
Certified Vision-based State Estimation for Autonomous Landing
Systems using Reachability Analysis

Ulices Santa Cruz1 and Yasser Shoukry1

Abstract— This paper studies the problem of designing a
certified vision-based state estimator for autonomous landing
systems. In such a system, a neural network (NN) processes
images from a camera to estimate the aircraft’s relative position
with respect to the runway. We propose an algorithm to design
such NNs with certified properties in terms of their ability
to detect runways and provide accurate state estimation. At
the heart of our approach is the use of geometric models
of perspective cameras to obtain a mathematical model that
captures the relation between the aircraft states and the inputs.
We show that such geometric models enjoy mixed monotonicity
properties that can be used to design state estimators with
certifiable error bounds. We show the effectiveness of the
proposed approach using an experimental testbed on data
collected from event-based cameras.

I. INTRODUCTION

Machine learning models, like deep neural networks,
are increasingly used to control dynamical systems in
safety-critical applications. These black-box models trained
using data are used heavily to process high-dimensional
imaging data like LiDAR scanners and cameras to produce
state estimates to low-level, model-based controllers. While
these deep Neural Networks (NNs) provide empirically
accepted results, they lack certified guarantees in terms of
their ability to process complex scenes and provide estimates
of the location of different objects within the scene. It is
then unsurprising the increasing number of reported failures
of these deep NNs in building reliable autonomous systems.

In this paper, we will consider the safety of deep
neural networks that control aircraft while approaching
runways to perform an autonomous landing. Such a problem
enjoys geometric nature that can be exploited to develop a
geometrical/physical model of the perception system. Yet,
it represents a significant real-world problem of interest
to the designers of the autonomous system. In particular,
we present a novel neural network-based filter that can
process complex scenes along with estimates of the state of
the aircraft—computed by unverified complex deep neural
networks—and output a state estimate of the aircraft with a
certified error bound. That is, akin to the “control shields”
in the reinforcement learning literature [1], [2], the proposed
filter can be thought of as a “shield” that can filter out
incorrect estimates of the aircraft and replaces them with
ones with certified error bounds. In contrast, the correct
estimates pass this filter (or shield) unaltered.

A central challenge to designing such a filter is the need
to explicitly model the imaging process, i.e., the relation
between the system state and the images created by the
camera [3]. An early result on the application of formal

This work was partially sponsored by the NSF awards #CNS-2002405,
#CNS-2013824, and #CNS-2313104.

1Ulices Santa Cruz, and Yasser Shoukry are with the Department of
Electrical Engineering and Computer Science, University of California
Irvine, Email: {usantacr,yshoukry}@uci.edu

Fig. 1: Coordinate frames: Runway (RCF), Camera (CCF) and Pixel
(PCF).

verification for vision-based dynamical systems controlled
with neural networks [4] focused only on the usage of
LiDARs. The first steps in formally modeling the imaging
process for camera-based systems have been recently studied
in [5], [6], [7]. In particular, the work in [5], [6] proposes
the use of abstractions of the perception system as a formal
model of perception. Unfortunately, these abstractions are
only tested on a set of samples and lack guarantees in
their ability to model the perception system formally. The
work in [7] extends the notion of imaging-adapted partitions,
originally defined for LiDAR images [4], to the notion of
image-invariant regions, which are regions within which the
captured images are identical. Unfortunately, the work in [7]
focuses only on simple scenes that can be modeled as a
collection of triangles that represent the triangulated faces
of objects in the environment. The work in [8] considers the
problem of estimating the pose of different objects in the
scene. Given a partial point cloud of an object, the goal
is to estimate the object’s pose and provide a certificate
of correctness for the resulting estimate. While capable of
handling complex objects, the framework in [8] is sound but
not complete, meaning that if it can identify the object’s
pose, it will generate a certificate. Still, not all poses of the
object will be identified, even if the object of interest exists
in the scene. Other techniques include classification that
uses targeted inputs with the aim of finding counterexamples
that violate safety [9]. However, such techniques do not
provide formal guarantees regarding the ability to find all
counterexamples.

In this paper, we build on our recent results [3] that exploit
the geometry of the autonomous landing problem to construct
a formal model for the image formation process (a map
between the aircraft states and the image produced by the
camera). This physics-based formal model is designed such
that it can be encoded as a neural network (with manually
chosen weights) that we refer to as the Runway Generative
Model neural network. Thanks to the recent development
in computing the reachable sets of neural networks (the
set of all possible outputs of the network) [10], [11], [12],
we can characterize the set of all possible images for the
runway. We use such reachability analysis to design novel
filters that can remove all the other objects in the scene

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

U.S. Government work not protected by
U.S. copyright

6052

20
23

 6
2n

d
IE

EE
 C

on
fe

re
nc

e
on

 D
ec

isi
on

 a
nd

 C
on

tr
ol

 (C
DC

) |
 9

79
-8

-3
50

3-
01

24
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CD
C4

97
53

.2
02

3.
10

38
41

07

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:24 UTC from IEEE Xplore. Restrictions apply.

by matching the spatial and geometrical properties of the
runway to those in the computed reachable set. Moreover,
as a by-product of this design, the proposed filter identifies
the set of possible state estimates of the aircraft. This set of
possible state estimates can then be used to cross-check the
ones computed by unverified neural network estimators and
provide certifiable error bounds on the final state estimate.

II. PRELIMINARIES

A. Notation

We denote by N, B, R and R+ the set of natural, Boolean,
real, and non-negative real numbers, respectively. We use
||x||∞ to denote the infinity norm of a vector x ∈ Rn. We
denote by Br(c) the infinity norm centered at c with radius r,
i.e., Br(c) = {x ∈ Rn|||c− x||∞ ≤ r}. We use the notation
A[i,j] to denote the element in the ith row and jth column
of A. Analogously, the notation A[i,:] denotes the ith row
of A, and A[:,j] denotes the jth column of A; when A is a
vector instead, both notations return a scalar. Let 0n,m be an
(n ×m) matrix of zeros, and 1n,m be the (n ×m) matrix
of ones. Finally, the symbols ⊕ and ⊗ denote element-wise
addition and multiplication of matrices.

B. Aircraft State Space

In this paper, we consider an aircraft landing on a runway.
We assume the states of the aircraft to be measured with
respect to the origin of the Runway Coordinate Frame
(shown in Figure 1 (left)), where positions are: ξx is the axis
across runway; ξy is the altitude and ξz is the axis along
the runway. We consider only one angle ξθ, representing
the pitch rotation around the x axis of the aircraft. The
state vector of the aircraft at time t ∈ N is denoted by
ξ(t) ∈ R4 = [ξ

(t)
θ , ξ

(t)
x , ξ

(t)
y , ξ

(t)
z]T .

C. Runway Parameters

We consider a runway that consists of two border line
segments, L and R. Each line segment can be characterized
by its start and end point (also measured in the Runway
Coordinate Frame) i.e., L = [(Lx, 0, Lz), (Lx + rw, 0, Lz +
rl)] and R = [(Rx, 0, Rz), (Rx + rw, 0, Rz + rl)] where rw
and rl refers to the runway width and length (e.g. standard
international runways are designed with rw = 40 meters
wide and rl = 3000 meters).

D. Camera Model

We assume the aircraft is equipped with a monochrome
camera C that produces images of a × b pixels. Since the
camera is assumed to be monochromatic, each pixel in the
image I takes a value of 0 or 1. The image produced by the
camera depends on the relative location of the aircraft with
respect to the runway and the other objects in the scene.
In other words, we can model the camera C as a function
that maps aircraft states into images, i.e., C : R4 → Ba×b.
Although the images created by the camera depend on
the runway parameters and the other objects in the scene,
we drop this dependence from the notation C for ease of
notation. In this paper, we utilize an ideal pinhole camera
model [13] and leverage our prior work [3] to capture the
image formation process of this camera.

Fig. 2: Monochromatic images generated using state-of-the-art
event-based cameras. The full image I to the left can be
decomposed into one that contains only the runway image Ir
(center) and the remaining objects/noise In (right), i.e., I = Ir+In.

Since the scene contains both a runway and other unknown
objects (see Figure 2), we define the final image I ∈ Ba×b

captured by the camera as:

I(ξ) = Ir(ξ) + In(ξ) (1)

where Ir ∈ Ba×b is the image corresponding to the existence
of the runway in the scene and In ∈ Ba×b is the image
corresponding to the existence of other objects/noise.

E. Neural Network Estimator

We are interested in designing a Neural Network
(NN)-based estimator that can process an image I(ξ) =
Ir(ξ) + In(ξ) to produce an estimate of the aircraft state ξ.
An F -layer NN is specified by composing F layer functions
(or just layers). A layer ω with iω inputs and oω outputs
is specified by a weight matrix Wω ∈ Roω×iω and a bias
vector bω ∈ Roω as follows:

Lθω : z 7→ ϕ(Wωz + bω), (2)

where ϕ is a nonlinear function, and θω ≜ (Wω, bω)
for brevity. Thus, an F -layer NN is specified by F layer
functions {Lθω : ω = 1, . . . , F} whose input and output
dimensions are composable: that is, they satisfy iω = oω−1,
ω = 2, . . . , F . Specifically:

NN (I) = (LθF ◦ LθF−1 ◦ · · · ◦ Lθ1)(I). (3)

As a common practice, we allow the output layer LθF to
omit the nonlinear function ϕ.

F. Problem Formulation

Problem 1. Given an image I(ξ) = Ir(ξ) + In(ξ) that
contains the projection of a runway and other unknown
objects and an estimation error ϵ > 0, design a neural
network estimator NN such that ||NN (Ir + In)− ξ|| < ϵ.

III. FRAMEWORK

Classical machine learning approaches to solve Problem
1 entail training neural networks on large labeled data
sets that contain different possibilities of runway positions
and surrounding objects. Since ensuring the correctness of
the resulting NN is challenging, we propose a framework
in which we manually design a NN filter NNF that is
guaranteed to “filter out” the noise In, i.e., NNF (Ir+In) =
Ir. Moreover, such a filter NNF also computes a certified
bound on the possible states of the aircraft Ξ̂. The size of this
possible set of states Ξ̂ is chosen to guarantee the ϵ bound in
Problem 1. The resulting filtered-out image NNF (Ir + In)
is then passed into a neural network estimator NN e that
is trained using existing techniques in machine learning.

6053

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Overall main framework elements: Spatial filter, Geometrical
filter, NNF and NN e

Finally, the outcome of NN e is checked against the certified
bounds Ξ̂ to provide the final estimate as:

ξ̂ =

{
NN e (NNF (I)) if NN e (NNF (I)) ∈ Ξ̂

center(Ξ̂) otherwise
(4)

where center(Ξ̂) is well defined whenever the set Ξ̂ is
a hypercube. In other words, the certified bounds Ξ̂ are
used to replace the incorrect state estimates with ones with
guaranteed error bound from within the set Ξ̂. This process
is depicted in Figure 3. Steps to manually design the NN
filter NNF and its theoretical guarantees are given in the
subsequent subsections.

A. Physics-based Generative Model for Runway Images:

Our prior work in [3] developed a physics-based generative
model that can generate all possible images containing
runways Ir(ξ) based on the physical parameters of the
camera f, ρh, ρw, v0, u0 (discussed in Section 2). Crucially,
this physics-based generative model was shown to be
mathematically equal to a change of coordinates h : R4 →
R4 and a neural network NN r(h(ξ)) with carefully selected
weights and parameters, i.e.,

Ir(ξ) = NN r(h(ξ)).

The change of coordinates h maps the state of the aircraft
into the projections of the endpoints of the lines L and R on
the Pixel Coordinate Frame (PCF). For the sake of brevity,
we omit the details of h and NN r and we refer the reader
to [3] for the detailed analysis of the correctness of this
generative model.

B. Design of spatial filters using output reachability analysis

Given a partitioning parameter δ, we partition the state
space Ξ ⊂ R4 into L regions Ξ1, . . . ,ΞL such that each
Ξi is an infinity-norm ball with radius δ. For each of these
partitions, we aim to design a spatial filter that matches the
spatial properties of the runway images that can be produced
by states within such a partition. To that end, consider the
following filter SΞi ∈ Ba×b defined as:

SΞi =
⊗

h(ξ)∈Ξi

Ir(ξ) =
⊗

h(ξ)∈Ξi

NN r(h(ξ)). (5)

Fig. 4: Spatial filtering focuses attention on different regions.

Recall that all images Ir(ξ) are monochromatic (i.e., each
pixel can take only a value of 0 or 1), then the following
result follows directly from the definition above.

Proposition 1. Consider the filter SΞi defined in (5). The
following holds:

(i)ξ ∈ Ξi, ∀ξ ∈ Ξi.[In(ξ)⊗NN r(h(ξ)) = 0a,b]

=⇒ [Ir(ξ) + In(ξ)]⊗ SΞi =Ir(ξ) (6)

(ii)ξ /∈ Ξi, In(ξ) /∈ IΞi
r

=⇒ [Ir(ξ) + In(ξ)]⊗ SΞi ̸= Ir(ξ) (7)

where IΞi
r = {Ir(ξ) ∈ Ba×b|h(ξ) ∈ Ξi}.

Note that the condition ∀ξ ∈ Ξi.[In(ξ)⊗NN r(h(ξ)) = 0a,b]

is equivalent to In(ξ) ⊗ SΞi

= 0a,b. That is, the filter
SΞi is capable of removing all noise in the image as long
as the noise image In(ξ) does not affect pixels that are
δ/ρw away from the runway image Ir(ξ). Figure 4 shows
an example of such a filter. Specifically, equations (6)-(7)
imply that the filter will accurately process the filtered image,
provided that the noise does not resemble the pattern of
runways. Additionally, the filter must be applied to the
specific region corresponding to the state responsible for
generating such a runway. Furthermore, it is reasonable to
assume that as we increase the geometric complexity of the
runway, the likelihood of noise resembling runway patterns
diminishes. In other words, the more intricate the entity we
are examining, the safer it is to rely on our assumptions.

What is remaining is to provide an algorithm that can
compute the filter SΞi for each partition Ξi. Thanks to the
fact that the physics-based generative model NN r(ξ) is
captured as a neural network, one can use output reachability
algorithms to compute an overapproximation of the reach
set (set of all possible images) for the runway image Ir(ξ).
To that end, we leverage Mixed-monotonicity reachability
analysis of neural networks [14] as follows:

Proposition 2. (from [14]) Given a neural network NN :
Ri → Ro and an interval [J, J] ⊆ Ro×i bounding the
derivative of NN for all input ζ ∈ [ζ, ζ]. Let us denote the
center of the interval as J∗ and for each output dimension
i ∈ {1, ..., o}, define input vectors ζ

[i,:]
, ζ [i,:] ∈ Ri and a

row vector αi ∈ R1×i such that for all j ∈ {1, ..., i} the

6054

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:24 UTC from IEEE Xplore. Restrictions apply.

following holds:

(ψ
[i,j]

, ψ[i,j], α[i,j]) ={
(ζ

[:,j]
, ζ [:,j],min(0, J [i,j])) if J∗

[i,j] ≥ 0

(ζ [:,j], ζ [:,j],max(0, J [i,j])) if J∗
[i,j] ≤ 0

(8)

Then for all neural network input ζ ∈ [ζ, ζ] and i ∈
{1, ..., o}, we have:

NN (ζ)[i,:] ∈ [NN (ψ
[i,:]

− α[i,:](ψ[i,:]
− ψ[i,:])),

NN (ψ[i,:] + α[i,:](ψ[i,:]
− ψ[i,:]))] (9)

To implement the method in Proposition 2, we define the
input vectors as ζ = center(Ξi)+

δ
2 and ζ = center(Ξi)− δ

2 .
Additionally, we compute the bounds on the Jacobian matrix
of the neural network NN r to find the bounds [J, J]. Details
about obtaining such bounds are given in Appendix in [15].
These bounds on the output of NN r identifies which pixels
are equal to zero for all the images generated by the states
in each Ξi, which can be used to compute the filters in (5).

C. Design of Geometric Filters using Hough Transform

The spatial filters SΞi can focus attention on different
regions of the state space. Although these filters provide a
guarantee of the filter output that satisfies ξ ∈ Ξi it does
not provide any guarantee on the output of the filters for
which ξ /∈ Ξi. Therefore, it is necessary to augment the
spatial filters with another filter that aims to detect whether
the output follows the geometrical structure of the runway
images. To achieve this, consider the following filters:

HΞi(I)=

{
1 if ∃ξ ∈ Ξi such that I=NN r(h(ξ))

0 otherwise
(10)

Such filter can be efficiently computed using the classical
Hough-space transformation [16]. In this transformation, a
straight line is represented by a normal line that passes
through the origin and is orthogonal to that straight line.
The equation of the normal line is given by ρ = ζ1 cos (θ)+
ζ2 sin θ, where ρ is the length of the normal line and θ is
the angle between the normal line and the x-axis of the
Pixel Coordinate Frame. By using the projections of the
endpoints of the runway lines edges obtained from h(ξ) =
[ζ1, ζ2, ζ3, ζ4] as P1 = (ζ1, ζ2) and P2 = (ζ3, ζ4), we can
solve for θ and ρ for the generated image as:

θ = tan−1

(
ζ1 − ζ3
ζ4 − ζ2

)
ρ = ζ1 cos (θ) + ζ2 sin (θ)

(11)
Given a partition Ξi, we can obtain the range of ρ,

θ for all runway images as follows. First, recall that
each partition Ξi is an infinity ball with a radius equal
to δ around a center point center(Ξi) ∈ R4. The two
points P1 = (center(Ξi)[1], center(Ξi)[2]) and P2 =
(center(Ξi)[3], center(Ξi)[4]) represent 2-dimensional points
in the Pixel Coordinate Frame that corresponds to the
center of Ξi (see Figure 5 for illustration). Following the
2-dimensional geometry of the Pixel Coordinate Frame, it is

Fig. 5: Feasible range of angles and distances in Hough Space.

direct to show that:

(ζci1 , ζ
ci
2 ,ζ

ci
3 , ζ

ci
4) = center(Ξi) (12)

θΞi
max =

tan−1 (
ζ
ci
1 −ζ

ci
3 +2δ

ζ
ci
4 −ζ

ci
2 +2δ

), if ζ
ci
4 −ζ

ci
2

ζ
ci
3 −ζ

ci
1

> 0

tan−1 (
ζ
ci
1 −ζ

ci
3 +2δ

ζ
ci
4 −ζ

ci
2 −2δ

), otherwise
(13)

θΞi
min =

tan−1 (
ζ
ci
1 −ζ

ci
3 −2δ

ζ
ci
4 −ζ

ci
2 −2δ

), if ζ
ci
4 −ζ2

ζ
ci
3 −ζ

ci
1

> 0

tan−1 (
ζ
ci
1 −ζ

ci
3 −2δ

ζ
ci
4 −ζ

ci
2 +2δ

), otherwise
(14)

ρΞi
min = bδ

√
1 +m2

m+ 1
m

, ρΞi
max = bδ

√
1 +m2

m+ 1
m

(15)

where m, bδ, bδ are defined in Appendix in [15].
Equations (12)-(15) define the reachable set of the

runway images within the Hough space (the ρ − θ
space). Moreover, the discretization introduced in the Pixel
Coordinate Frame (the flooring operation in the camera
model described on [3]) introduces a discretization over
the range of ρ and θ computed by equations (12)-(15)
which existing implementations of Hough transformation
algorithms take into account. We denote by LΞi =
{(ρΞi

max, θ
Ξi
max), . . . , (ρ

Ξi
min, θ

Ξi
min)} the discrete set of the

allowable values of ρ and θ within the partition Ξi. For each
possible (ρj , θj) in LΞi , we define the filter RΞi(ρj , θj) ∈
Ba×b as:

RΞi(ρj , θj)[k,l]=

{
1 if l − 1<− cos θj

sin θj
k +

ρj

sin θj
<l

0 otherwise
(16)

For each filter RΞi(ρj , θj) we can define a mismatching
score that computes how far the input image I is from the
expected output of this filter as:

M(I,RΞi(ρj , θj)) =

∥∥∥∥− I ⊕RΞi(ρj , θj)

∥∥∥∥
1

(17)

That is, M is equal to zero whenever the input image I
matches exactly the line represented by RΞi(ρj , θj) and
non-zero otherwise. Finally, we can implement the filter HΞi

in (10) as:

HΞi(I) =


1 if argmin{M(I,RΞi(ρΞi

max, θ
Ξi
max)), . . . ,

M(I,RΞi(ρΞi
min, θ

Ξi
min))} = 0

0 otherwise
(18)

In other words, the filter HΞi produces 1 whenever any of
the filters RΞi(ρΞi

max, θ
Ξi
max), . . . ,RΞi(ρΞi

min, θ
Ξi
min) were able

to match its input image. The following proposition follows
directly from the definition of HΞi(I) above.

6055

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:24 UTC from IEEE Xplore. Restrictions apply.

Proposition 3. Consider the filter HΞi defined in (18). The
following holds:

HΞi(I) = 1 ⇐⇒ ∃ξ ∈ Ξi such that I = NN r(h(ξ)) (19)

D. Design of the NN filter NNF

The final filter NNF consists of processing the images
I using all the spatial filters SΞ1 , . . . ,SΞl followed by the
geometric filters HΞ1 , . . . ,HΞl . Finally, the filter NNF

identifies the partition Ξ̂ for which the geometric filter returns
1 to produce its final outputs as follows:

Ξ̂ = argmax{HΞ1(I ⊗ SΞ1), . . . ,HΞl(I ⊗ SΞl)} (20)

Îr = I ⊗ SΞ̂ (21)

The following result captures the correctness of the NNF .

Theorem 1. Consider a noisy image I(ξ) = Ir(ξ)+In(ξ), a
partitioning of the state space Ξ into infinity balls of radius δ
namely Ξ1, . . . ,Ξl. Denote by Ξ∗ the partition for which the
aircraft state ξ belongs, i.e., h(ξ) ∈ Ξ∗. Under the following
assumptions:

(i)In(ξ) /∈ {NN r(h(ξ)) | h(ξ) ∈ Ξ} (22)
(ii)∀ξ ∈ Ξ∗.[In(ξ)⊗NN r(h(ξ)) = 0a,b] (23)

then the following holds:

Ξ̂ = Ξ∗ (24)

Îr = Ir(ξ) (25)

∥ξ − ξ̂∥ ≤ 4Lhδ ∀ξ̂ ∈ Ξ̂ (26)

where (Ξ̂, Îr) = NNF (I(ξ)) and Lh is the Lipschitz
constant of h−1.

Proof. We start by proving (24) as follows. For the sake of
contradiction, we assume that there exists a partition Ξ† ̸= Ξ̂
such that which the aircraft state ξ satisfies h(ξ) ∈ Ξ†. It
follows from Proposition 1 and assumptions (22) and (23)
that:

I ⊗ SΞ̂ ̸= Ir(ξ), I ⊗ SΞ†
= Ir(ξ)

and hence Proposition 3 entails that:

HΞ̂(I ⊗ SΞ̂) = 0, HΞ†
(I ⊗ SΞ†

) = 1

Nevertheless, this contradicts the fact that:

Ξ̂ = argmax{. . . ,HΞ̂(I ⊗ SΞ̂), . . . ,HΞ†
(I ⊗ SΞ†

), . . .}

which proves that h(ξ) ∈ Ξ̂.
Equation (25) follows directly from (24) and Proposition

1. Similarly, equation (26) follows from the fact that the
partition Ξ̂ is an infinity ball of radius δ and hence for any
ξ̂ ∈ Ξ̂:

∥h(ξ)− h(ξ̂)∥∞ = ∥h(ξ) + center(Ξ̂)− center(Ξ̂)− h(ξ̂)∥∞
≤ ∥h(ξ)− center(Ξ̂)∥∞ + ∥center(Ξ̂)− h(ξ̂)∥∞
≤ 2δ

Hence from the relation between the 2-norm and the infinity
norm, we conclude that:

∥h(ξ)− h(ξ̂)∥ ≤
√
4∥h(ξ)− h(ξ̂)∥∞ ≤ 4δ

from which we conclude that ∥ξ − ξ̂∥ ≤ 4Lhδ which
concludes the proof.

Before we conclude this section, it is essential to interpret
the assumptions (22) and (23) in Theorem 1. In particular,
the assumption in (22) entails that the noise In can not be
generated using the runway generative model NN r. In other
words, this assumption ensures that the noise does not look
like a runway and hence only one image of the runway exists
in the scene. The assumption in (23) asks that the pixels that
are δ close to the runway are not affected by the noise. It is
crucial to note that assumption (23) is required to be satisfied
in Ξ∗ only and does not affect other partitions.

IV. EXPERIMENTAL EVALUATION

We present the results of a vision-based aircraft landing
system that uses a target runway. We consider two runway
segments, L = [(Lx, 0, Lz), (Lx, 0, Lz + rl)] and R =
[(Rx, 0, Rz), (Rx, 0, Rz + rl)] where Rx = 0.1, Lx = −0.1,
Rz = 0, Lz = 0, rl = 0.3 (in meters).

To generate monochromatic images, we utilized the
SilkyEvCam event-based camera with a resolution of 640×
480 pixels, a focal length of 8 mm, and a pixel size of
15 µm × 15 µm. We measured the ground-truth states of
the vehicle using Vicon motion capture cameras to track
optical markers attached to the camera envelope, and the
centroid of the camera was defined as the camera coordinate
frame (CCF) origin. Similarly, we defined the runway target
as the runway coordinate frame (RCF) from which all
measurements were made.

We partitioned the state space Ξ ⊂ R4 into 27 regions
Ξ1, . . . ,Ξ27 using a partitioning parameter δ = 0.1. These
regions correspond to the range of states [ξy × ξz × ξθ] =
[0.8, 1] × [1.6, 1.8] × [0.5, 0.7] (we fix ξx = 0 in our
experiments). We then implemented the runway generative
model neural network NN r for a resolution of 640 ×
480 pixel images, the filter NN f , and the corresponding
application of the spatial SΞi and geometric filters HΞi on all
partitions to create the binary weights needed using PyTorch
libraries. This process took approximately 20 minutes per
partition, resulting in a total of approximately 9 hours to
generate the neural network weights for all 27 partitions
using an Apple M1 Pro processor with 32 GB of RAM.

Next, the filter NNF was used to process images collected
from the SilkyEvCam event-based camera. We operated the
camera for several minutes resulting in a total of 1320 images
using 25 frames per second. Figure 6 and Figure 7 show
two instances of the images collected and processed during
our experiments. As seen from the two figures, the scene
contains one runway and several objects, and noisy pixels.
The neural network NNF is used to filter these images and
remove all objects except for the runway. Figure 6 (right)
and Figure 7 (right) show the outputs of the 4 different
spatial filters SΞi . As can be observed in the two figures,
the result of these filters focuses the attention on specific
segments of the scene. Some of these filtered images contain
the runway (or segments of it) while others contain only
parts of the noise image In. Next, we execute the geometric
filters HΞi to identify the images that match the geometric
structure of the runways. We highlight the partition with the
smallest mismatch score M with a green box in Figure 6 and
Figure 7. In particular, in Figure 6, the output corresponding
to partition 1 contains leads to the smallest mismatch score
while partition 24 corresponds to the one with the smallest
mismatch score in Figure 7.

6056

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Test 1: Framework application on image #1 delivers correct
filtered runway (in Green) found on Partition #1.

Fig. 7: Test 2: Framework application on image #2 delivers correct
filtered runway (in Green) found on Partition #24.

Finally, we used off-the-shelf algorithms to process the
filtered image and produce the final state estimate. For
the test reported in Figure 6, the resulting state error is
0.0777 while for the test reported in Figure 7 the resulting
error is 0.045, both are below the threshold of 4δLh and
hence no further processing is required. Additionally, for
comparison purposes, we applied an off-the-shelf standard
Hough transformation-based filter that can discover line
segments in the scene with the aim of identifying the runway
without our proposed filter. Figure 8 shows the output of the
standard Hough transformation-based filter when operated on
the same input image used in Figure 6. The dashed lines in
Figure 8 correspond to the line segments that were detected

Fig. 8: Filtering using only Hough filter without geometrical
constraints.

by the standard filter. As can be appreciated from Figure 8,
the standard filter leads to several false line detections that do
not match the runway due to the noise and the other objects
in the scene. Fortunately, our proposed filter does not suffer
from such an issue and comes with provable guarantees.

REFERENCES

[1] J. Ferlez, M. Elnaggar, Y. Shoukry, and C. Fleming, “Shieldnn: A
provably safe nn filter for unsafe nn controllers,” arXiv preprint
arXiv:2006.09564, 2020.

[2] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[3] U. Santa Cruz and Y. Shoukry, “Nnlander-verif: A neural network
formal verification framework for vision-based autonomous aircraft
landing.” NASA Formal Methods. NFM 2022. Lecture Notes in
Computer Science, vol 13260. Springer, pp 213–230, 2022.

[4] X. Sun, H. Khedr, and Y. Shoukry, “Formal verification of neural
network controlled autonomous systems.” HSCC 19: Proceedings
of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, pp 147–156, 2019.

[5] C. Hsieh, Y. Li, D. Sun, K. Joshi, S. Misailovic, and S. Mitra,
“Verifying controllers with vision-based perception using safe
approximate abstractions.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, 2022.

[6] S. M. Katz, A. L. Corso, C. A. Strong, and M. J. Kochenderfer,
“Verification of image-based neural network controllers using
generative models,” Journal of Aerospace Information Systems,
vol. 19, no. 9, pp. 574–584, 2022.

[7] P. Habeeb, N. Deka, D. D’Souza, K. Lodaya, and P. Prabhakar,
“Verification of camera-based autonomous systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2023.

[8] R. Talak, L. Peng, and L. Carlone, “Certifiable 3d object pose
estimation: Foundations, learning models, and self-training,” 2023.

[9] S. Shoouri, S. Jalili, J. Xu, I. Gallagher, Y. Zhang, J. Wilhelm,
J.-B. Jeannin, and N. Ozay, “Falsification of a vision-based automatic
landing system,” in AIAA Scitech 2021 Forum, p. 0998, 2021.

[10] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen,
W. Xiang, S. Bak, and T. T. Johnson, “Nnv: the neural network
verification tool for deep neural networks and learning-enabled
cyber-physical systems,” in Computer Aided Verification: 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July
21–24, 2020, Proceedings, Part I, pp. 3–17, Springer, 2020.

[11] J. Ferlez and Y. Shoukry, “Polynomial-time reachability for lti systems
with two-level lattice neural network controllers,” IEEE Control
Systems Letters, 2022.

[12] H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L. V. Nguyen,
W. Xiang, and T. T. Johnson, “Star-based reachability analysis of
deep neural networks,” in Formal Methods–The Next 30 Years: Third
World Congress, FM 2019, Porto, Portugal, October 7–11, 2019,
Proceedings 3, pp. 670–686, Springer, 2019.

[13] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An invitation to 3-d
vision: from images to geometric models, vol. 26. Springer Science
& Business Media, 2012.

[14] P.-J. Meyer, “Reachability analysis of neural networks using mixed
monotonicity.” IEEE Control Systems Letters,vol. 6, pp. 3068-3073,
2022.

[15] U. Santa Cruz and Y. Shoukry, “Certified vision-based state estimation
for autonomous landing systems using reachability analysis.” arXiv
preprint arXiv: 2309.05167, 2023.

[16] R. Szeliski, Computer Vision - Algorithms and Applications, Second
Edition. Texts in Computer Science, Springer, 2022.

6057

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 15,2024 at 08:45:24 UTC from IEEE Xplore. Restrictions apply.

