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Reconciling membrane protein simulations with
experimental DEER spectroscopy data†

Shriyaa Mittal, a Soumajit Dutta b and Diwakar Shukla *abcde

Spectroscopy experiments are crucial to study membrane proteins for which traditional structure

determination methods still prove challenging. Double electron-electron resonance (DEER)

spectroscopy experiments provide protein residue-pair distance distributions that are indicative of their

conformational heterogeneity. Atomistic molecular dynamics (MD) simulations are another tool that

have been proven to be vital to study the structural dynamics of membrane proteins such as to identify

inward-open, occluded, and outward-open conformations of transporter membrane proteins, among

other partially open or closed states of the protein. Yet, studies have reported that there is no direct

consensus between the distributional data from DEER experiments and MD simulations, which has

challenged validation of structures obtained from long-timescale simulations and using simulations to

design experiments. Current coping strategies for comparisons rely on heuristics, such as mapping

the nearest matching peaks between two ensembles or biased simulations. Here we examine the

differences in residue-pair distance distributions arising due to the choice of membranes around the

protein and covalent modification of a pair of residues to nitroxide spin labels in DEER experiments.

Through comparing MD simulations of two proteins, PepTSo and LeuT–both of which have been charac-

terized using DEER experiments previously–we show that the proteins’ dynamics are similar despite the

choice of the detergent micelle as a membrane mimetic in DEER experiments. On the other hand,

covalently modified residues show slight local differences in their dynamics and a huge divergence when

the oxygen atom pair distances between spin labeled residues are measured rather than protein backbone

distances. Given the computational expense associated with pairwise MTSSL labeled MD simulations, we

examine the use of biased simulations to explore the conformational dynamics of the spin labels only to

reveal that such simulations alter the underlying protein dynamics. Our study identifies the main cause for

the mismatch between DEER experiments and MD simulations and will accelerate the development of

potential mitigation strategies to improve the match.

Introduction

DEER spectroscopy, also known as pulsed electron–electron
double resonance (PELDOR), has made incredible progress in
the study of biomolecules such as cytoplasmic and membrane
proteins and nucleic acids,1–4 including experiments in vitro

and in vivo.5–11 In DEER experiments, a spin probe is covalently
attached to two residues on the biomolecules. Distances
between these two spin probes can be determined by measuring
the dipolar coupling between an electron pair and one unpaired
electron on each of the spin probes. The interaction between
electrons is measured in the time domain and then mathema-
tically transformed into distance distributions. Methodological
developments have made it possible to obtain distance distribu-
tions up to 10 nm in cytoplasmic proteins and 8 nm in
membrane proteins,3,12–14 and up to 16 nm with sparse spin-
labeling that can avoid the deleterious impact of multiple spin
labels in close proximity.15 Conformational ensembles obtained
from these distance distributions help to elucidate important
conformational changes and metastable states in biomolecules.
This information can be further used as a restraint in integrative
structural modeling of large proteins.16 Recently, DEER has been
used to capture the sequence of ligand-induced conformational
changes in the protein on the angstrom lengthscale and the
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sub-milisecond timescale.17 This will provide not only structural
details of biomolecules but also a mechanistic understanding of
biomolecular function. However, the current status of the DEER
technology has space for improvement. (1) It is still hard to
attach probes in residues deeply embedded inside a protein as it
might impair protein functionality.18 (2) As discussed by Hett
et al., time resolved DEER is not able to follow processes that
occur below microseconds due to limitations of the Microsecond
freeze Hyper-Quench device.17 (3) Limitations with respect to the
distance range, flexibility and data quality for DEERmeasurement
were also discussed by Schiemann et al.1 Therefore, other com-
putational and experimental techniques can be used to further
validate or add more information to study protein structure and
dynamics.

One such computational technique to study time-resolved
protein conformational changes is molecular dynamics (MD)
simulation. Given the advance in computational resources,
there are numerous extensive MD simulation studies of
membrane proteins including GPCRs, transporters, ion channels,
integrins, and transmembrane receptor kinases.19–21 The infor-
mation obtained from DEER experiments, residue-pair distance
distributions, can be directly compared to dynamics information
from MD simulations in order to characterize the structural
consequences of the obtained distance distributions. Yet, there
is often no direct consensus between the distributional data from
DEER experiments and MD simulations, which has challenged
the validation of structures obtained from long-timescale simula-
tions. Several methods have been introduced to reconcile the
experimentally characterized distance distributions with simula-
tions such as restrained ensemble MD (reMD)22,23 and ensemble-
biased metadynamics (EBMetaD)24 simulations, both methods
employ the experimentally obtained distance distribution to bias
a simulation ensemble. Another method to syncretize unbiased
MD simulations with experiments is labeling a residue with a spin
probe whose conformational orientations are sampled using a
spin probe rotamer library25,26 or molecular dynamics dummy
spin-label (MDDS) simulations,27,28 where an artificial dummy
atom is used to consider spin label motions. These methods are
independent of any experimental data bias and relatively compu-
tationally inexpensive since no additional simulations are
required, but are unable to consider the protein’s conformational
dynamics.

Typically, we observe mismatches in terms of relative peak
heights when there aremultiple peaks in the distance distributions,
peak positions, and lower and higher extremes of the distance
values. Commonly we observe that experimental distributions
exhibit larger distance values, which are not sampled in any of
the MD simulation ensembles. These differences can be visualized
in Fig. S1A (ESI†) where we compare distance distributions from
our previous simulations on a peptide transporter protein with
experimental DEER distributional data. Most potential for
mismatch between experiments and simulation distance distri-
butions stems from differences between experimental condi-
tions and standard simulation protocols. Since membrane
proteins are embedded in lipid bilayers under physiological
conditions, simulations are typically performed in lipid bilayers.

These lipid bilayers can be homogeneous or heterogeneous with
different types of lipid molecules.29 Bilayer mimetics such as
nanodiscs,30 lipodisq nanoparticles,31 bicelles,32 liposomes,33

micelles34 are more amenable to biophysical experiments and
have been used for DEER spectroscopy studies of membrane
proteins. Specifically, detergent micelles are most commonly
used and a widely used detergent is n-dodecyl-b-D-maltoside
(BDDM).

Another significant basis for a mismatch between observed
peaks in experiments and simulations is the use of spin probes in
DEER experiments, which is absent in wild-type protein simula-
tions. Using site-directed spin labeling (SDSL), two nitroxide spin
labels are attached to two cysteine mutated residues. These spin
labels can be of different types such as 1-oxyl-2,2,5,5-tetramethyl-
pyrroline-3-methyl)methanethiosulfonate (MTSSL), iodoacetamide-
PROXYL, unnatural amino acids p-acetyl-l-phenylalanine and 2,2,
6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid, and a
spin-labeled lysine. DEER experimental measurements among
two spin labels are a proxy to explain the protein’s residue-pair
distances. Relying on cysteine modifications and the addition of
flexible spin probe molecules pose a possibility of modifying the
observed protein’s dynamics fromDEER experiments. For example,
the MTSSL spin probe has five linker dihedrals attributing large
rotational flexibility to the protein residue.26 Recently metal cations
such as Gd3+, Cu2+ and Mn2+ based spin labels that are more
rigid have been used35–37 but their applications in the study of
membrane proteins are limited.38

Based on the above discussed modifications in DEER experi-
ments as compared to physiological conditions, we propose
five potential impacts on a protein, its dynamics, and hence the
observed DEER experimental observables. Since DEER experi-
ments are typically performed with proteins embedded in
bilayer mimetics, such as detergent micelles rather than lipid
bilayers, membrane diffusion, packing flexibility and interac-
tions can (1) allow for shifts in DEER distributions and peaks
and (2) alter the secondary structure and accessibility of various
helices and loops in the protein. Previous studies that draw
comparisons between micelle and bilayer environments on
membrane proteins have been limited to either small peptides
such as single transmembrane helices or are based on ns-time-
scale simulations that do not provide a realistic picture of a
protein’s conformational dynamics. (3) Since DEER measure-
ments require a covalent modification at at least two sites of the
protein, we evaluate whether this modulates the underlying free
energy landscape of the protein by biasing it to adopt only a
subset of the available conformations. In addition to modulat-
ing the protein overall dynamics, we examine the impact that
the MTSSL probes have locally on the modified residues, their
neighboring residues, and their structural properties. (4) We
also examine how accurately do the distance distributions
obtained from the dipolar coupling of MTSSL spin nitroxide
probes provide an approximation of protein dynamics where
there is no MTSSL probe. (5) Multiple flexible bonds of nitroxide
spin probes26 such as MTSSL spin probes may have different
timescales compared to those from the wild-type residue which
will equilibrate at a different timescale from that of the protein
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changing the experimentally observed dipolar couplings. We
evaluate these perturbations and their impacts in this work to
discern which among these is the main cause for the mismatch
between experiments and simulations.

Here, we directly compare the biophysical effect of different
experimental and simulation conditions by performing MD
simulations under conditions similar to experimental conditions.
To evaluate the effect of membrane environments on the protein
structure and dynamics, we compared long-timescale simulations
of two proteins in a BDDM micelle and a more typical lipid
bilayer. Specifically, we performed simulations of two proteins,
PepTSo and LeuT, which are biologically important representative
proteins of two different membrane protein families, major
facilitator superfamily (MFS) and neurotransmitter: sodium sym-
porter (NSS), respectively. Residue pairs in both proteins have
been previously characterized using DEER experiments.14,34,39,40

LeuT has many three-dimensional structures determined through
X-ray crystallography and has been investigated using computa-
tional simulations. Recently, two crystal structures of PepTSo were
resolved34,41 and we had examined this protein using MD simula-
tions in our previous work.20 We followed our micelle and bilayer
simulations by introducing nitroxide spin labels MTSSL on a pair
of residues in PepTSo to examine the perturbations caused by
the probe’s site-specific mutations during DEER spectroscopy
experiments. We then performed restrained ensemble molecular
dynamics (reMD) simulations to evaluate the spin pair equili-
bration and its impact on the protein’s conformational landscape
and residue-pair distance distributions.

Results
Residue-pair distances from proteins in micelles resemble
trends in bilayer-embedded proteins

PepTSo is a proton-coupled bacterial symporter for which,
recently, researchers characterized eight inter-residue distance
distributions using DEER.34 There are two known crystal structures
for this protein found in the bacteria Shewanella oneidensis, 2XUT,41

and 4UVM,34 both in the inward-facing conformations of the
protein. PepTSo belongs to the proton-dependent oligopeptide
transporter (POT) family and the major facilitator superfamily
(MFS) whose members have a wide variety of functions and are
found in many different organisms including humans. All MFS
transporters share a common structural fold consisting of 12
transmembrane helices;43 however, POT family transporters
within MFS often have two additional helices. Like most POT
family transporters, PepTSo has 14 transmembrane helices.

LeuT, a leucine transporter, has many high-resolution crystal
structures and has been extensively characterized using DEER
experiments.14,39,40 LeuT belongs to the neurotransmitter: sodium
symporter (NSS) family whose other members include dopamine,
noradrenaline, GABA, glycine, and serotonin transporters. LeuT
was the first structure resolved using X-ray crystallography from
the NSS family and consists of 12 transmembrane helices.
Although many structures have been resolved since then, only
one structure is inward-facing as a quadruple mutant (3TT144).

PepTSo and LeuT are model proteins from two different
families of membrane proteins. While LeuT has been studied
using computational simulations with both unbiased and biased
protocols, there are only a few short-timescale computational
studies focused on PepTSo. Our previous work sampled the
conformational dynamics of PepTSo using long-timescale
54 ms MD simulations and analyzed its equilibrium dynamics
using Markov state model based analysis.20 These simulations
were carried out in a POPC bilayer using the AMBER FF14SB
force field. To compare the dynamics of PepTSo protein in
detergent micelles and bilayers and solely capture the effect
of the membrane environment, we replicated our simulations
in a POPE/POPG bilayer using the CHARMM 36 force field.
Simulations from our previous work20 provide a benchmark
for sufficient conformational sampling since we were able to
sample IF, OC, OF, and multiple other intermediate states
(Fig. S8, ESI†). Here, we compare our atomistic molecular
dynamics simulations of PepTSo and LeuT in BDDM micelles
and lipid bilayers. Length of individual simulation data sets vary
between B20–32 ms simulation time (Table S1, ESI†).

As shown in Fig. S8A and B (ESI†), we projected our PepTSo

simulation data sets on gating residue pairs, Ser131-Tyr431 on
the intracellular side and Arg32-Asp316 on the extracellular
distance. We compared the sampled regions with our previous
simulations (Fig. S8D, ESI†) to conclude that all physical
conformations of the protein have been well sampled.
Similarly, as shown in Fig. S9 (ESI†) we projected our LeuT simu-
lation data sets on one residue pair each on the intracellular and
extracellular side of the protein, Arg5-Asp369 and Arg30-Asp404,
respectively. These residue pairs are based on gating residues
identified in hSERT.45 This human serotonin transporter has a
typical LeuT-fold and shares 35.5% sequence similarity with LeuT
protein. Among the gating residues, Asp404 from LeuT is homo-
logous to Glu493 in hSERT and the other three residues are
arginines.

Upon comparing simulated and experimental distance dis-
tributions from our micelle and bilayer simulations (Fig. S1B
and C, ESI†), we see that distance distributions obtained from
micelle simulations are no better at matching with experiments.
However, by comparing distance distributions shown in Fig. 1,
we examined the impact of the choice of membranes on
the protein’s dynamics. For PepTSo protein, five out of a total
of eight distance distributions show a higher median value
(middle horizontal line on violin plots in Fig. 1A) in the micelle
as compared to the bilayer. For instance, residue pair 174-466
shows a single peak in the distributions for both the micelle and
bilayer, but the data has a median value of 3.87 nm mean in
the bilayer whereas this value is 4.00 nm in the micelle. On the
other hand, two distance distributions for residue pairs 47-330
and 174-401 show lower median values in the micelle than in
the bilayer. One distance distribution for residue pair 141-438
shows about the same value of 1.6 nm in both the micelle
and bilayer. In Fig. S10 (ESI†), we show that most of the
mean or median values lie along the black dotted line, indicating
that they are similar for micelles and bilayers. Mean and
median values for all inter-helix distances also fall along the
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dotted line indicating that the differences are minimal (Table S4,
ESI†).

Based on visual inspection, not only the positions of the
peaks but the number of peaks in the distance distributions
can differ such as three peaks in bilayers versus two in micelles
for residue pairs 141-432 and 141-500. Interestingly, these two
distance distributions show new peaks in micelles where little
or no data is seen in those regions in the bilayer. For LeuT,
although the distance distributions differ, the variation is
much less (Fig. 1B and Fig. S10, Table S5, ESI†), for example,
none of the 24 experimental distance distributions show a peak
in bilayers which is not there in micelles or vice versa.

For PepTSo, five of the experimental residue-pair distance
distributions also show slightly broader distributions. For inter-
helix distributions (Fig. S10, ESI†) we see that few upper values
and lower values lie below the dotted line, meaning that the
distributions move towards larger values in micelles. Does this
mean that micellar environments shift the distributions to
larger values? This is unlikely because for LeuT, we see values
that are both above and below the black dotted line in experi-
mental distances as well as inter-helix distances.

We conclude that the reason for the mismatch between
DEER experimental observables and MD simulations distance
distributions is not due to the use of detergent micelles in MD
simulations, since there are no dramatic or homogeneous
shifts in the distance distributions from our simulations.

However, this observation may be limited to two proteins
in the current study as the effect of the membrane on protein
dynamics has been established.46

Proteins in micelles and bilayers show structural similarity

For both proteins, we have measured and shown the helicity
of transmembrane helices in Fig. S11 (ESI†). Values closer to
1 indicate helical nature and decreasing values show loss of
helicity. TMs 7 and 10 exhibit a wider range of helicity in PepTSo

which indicates their dynamic nature. Selvam et al. reported
that one of the extracellular gating residues is on TM7 and one
of the intracellular gating residues is on TM10.20 Given that the
median of TM7 helicity is 0.76 in both micelles and bilayers,
lowest among all other transmembrane helices, none of the
helices lose their entire alpha-helical nature. Moreover, broader
distributions for TMs 7 and 10 are seen in both micellar and
bilayer environments.

TMs 1 and 6 in LeuT show wide helicity ranges in both the
environments. Readers must note that TM1 here indicates resi-
dues of TM1a, the first half of the TM1 helix. TM1a is of particular
interest in LeuT and other NSS family transporters44,47,48 because
in IF structures this region is away from the bundle as shown in
Fig. S12C (ESI†). Low values of TM1 helicity arise from IF
trajectories and other trajectories that transition to IF like states.
Our simulation ensemble includes two independent trajectories
based on the IF structure 3TT3.44 LeuT TM1a dynamics show a

Fig. 1 (A) Violin plot shows distance distributions for five intracellular residue-pair distances and three extracellular residue-pair distances measured by
Fowler et al. as observed from MD simulations of PepTSo protein in micelles (yellow, right) and bilayers (blue, left).34 (B) Violin plot shows distance
distributions for 17 intracellular residue-pair distances and seven extracellular residue-pair distances measured by Kazmier et al. as observed from MD
simulations of LeuT protein in micelles (purple, right) and bilayers (green, left).40 Distances calculated here are between the residue pair non-hydrogen
atoms that are closest. These distances were calculated using ‘‘closest-heavy’’ distance scheme in MDTraj.42 Distance distributions among Ca atoms and
sidechain atoms are shown in Fig. S21 and S22 (ESI†).
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significant distinction between OF and IF states in our MD
simulation trajectories (Fig. S12, ESI†); TM1a helicity drops to
20–30% in IF trajectories whereas this is 50–80% in OF trajec-
tories. Due to the dynamic nature of this region, it follows that
one of the gating residues on both the intracellular and
extracellular side of the protein is also positioned on TM1.
This distinct behavior of TM1a is also seen in Fig. S9A and B
(ESI†), where LeuT is open on both extracellular and intra-
cellular sides. Other studies on transporter proteins using
extensive MD simulations45,49,50 have also reported observation
of this hourglass-like state of the transporter. Terry et al. have
reported evidence for this conformation in LeuT which is due to
a weaker coupling between the extracellular and intracellular
side of LeuT.51 We suggest that this weaker coupling allows
LeuT to explore a large range of intracellular gating distance
while the extracellular side of the protein is also open.

TM regions of PepTSo and LeuT show structural similarity
in both the micelle and bilayer, but could the choice of the
membrane milieu affect the intracellular and extracellular
flanking regions of our proteins? We compared the distributions
for these regions such as the helicity of two short helices in
PepTSo one on each side. For LeuT, we compared the helical
content of the loop regions which connect the TM helices.
Fig. S13 and S14 (ESI†) show that distance distributions are
similar and not impacted by the choice of the membrane
environment. In this work, we do not consider the molecular-
level differences in protein residue interactions with lipids or
detergents and differences in membrane curvature that could
lead to variation in the stability of loop regions.

Fig. 2 strikingly shows that TM helicity median and mean
values lie along the black-dotted line, and in most cases, lower
and upper values also do not deviate much in the micelle and
bilayer. In general, helicity values or distributions are not
different which means that micelles do not impact the structure
of the protein.

Covalent modification due to MTSSL probes cause small local
structural perturbations in the protein

We calculated Kullback–Leibler (KL) divergence among dis-
tance distributions from MD simulations in micelles and MD
simulations in bilayers discussed above. Among the eight
experimentally characterized distances in PepTSo, we found
that residue pair Asn174-Ser466 has the highest KL divergence
value. Hence, we chose this residue pair for further studies,
specifically to perform simulations with realistic nitroxide
DEER labels. We attached an MTSSL DEER probe on Asn174
and Ser466 after mutating them to cystines via CHARMM-GUI
and simulated our protein in a BDDM micelle for B19 ms.
Previous studies have compared MD simulations with DEER
experimental results with short-timescale MD simulations with
explicit spin probes in a variety of biological systems.52–55 To
our knowledge, this is the first study of the impact of MTSSL
spin labels on a membrane protein using long-timescale
unbiased simulations.

Fig. 3A shows the simulated conformational ensemble pro-
jected on the intracellular and extracellular gating residues.

Comparing this landscape to those for the PepTSo simulations
without probes in micelles shows that both ensembles capture
all conformational states of the protein. This follows that probe
molecules do not seem to interfere with the conformational
dynamics of PepTSo protein in a way that could hinder its
transport function.

To understand the local effects of the MTSSL probes on the
protein, we calculate Phi and Psi dihedral angles and generate
Ramachandran plots for the mutated residues 174 and 466. We
see a slightly larger coverage for residue 174 with the MTSSL
probe (Fig. S15B, ESI†) as opposed to when it is an Asn residue

Fig. 2 Comparing the mean (blue), median (orange), upper value (green),
and lower value (red) of alpha-helical content of (A) 14 TM helices in
PepTSo, and (B) 12 TM helices in LeuT. Markers below the black dotted line
indicate larger values observed in the micelle environment. Markers above
the black dotted line indicate larger values observed in the bilayer environ-
ment. Markers along the black dotted line indicate similar observations in
micelle and bilayer simulations. The size of the dots does not indicate any
measured quantity.
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(Fig. S15A, ESI†), while there is no difference for residue 466.
Similarly, when we look at the regions surrounding the labeled
residues, specifically two residues both before and after the labeled
residues, we see a larger distribution for residue 174 (Fig. S15E and
F, ESI†). Hence, we conclude that this mutant created for DEER
spectroscopy experiments slightly impacts the local dynamics and
secondary structure of the protein, and this effect does not alter the
overall conformational dynamics of the protein.

We suggest that any alteration seen in transportation activity
could be due to the kinetic rates of the transport function that
would not affect the DEER observations unless functional
interactions are mutated. Fowler et al. tested the transportation
activity of their PepTSo double cysteine mutants and 174-466
mutant although decreased activity, did not stop AlaAla trans-
port entirely.34 Kazmier et al. also tested binding of Leu to spin-
labeled LeuT pairs and most double mutants retained more
than 50% binding affinity as the wild type protein.

We examined the impact of a spin-probe labeled residue pair on
the resulting distance distributions (Fig. S16, ESI†) by comparing
micelle simulations with and without MTSSL probes. Since the
probe molecules are on the extracellular side of the PepTSo protein,
two of the three extracellular side distance distributions do appear
slightly perturbed. We observe that the intracellular side distances
show no differences. A closer look at the distribution for the
residue pair labeled with MTSSL probes shows that the quartile
values are conserved. Overall, we do not see any significant changes
in the distance distributions for all eight experimental distances as
compared to the distance distributions obtained from simulations
in BDDM micelles. As expected, if there is no overall difference in
the underlying conformational landscape as we discussed above,
individual residue-pair distances also would not deviate.

Distance distributions obtained from unbiased MD simulation
with MTSSL probes are different from those obtained from the
DEER experiment

The mean of the unpaired electron density of paramagnetic
probes is concentrated close to the N–O bond.55 Distance

distributions from DEER are estimated from the dipolar coupling
between these unpaired electrons. In MD simulation, they are
usually estimated by measuring the distance between oxygen
atoms (referred to as ON atoms) of two MTSSL labeled
residues.56 It is established in the literature that the ON–ON
distance distributions are different from those of the backbone
and side chain carbon atoms as the MTSSL probe introduces five
flexible torsion angles and a 7 Å distance between the backbone or
side chain.57 Based on the preferred positioning of the probes,
these distances can be smaller or larger compared to backbone
and sidechain distances of the original residue. To observe these
differences in long timescale unbiased probe simulations, we
compared ON–ON atom distance distributions with the Ca and
sidechain atom distances. Fig. S17 (ESI†) shows that ON–ON atom
distance distributions are upward shifted with a median value of
5.22 nm in our system. We also compared closest heavy carbon
distances, which are majorly used for contact prediction between
protein residues, with the probe distances.58 The median value of
the closest heavy atom based distance distribution is B0.9 nm
lower than the ON–ON atom distance median.

Comparing these distributions to the experimental DEER
distribution, we observed single peaks from MD simulations
whereas two peaks were observed in the experimental distribu-
tion, black lines in Fig. 3. Fig. 3D shows that the ON–ON atom
distance distribution points to conformations captured corres-
ponding to the second peak with a larger distance value. This can
be explained using the two possibilities described by the reviewer
that either the MD does not pick up conformations in the missing
peaks or that the experimental distance distribution yields peaks
that are artifacts of the experiments. We further compared the
experimental results using the MtsslWizard software package,
which creates all possible rotamer libraries of MTSSL probes to
generate the distance distribution.57 This approach makes sure
that all the possible rotamers of MTSSL probes are sampled.
Applying the MtsslWizard software package on simulations
performed on micelles and bilayers again shows singular
peaks which does not match the multiple peaks observed in

Fig. 3 (A) Conformational landscapes of PepTSo protein are generated by projecting all simulation data on the chosen extracellular and intracellular side
distances measured between Arg32-Asp316 and Ser131-Tyr431, respectively. Conformational landscape for PepTSo MD simulations in BDDM micelles
with an MTSSL labeled residue pair. Distances calculated here are between the residue pair non-hydrogen atoms that are closest in distance. These
distances were calculated using ‘‘closest-heavy’’ distance scheme in mdtraj.42 (B) Distance distribution for MTSSL labeled residue pair in PepTSo, 174-466,
from simulations in BDDM micelle without probes (yellow), and (C) with probes (red). (D) Distance distribution for the MTSSL labeled residue pair in
PepTSo, 174-466, from simulations in BDDM micelles without probes (orange) where distances are measured between ON atoms on MTSSL labels. Black
lines show DEER experiment distance distributions.
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experiments Fig. S27 (ESI†). Therefore, further studies are needed
to explain these differences.

Restrained-ensemble MD simulations sample spin probe
dynamics, but alter protein dynamics

Our results above elucidate that MTSSL probes modulate the
distance distributions obtained from DEER experiments and
the experimentally characterized distance distributions are a
function of both the protein’s dynamics as well as the probe’s
dynamics. MTSSL spin labels are long and flexible molecules
and their dynamics have not been examined previously over a
long time. We believe that our previous simulations are not
sufficient to capture the dynamics of the probes and the
proteins together, making unbiased simulations intractable to
explore MTSSL probe dynamics. Restrained-ensemble MD
(reMD) simulations have been used previously to restrain
MTSSL probes dynamics to the experimentally obtained DEER
distributions and we explore this avenue to deconvolute the

effect of MTSSL probe’s dynamics from the experimental
distributional data.

For our reMD simulations we first restrained residue pair
174-466. Since this residue pair is on the extracellular side of
the PepTSo protein, we chose another pair, 201-364, which had
the highest KL divergence on the intracellular side. Hence, our
next set of reMD simulations involved two restrained pairs one
on each side of the protein. We dubbed these sets of simula-
tions as reMD (1 dist) and reMD (2 dist). While in Fig. 4A and B
and Fig. S18A and B (ESI†), the distance distributions between
the ON–ON atoms of the MTSSL probes show a match with the
experimental distribution, those between the closest-heavy
atom distances do not. In Fig. 4A, the residue pair 174-466
distribution in the teal violin plot has a single dominant peak
with a median value of 3.22 nm, whereas the experimental
distribution has two peaks. Moreover, the same peak as seen in
unbiased BDDM micelle simulation distributions shown in
the yellow violin plot is 4 nm. For comparison, this value is
3.98 nm for our unbiased simulations with a labeled residue pair.

Fig. 4 (A) Violin plot shows distance distributions for five intracellular residue-pair distances and three extracellular residue-pair distances as observed
from (A) reMD (1 dist) simulations where residue pair 174-466 is restrained, teal violin plots, (B) reMD (2 dist) where residue pairs 174-466 and 201-364 are
restrained, pink violin plots, and (C) reMD (8 dist) where all eight residue pairs are restrained, brown violin plots. Yellow violin plots correspond to unbiased
simulations of PepTSo protein in the micelle. Black dotted outlined residues pairs in (A) and (B) are restrained pairs and probe distances are shown to
match with experimental DEER distance distributions.
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In general all three extracellular distances shown in Fig. 4A and B
are lower shifted in reMD simulations which can be explained
using a labeled residue pair on the extracellular side. While the
distributions are lower shifted in reMD for the extracellular
distances, neither a lower shift nor an upward shift is seen in
the five intracellular distances as shown in Fig. 4A or B. Compar-
ing the residue pair 201-364 in Fig. 4A and B, we note that when
this residue pair is not restrained (teal violin plot) its mean value
is 2.66 nm and when it is restrained this value is 3.54 nm, very
close to the unbiased simulation value of 3.51 nm.

What happens when we restrain all eight residue pairs in
system reMD (8 dist)? Three out of five distances – distances #2,
3, and 4 – on the intracellular side show an upward shift, and
the median value of the brown violin plots is higher than the
median value of the yellow violin plot distributions. Distances
#1 and 2 on the extracellular side are also shifted upward as
compared to those in systems reMD (1 dist) and reMD (2 dist),
although their median values are still lower than those in
unbiased simulations.

An upward shift in distance distributions is similar to what
we observe in Fig. 3 where the ON–ON atom based distances
shift the distribution upwards by B0.9 nm. However, the
origins of these shifts are different. In particular, considering
the distance distribution for residue pair 174-466 which is the
third distance on the extracellular side, a lower shift in all reMD
simulations compared to unbiased simulations without probes
(yellow violin plots in Fig. 4) and with probes (red violin plots
in Fig. S18, ESI†) indicates that reMD simulations alter the
backbone dynamics in a way MTSSL probe labeled simulations
did not. Vast differences in backbone dihedral angles of the
relevant residues in reMD simulations support this observation
(Fig. S19, ESI†). These drastic shifts in distance distributions
are mirrored in the underlying conformational landscapes
(Fig. S20, ESI†). Hence, the bias introduced in reMD simula-
tions via additional energetic terms for force calculations
affects the protein structure differently as compared to the
modulation caused when MTSSL probes are attached to resi-
dues but simulated with unbiased MD simulations.

Similar to our MTSSL-labeled simulations, reMD simula-
tions also suggest that the DEER experiment distance distribu-
tions are a convolution of both the spin probe distances as well
as the inherent protein dynamics based distances. The impact
of spin labels is not straightforward and unbiased simulations
are ill-posed to capture their effect completely. Simulations
would need to explore the conformational space of each
spin label corresponding to every conformational state of the
protein. This increases the computational time necessary to
capture spin-label dynamics on a protein. With limited compu-
tational resources, it is not feasible to perform long-timescale
residue pairwise simulations with MTSSL probes. At the same
time, reMD simulations are computationally tractable, but do
not solve the problem of an unbiased match with MD simula-
tions from long-timescale MD simulations. reMD simulations
with multiple restrained residue pairs also raise the unexplored
concern that what number of restraints in reMD simulations
would be adequate to capture an MD ensemble where all

residue-pair distance distributions can correspond to their
DEER experiment observables without perturbing the protein’s
conformational dynamics.

Conclusion

This work highlights the necessity for careful interpretation of
DEER spectroscopy and MD simulations in membrane protein
biophysics. The scarcity of membrane protein biophysical
characterization necessitates that we salvage all information
available from laboratory experiments and computational
simulations. Hence DEER spectroscopy and MD simulations will
continue to be important techniques in progressing our under-
standing of protein dynamics. It is, therefore, imperative to
understand how to best compare the data obtained from both
techniques, not only to show validation of MD simulations with
experiments but also to avoid misleading conclusions and to
draw predictive conclusions. Previous work had proposed opti-
mization protocols to choose the ideal residue pairs for DEER
experiments from already performed MD simulations.59,60 These
protocols can also be used iteratively, by performing simulations
followed by experiments and then more simulations to update
our understanding of a protein’s conformational changes.61

Such methods can be used to their full potential once we can
decipher the structural characterization of different protein
modes identified via multiple peaks in DEER distance distribu-
tions. Hence, in this work, we performed a comprehensive study
of potential reasons for the discrepancy between the DEER
experiment distributional data and residue pair distributions
from atomistic MD simulations.

We show that the major reason for the difference between
experiments and simulation distributions is the long length of
the MTSSL label and its slow dynamics. The slow dynamics of
the flexible MTSSL probes could not be captured in unbiased
MD simulations and we examined this using biased simulation
methods. While reMD simulations could reconcile experiments
and simulations for the restrained residue pairs, reMD yielded
significant changes in the protein’s conformational dynamics
at the residue-level and globally. It is also not feasible for
researchers to perform DEER experiments on all residue pairs
of a protein which can be followed by multiple residue pair
biased reMD simulations. On the other hand, unbiased MD
simulations do not cause any unphysical perturbations in the
protein. However, it is computationally expensive to perform
long-timescale MD simulations with MTSSL probes. We sur-
mise that when using methods such as OptimalProbes59,61 it
would be sufficient to perform MD simulations with MTSSL
probes for the top predicted choices for DEER experiments.

Our computational study of a single pair of spin labels is
limited and a thorough examination of the effect of multiple
spin labels and different species of spin labels on cytoplasmic
and membrane proteins is necessary. Our work is also limited
in examining the effect of lateral pressure in a bilayer vs micelle
environment which deserves examination with different micel-
lar sizes. We have also assumed a POPE/POPG membrane
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composition and symmetry among upper and lower leaflets of
the phospholipid bilayer. Our MD simulations are performed
at room temperature. Spicher et al. proposed performing MD
simulations at solvent (mixtures of glycerol and water) freezing
temperatures to accurately compare with conformational
ensembles explored in DEER experiments.55 This is a potential
cause for disagreement and is yet to be examined with long-
timescale simulations. The simulation temperature will also impact
the packing and phase behavior of membranes. Alternatively, using
more rigid probe molecules such as metal cation-based probes36 or
a cross-linked side chain of the nitroxide label with pairs of cysteine
residues62 and employing biophysical experimental methods that
do not require any changes in the covalent structure of the target
protein that affect the protein’s dynamics and sometimes function
could be explored.
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