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ABSTRACT: Molecular dynamics (MD) simulations are fundamen-
tal computational tools for the study of proteins and their free energy

n MD simulations lect new restarts

Train ML model on trajectories

landscapes. However, sampling protein conformational changes 8 /2 O) ,C)
through MD simulations is challenging due to the relatively long OO0
time scales of these processes. Many enhanced sampling approaches OOy QO
. . . . . OO @
have emerged to tackle this problem, including biased sampling and
path-sampling methods. In this Perspective, we focus on adaptive 1 1

sampling algorithms. These techniques differ from other approaches

because the thermodynamic ensemble is preserved and the sampling is enhanced solely by restarting MD trajectories at particularly
chosen seeds rather than introducing biasing forces. We begin our treatment with an overview of theoretically transparent methods,
where we discuss principles and guidelines for adaptive sampling. Then, we present a brief summary of select methods that have
been applied to realistic systems in the past. Finally, we discuss recent advances in adaptive sampling methodology powered by deep

learning techniques, as well as their shortcomings.

B INTRODUCTION

Computer simulation studies have been invaluable tools to
study atomic scale phenomena. Experimental observations and
theoretical predictions can, in theory, be validated through
these simulations. Molecular dynamics (MD) simulations are a
powerful technique that can probe these molecular systems at
atomic scales. MD simulations iteratively solve equations of
motion, which allows the molecular system to evolve over time
steps at the order of 1-2 fs and perform sampling to recover
statistical ensembles. Although MD simulations offer unparal-
leled insight into the atomic world, there are many limitations
to this approach.

MD simulations require the interaction potential to be
defined in terms of a force field, which in turn makes the
simulation accuracy dependent upon this choice of parameters.
Hence the simulations will not offer desired insights in a
general sense, rather only for the application for which the
force field has been parametrized. In this regard many force
fields have been 4»proposed like CHARMM,' AMBER,”
GROMOS,> OPLS,” etc., for simulation of biological as well
as materials systems.

Another major limitation that MD simulations suffer from is
the time scale problem. MD simulations generally employ an
integration time step of 1—2 fs, corresponding to the fastest
degree of freedom for the molecular system under study. Many
processes of practical interest, especially biological processes
like protein folding, ligand binding, etc., are of the order of
milliseconds or even higher. For these processes, the sampling
probability decays exponentially with energy (Boltzmann
distribution), so high energy or rare transitions pose a
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challenge. In other words, due to the decaying probability of
sampling a high energy state, the time that it takes a simulation
to cross an energy barrier increases exponentially with the size
of the barrier, and this gives origin to the time scale problem in
MD. A traditional long MD simulation can remain stuck in a
metastable basin and fail to sample the conformational
landscape as desired. A nonspecialized computer provides a
computational speed of the order of nanoseconds per day
which would require years of computation to reach the
millisecond stage. To deal with this bottleneck, many alternate
approaches have been investigated.

Coarse-graining of the system under study has been a
popular approach to studying such biological processes. In
coarse-graining, sets of atoms are collectively represented by
“beads” which act as a representative “pseudo-atom” that hopes
to capture the chemical behavior of the modeled group of
atoms; e.g,, MARTIND is a commonly used coarse-grained
force field to this end. This clustering reduces the number of
atoms (reducing the number of motion equations to be solved)
hence reducing the computational expense as complexity for
MD simulations is O(N log N),° for N number of atoms.
Another speedup comes from the idea that, because finer
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Figure 1. Adaptive sampling, starting from initial states and running short simulations, discretization of conformations, clustering into
representative states, and reseeding from states chosen via the chosen scheme.

degrees of freedom have been coarse-grained, the integration
time step could now be increased from 1-2 fs to 20—40 fs.
Although both of these speedups are significant, there are some
limitations” to this approach as well. The outcome of a coarse-
grained simulation is heavily dependent upon the choice of
coarse-graining scheme; hence, there is a possibility of coarse-
graining out potentially important degrees of freedom for our
system. Another caveat is that the energy surface gets
smoothed out due to this coarse-graining effect; therefore,
the simulation time does not equal the actual time. In
response, calculations of the dynamic quantities must be scaled
accordingly.

Enhanced sampling methods such as adaptive sampling
methods, replica exchange methods, localization methods,
biasing methods (adaptive and nonadaptive), and more have
been proposed as a strong substitute to address this sampling
dilemma. The number and types of enhanced sampling
methods that have been proposed are too many to mention
here, and the reader is directed to this excellent review.®
Although these methods perform well for specific systems,
there are still some drawbacks that limit their applicability in a
general sense. For example, biased enhanced sampling
methods (e.g, metadynamics) add an external bias to the
system. This perturbation modifies the underlying potential
energy surface causing the system to lose kinetic information,
which can only be recovered in theory by nontrivial
methods.”'* Additionally, these methods could potentially
sample unphysical conformations due to external forces. Other
techniques (e.g, replica-exchange'') work well for enthalpic
barriers but perform relatively poorly for systems where
entropic barriers are dominant.

The class of methods addressed in this Article can generally
be described as unbiased adaptive sampling methods. The key
idea is to, after an initial run of short trajectories, strategically
restart these trajectories based on some criterion. In adaptive
sampling methods, instead of conventional long MD
simulations, multiple short simulations are run in parallel.
Then, states from the resultant trajectories are selected
according to some criterion to run the next round of
simulations. It is the choice of this adaptive selection criterion
that distinguishes the different types of methods in this class.
The process is illustrated in Figure 1.

The intuition behind this adaptive sampling is to start
sampling from states that have been relatively less sampled and
which would be more likely to overcome free-energy barriers in
rare events like protein folding. These short trajectories are
then “stitched” together, often by using Markov state models,
where states are clustered and probabilities of state trans-
formations are recorded in a transition matrix and analyzed.
Time-lagged independent component analysis (tICA) is a
linear transformation method that can be used for dimension-
ality reduction and is often'” applied to the time-lagged
correlation matrices of the features in the MSM construction
pipeline.

In this Perspective, we outline the theoretical underpinnings
of adaptive sampling as well as major methods that have been
developed recently. An attempt has been made to categorize
these techniques into three classes. The first categorization is
termed Markov state model (MSM) inspired adaptive
sampling and outlines the sampling methods that make use
of the Markovian assumption to recover thermodynamic
quantities of interest as well as kinetic information from
multiple short trajectories. The next class is named reinforce-
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ment-learning-inspired adaptive sampling methods. As the
name suggests, these methods draw inspiration from reinforce-
ment learning, where exploration and/or exploitation in the
sampling space are favored/penalized via an objective function.
Beyond these, we also discuss other methodologies such as
weighted ensemble techniques where the configuration space is
divided into bins and walkers (trajectories) in the bins are
replicated/terminated according to their favorability toward
the target state.

B THEORY

The practice and theory of adaptive sampling methods have
developed rather unevenly over their history. For this reason,
the theoretical characterization of certain methods is more
advanced than that for others. Nonetheless, due to the
complicated statistical behavior of high-dimensional dynamical
systems, simplifying assumptions of varying strength are
applied in the derivation of theoretical principles (e.g,
expected advantage over naive methods) and principled
guidelines (e.g., optimal allocation strategies). The validity of
these assumptions is not usually guaranteed in MD
simulations. But before exploring these theoretical principles
and their underlying assumptions, it is useful to first define the
quantities that adaptive sampling methods intend to estimate,
as these will motivate the theory.

Adaptive sampling methods are focused on accelerating the
sampling of state transitions and the convergence of
thermodynamic and kinetic models of the molecular system
under study.”’*~"> The free energy landscape encodes the
thermodynamics of a molecular system because it provides the
probability of observing a conformation under the simulated

L A (X)’

thermodynamic ensemble, P(x) = e where x is a

molecular conformation, F is the free energy, Z is the
canonical partition function, and f is the thermodynamic beta.

A kinetic model is a mathematical model that describes the
time evolution of a system. In the context of molecular
dynamics, a kinetic model is composed of a set of state
definitions (generally expressed as boundaries in conforma-
tional space) and the average rates of change or mean first
passage times (MFPTs) between the states. The MFPT can be
defined as the average number of trajectory steps that it takes
to reach one state from another. The Hill relation can be used
to compute the MFPT from trajectory data'®

e o

where (Tp), is the MFPT from source state A to target state B
and (N,), is the number of arrivals on state B at time ¢ given
the steady state distribution z. This estimate of the MFPT is
correct only under the assumptions of steady state con-
vergence, which is computationally challenging for complex
systems, and recycling boundary conditions (trajectories that
reach B are immediately restarted from A). In other words,
state B is a “sink” that absorbs all arriving trajectories and state
A is a “source” where all trajectories originate. The distribution
7 is achieved once the rate of arrival to state B (the sink) does
not change as time increases. A mathematically rigorous
treatment of the Hill relation under molecular dynamics is
available in the literature.”” MFPTs are central to the
characterization of molecular systems because, once known,
they allow us to calculate other observables through kinetic
modeling.'® Depending on the adaptive sampling method

utilized, the measured MFPTs might be biased. For example,
adaptive sampling results in statistically biased MFPTs, while
the weighted ensemble takes care of such bias on the fly by
assigning weights to trajectories. Methods that produce biased
MEFPTs employ posthoc statistical models, like Markov state
models (MSMs)'® or generalized master-equation-based
models (GMEMs),'”?° to recover the unbiased MFPTs.

Adaptive sampling can help accelerate the sampling of
transition states and kinetic models via two mechanisms,
neither of which is exclusive to adaptive sampling methods:
trajectory parallelization and selective seeding. Trajectory
parallelization refers to running many unbiased trajectories
simultaneously. On the other hand, selective seeding is the act
of restarting a simulation from a set of specific configurations
chosen according to a criterion.

To analyze the theoretical contribution of each mechanism
or, at least, under what circumstances each mechanism is
helpful, we can first remove the “seeding contribution” from
the equation and analyze the advantage of using parallel
trajectories only. Interestingly, it is an unrelated field
(stochastic resetting) that sheds light on this question. In
stochastic resetting the main premise is that a diffusion process
(the molecular dynamics simulation) is set back to its original
position (conformation) after some random number of time
steps.”' Clearly, there is no selective seeding under stochastic
resetting because the system is always set back to the same
seed. We note that, in stochastic resetting, there is no actual
parallelization of trajectories either. However, this is an
implementation detail. If they were run in parallel, one could
sample permutations from the set (akin to bootstrapping) to
recover “ordered” trajectories and the statistical analysis holds.

Under stochastic resetting we must consider two random
variables: T and R.*> T is the number of time steps that it takes
for an individual trajectory started in state A to reach the target
state B without being restarted. R is the maximum possible
length of the individual trajectory (after R time steps, it is
restarted). If T < R, the FPT under resetting (T,) is measured
as T. However, if R < T, then R is added to T, and a new
trajectory is sampled. Therefore, we can express T, in a
recursive fashion, T, = min(T, R) + 1z<;T,, where T} is i.i.d. to
T, and 1.7 is an indicator function that halts the summation
once T < R>* Note that, in the case of the parallel simulations,
we would need to “discard” any trajectories in the permutation
that come after one where T < R. Taking the expectation of
this expression, we get”

(T) = (min(T, R))
P(T < R) @)

This is the “effective” MFPT measured by the restarted (or
short and parallel) trajectories.

Although the output of the expression depends on the
specific probability distributions of T and R, it tends to be
smaller than the unbiased MFPT ((Tj),) because the
distribution of the FPT can be heavy-tailed, a feature that is
countered by the restarting procedure. In fact, as it has been
proven”>”® and has been empirically explored,** if the
coefficient of variation (standard deviation divided by the
mean) of the unbiased FPT is greater than 1, then (T,) <
(Tg)4- This translates into a speedup in the sampling of state
transitions. For example, researchers have shown a toy system
where the speedup reaches 1 order of magnitude with a
coefficient of variation of 2.9.”" It must be noted that the actual
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speedup depends on the distribution of the unbiased FPT, not
only on the coefficient of variation.”> A method to recover the
unbiased MFPT from the restarted one was proposed,”* but it
seems that the theoretical bound for the error remains elusive.
Nonetheless, other statistical methods, such as MSMs'® and
GMEMs, 0 might prove useful to recover the unbiased
MFPT from restarted trajectories.

The takeaway message from this analysis is that, even
without any selective seeding, one could have a considerable
speedup in state transition sampling and MFPT convergence
from parallelization only. This would translate into fewer
simulation time steps required to reach the target state and a
wall-clock time saved to compute the MFPT. Therefore, when
testing new adaptive sampling methods, it is important to
include a sensible baseline that accounts for the parallelization
advantage. For example, one could compare the proposed
technique to another parallel method. If one merely claims that
an adaptive sampling method improves upon long, continuous
MD simulations without explicitly providing the distribution of
the unbiased FPT or its coefficient of variation, then it remains
ambiguous whether the seeding strategy is actually responsible
for the speedup.

Now that we have considered the situation where
parallelization alone provides a speedup, we turn to theoretical
results pertaining to the selective seeding advantage. We will
focus on three specific approaches based on the theoretical
clarity that they bring into the discussion, noting that they are
not routinely used in practice and their underlying assumptions
are demanding in most cases.

The first one is termed coupled parallel trajectories.”® In this
method, M parallel trajectories are started from the same state.
After a single trajectory has sampled a state transition, all of the
trajectories are stopped, and M new trajectories are started in
the new state. It is assumed that a transition can occur between
any two states (all states are connected). By making the
additional simplifying assumption that the FPT's between states
are exponentially distributed, then we can draw explicit results.
For this, note that the problem setup can be expressed as a

system of differential equations, %p = Kp, where K is a matrix

that contains the transition rates and p contains the state
populations. The long time solution to this system is p =
Y. cvie™, where 1, and v, are the ith eigenvalue and eigenvector
of K and ¢s are constants that depend on boundary
conditions. Further assuming Markovianity and absorbing
boundary conditions (the simulations are stopped at the target
state), we get that the MEFPT to the target state is

, CV:
Ty = Z -2 =

1
= —(T,
M), M< B

©)

where (T3), is the MFPT estimated from the coupled
trajectories and vz is the Bth component of the ith eigenvector.
A full derivation of the second equality is available in the
original study.”® The key result is that, in some simple cases
(ie, systems with fully connected states and exponential
transition rates), a greedy strategy where all trajectories are
moved to the newly discovered states as soon as they are seen
can provide a linear sampling speedup. Of course, realistic
molecular systems are generally too complex for the
assumptions to hold; they include unconnected states, kinetic
traps, and other features that frustrate this type of greedy
scheme. Moreover, when comparing against M parallel but
uncoupled trajectories the relative speedup is not linear.”®

i

The next approach that we will consider offers a more
sophisticated view, since it considers selective seeding as a
means to reduce the variance in kinetic models rather than
simply increasing the sampling rates.”” The idea behind this
method is to perform error analysis on the first nontrivial
eigenvalue of the Markovian transition probability matrix and
then selectively seed new simulations from the state with the
largest contribution to its variance. The result is a sampling
scheme that improves the resolution of the slowest relaxation
process. To achieve this, two key assumptions are made: (1)
the transition probabilities converge to normal distributions
after enough transitions have been sampled and (2) the first-
order Taylor expansion around the eigenvalue is a good
enough approximation of the effect of small perturbations in
the transition probability matrix. To express the selection
criteria mathematically, it is useful to define certain quantities
first. Let k; = K; be the normalized vector containing all
transition probabilities for starting state i, and let st = Vi Ak,

Here, V, is the gradient operator over the variables in k; (all
transition probabilities originating from state i), so Vi Al is the

gradient of the eigenvalue evaluated at k; = k;. This gradient is
termed the sensitivity vector, which linearly approximates how
much the eigenvalue A will vary with changing an element in
the probability transition matrix. These values are used to
compute g; = (s/)"[diag(k;) — kk']s!. Then, the variance of
the eigenvalue is given by ¢ = Y., G;/(w; + 1), where w, is a
normalization factor for the transition counts from state i.”” If
we add m new samples to state i (assuming the transition
probabilities stay constant), then the state that will result in the
highest reduction in the variance will be given by i =
argmax(q;/(w; + 1) — g/ (w; + m + 1)).”” When this selection
criterion is used, the variance of the first nontrivial eigenvalue
decays faster than when using other forms of parallel
sampling.”” This work shows that, given a series of
approximations, one can reach an elegant, closed-form solution
that determines the criterion for adaptive sampling. Follow-up
works showed that, in practice, other adaptive sampling
schemes perform better in terms of error reduction,”® a sign
that the assumptions used in this analysis (e.g, linearity of
eigenvalue perturbations) are too stringent.

The last approach that will be described differs from the
previous ones because it was formulated to work under
weighted ensembles rather than Markov state models.'® Similar
to the approach described before, the goal is to reduce the
variance in a metric of importance to the kinetic model. In this
case, rather than minimizing the variance of the first nontrivial
eigenvalue, the goal is to reduce the variance in the estimated
MFPT from the source state to a sink state under recycling
boundary conditions (trajectories that enter the sink are
immediately restarted from the source). Since weighted
ensemble simulations involve stopping unproductive trajecto-
ries (“merging”) and allocating productive ones (“splitting”),
the idea behind this approach is to perform these actions
following optimal coordinates that guarantee that the variance
of the MFPT will be reduced. For this reason, two optimal
coordinates must be defined, the flux discrepancy function,
h(x), and the flux variance function, v(x)?,

<TB>7L' B <,1}3>x

h(x) =
) (Tg)a 4)
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Figure 2. Hierarchy of adaptive sampling for enhanced sampling in MD simulations.

1
v(x)* = ;VarX[IXTEB + h(Xp)] s)

where x is a conformation, (T}), is the MFPT to the target
state from the steady state distribution, (Tj), is the MFPT
from location x, and (T}), is the MFPT from the source state
A (which, unfortunately, is the value we were trying to estimate
in the first place). Furthermore, 7 is a time interval over which
the variance is computed, X; refers to a trajectory given by the
Markovian dynamics of the system, and 1y p is an indicator

function that determines whether x is in state B at each step in
the trajectory. In other words, h(x) can be interpreted as the
normalized kinetic distance between a point in phase space and
the steady state distribution, while v(x)* gives us the expected
change in flux into B given a trajectory started at x. Of course,
it is quite contradictory that we need to know the value that we
want to estimate, (Tg),, to compute the optimal coordinates.
We also require the steady state distribution 7(x), which is
typically challenging to compute for complex systems.
Nonetheless, the authors of the original study propose to
estimate the necessary values between simulation rounds by
fitting MSMs with the available data and using the estimates to
approximate the optimal coordinates.'® These coordinates are
then used with a binning strategy to define regions of phase
space which must be allocated the same number of trajectories
to optimally reduce the variance in the measured MFPT.
Namely, given H bins, we must set end points hy < h; < ... < hy
such that'®

f #(x)v(x) dx = constant
hiSh(X)Shﬁ»l (6)

In simpler terms, this means that we should weight a position
in phase space not only by the density of the steady state
distribution, 7(x), but also by its contribution to the MFPT
fluctuation, v(x).

10673

Following this allocation rule results in a minimization of the
variance of the flux (and therefore the variance on the
estimated MFPT). In comparison with the same number of
“brute-force” parallel trajectories, we obtain a maximum ratio
of variance reduction given by'®

Var() _[o(xr(x) dx
Varle)  ( fo(x)m(x) dx) -

where Var(Jpz) is the variance in the flux measured from
parallel trajectories and Var(Jz) is the variance in the flux
measured by the optimally allocated trajectories. Although this
expression is not transparent for high-dimensional systems, it
can be used to compute the optimal advantage attainable for
weighted ensemble simulations of analytical potentials. In
particular, this result was used to show that in the low
temperature limit the advantage with respect to brute-force
simulations is exponential in the largest energy barrier.'

To summarize, in this section, we introduced four
theoretical approaches to dissect the advantage of adaptive
sampling methods. As we moved from simple parallelization to
sophisticated selective seeding criteria, we discussed the known
theoretical results associated with each approach and their
underlying assumptions. Notwithstanding the mathematical
transparency afforded by these approaches, different methods
have shown better performance in practice. In the next section,
we discuss a wide variety of adaptive sampling methods that
have also been applied to realistic systems. After this, we
discuss recent advances in the field with a particular focus on
machine-learning-based methods.

B METHODS

Adaptive sampling (AS) methods can be generally categorized
into Markov state model inspired methods and reinforcement
learning inspired schemes. Both approaches have been

https://doi.org/10.1021/acs.jpcb.3c04843
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Figure 3. Least Counts: Least visited states; states with the lowest amount of counts are selected for reseeding. Eigenvalue based AS: States
contributing most to the first nontrivial eigenvalue of T;; are selected. Connectivity based AS: Least connected states; states having the lowest counts

in the adjacency matrix are chosen.

extensively employed to investigate biophysical processes such
as protein folding,” protein conformational changes,’~**
protein—ligand binding,33_35 membrane transport,3 ~3% and
protein—protein association.”” We describe the prominent
methodologies in each of these categories followed by a short
discussion on other methods, such as weighted ensemble,*’
transition path sampling,*' etc. Each of the methods is
described briefly to give an overall view of the different
adaptive sampling methodologies; readers are referred to
relevant literature for an in-depth explanation of respective
methods. Figure 2 illustrates this broad categorization.

MSM-Inspired Adaptive Sampling. The first class of
methods that we describe are Markov-state-model-inspired
adaptive sampling methods. The idea is to initialize simulations
to explore and exploit regions of interest by using Markov state
models as tools of analysis. This is done by seeding a set of
short MD simulations; the resulting states are then clustered
according to a kinetic/geometric criterion, and then out of
these clusters, new states are chosen for seeding according to
some methodology. It is this choice that distinguishes the
method. The most commonly employed MSM-inspired AS
methods are shown in Figure 3. In comparison with other
adaptive sampling methodologies (e.g., metadynamics), where
biased potentials (usually multidimensional Gaussians) are
added to aid rare state transitions, MSMs have the advantage
of recovering kinetics along with the thermodynamics by
spectral analysis of the transition probability matrix.

One of the first methods was inspired by uncertainty analysis
in MSMs.”” Closed form expressions for the distribution of
eigenvectors and eigenvalues of the transition matrix were
derived. Correspondingly these distributions can be decom-
posed to calculate the contribution of variance to the first
nontrivial eigenvalue of the Markovian transition probability
matrix T;; for each state and thereby seeding can be selected for
states which contribute the maximum to this contribution. The
method was shown to significantly increase precision for the
villin headpiece, but the gain in precision was shown to be
linked to the number of states the system had been coarse-
grained into.

A conceptually simpler approach is to do a random™
selection of states to seed from. This method was shown to
improve on generalized ensemble methods that fail to
overcome entropic barriers at low temperatures and performed
better for sampling of a hairpin folding system where

conformational changes are diffusion controlled. Variants of
these two methods have also been employed. For instance,
uniform (even) sampling can be done by seeding equally from
states. Also, new simulations can be distributed among states in
contribution to the uncertainty at the slowest rate.

Count based sampling®® is another approach focused on
sampling exploration. As the name suggests, states with a
minimum number of counts are selected; in other words, states
that have been less explored in the sampling are preferred for
seeding to focus on exploration.

An adjacency based sampling”® scheme has also been
proposed. The idea is to start new simulations based on a
connectivity based criterion. Because MSMs can be approxi-
mated generally as being similar to Cayley’s trees topologically,
the distant states in such a topological structure would be least
visited; this is because MSMs can be thought of as network
models for transition between states. So states with the least
number of connections would be chosen.

Reinforcement-Learning-Inspired Adaptive Sam-
pling. The next class of methods that we will discuss
incorporates reinforcement learning ideas to sample the free-
energy landscape. This can be done by following a gradient
along a known property of interest and/or using a reward/
penalty scheme that penalizes the system moving away from
the target state and rewards the converse.

The choice of states to seed from can also be made on a
ranking criterion where states are ordered according to a given
metric significant for the application at hand. For instance this
approach™ has been applied for a trypsin—benzamidine
binding system and shown to improve upon traditional high-
throughput experiments by an order of magnitude, where the
ranking criteria used was mean residence time. A similar novel
approach™ was applied on sampling of pathways for rare
conformational transitions, where the choice of states was
based upon a distance metric between evolutionarily coupled
residues.

Extending this idea of choosing via a ranking scheme, states
can also be chosen according to a reward based scheme that
favors those states which optimize some property of
significance, e.g., RMSD in a protein folding system. Such a
scheme named fluctuation amplification of specific traits
(FAST)* was proposed and shown to be a significant
improvement upon nondirected approaches mentioned
above. The reward function that the algorithm seeks to
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Distance from Population Average
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Figure 4. FAST: States that maximize movement along the gradient of interest are chosen for reseeding. REAP: States furthest away from the
population average (and least visited) are chosen. MA-REAP: In multiagent REAP there are multiple agents that share information and drive the

adaptive sampling process after each round.

optimize balances the exploration/exploitation trade-off. FAST
does this by adjusting a control parameter that weighs the
relative significance of the directed (exploitation of sampled
space) and undirected (exploration of less sampled states)
components. This was the first method to formally address the
exploration/exploitation dilemma of sampling compared to
purely exploratory schemes like least counts. The test case used
was folding of villin protein among others. The main idea is
that the system of interest will follow an approximately
monotonic gradient of some property of interest. For example,
in a protein folding problem, the transition from an unfolded
state to a completely folded state can be thought of as a
gradient of solvent accessible surface area which monotonically
decreases as the protein folds itself, which is in essence
optimizing along a single reaction coordinate (see Figure 4).

The multiarmed bandit problem is a famous problem in
combinatorial optimization where an agent faces the choice of
a policy that drives an action to return the maximum
cumulative reward. AdaptiveBandit*® is a sampling algorithm
inspired by this problem and aims to maximize the reward,
where the reward is set to be the mean of minus free energies
of the conformation visited as a result of this action. The
inspiration for this reward definition is inspired by the fact that
in most MD simulations the aim is to find metastable states, for
example, in protein folding problems, ligand binding, etc. The
policy has to cater for the exploration—exploitation dilemma,
which is at the heart of this optimization scheme, where the
actions have to be exploratory to sample their unknown
rewards and also exploitative to achieve maximum reward from
the known best-rewarding space. In the MD perspective this
translates to exploring the space of states which is less sampled
(exploration) but also focusing on sampling the states which
are known to drive the system toward the target end-state
(exploitation).

Inspired by this exploration—exploitation dilemma of
configuration states in MD simulations, a novel method called
REAP" (reinforcement-learning-based adaptive sampling) was
proposed. Conceptually, REAP is an extension of the counts
method where preference for seeding is given to least visited
states; however, in REAP this choice is based upon the reward
function. This method differs and improves upon previously
described directional methods such as FAST and Adaptive-
Bandit (AB). In FAST, the choice of states follows a gradient
along a property of interest (collective variable), and in AB, the

reward scheme minimizes the free energy of the configurations.
In a more generic problem-agnostic framework, these
approaches may not always give the best results. For some
systems the particular collective variables (CVs, also called
reaction coordinates) or the property of interest may not be
known, and instead there may be a set of possibly relevant CVs
available. In this scenario, a unidirectional gradient approach or
a single objective reward strategy will not work. The problem
then is to identify the relative importance of CVs as well as to
understand that this importance (translates to weights in the
algorithm) may be changing as the system progresses in the
potential energy landscape. REAP solves this problem by
dynamically computing these weights so that the system is
driven along the CVs which contribute the most to the system
moving toward the target state, essentially choosing states
which are most distant from the average of all conformations in
the adaptive sampling round (see Figure 4). A limitation to this
algorithm that is addressed in MA-REAP (explained next) is
that, if sampling is started from different states, then pooling
the information can result in the rewarding scheme favorin§
only the states which drive the CVs to have extreme values.*

This idea of reinforcement-learning-based adaptive sampling
has further been extended to an algorithm called MA-REAP*
(MA for multiagent). The core of the algorithm resembles
REAP closely, and the addition has been the idea of having
multiple agents that drive the adaptive sampling process after
each round. Compared to the single agent traditional REAP
algorithm, MA-REAP proposes that there may be multiple
agents that share data. In REAP, the action space or the
sampled configurations go through a clustering process; in
MA-REAP, this is extended in the sense that all agents have a
stake in each cluster for an action (choice of reseeding)
according to the number of configurations present in that
cluster because of that action from that agent. In this way, the
reward function has a distributed essence according to each
agent, allowing each agent to sample along an independent CV
and sharing information only when in proximity of other agent
states. This variation has shown to be an improvement over the
traditional REAP and was shown to outperform previously
introduced directional methods like FAST and count-based
methods as well.

Other Approaches. In this section, we discuss other
powerful approaches for enhanced sampling of biomolecular
systems, which do not fall under the previous two classes.
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Weighted ensemble'“* (WE) methods are another class of
methods designed to explore pathways for rare states. The
basic idea behind weighted ensemble methods in MD
simulations is to divide the system into multiple copies, each
with a different set of initial conditions. These copies then
evolve independently in parallel, and the idea is to replicate
simulations that are favoring progression toward the target
state while terminating the others. This concept can be
thought to be based on this early idea of a splitting strategy:
“When the sampled particle goes from a less important to a
more important region, it is split into two independent
particles, each one-half the weight of the original.”49 So in
essence weighted ensemble techniques involve splitting and
merging trajectories based on their importance for a sampling
criterion. The trajectories are assigned weights, and splitting
decreases the weight, while merging increases it where the
objective is to obtain unbiased observables statistically. Often,
sampling in WE is performed using bins that are divisions of
the configuration space, and the algorithm ensures the number
of walkers (trajectories) per bin to be the same. In WE,
transition rates can be calculated using the Hill relation
without relying on a Markovian approximation by measuring
the flux into the target state from the weights of the incoming
trajectories. It is also possible to build MSMs with WE data
taking the trajectory weights into account, as opposed to
assigning equal weights to all observed transitions.>

Nonetheless, WE presents limitations, as well. As the
number of bins has an exponential dependence on the number
of CVs, this method can incur significant computational cost.
Variants of WE have been proposed that address this and other
issues with a traditional approach. WExplore®' is an algorithm
which dynamically creates sampling regions using a distance
metric in the CV space, thereby circumnavigating the
computational expense resulting from the large number of
bins in a high-dimensional CV space. Another approach
termed resampling of ensembles by variation optimization
(REVO)>* was proposed. REVO creates walker ensembles
without regions by optimizing a metric that depends upon the
pairwise distances between walkers.

Transition path sampling (TPS)*' is another technique
which searches for dynamical bottlenecks faced by a system as
it transitions between states. For instance, for a simple system
with two states, A and B, there are many ways in which this
transition can happen. Often, a random walk in the space of
transition trajectories is used to create transition path
ensembles. Variants of the same approach have been proposed
such as milestoning,>® the string method,” etc.

Random resetting of trajectories, coined stochastic reset-
ting,”* has been recently applied to enhancing the sampling of
MD simulations and has shown to result in an increase of an
order of magnitude in long time scale processes for simpler
systems. In stochastic resetting the set of short simulations is
intermittently stopped and restarted where the resetting times
are taken with constant steps, termed “sharp resetting”, or can
be drawn from an exponential distribution, called “Poisson
resetting”. The idea is that the resetting of the trajectories
allows sampling of a richer set of pathways, which on average
will lead to faster sampling.

It is pertinent to mention here that hybrid schemes can be
adopted, as well. For instance in this foundational study™ the
authors used generalized ensemble methods, in particular
simulated tempering,”® to reach metastable states analyzed
with Markov state models, and then an adaptive seeding

scheme was used to start new simulations from these broadly
sampled states. This hybrid scheme allows one to cater for the
rate limiting entropic barriers which are a significant issue in
generalized ensemble methods where random walks in only the
temperature space are performed. This also allows one to
perform equilibrium sampling from nonequilibrium data, as the
authors show that only local equilibrium is required, meaning
that, even though individual trajectories only sample a subset
of the metastable states, they cumulatively sample the complete
space together.

B RECENT ADVANCES

In this section, we focus on recent advances in adaptive
sampling methodology as well as promising areas of future
inquiry. In particular, we focus on deep-learning (DL)-based
techniques. DL has revolutionized many scientific fields, but its
impact in the molecular biosciences was catapulted by the high
accuracy of recent protein structure prediction models.”” >’
While not directly related to adaptive sampling, structure
prediction models are useful to generate initial seeds for
adaptive sampling algorithms® and are discussed in that
context. Researchers have been concurrently working on ML
models to analyze® ~®* and accelerate®*® MD simulations.
Both sets of tools (structure prediction models and MD
analysis/acceleration models) are becoming increasingly
relevant to the field of adaptive sampling simulations. Here,
we discuss how both types of models have been used to
improve adaptive sampling MD simulations and how to
connect both approaches.

AlphaFold v2 (AF2)*” and adjacent models®**” opened the
gates to high-accuracy protein structure prediction from
sequence data only. Although structural information is useful
to researchers, the output from these models does not provide
information on the thermodynamics or kinetics of the protein.
For instance, a protein might exist in active and inactive
conformational states that interconvert under equilibrium
conditions, but AF2 might only predict one of the states.
Moreover, we cannot make an inference about the relative free
energies of the two states based on which one was predicted by
AF2.°” Any information about interconversion rates between
states is also absent from these models. The lack of knowledge
about the protein’s dynamics can make it impossible to infer its
function or mechanism, and therefore complementary methods
are required.

MD simulations are excellent tools to computationally
resolve the dynamics of proteins, but as discussed in the
Introduction, the long-time-scale problem turns this approach
impractical. As a way to mitigate this issue, researchers have
used perturbation-based methods®® to acquire diverse initial
conformations for MD simulations from AF2 and similar
models.””*” Since in general the convergence of kinetic models
is highly sensitive to the initial conditions,”’ adaptive sampling
methods stand to gain great speedups simply by improving the
prior knowledge of the system.

For brevity, we will restrict ourselves to two previous studies
that applied perturbation-based methods on structure
prediction models, but other recent works exist.”' The first
study was used to gather initial structures for parallel
simulations of Plasmodium falciparum plasmepsin II (PM 1I)
with the intent to sample cryptic binding pockets.”” The other
method was used to obtain diverse structures of the
Shwachman—Bodian—Diamond syndrome protein (SBDS)
and the monocarboxylate transporter 1 (MCT1).”” They
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were not used for MD simulations, although they have the
potential to be useful in this regard.

The first study perturbed the AF2 input by subsampling the
multiple-sequence alignment (MSA) of the sequence of
interest and enabling stochastic dropout. The process of
MSA subsampling consists of restricting the depth of the
alignment to a user-selected threshold and randomly selecting
the sequence of clusters that will be represented. When passed
through AF2, the stochastically subsampled MSAs will produce
diverse predicted structures that capture some aspects of the
dynamics implied by the experimental structures.”® Enabling
dropout eliminates a small percentage of the nodes in the
neural network during a single forward pass, further perturbing
the output of the model. The result of applying this technique
to PM II was the prediction of a structural ensemble that
partially sampled a known cryptic pocket in the protein. By
launching parallel MD simulations from these structures and
building a MSM from the trajectories, it was possible to
recover the free energy landscape of pocket opening.”’ These
simulations did not require any type of biasing force to find the
same free energy basins that could be detected with biased
methods.”” This study shows that structure prediction models
are useful to generate seeds for swarms of unbiased MD
simulations. In terms of future directions, it might be
interesting to “close the loop” and use the simulations to
produce new restarting seeds through fine-tuning of the
structure prediction model, as it has been shown that AF2 can
be fine-tuned for different specific tasks.”””>

A different method to perturb the input to structure
prediction models consists of splitting the sequence into
fragments, predicting the fragments’ structures, and connecting
them to form a protein. This resembles early approaches to
structure prediction, such as Rosetta.”* A more recent
exploration of this approach was presented in MultiSFold,*
a method that combines the variable-length fragment library
(VELib)” technique with multiple structure prediction models
to diversify the predicted conformational ensemble. This
method is particularly useful when different prediction models
(e.g, AlphaFold and RosettaFold) predict different structures
for the same protein. MultiSFold seems to be useful for
interpolating structures between functional end points, as it
was shown for SBDS and MCT1.* In the future, it might be
interesting to use MultiSFold to find initial seeds for adaptive
sampling and then construct new distograms from the
simulations. These distograms could then be run through
MultiSFold again to obtain new seeds and close the sampling
cycle.

Besides using structure prediction models to obtain better
initial seeds, DL offers other strengths that have proven useful
for adaptive sampling simulations. In particular, the ability to
approximate complex nonlinear functions from high-dimen-
sional molecular trajectories makes DL models suitable for
dimensionality reduction. Finding appropriate low-dimensional
projections facilitates many tasks involved in adaptive sampling
simulations (e.g, choice of reaction coordinates, clustering,
etc.).

We will focus on three studies that have applied DL models
to adaptive sampling,”’®”” but of course related works
exist.”"’*”” A connection between these three works is that
all of them apply a similar simulation-training cycle that
consists of launching the simulations, training the model on
them, and then using the model to select seeds for new

trajectories to restart the loop. Two of these works”’® use

different types of variational autoencoders (VAEs)® as their
base models, while the third one’’ uses primarily VAMP-
Nets.®!

Specifically, DeepDriveMD’® employs a convolutional VAE
(CVAE), while latent space-assisted adaptive sampling
(LAST)* employs a VAE parametrized by a feed-forward
network with fully connected layers. Both works use these deep
learning (DL) models to learn low-dimensional latent
representations that model the probability distribution of the
structural ensemble. By selecting the outliers in such a
distribution, one can recover the rare conformations that
have not been sufficiently sampled, a goal similar to that of
count-based adaptive sampling.28 In LAST, a nonparametric
kernel density estimate is applied to obtain the cumulative
distribution function in the latent space; the lowest probability
samples are then selected as the seeds for the next round of
simulation. This is done differently in DeepDriveMD, where
the data points are clustered in the latent space with the lowest
reconstruction loss using DBSCAN®' and then the clusters
with fewer than 10 members are selected to restart simulations
(with a cap of 150 simulations maximum). The authors of
DeepDriveMD also discuss practical aspects, such as
distributing the simulations and ML training to different
components in high-performance clusters.”® LAST was shown
to discover the conformational landscape of two proteins
(adenilyl cyclase® and the VIVID flavoprotein®®) faster than
structural dissimilarity sampling,** which is another adaptive
sampling algorithm. It was estimated to take 40% of the time to
explore the conformational landscape compared to long MD
simulations, accounting for the training time of the VAE.
Similarly, DeepDriveMD was tested on the Fs peptide®® and it
was found to provide a 2.33 folding speedup compared to
parallel simulations.

MaxEnt VAMPNet’” is the third approach to be discussed.
In this technique, rather than identfying outliers in latent
space, VAMPNet®' is used to classify the discovered
conformations into metastable states. A VAMPNet is a deep
learning model that encodes the entire mapping from
molecular coordinates to Markovian states, thus reducing the
traditional work process of transforming trajectory data into
hand-crafted features and dimensionality reduction (Figure S).
Since VAMPNets can assign probabilities, p, of “belonging” to
a metastable state to each conformation, the Shannon entropy
(an information theoretic metric relating a distribution to the
uncertainty of the model) is used to score the data points with
the formula H(p) = =, p; log p;- The conformations with the
highest entropy are selected for the next round of simulations.
The rationale for selecting the structures based on their
entropy is that the structures that cannot be clearly placed into
a metastable state correspond to transition states or poorly
sampled regions of the phase space. When applied to a small
peptide (sequence WLALL®®), MaxEnt showed a 3X
acceleration in conformational landscape discovery compared
to a combination of VAMPNet and count-based adaptive
sampling’” and approximately 60% higher landscape discovery
compared to reinforcement-learning-based approaches.*”**
Interestingly, the trajectories collected with MaxEnt also
produced converged MSMs, while those collected with
count-based sampling alone did not. When applied to a
small protein, the villin headpiece,”” it showed approximately
50% higher landscape discovery compared to the combination
of VAMPNet and count-based sampling.
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MaxEnt VAMPNet

Figure S. VAMPNets are deep learning models that learn nonlinear
mapping to project the conformational landscape into a new space
with kinetically relevant dimensions. The inset on the left depicts this
latent space projection, where the colors on the internal rectangle
drawn on the landscape reveal how this region is mapped by the
model. In the technique termed MaxEnt VAMPNet, the inputs that
maximize the Shannon entropy of the VAMPNet are chosen as seeds
for restarting simulations.

In summary, this section covered how the DL can be used to
improve adaptive sampling methods. Two avenues to
incorporate DL into these workflows were explained: (1)
using structure prediction models to augment prior knowledge
of the simulated system and (2) training DL models to rank
conformations for optimal seed selection. Combining these
two approaches in different ways will probably yield new
adaptive sampling methods that surpass the current state of the
art. In the next section, we focus on the challenges that these
approaches face.

B CHALLENGES

Incorporating DL models into adaptive sampling algorithms
already shows extremely encouraging results, but this also
means that the MD workflows will inherit the challenges
associated with these models. With respect to approaches such
as DeepDriveMD, LAST, and MaxEnt VAMPNet, the main
challenge of using deep models is that fitting them at each
simulation round takes considerable computational time and
power. Nonetheless, MD simulations continue to be slower, so
even when accounting for the training time for DL models,
there is a considerable speedup.” Another issue is that these
models come accompanied by a host of design choices and
optimization variables, although past results demonstrate
speedups without an exhaustive hyperparameter tuning.”*®”®
Finally, the data sparsity toward the beginning of the
simulation can result in noisy models whose validation scores
might fluctuate widely. This could result in noisy selection
criteria for simulation restarts. A potential way to prevent this
issue would be to train several models initialized randomly and
then combine their output using ensemble methods.*®

With respect to the use of structure prediction models to
seed MD simulations, some limitations can also be noted.
Assuming that the quality of the models is good enough to
provide accurate conformations, there are issues when the
predictions are too similar to those of a single native structure.
When that is the case, launching simulations from several
predicted structures might not provide an advantage, because
the trajectories will be highly correlated. For instance, in the
case of MultiSFold,” if RosettaFold*® and AF2°’ output

similar structures, then the constructed optimization potentials
will overlap and the generated ensemble will not be diverse.
Similarly, for MSA subsampling of AF2, it might be challenging
to gather diverse structures if few experimental structures are
known.®® These issues might be tackled by future work
through the combination of structure prediction models with
MD simulation data sets to produce physically informed
structure prediction of conformational ensembles.

We must also consider the possibility that the quality of the
predicted model is not good enough to confidently employ it
as an initial seed in MD simulations. If one starts MD
simulations from unphysical conformations of a protein and
then attempts to construct a MSM," this could result in
disconnected states for which transitions cannot be sampled.
One could establish a confidence threshold to accept or reject
predicted structures prior to executing MD trajectories by
using the predicted local distance difference test (pLDDT)
score>”® or similar metrics, but a benchmark for this specific
purpose is lacking.

Overall, we have discussed some potential challenges in
applying DL models in adaptive sampling algorithms. In
particular, we noted that two of the most prominent challenges
in the application of DL models in adaptive sampling
algorithms are data sparsity and model validation. Potential
avenues to mitigate these issues were mentioned.

Bl CONCLUSIONS

In this Perspective, we have introduced the reader to many
aspects of adaptive sampling MD simulations. Theoretically
motivated approaches were presented in the Theory section. In
the Methods section, several practiced approaches were
summarized. Finally, we introduced recent advances that
combine DL methods with adaptive sampling simulations in
different ways and discussed their limitations and potential
improvements.

While no quantitative comparisons between the methods
were offered, it must be noted that there are still several points
in which the community should agree before a rigorous
comparison can be performed. First, an appropriate set of
benchmark systems must be selected. To assess whether the
tested methods work beyond toy examples, the complexity of
the benchmarks should not be trivial. Moreover, the selection
of the systems should obey some diversity criteria to ensure
that the methods are robust. Second, the level of permissible
initial knowledge about the systems must be set. Certain
methods can exploit information about collective variables or
known metastable states. It must be determined if we should
judge the methods based on their ability to exploit known
information or based on their “blind” performance. Third, the
metrics used to rank the methods must be defined. A possible
option would be the total simulation time taken to find the
converged MFPT and free energy landscape. In this case, the
definition of “converged” kinetic and thermodynamic metrics
must be properly operationalized. Other factors come into
play, as well. For methods involving training and inference
from ML models, should this runtime be taken into account?
Since most of the methods are parallel, should scaling and
efficiency matter?

Although resolving these issues is outside the scope of this
Perspective, the authors hope that the adaptive sampling
community will agree to productive standards to propel the
field forward. Finally, the authors hope that the ideas presented
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in this work will inspire further innovation in the area of
adaptive sampling for MD simulations.
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