model Σ̂ (see Section VI-B). Finally, we comment
on the choice of grid sizes ηq and ηP for partitioning the state
and action spaces (see Section VI-C).

A. Accelerate by Transfer Learning

Consider a meta-RL problem with a set of training tasks
{T1, T2, . . . , Td} that are provided for training NNs in the hope

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

SUN AND SHOUKRY: NEUROSYMBOLIC MOTION AND TASK PLANNING FOR LINEAR TEMPORAL LOGIC TASKS 2759

of fast adaptation to unseen tasks Ttest during the test phase,
where each task is a tuple T = (g, ϕ,W, X0) as defined before.
We consider the problem of how to leverage the learning ex-
periences from the training tasks to accelerate the learning of
the unseen test tasks. Our intuition is that when the training
tasks have enough variety, the local behavior for fulfilling a
test task Ttest should be close to the local behavior for fulfilling
some training task Ttrain ∈ {T1, T2, . . . , Td}. In other words, the
controller needed by a robot to fulfill the test task Ttest should
be close to the controller used for fulfilling some training task
Ttrain ∈ {T1, T2, . . . , Td}, where the training task Ttrain can be
different in different subsets of the state space X . This is more
general than the prevalent assumption in the meta-RL literature
that the test task’s controller is close to the same training task’s
controller everywhere in the state space. As a result, our ap-
proach requires less variety of the training tasks{T1, T2, . . . , Td}
for fast adaptation to unseen tasks.
The form of the composed NN-based planner NN[NN,Γ]

provides a systematic way to store learning experiences from
all the training tasks and enables to select which training task
should be adapted to the test task based on the current state of the
robot.Given a set of training tasks {T1, T2, . . . , Td}, Algorithm4
trains a subset of local networksNNpart ⊆ NN suggested by the
training tasks. For each training task Ttrain ∈ {T1, T2, . . . , Td},
Algorithm 4 first calls Runtime-Select (i.e., Algorithm 3)
to compute the corresponding activation maps Γ̂k (line 3 in
Algorithm 4). The activationmaps Γ̂k are then used to determine
which local networks NN(q,P) need to be trained at each state

(q, s) ∈ X
⊗ of the productMDP Σ̂⊗Aϕ (line 5 inAlgorithm4).

The local NNs are trained using the method Formal-Train
given by Algorithm 1 (line 7 in Algorithm 4). Compared with
Algorithm 2 that trains all the NNs to obtain the library NN,
Algorithm 4 reduces the number of NNs need to be trained by
leveraging the training tasks {T1, T2, . . . , Td}.

During the test phase, we adapt previous learning experiences
stored in the subset of networks NNpart to test tasks Ttest by
employing transfer learning. In particular, if a local NN needed
by the test task Ttest has not been trained, we fast learn it by
fine-tuning the “closest” NN to it in the subset NNpart. Thanks
to the fact that each local network NN(q,P) is associated with
an abstract state q ∈ X and a controller partition P ∈ P, we can
define the distance between two local networks NN(q1,P1) and
NN(q2,P2) as follows:

Dist
(
NN(q1,P1),NN(q2,P2)

)
= α1||ctX(q1)− ctX(q2)||

+ α2||ctP(P1)− ctP(P2)||max (23)

with prespecified weights α1, α2 ∈ R
+. Given a test task Ttest,

Algorithm 5 first computes the corresponding activation maps
Γ̂k (line 1 in Algorithm 5), and then selects local networks
NN(q,P) to be applied at each time step until reaching the product
MDP’s accepting set X⊗

G (lines 3 and 4 in Algorithm 5). If the
needed network NN(q,P) has not been trained, Algorithm 5
initializes the missing network NN(q,P) using the weights of
the closest network NN(q∗,P∗) to it in the subset NNpart, where
the distance metric between NNs is given by (23) (lines 5–7
in Algorithm 5). After that, the algorithm trains the missing

Algorithm 4: Train-Transfer ({T1, T2, . . . , Td}, J).
1: NNpart = {}
2: for Ttrain ∈ {T1, T2, . . . , Td} do
3: Γ̂k, V̂

∗
0 , Σ̂⊗Aϕ = Runtime− Select(Ttrain)

4: for (q, s) ∈ X
⊗, k ∈ {0, . . . , H − 1} do

5: (q,P) = Γ̂k(q, s)
6: if NN(q,P) �∈ NNpart then
7: NN(q,P) = Formal− Train(q,P, J)
8: NNpart = NNpart ∪ {NN(q,P)}
9: end if
10: end for
11: end for
12: Return NNpart

Algorithm 5: Runtime-Transfer (Ttest,NNpart, J, x, s).

1: Γ̂k, V̂
∗
0 , Σ̂⊗Aϕ = Runtime− Select(Ttest)

2: k = 0, q = abs(x)
3: while (q, s) �∈ X

⊗
G do

4: (q,P) = Γ̂k(q, s)
5: if NN(q,P) �∈ NNpart then
6: NN(q∗,P∗) = argmin

NN(q1,P1)∈NNpart

Dist(NN(q1,P1),NN(q,P))

7: NN(q,P) = initialize(NN(q∗,P∗))
8: NN(q,P) = PPO− update(NN(q,P), J)

9: Ŵ (F), b̂(F) = ΠP(NN(q,P))

10: Set NN(q,P) output layer weights be Ŵ (F), b̂(F)

11: NNpart = NNpart ∪ {NN(q,P)}
12: end if
13: u = NN(q,P)(x)
14: Apply action u, observe the new state x
15: q = abs(x), s = δ(s, L(x))
16: k = k + 1
17: end while

network NN(q,P) using PPO with only a few episodes for
fine-tuning (line 8 in Algorithm 5). Thanks to the NN weight
projection operator ΠP, the resulting NN-based planner enjoys
the same theoretical guarantees presented in Section V (lines 9
and 10 in Algorithm 5).

B. Data-Driven Symbolic Model

Recall that in Algorithm 3, after knowing the robot dynamics
(i.e., the stochastic kernel t), the first step is to construct the
symbolic model Σ̂ = (X,X0,P, t̂) (line 1 in Algorithm 3). The
construction of Σ̂ requires to compute the transition probabilities
t̂(q′|q,P) =

∫
q′ t(dx

′|z, κ(z)) with all controller partitions P ∈
P at each abstract state q ∈ X, where z = ctX(q), κ = ctP(P).
Reducing the computation of transition probabilities is tempting
when the number of controller partitions is large, especially if
the stochastic kernel t(·|x, u) is not a normal distribution and
needs numerical integration. In this section, we accelerate the
construction of Σ̂ in a data-driven manner.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

2760 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Algorithm 6: Construct-Symbol-Model (T,D,X,P, I).

1: NN = imitation− learning(D)
2: for q ∈ X do
3: u∗ = NN(z), where z = ctX(q)
4: Pq = {}
5: for i = 1, . . . , I do
6: P∗= argmin

P∈P\Pq

||κ(z)− u∗||, s.t.

κ = ctP(P), z = ctX(q)
7: Pq = Pq ∪ {P∗}
8: end for
9: Compute t̂(q′|q,P) with P ∈ Pq

10: end for
11: Return Σ̂

For a given task T, we consider our algorithm has access
to a set of expert-provided trajectories D = {ξ1, ξ2, . . . , ξc},
such as human demonstrations, that fulfill the task T. Instead
of computing all the transition probabilities t̂(q′|q,P), we use
the set of expert trajectories D to guide the computation of
transitions. The resulting symbolic model can be viewed as a
symbolic representation of the expert trajectories in D.
In Algorithm 6, we first use imitation learning to train a

NN NN by imitating the expert trajectories in D (line 1 in
Algorithm 6). Although the NN NN trained using a limited
dataset D may not always fulfill the task T, the network NN
contains relevant control actions that can be used to obtain the
final controller. In particular, at each abstract state q ∈ X, we
only compute transition probabilities t̂(q′|q,P) with controller
partitions P suggested by the network NN. To be specific,
let u∗ be the control actions given by the network NN at the
centers of abstract states q ∈ X (line 3 in Algorithm 6). Then,
Algorithm 6 selects a subset Pq ⊆ P consists of I controller
partitions that yield control actions close to the NN’s output
u∗, where I ∈ N is a user-defined parameter (lines 4–8 in
Algorithm 6). Finally, Algorithm 6 computes a symbolic model
Σ̂ with only transitions under the controller partitions in the
subset Pq (line 9 in Algorithm 6). The symbolic model Σ̂ con-
tains more transitions by increasing the parameter I at the cost
of computational efficiency. The choice of I can be adaptively
determined as discussed in the next section.

C. Adaptive Partitioning

Recall that during the offline training, we partition the state
space X ⊂ R

n and the controller space PK×b ⊂ R
m×(n+1)

using the prespecified parameters ηq and ηP, respectively (see
Section IV-A). In this section, we comment on the choice of the
grid sizes ηq and ηP. In particular, our framework can directly
incorporate the discretization techniques from the literature of
abstraction-based controller synthesis (e.g., [74] and [75]). To
that end, we provide a simple yet efficient example of adaptive
partitioning in Algorithm 7, which enables the update of grid
sizes ηq and ηP at runtime using transfer learning.
The first part of Algorithm 7 aims to partition the state and

controller spaces such that the resulting probabilities V̂ ∗
0 (q, s)

Algorithm 7: Adapt-Partition (T,D,NNpart, J, ηq, ηP, I).

1: while V̂ ∗
min < p do

2: X=partition(X, ηq), P=partition(PK×b, ηP)

3: Σ̂ = Construct− Symbol− Model(T,D,X,P, I)
4: Γ̂k, V̂

∗
0 , Σ̂⊗Aϕ = Runtime− Select(T)

5: V̂ ∗
min = min

(q,s)∈X0×S0

V̂ ∗
0 (q, s)

6: ηq = ηq/2, ηP = ηP/2, I = 2I
7: end while
8: for (q, s) ∈ X

⊗, k ∈ {0, . . . , H − 1} do
9: (q,P) = Γ̂k(q, s)

10: if NN(q,P) �∈ NNpart then
11: NN(q∗,P∗) = argmin

NN(q1,P1)∈NNpart

Dist(NN(q1,P1),NN(q,P))

12: NN(q,P) = initialize(NN(q∗,P∗))
13: NN(q,P) = PPO− update(NN(q,P), J)

14: Ŵ (F), b̂(F) = ΠP(NN(q,P))

15: Set NN(q,P) output layer weights be Ŵ (F), b̂(F)

16: NNpart = NNpart ∪ {NN(q,P)}
17: end if
18: end for
19: Return NNpart, {Γ̂k}k∈{0,...,H−1}

of satisfying the specification ϕ are greater than the prespecified
threshold p at all initial states (q, s) ∈ X0 × S0 (lines 1–7 in
Algorithm 7). In particular, if the probability V̂ ∗

0 (q, s) is less
than p at some state (q, s) ∈ X0 × S0, Algorithm 7 decreases
the current grid sizes ηq and ηP by half and increases the
parameter I (line 6 in Algorithm 7). After having such a par-
titioning of the state and controller spaces, Algorithm 7 trains
the corresponding locals networks by fine-tuning the NNs in the
provided library of networksNNpart (lines 8–18 inAlgorithm7).
The following theoretical guarantee for the resulting NN-based
planner to satisfy the given specification ϕ directly follows
Theorem V.1.
Corollary VI.1: Consider Algorithm 7 returns a library of

local networks NNpart and an activation map Γ (denoting the
functions Γ̂k). Then, the NN-based planner NN[NNpart,Γ] satis-

fying Pr(ξ(x,s)NN[NNpart,Γ]
|= ϕ) ≥ p− ε for any x ∈ X0 and s ∈ S0,

where ε = HZΔNN and ΔNN is given by (20).

VII. RESULTS

We evaluated the proposed framework both in simulation and
on a robotic vehicle. All experiments were executed on a single
Intel Core i9 2.4-GHz processor with 32 GB of memory. For all
the reported experiments, the NNs were trained using an Adam
optimizer with an adaptive learning rate, PPO clipping of 0.2,
discount factor of 0.9, and batch size of 256. Our open-source
implementation of the proposed neurosymbolic framework can
be found online.1

1[Online]. Available:https://github.com/rcpsl/Neurosymbolic_planning

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

https://github.com/rcpsl/Neurosymbolic_planning

SUN AND SHOUKRY: NEUROSYMBOLIC MOTION AND TASK PLANNING FOR LINEAR TEMPORAL LOGIC TASKS 2761

Fig. 2. Upper row shows trajectories resulting fromNN-based planners trained
using our framework. The lower row shows trajectories under the control of NNs
trained by standard imitation learning, where the NN architectures are (left)
2 hidden layers with 10 neurons per layer, (middle) 2 hidden layers with 64
neurons per layer, and (right) 3 hidden layers with 128 neurons per layer. With
the same initial states (two subfigures in the same column), only NN-based
planners trained by our framework lead to collision-free trajectories.

A. Controller Performance in Simulation

Consider a wheeled robot with the state vector x =
[ζx, ζy, θ]

� ∈ X ⊂ R
3, where ζx and ζy denote the coordinates

of the robot and θ is the heading direction. The priori known
nominal model f in the form of (2) is given by

ζ(t+Δt)
x = ζ(t)x +Δt v cos(θ(t))

ζ(t+Δt)
y = ζ(t)y +Δt v sin(θ(t))

θ(t+Δt) = θ(t) +Δt u(t) (24)

where the speed v = 0.3m/s and the time stepΔt = 1s.We train
NNs to control the robot, i.e., u(t) = NN(x(t)), NN ∈ PK×b ⊂
R

1×4 with the controller space PK×b being a hyperrectangle.
As the first step of our framework, we discretized the state

space X ⊂ R
3 and the controller space PK×b ⊂ R

1×4 as de-
scribed in Section IV-A. Specifically, we partitioned the range
of heading direction θ ∈ [0, 2π) uniformly into 8 intervals, and
the partitions in the x, y dimensions are shown as the dashed
lines in Fig. 2. We uniformly partitioned the controller space
PK×b into 240 hyperrectangles.

Study#1—Comparison against standard NN training for a
fixed task: This study aims to compare the proposed framework
against standard NN training when the task is known during
training time. We aim to show the ability of our framework
to guarantee the safety and correctness of achieving the task
compared with standard NN training. To that end, we consid-
ered the workspace shown in Fig. 2 and a simple reach-avoid
specification, i.e., reach the goal area (green) while avoiding the
obstacles (blue).
We collected data by observing the control actions of an

expert controller (model predictive controller) operating in this
workspace while varying the initial position of the robot. We
trained several NNs using imitation learning. In particular, we
trained the NNs to minimize the regression loss between the
control actions taken by the expert controller and those of the

Fig. 3. Upper row shows trajectories in workspaces W1, W3, and W5, and
the lower row corresponds to workspaces W2, W4, and W6. The subset of
local networksNNpart is trained in workspaceW1 and the rest five workspaces
are given at runtime. Trajectories in all the workspaces satisfy both the safety
specification ϕsafety (blue areas are obstacles) and the liveness specification
ϕliveness for reaching the goal (green area).

NN in a supervised learning manner. We trained a wide range of
NN architectures using different numbers of episodes to achieve
the best performance.
We then trained a library of NNs NN using Algorithm 2,

and we used the dataset—used to train NNs with imitation
learning—to accelerate the runtime selection as detailed in
Algorithm 6 (recall that line 1 in Algorithm 6 uses imitation-
learning).
We report the trajectories of the proposed neurosymbolic

framework in the first row of Fig. 2 and the results of the top
performing NNs obtained from imitation learning in the second
row of Fig. 2. As shown in the figure, we were able to find initial
states from which the imitation-learning-based NNs failed to
guarantee the safety of the robot (and hence failed to satisfy the
mission goals). However, as shown in the figure (and supported
by our theoretical analysis in Theorem V.2), our framework was
capable of always achieving the mission goals and steering the
robot safely to the goal.
Study#2—Generalization to unseen workspace/tasks using

transfer learning: This experiment aims to study our frame-
work’s ability to generalize to unseen tasks even when the
library of NNs is not complete. In other words, the trained
local networks in NN cannot cover all possible transitions in
the symbolic model, and hence a transfer learning needs to be
performed during the runtime selection phase.
During the offline training, we trained a subset of local

networks NNpart by following Algorithm 4 in Section VI-A.
Specifically, the local NNs are trained in the workspace W1

(the first subfigure in the upper row of Fig. 3). The set NNpart

consists of 658 local NNs, where each local NN has only one
hidden layer with six neurons. We used PPO implemented in
Keras [76] to train each local NN for 800 episodes, and projected
the NNweights at the end of training. The total time for training
and projecting weights of the 658 local networks in NNpart is
2368 s.
At runtime, we tested the trained NN-based planner in five

unseen workspaces Wi, i = 2, . . . , 7, and the corresponding

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

2762 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 4. Three different trajectories fromworkspaceW7 corresponding to three
different initial conditions. The subset of local networks NNpart is trained in
workspace W1 while workspace W7 is given at runtime. Trajectories in all the
workspaces satisfy both the safety specificationϕsafety (blue areas are obstacles)
and the liveness specification ϕliveness for reaching the goal (green area).

Fig. 5. (Left) PiCar and workspace. (Right) The PiCar’s trajectory (red) for
two loops, where the striped blue obstacle is removed after the first loop.

trajectories are shown in Figs. 3 and 4. While the workspaces
W2 . . .W6 contain several obstacles that are similar to the one
used during training, workspace W7 is significantly different
in terms of the number of obstacles and their alignment. For
each of the workspaces, our framework computes an activation
map Γ that assigns a controller partition P ∈ P to each abstract
state q ∈ X through dynamical programming (Algorithm 3 in
Section IV-B). The local NNs corresponding to the assigned
controller partitionsmay not have been trained offline. If thiswas
the case, we follow Algorithm 5 that employs transfer learning
to learn the missing NNs at runtime efficiently. Specifically,
after initializing a missing NN using its closest NN in the set
NNpart, we trained it for 80 episodes, much less than the number
of episodes used in the offline training. For example, for the
workspace W2 (the first subfigure in the lower row of Fig. 3),
the length of the corresponding trajectory is 35 steps and 28
local NNs used along the trajectory are not in the set NNpart.
Our algorithm efficiently trains these 28 local NNs in 10.5 s
showing our framework’s capability in real-time applications.

B. Actual Robotic Vehicle

We tested the proposed framework on a small robotic vehicle
called PiCar, which carries a Raspberry Pi that runs the NNs
trained by our framework. We used a Vicon motion capture
system to measure the states of the PiCar in real-time. Fig. 5
(left) shows the PiCar and our experimental setup. We modeled
the PiCar’s dynamics using the rear-wheel bicycle drive [77] and
used GP regression to learn the model error. We emphasize that

all local NNs are trained using data collected from the simple
bicycle drive model without having any data collected from the
actual robotic vehicle. Data collected from the robotic vehicle
are only used to obtain the GP regression model g. The results
in the next two studies show the capability of our framework to
generalize to model errors that were unseen during the training
time.
Study#3—Dynamic changes in the workspace: We study the

ability of our framework to adapt, at runtime, to changes in
the workspace. This is critical in cases when the workspace is
dynamic and changes over time. To that end, we trained NNs in
the workspace shown in Fig. 5 (right). The part of the obstacle
colored in striped blue was considered an obstacle during the
training but was removed at runtime after the PiCar finished
running the first loop. Thanks to the DP recursion that selects
the optimal NNs at runtime (Algorithm 3 in Section IV-B), the
PiCar was capable of updating its optimal selection of NNs and
found a better trajectory to achieve the mission.
We reemphasize that partitioning the state space, controller

space, training the library of local NNs, and building the
MDP are all computed offline. At runtime, when environmental
changes take place, we update the transitions in the MDP to
reflect those changes. Such MDP update is computationally
straightforward and results in negligible computation overhead.
All the computation time is used in rerunning Algorithm 3 to
reassign the local NNs to each abstract state after the environ-
mental changes take place. For this study,Algorithm3 consumed
0.47 s, which can handle environmental changes that occur with
2 Hz frequency.
Study#4—Comparison against meta-RL in terms of general-

ization to unseen tasks:This study aims to showour framework’s
ability to generalize to unseen tasks, even in scenarios that
are known to be hard for state-of-the-art meta-RL algorithms.
We conducted our second experiment with the workspaces in
Fig. 6. In particular, the four subfigures in the first row of
Fig. 6 are the workspaces considered for training. These four
training workspaces differ in the y-coordinate of the two ob-
stacles (blue areas). During runtime, we use the workspaces
shown in the second/third row of Fig. 6. Specifically, the first
subfigure in the second/third rows of Fig. 6 corresponds to a
workspace that has appeared in training. The rest three subfig-
ures in the second/third row of Fig. 6 are unseen workspaces,
i.e., they are not present in training and only become known
at runtime. Indeed, as demonstrated in [16], existing meta-
RL algorithms are limited by the ability to adapt across ho-
motopy classes (in Fig. 6, the training tasks and the unseen
tasks are in different homotopy classes since trajectories sat-
isfying a training task cannot be continuously deformed to
trajectories satisfying an unseen task without intersecting the
obstacles).
We show the PiCar’s trajectories under the NN-based planner

trained by our neurosymbolic framework in the second row of
Fig. 6. By following Algorithm 5 with transfer learning, the
PiCar’s trajectories satisfy the reach-avoid specifications in all
four workspaces, including the three unseen ones. Thanks to the
fact that our NN-based planner is composed of local networks,
our framework enables easy adaptation across homotopy classes

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

SUN AND SHOUKRY: NEUROSYMBOLIC MOTION AND TASK PLANNING FOR LINEAR TEMPORAL LOGIC TASKS 2763

Fig. 6. Performance comparison between our neurosymbolic framework and
a state-of-the-art meta-RL algorithm PEARL. The first row shows the four
workspaces used for trainingNNs. The second row shows the PiCar’s trajectories
under the NN-based planner trained by our neurosymbolic framework. All the
trajectories satisfy reach-avoid specifications even in unseen workspaces. The
third row shows trajectories resulting from NN controllers trained by PEARL,
where the trajectory is only safe in the training workspace (the first subfigure in
the third row) but unsafe in the three unseenworkspaces (the rest three subfigures
in the third row).

by updating the activation map Γ based on the revealed task
(Algorithm 3).
As a comparison, we assessed NN controllers trained by a

state-of-the-art meta-RL algorithm PEARL [78] in the above
workspaces. Given the four training workspaces (the first row
of Fig. 6), we use PEARL to jointly learn a probabilistic en-
coder [79] (three hidden layers with 20 neurons per layer) and
a NN controller (three hidden layers with 30 neurons per layer).
The probabilistic encoder accumulates information about tasks
into a vector of probabilistic context variables z ∈ R

5, and the
NN controllerNN takes both the robot states x and the context
variables z as input and outputs control actions NN(x, z).
When applying the trained NN controller to a task (either a

training task or an unseen task) at runtime, PEARL needs to
first update the posterior distribution of the context variables
z ∈ R

5 by collecting trajectories from the corresponding task.
The third row of Fig. 6 shows trajectories under the control
of NNs trained by PEARL. Specifically, the first subfigure in

Fig. 7. Six different LTL patrolling missions where the robot needs to visit
some goals (or rooms) infinitely often. Blue areas represent obstacles, and green
areas represent goals. NN training took place in an empty workspace with no
obstacles or goals. patrolling goals (room numbers) are reported in Table III.

the third row of Fig. 6 corresponds to a workspace that has
appeared in training, and the presented trajectory is obtained
after updating the posterior distribution of z with 2 trajectories
collected from this workspace. The other three subfigures in
the third row of Fig. 6 show trajectories in unseen workspaces,
where the trajectories cannot be safe even after updating the
posterior distribution of z with 100 trajectories collected from
the corresponding unseen workspace. By comparing trajectories
resulting from our neurosymbolic framework and PEARL (the
second and third rows in Fig. 6), NN-based planners trained by
our algorithm show the capability of adapting to unseen tasks
that can be very different from training tasks.

C. Scalability Study

We study the scalability of our framework with respect to
partition granularity, system dimension, and complexity of the
LTL mission. In this experiment, we used the workspace shown
in Fig. 7, constructed the symbolic models Σ̂ and assigned
controller partitions by following Algorithm 3. To conveniently
increase the system dimension, we consider a chain of integra-
tors represented as the linear system x(t+1) = Ax(t) +Bu(t),
where A ∈ R

n×n is the identity matrix and u(t) ∈ R
2. Note

that our algorithm is not aware of the linearity of the dynamics
constraints nor is exploiting this fact. The algorithm has access
to a simulator [the function f in (2)] that it can use to construct
the symbolic model Σ̂. To construct the symbolic models Σ̂ effi-
ciently, we adopt Algorithm 6 and only consider local controller
partitions by setting the range parameter I be 25.

Table I reports the execution time that grows with the in-
creasing number of abstract states and controller partitions. We
observed that the average training time for one local NN gets
smaller aswe increase the number of abstract states. In particular,
the average time to train one local NN is 2.575, 1.983, and
0.905 s for the case of 1000, 2197, and 4096 abstract states,
respectively. We hypothesize that the smaller the grid size—and

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

2764 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

TABLE I
SCALABILITY OF ALGORITHM 3 WITH RESPECT TO PARTITION GRANULARITY

TABLE II
SCALABILITY OF ALGORITHM 3 WITH RESPECT TO SYSTEM DIMENSION

TABLE III
SCALABILITY OF ALGORITHM 3 WITH RESPECT TO MISSION COMPLEXITY

hence the higher the number of abstract states and the smaller
the volume of the abstract state—the lower the complexity of the
local NN is needed to control the system in this abstract state.
Moreover, Theorems V.1 and V.2 points to a tradeoff between
the performance of the proposed NN controller—in terms of
satisfying mission specifications—and the granularity of the
state space and controller space discretization parameters. To
that end, we trained the local NNs using the linear dynamics
above and then added Gaussian noise with zero mean and a
variance of 0.75 to each state dynamics while building the
symbolic model. We randomly sampled 50 initial states and
observed the success in avoiding obstacles and reaching Goal
1 (as shown in Fig. 7). We reported the success rate in the last
column of Table I. As supported by the theoretical analysis in
Theorems V.1 and V.2, increasing the granularity of the state
space and controller space partitioning leads to an increase in
the success rate of the proposed NN controller at the expense of
higher execution times.
In Table II, we show the scalability by increasing the system

dimension n. As expected, the complexity of training the local
NNs, building the symbolic model, and assigning the controller
partitions increases with the system dimension.
Finally, Table III tabulates the execution time as we increase

the complexity of the LTL mission. As shown in Fig. 7, the
workspace has four goals and five obstacles. We consider pa-
trolling tasks in which the robot needs to visit some goals
“infinitely often” while avoiding the obstacles. The location of
the obstacles and goals were not known during the training of the
local NNs. To increase the mission’s complexity, we increased
the number of goals patrolled from 2 to 4 and selected the

patrolling goals randomly.We increased the horizon of theBLTL
formula until a solutionwas found. As given in Table III, the exe-
cution time needed to build the symbolic model is unaffected by
the LTL mission. Nevertheless, more complex missions require
longer horizons to find a solution, resulting in longer execution
times for assigning controller partitions.
The execution times reported in Tables I–III show that our

algorithm can handle high-dimensional systems and complex
LTL missions in a reasonable amount of time. Although we
conducted all the experiments on a single CPU core, we note
that our framework is highly parallelizable. For example, both
computing transition probabilities in the symbolic model Σ̂ and
training local networks NN(q,P) can be parallelized.

VIII. CONCLUSION, LIMITATIONS, AND TRADEOFFS

This article proposed a neurosymbolic framework of motion
and task planning for mobile robots with respect to temporal
logic formulas. By incorporating a symbolic model into the
training ofNNs and restricting the behavior ofNNs, the resulting
NN-based planner can be generalized to unseen tasks with
correctness guarantees. Compared with existing techniques, our
framework results in provably correct NN-based planners, re-
moving the need for online monitoring, predictive filters, barrier
functions, or post-training formal verification. An interesting
topic for future research is extending the framework to multiple
agents with high-bandwidth sensor perception of the environ-
ment.
The proposed framework comes with some limitations. First,

the projection operator assumes the NN represents a CPWA
function.While this assumption covers any NNwith a ReLU ac-
tivation unit, it excludesNNswith traditional nonlinearities (e.g.,
tanh and sigmoid). Second, the framework depends on extending
existing abstraction-based algorithms to the case when the con-
troller is a NN. Hence, our framework inherits some properties
of these algorithms. In particular, our framework can handle
only fragments of LTL formulas since the optimality analysis
(generalized in Theorem V.2) assumes finite-horizon tasks. Our
framework can potentially benefit from the new advances in
solving infinite-horizon optimal control problemswith LTL con-
straints [80]. Similarly, our framework inherits the deficiencies
of abstraction-based control regarding its scalability to high-
dimensional state and control spaces due to the need to partition
(or discretize) the state and controller spaces.Our framework can
potentially benefit from sampling-based/abstraction-free tech-
niques [8], [81], [82] through integrating the projection oper-
ator ΠP in the sampling process. These three limitations point
toward future research opportunities for integrating ideas from
LTL-based motion planning with ML to achieve the flexibility
of ML with the rigor of LTL-based planners.
The discretization granularity—captured by the parameters

ηq and ηP needs to be carefully tuned. In particular, these two
parameters offer a tradeoff between thediscretizationgranularity
and the performance of our framework, both in terms of the
probability of satisfying themission specifications and execution
time. This tradeoff is captured in Theorems V.1 and V.2 and
reflected in the scalability results in Table I. Moreover, the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

SUN AND SHOUKRY: NEUROSYMBOLIC MOTION AND TASK PLANNING FOR LINEAR TEMPORAL LOGIC TASKS 2765

correctness of this tradeoff relies on the implicit assumption that
the error in the dynamical model g (the GP regression kernel)
is in itself correct. Finally, while the local NNs do not need
to be retrained (or fine-tuned) to generalize to unseen tasks,
our neurosymbolic framework requires additional algorithmic
computations to readjust the activation map Γ for each task.
This computational overhead entails solving an optimal control
problem over the discretized MDP. These additional computa-
tions weaken the notion of “generalization to unseen tasks.”

APPENDIX A
SECTION III PROOFS

In this appendix, we provide proofs of Section III.

A. Proof of Proposition III.2

Proof: Let h : Rn → R
oF−1 represent all the hidden layers,

then the NNs before and after the change of the output layer

weights are given byNN θ : x
→ W (F)h(x) + b(F) andNN ̂θ :

x
→ Ŵ (F)h(x) + b̂(F), respectively. The change in the NN’s
outputs is bounded as follows:

max
x∈q

||NN ̂θ(x)−NN θ(x)||1 (25)

= max
x∈q

m∑
i=1

∣∣∣∣∣∣
oF−1∑
j=1

ΔW
(F)
ij hj(x) + Δb

(F)
i

∣∣∣∣∣∣ (26)

≤ max
x∈q

m∑
i=1

oF−1∑
j=1

|ΔW
(F)
ij |hj(x) +

m∑
i=1

|Δb
(F)
i | (27)

= max
x∈Vert(LNN θ∩q)

m∑
i=1

oF−1∑
j=1

|ΔW
(F)
ij |hj(x) +

m∑
i=1

|Δb
(F)
i | (28)

where (26) directly follows the form of NN θ and NN ̂θ, (27)
swaps the order of taking the absolute value and the summation,
and uses the fact that the hidden layers satisfy h(x) ≥ 0 due
to the ReLU activation function. When x is restricted to each
linear region ofNN θ, the hidden layer function h is affine, and
hence (27) is a linear programwhose optimal solution is attained
at extreme points. Therefore, in (28), the maximum can be taken
over a finite set of states that are vertices of the linear regions in
LNN θ∩q. �

B. Proof of Proposition III.3

Proof: We write the optimization problem (13) and (14) in
its equivalent epigraph form

min
̂W (F),̂b(F),t,sij ,vi

t such that

m∑
i=1

oF−1∑
j=1

sijhj(x) +

m∑
i=1

vi ≤ t, ∀x ∈ Vert(LNN θ∩q) (29)

|Ŵ (F)
ij −W

(F)
ij | ≤ sij , i = 1, . . . ,m, j = 1, . . . , oF−1 (30)

|̂b(F)
i − b

(F)
i | ≤ vi, i = 1, . . . ,m (31)

K̂i ∈ P, ∀Ri ∈ {R ∈ LNN θ | R ∩ q �= ∅}. (32)

The inequalities in (29) are affine since the hidden layer function
h is known and does not depend on the optimization variables.
The number of inequalities in (29) is finite since the set of
vertices Vert(LNN θ∩q) is finite. To see the constraints (32) are

affine, consider the NNNN ̂θ : x
→ Ŵ (F)h(x) + b̂(F) with the
output layer weights Ŵ (F), b̂(F) and the hidden layer function

h. The CPWA function NN ̂θ can also be written in the form
of (5), i.e.,NN ̂θ : x
→ K̂i(x) at each linear regionRi ∈ LNN θ ,
where we use the notation K̂i(x) to denote K̂ ′

ix+ b̂′i. Since
the hidden-layer function h restricted to each linear region
Ri ∈ LNN θ is a known affine function of x, the parameters K̂i

affinely depend on Ŵ (F) and b̂(F). Therefore, the constraints
K̂i ∈ P are affine constraints of Ŵ (F) and b̂(F). �

APPENDIX B
SECTION V PROOFS

In this appendix, we provide proofs of Theorems V.1 and V.2
in Section V. Let Σ = (X,X0, U, t) be a robotic system with
continuous state and action spaces and Aϕ = (S, S0,A, G, δ)
be the DFA of a mission specification ϕ. Similar to the product
MDP Σ̂⊗Aϕ, the product between Σ and Aϕ is given by Σ⊗
Aϕ = (X⊗, X⊗

0 , U,X
⊗
G, t

⊗), where
1) X⊗ = X × S is the state space,
2) X⊗

0 = {(x0, δ(s0, L(x0))|x0 ∈ X0, s0 ∈ S0} is the set of
initial states, where L : X → A is the labeling function
that assigns to each state x ∈ X the subset of atomic
propositions L(x) ∈ A that evaluate true at x,

3) U ⊂ R
m is the control action space,

4) X⊗
G = X ×G is the accepting set, and

5) The stochastic kernel t⊗ is given by

t⊗(dx′, s′|x, s, u) =
{
t(dx′|x, u) if s′ = δ(s, L(x′))
0 else.

A. Proof of Theorem V.1

Proof: Given theNN-basedplannerNN[NN,Γ] obtainedusing
our framework, we define functions V NN

k : X⊗ → [0, 1] that
map a state (x, s) ∈ X⊗ to the probability of reaching the
accepting set X⊗

G in H − k steps from the state (x, s) and
under the control of NN[NN,Γ]. With this notation, we have

V NN
0 (x, s) = Pr(ξ(x,s)NN[NN,Γ]

|= ϕ) since reaching the accepting

setX⊗
G inH steps in the product MDP Σ⊗Aϕ is equivalent to

Σ satisfying ϕ. In the following, we show that for any x ∈ q and
k = 0, . . . , H:

|V NN
k (x, s)− V̂ ∗

k (q, s)| ≤ (H − k)ZΔNN (33)

which yields (19) by letting k = 0. By the definition of V NN
k ,

the probabilities of reaching the accepting set X⊗
G under the

NN-based planner NN[NN,Γ] can be expressed as

V NN
k (x, s) = 1G(s)

+ 1S\G(s)
∑
s′∈S

∫
X

V NN
k+1(x

′, s′)t⊗(dx′, s′|x, s,NN(x)) (34)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

2766 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

with the initial condition V NN
H (x, s) = 1G(s). In the stochastic

kernel t⊗ in (34),we useNN to denote the local network selected
by the activation map Γk+1 at the state (x, s) for simplicity.
Although solving (34) is intractable due to the continuous state
space, we can bound the difference between V NN

k and V̂ ∗
k as (33)

by induction.
For the base case k = H , (33) trivially holds since

V NN
H (x, s) = 1G(s) and V̂ ∗

H(q, s) = 1G(s). For the induction
hypothesis, suppose for k + 1 it holds that

|V NN
k+1(x, s)− V̂ ∗

k+1(q, s)| ≤ (H − k − 1)ZΔNN. (35)

Let V̄ ∗
k be a piecewise constant interpolation of V̂ ∗

k defined by
V̄ ∗
k (x, s) = V̂ ∗

k (q, s) for any x ∈ q and any s ∈ S. Then

|V NN
k (x, s)− V̂ ∗

k (q, s)|

≤ |V NN
k (x, s)− V NN

k (z, s)|+ |V NN
k (z, s)− V̄ ∗

k (z, s)| (36)

where z = ctX(q) and x ∈ q. For the first term on the RHS

|V NN
k (x, s)− V NN

k (z, s)|

= |1G(s)+1S\G(s)
∑
s′∈S

∫
X

V NN
k+1(x

′, s′)t⊗(dx′, s′|x, s,NN(x))

− 1G(s)+1S\G(s)
∑
s′∈S

∫
X

V NN
k+1(x

′, s′)t⊗(dx′, s′|z, s,NN(z))|

≤
∑
s′∈S

∫
X

V NN
k+1(x

′, s′)|t⊗(dx′, s′|x, s,NN(x))

− t⊗(dx′, s′|z, s,NN(z)|

≤ Z

∫
X

|t(dx′|x,NN(x))− t(dx′|z,NN(z)|

≤ Z

∫
X

|t(dx′|x,NN(x))− t(dx′|z,NN(x))|

+ |t(dx′|z,NN(x))− t(dx′|z,NN(z))|
≤ ZΛi||x− z||+ ZBi||NN(x)−NN(z)||
≤ ZΛiηq + ZBiLiηq. (37)

For the second term on the RHS of (36)

|V NN
k (z, s)− V̄ ∗

k (z, s)|

= |1G(s)+1S\G(s)
∑
s′∈S

∫
X

V NN
k+1(x

′, s′)t⊗(dx′, s′|z, s,NN(z))

− 1G(s)+1S\G(s)max
P∈P

∑
(q′,s′)∈X⊗

V̂ ∗
k+1(q

′, s′)t̂⊗(q′, s′|q, s,P)|

(38)

≤ |
∑
s′∈S

∫
X

V NN
k+1(x

′, s′)t⊗(dx′, s′|z, s,NN(z))

−
∑
s′∈S

∑
q′∈X

V̂ ∗
k+1(q

′, s′)t̂⊗(q′, s′|q, s,P∗)| (39)

≤ |
∑
s′∈S

∫
X

V NN
k+1(x

′, s′)t⊗(dx′, s′|z, s,NN(z))

−
∑
s′∈S

∫
X

V̄ ∗
k+1(x

′, s′)t⊗(dx′, s′|z, s, ctP(P∗)(z))| (40)

≤
∑
s′∈S

∫
X

|V NN
k+1(x

′, s′)− V̄ ∗
k+1(x

′, s′)|t⊗(dx′, s′|z, s,NN(z))

+
∑
s′∈S

∫
X

V̄ ∗
k+1(x

′, s′)|t⊗(dx′, s′|z, s,NN(z))

− t⊗(dx′, s′|z, s, ctP(P∗)(z))| (41)

≤ (H − k − 1)ZΔNN + Z
√

m(n+ 1)LXBiηP (42)

where (38) uses the DP recursion (17) and (18), in (39) P∗

denotes the maximizer, and (40) uses the definition of t̂ in (16)
with z = ctX(q). In (42), we use the induction hypothesis (35),
and the inequality ||K(x)−K ′(x)|| ≤ ||K −K ′||||x|| ≤√
m(n+ 1)||K −K ′||maxLX ≤

√
m(n+ 1)ηPLX , where

||K −K ′||max ≤ ηP since the local network NN selected by
the activation map Γ represents a CPWA function from the
maximizer P�, i.e., K,K ′ ∈ P� ⊂ R

m×(n+1). Substitute (37)
and (42) into (36) yields (33).

B. Proof of Theorem V.2

Proof: Let functions V ∗
k : X⊗ → [0, 1] map a state (x, s) ∈

X⊗ to the probability of reaching the accepting setX⊗
G inH − k

steps from the state (x, s) and under the optimal controller C∗ϕ :

X × S → U . Then, V ∗
0 (x, s) = Pr(ξ(x,s)C∗ϕ |= ϕ) since reaching

the accepting set X⊗
G in H steps in the product MDP Σ⊗Aϕ

is equivalent to Σ satisfying ϕ. The optimal probabilities of
reaching the accepting set X⊗

G can be expressed using DP
recursion

Qk(x, s, u) = 1G(s) (43)

+1S\G(s)
∑
s′∈S

∫
X

V ∗
k+1(x

′, s′)t⊗(dx′, s′|x, s, u)

V ∗
k (x, s) = max

u∈U
Qk(x, s, u). (44)

Although solving V ∗
k and the corresponding optimal controller

C∗ϕ is intractable due to the continuous state and action spaces,

we can bound the difference between V ∗
k and V̂ ∗

k by induction
similar to the proof of (33) in Theorem V.1. We skip the details
and directly give the following bound:

|V ∗
k (x, s)− V̂ ∗

k (q, s)| ≤ (H − k)ZΔ∗ (45)

where x ∈ q and Δ∗ is given by (22). With (33) and (45), we
have

|V NN
k (x, s)− V ∗

k (x, s)|

≤ |V NN
k (x, s)− V̂ ∗

k (q, s)|+ |V ∗
k (x, s)− V̂ ∗

k (q, s)|

≤ (H − k)Z(ΔNN +Δ∗) (46)

which yields (21) by letting k = 0. �

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

SUN AND SHOUKRY: NEUROSYMBOLIC MOTION AND TASK PLANNING FOR LINEAR TEMPORAL LOGIC TASKS 2767

REFERENCES

[1] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan, “Linear
encodings of bounded LTL model checking,” Log. Methods Comput. Sci.,
vol. 2, no. 5:5, pp. 1–64, 2006.

[2] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods System Des., vol. 19, pp. 291–314, 2001.

[3] H.Kress-Gazit, T.Wongpiromsarn, andU. Topcu, “Correct, reactive, high-
level robot control,” IEEE Robot. Autom. Mag., vol. 18, no. 3, pp. 65–74,
Sep. 2011.

[4] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots:
Guarantees and feedback for robot behavior,” Annu. Rev. Control, Robot.,
Auton. Syst., vol. 1, pp. 211–236, 2018.

[5] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi, “Motion planning
with complex goals,” IEEE Robot. Autom. Mag., vol. 18, no. 3, pp. 55–64,
Sep. 2011.

[6] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling, “FFRob: Leveraging
symbolic planning for efficient task and motion planning,” Int. J. Robot.
Res., vol. 37, no. 1, pp. 104–136, 2018.

[7] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Motion and action
planning under LTL specifications using navigation functions and action
description language,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2013, pp. 240–245.

[8] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion
planning with temporal goals,” in Proc. IEEE Int. Conf. Robot. Autom.,
2010, pp. 2689–2696.

[9] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: A temporal logic approach,” in Proc. IEEE 44th Conf.
Decis. Control, 2005, pp. 4885–4890.

[10] G. E. Fainekos, S. G. Loizou, and G. J. Pappas, “Translating temporal
logic to controller specifications,” inProc. 45th IEEEConf. Decis. Control,
2006, pp. 899–904.

[11] H.Kress-Gazit,G.E. Fainekos, andG. J. Pappas, “Where’sWaldo?Sensor-
based temporal logic motion planning,” in Proc. IEEE Int. Conf. Robot.
Autom., 2007, pp. 3116–3121.

[12] Y. Shoukry et al., “Linear temporal logic motion planning for teams of
underactuated robots using satisfiability modulo convex programming,”
in Proc. IEEE 56th Annu. Conf. Decis. Control, 2017, pp. 1132–1137.

[13] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach. Berlin, Germany: Springer, 2009.

[14] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-Time
Dynamical Systems, vol. 15. Berlin, Germany: Springer, 2017.

[15] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of
linear regions of deep neural networks,” in Proc. Annu. Conf. Neural Inf.
Process. Syst., 2014, pp. 2924–2932.

[16] Z. Cao, M. Kwon, and D. Sadigh, “Transfer reinforcement learning across
homotopy classes,” IEEERobot. Autom. Lett., vol. 6, no. 2, pp. 2706–2713,
Apr. 2021.

[17] X. Sun, W. Fatnassi, U. S. Cruz, and Y. Shoukry, “Provably safe model-
based meta reinforcement learning: An abstraction-based approach,” in
Proc. 60th IEEE Conf. Decis. Control, 2021, pp. 2963–2968.

[18] Y. Jiang, S.Bharadwaj,B.Wu,R. Shah,U.Topcu, andP. Stone, “Temporal-
logic-based reward shaping for continuing learning tasks,” in Proc. 33rd
AAAI Conf. Artif. Intell., 2020, pp. 7995–8003.

[19] W. Saunders, G. Sastry, A. Stuhlmueller, and O. Evans, “Trial with-
out error: Towards safe reinforcement learning via human interven-
tion,” in Proc. 17th Int. Conf. Auton. Agents MultiAgent Syst., 2018,
pp. 2067–2069.

[20] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimization
with safety constraints: Safe and automatic parameter tuning in robotics,”
Mach. Learn., vol. 112, pp. 3713–3747, 2023.

[21] A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, and Y. Yue, “Robust regres-
sion for safe exploration in control,” in Proc. Mach. Learn. Res., 2020,
pp. 1–6.

[22] P. Pauli, A. Koch, J. Berberich, and F. Allgöwer, “Training robust neu-
ral networks using Lipschitz bounds,” IEEE Control Syst. Lett., vol. 6,
pp. 121–126, 2022.

[23] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy opti-
mization,” in Proc. 34th Int. Conf. Mach. Learn., 2017, pp. 22–31.

[24] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in finite
Markov decision processes withGaussian processes,” inProc. Annu. Conf.
Neural Inf. Process. Syst., 2016, pp. 4312–4320.

[25] L.Wen, J. Duan, S. E. Li, S. Xu, andH. Peng, “Safe reinforcement learning
for autonomousvehicles throughparallel constrainedpolicy optimization,”
in Proc. IEEE 23rd Int. Conf. Intell. Transp. Syst., 2020, pp. 1–7.

[26] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in Proc. NASA Formal
Methods Symp., 2018, pp. 121–138.

[27] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. J. Kochenderfer, “Al-
gorithms for verifying deep neural networks,” Found. Trends Optim.,
Hanover, MA, USA: Now Publishers Inc., vol. 4, no. 34, pp. 244–404,
Feb. 2021, doi: 10.1561/2400000035.

[28] X. Sun, H. Khedr, and Y. Shoukry, “Formal verification of neural network
controlled autonomous systems,” in Proc. 22nd ACM Int. Conf. Hybrid
Syst.: Computation Control, 2019, pp. 147–156.

[29] H. Khedr, J. Ferlez, and Y. Shoukry, “PEREGRiNN: Penalized-relaxation
greedy neural network verifier,” in Proc. Int. Conf. Comput. Aided Verifi-
cation, 2021, pp. 287–300.

[30] J. Ferlez, H. Khedr, and Y. Shoukry, “Fast BATLLNN: Fast box analysis
of two-level lattice neural networks,” in Proc. 25th ACM Int. Conf. Hybrid
Syst.: Computation Control, 2022, pp. 1–11.

[31] U. S. Cruz and Y. Shoukry, “NNLander-VeriF: A neural network formal
verification framework for vision-based autonomous aircraft landing,” in
Proc. NASA Formal Methods Symp., 2022, pp. 213–230.

[32] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas, “Efficient
and accurate estimation of Lipschitz constants for deep neural networks,”
in Proc. Annu. Conf. Neural Inf. Process. Syst., 2019, pp. 11423–11434.

[33] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig: Verifying
safety properties of hybrid systems with neural network controllers,” in
Proc. 22nd ACM Int. Conf. Hybrid Syst.: Computation Control, 2019,
pp. 169–178.

[34] W. Xiang, D. M. Lopez, P. Musau, and T. T. Johnson, “Reachable set es-
timation and verification for neural network models of nonlinear dynamic
systems,” in Safe, Autonomous and Intelligent Vehicles. Berlin, Germany:
Springer, 2019, pp. 123–144.

[35] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and
C. J. Tomlin, “A general safety framework for learning-based control in
uncertain robotic systems,” IEEE Trans. Autom. Control, vol. 64, no. 7,
pp. 2737–2752, Jul. 2019.

[36] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac, “Safety and
liveness guarantees through reach-avoid reinforcement learning,” in Proc.
Robot.: Sci. Syst., 2021, Paper 077.

[37] A.Abate, D.Ahmed,A. Edwards,M.Giacobbe, andA. Peruffo, “FOSSIL:
A software tool for the formal synthesis of Lyapunov functions and barrier
certificates using neural networks,” in Proc. 24th ACM Int. Conf. Hybrid
Syst.: Computation Control, 2021, pp. 1–11.

[38] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning Lyapunov functions for hybrid systems,” in Proc. 24th ACM
Int. Conf. Hybrid Syst.: Computation Control, 2021, pp. 1–11.

[39] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 3387–3395.

[40] A. Robey et al., “Learning control barrier functions from expert demon-
strations,” in Proc. IEEE 59th Conf. Decis. Control, 2020, pp. 3717–3724.

[41] A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames, “A control barrier
perspective on episodic learning via projection-to-state safety,” IEEE
Control Syst. Lett., vol. 5, no. 3, pp. 1019–1024, Jul. 2021.

[42] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of quadrotor
dynamics using barrier certificates,” in Proc. IEEE Int. Conf. Robot.
Automat., 2018, pp. 2460–2465.

[43] W. Xiao, C. Belta, and C. G. Cassandras, “Adaptive control barrier
functions,” IEEE Trans. Autom. Control, vol. 67, no. 5, pp. 2267–2281,
May 2022.

[44] O. Bastani, S. Li, and A. Xu, “Safe reinforcement learning via statistical
model predictive shielding,” in Proc. Robot.: Sci. Syst., 2021, pp. 1–13.

[45] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety
certification for learning-based control,” in Proc. IEEE 57th Conf. Decis.
Control, 2018, pp. 7130–7135.

[46] K.P.Wabersich andM.N.Zeilinger, “Apredictive safetyfilter for learning-
based control of constrained nonlinear dynamical systems,” Automatica,
vol. 129, 2021, Art. no. 109597.

[47] M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pappas, and I.
Lee, “Reinforcement learning for temporal logic control synthesis with
probabilistic satisfaction guarantees,” in Proc. IEEE 58th Conf. Decis.
Control, 2019, pp. 5338–5343.

[48] A. Balakrishnan and J. V. Deshmukh, “Structured reward shaping using
signal temporal logic specifications,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2019, pp. 3481–3486.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1561/2400000035

2768 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

[49] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U
Topcu, “Safe reinforcement learning via shielding,” in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 2669–2678.

[50] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Proc. Annu.
Conf. Neural Inf. Process. Syst., 2017.

[51] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
Lyapunov-based approach to safe reinforcement learning,” in Proc. Annu.
Conf. Neural Inf. Process. Syst., 2018, pp. 8092–8101.

[52] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M.
Ghavamzadeh, “Lyapunov-based safe policy optimization for continuous
control,” in Proc. RL4RealLife Workshop 36th Int. Conf. Mach. Learn.,
2019.

[53] R. T. Icarte, T. Klassen, R. Valenzano, and S. McIlraith, “Using re-
ward machines for high-level task specification and decomposition
in reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 2107–2116.

[54] R. Alur, S. Bansal, O. Bastani, and K. Jothimurugan, “A framework
for transforming specifications in reinforcement learning,” in Princi-
ples of Systems Design: Essays Dedicated to Thomas A. Henzinger on
the Occasion of His 60th Birthday. Berlin, Germany: Springer, 2022,
pp. 604–624.

[55] C. Neary, C. Verginis, M. Cubuktepe, and U. Topcu, “Verifiable and com-
positional reinforcement learning systems,” in Proc. Int. Conf. Automated
Plan. Scheduling, 2022, pp. 615–623.

[56] J. Wang, S. Kalluraya, and Y. Kantaros, “Verified compositions of neural
network controllers for temporal logic control objectives,” in Proc. IEEE
61st Conf. Decis. Control, 2022, pp. 4004–4009.

[57] K. Jothimurugan, S. Bansal, O. Bastani, and R. Alur, “Compositional
reinforcement learning from logical specifications,” in Proc. Annu. Conf.
Neural Inf. Process. Syst., 2021, pp. 10026–10039.

[58] L. Illanes, X. Yan, R. T. Icarte, and S. A. McIlraith, “Symbolic plans
as high-level instructions for reinforcement learning,” in Proc. Int. Conf.
Automated Plan. Scheduling, 2020, pp. 540–550.

[59] Z. Xu and U. Topcu, “Transfer of temporal logic formulas in reinforce-
ment learning,” in Proc. Int. Joint Conf. Artif. Intell.: Proc. Conf., 2019,
Art. no. 4010.

[60] F. Zhuang et al., “A comprehensive survey on transfer learning,” Proc.
IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021.

[61] G. Anderson, A. Verma, I. Dillig, and S. Chaudhuri, “Neurosymbolic
reinforcement learning with formally verified exploration,” in Proc. Annu.
Conf. Neural Inf. Process. Syst., 2020, pp. 6172–6183.

[62] A. Verma, H. Le, Y. Yue, and S. Chaudhuri, “Imitation-projected program-
matic reinforcement learning,” in Proc. Annu. Conf. Neural Inf. Process.
Syst., 2019, pp. 15752–15763.

[63] O.Bastani,Y. Pu, andA. Solar-Lezama, “Verifiable reinforcement learning
via policy extraction,” inProc.Annu.Conf.Neural Inf. Process. Syst., 2018,
pp. 2499–2509.

[64] G.Weiss, Y. Goldberg, and E. Yahav, “Extracting automata from recurrent
neural networks using queries and counterexamples,” in Proc. 35th Int.
Conf. Mach. Learn., 2018, pp. 5247–5256.

[65] S. Carr, N. Jansen, and U. Topcu, “Verifiable RNN-based policies for
POMDPS under temporal logic constraints,” in Proc. 29th Int. Joint Conf.
Artif. Intell., 2020, pp. 4121–4127.

[66] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[67] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proc. 33rd Int. Conf. Mach.
Learn., 2016, pp. 49–58.

[68] F. Rossi and N. Mattei, “Building ethically bounded AI,” in Proc. 33rd
AAAI Conf. Artif. Intell., 2019, pp. 9785–9789.

[69] J. Ferlez and Y. Shoukry, “Bounding the complexity of formally verifying
neural networks: A geometric approach,” in Proc. IEEE 60th Conf. Decis.
Control, 2021, pp. 5104–5109.

[70] S. Bak, H.-D. Tran, K. Hobbs, and T. T. Johnson, “Improved geometric
path enumeration for verifying ReLU neural networks,” in Proc. 32nd Int.
Conf. Comput. Aided Verification, 2020, pp. 66–96.

[71] J. Schulman, F.Wolski, P.Dhariwal,A.Radford, andO.Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv:1707.06347.

[72] T. Latvala, “Efficient model checking of safety properties,” in Proc. Model
Checking Softw. 10th Int. SPIN Workshop, 2003, pp. 74–88.

[73] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-fly
automatic verification of linear temporal logic,” in Protocol Specification,
Testing and Verification XV. 1996, pp. 3–18.

[74] S. E. Z. Soudjani and A. Abate, “Adaptive and sequential gridding proce-
dures for the abstraction and verification of stochastic processes,” SIAM J.
Appl. Dynamical Syst., vol. 12, no. 2, pp. 921–956, 2013.

[75] K. Hsu, R. Majumdar, K. Mallik, and A.-K. Schmuck, “Multi-layered
abstraction-based controller synthesis for continuous-time systems,”
in Proc. 21st Int. Conf. Hybrid Syst.: Computation Control, 2018,
pp. 120–129.

[76] F. Chollet et al., “Keras,” 2015. Accessed: Jun. 2022. [Online]. Available:
https://github.com/fchollet/keras

[77] G. Klančar, A. Zdešar, S. Blažič, and I. Škrjanc,WheeledMobile Robotics.
Amsterdam, The Netherlands: Elsevier, 2017.

[78] K. Rakelly, A. Zhou, D. Quillen, C. Finn, and S. Levine, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,” in
Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 5331–5340.

[79] D. P. Kingma andM.Welling, “Auto-encoding variational Bayes,” inProc.
31st Int. Conf. Mach. Learn., 2014. [Online]. Available: https://dblp.uni-
trier.de/rec/journals/corr/KingmaW13.html?view=bibtex

[80] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of Markov
decision processes with linear temporal logic constraints,” IEEE Trans.
Autom. Control, vol. 59, no. 5, pp. 1244–1257, May 2014.

[81] X. Luo, Y. Kantaros, andM.M. Zavlanos, “An abstraction-freemethod for
multirobot temporal logic optimal control synthesis,” IEEE Trans. Robot.,
vol. 37, no. 5, pp. 1487–1507, Oct. 2021.

[82] C. I. Vasile and C. Belta, “Sampling-based temporal logic path planning,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013, pp. 4817–4822.

Xiaowu Sun (Graduate Student Member, IEEE) re-
ceived the B.Sc. degree in physics from Nanjing
University, Nanjing, China in 2013, and the M.Sc.
degree in electrical engineering from the University
of Maryland, College Park, MD, USA, in 2018. He is
currently working toward the Ph.D. degree with the
Department of Electrical Engineering and Computer
Science, University of California, Irvine, CA, USA .

His research interests include formal methods for
control, neural networks, reinforcement learning and
robotics.

Mr. Sunwas the Finalist in theACMSIGBEDSRCStudentCompetition at the
Cyber-Physical Systems (CPS-IoT) Week 2021. His research on using formal
verification to analyze neural network controlled systems was nominated for
consideration in the Communications of the ACM Research Highlights.

Yasser Shoukry (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from the
University of California, Los Angeles, CA, USA, in
2015.

He is currently an Associate Professor with the
Department of Electrical Engineering and Computer
Science, University of California, Irvine, CA, where
he leads the Resilient Cyber-Physical Systems Lab.
Before joiningUCI, he spent two years as anAssistant
Professor with the University of Maryland, College
Park, MD, USA. Between 2015 and 2017, he was a

joint Postdoctoral Researcher withUCBerkeley, UCLA, andUPenn. His current
research focuses on the design and implementation of resilient, AI-enabled,
cyber-physical systems, and IoT.
Dr. Shoukry was the recipient of the Best Paper Award from the International

Conference on Cyber-Physical Systems (ICCPS) in 2016, and the Distinguished
Dissertation Award from UCLA EE department in 2016, the Best Demo Award
from the International Conference on Information Processing in Sensor Net-
works (IPSN) in 2017, the NSF CAREER Award in 2019, George Corcoran
Memorial Award from the University of Maryland for his contributions to
teaching and educational leadership in the field of CPS and IoT in 2019, and
the Early Career Award from the IEEE Technical Committee on Cyber-Physical
Systems (TC-CPS) in 2021. In 2015, he led the UCLA/Caltech/CMU team to
win the NSF Early Career Investigators (NSF-ECI) research challenge. His team
represented the NSF- ECI in the NIST Global Cities Technology Challenge,
an initiative designed to advance the deployment of Internet of Things (IoT)
technologies within a smart city.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:43 UTC from IEEE Xplore. Restrictions apply.

https://github.com/fchollet/keras
https://dblp.uni-trier.de/rec/journals/corr/KingmaW13.html{?}view$=$bibtex
https://dblp.uni-trier.de/rec/journals/corr/KingmaW13.html{?}view$=$bibtex

