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Abstract:  

Soft conductive materials are key components of soft electronics, sensors, actuators, and 

wearable devices. The electrical conductivity matrix or tensor of soft conductive materials is 

usually deformation-dependent, but there is a lack of constitutive modeling work on it. To fill this 

knowledge gap, we consider a soft conductive composite embedded with liquid metal fibers as an 

example. The difference between the material conductivity and spatial conductivity is clarified 

briefly. In addition, we devise two constitutive models for the deformation-dependent conductivity 

tensors. These two models are equivalent but in different formats, one using stretch ratios and the 

other using invariants. Besides the conductivity models, a transversely isotropic hyperelastic 

model is also presented to model the mechanical behaviors. These analytical models are fitted and 

validated using data from multiphysics computational modeling on representative volume 

elements. Note that the proposed models can also be used for other soft conductive materials as 

well as thermal conductivity modeling.  
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1 Introduction 

Soft conductive composites usually consist of a compliant matrix embedded with solid or 

liquid conductive fillers [1,2]. They are essential components in emerging technological areas such 

as soft electronics, soft sensors and actuators, and soft robotics [1–4]. Among soft conductive 

composites, liquid metal composites [5,6] are among the most promising ones because of their 

high electrical conductivity, superb stretchability, and self-healing behavior. In the past few years, 

researchers have synthesized liquid metal composites with various micro-architectures [6,7], such 

as particulate composites [8,9], co-continuous composites [10,11], fiber composites [12], and 

hybrid fillers composites [13–15]. Among these, liquid metal fiber composites [12] have achieved 

high conductivity using a minimal amount of liquid metal, which not only reduces the material 

density but also the cost, showing high potential usage in soft electronics.   

Even though various liquid metal composites have been fabricated and characterized 

experimentally, there are very few works regarding the theoretical and numerical modeling of their 

electromechanical behaviors. Researchers observed the deformation-dependent electrical 

conductivity [8,16] of liquid metal particulate composites, which deviates from the Pouillet’s law 

[17] and depends on mechanical sintering. These early works [8,16] were merely experimental but 

inspired follow-up computational research. Cohen and Bhattacharya [18] were among pioneers 

who simulated the electromechanical behaviors of liquid metal particulate composites. They 

postulated that the conductance stems from the deformation-induced damage of the elastomer 

matrix and percolation of liquid metal droplets. In their simulation model, the liquid metal phase 

was treated as a hyperelastic solid with vanishing shear modulus. This approach is easy to 

implement and prevalent in following studies [17,19,20]. More detailed numerical study was 

carried out by Majidi et al. [17,20] to unravel the post-percolation behaviors by considering 

network topologies and the stochastic nature of percolation pathways. They found that the 

electromechanical behavior depends on the shape of percolation paths and the connectivity of 

liquid metal droplets with their neighbors.  Regarding liquid metal co-continuous composites, Yao 

et al. [10] performed experimental testing and numerical simulation to uncover their 

electromechanical behaviors.  They observed that the co-continuous composites have increased 

electrical conductivity upon stretching and attributed this phenomenon to the stretch-induced 
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alignment and elongation of the liquid metal phase. To date, we have not found other simulation 

works on the electrical conductivity of liquid metal composites.  

A major knowledge gap is that there is a lack of constitutive modeling on the deformation-

dependent conductivity tensors of soft conductive materials. Previous works on liquid metal 

composites [17,18,20,21] and carbon nanotube composites [22,23] were based on micromechanics 

simulation with explicit microstructures rather than macroscopic continuum modeling. Developing 

constitutive models of conductivity tensors will provide theories to describe and predict the 

electromechanical properties of soft conductive materials in general. This work aims at filling this 

knowledge gap by establishing a theoretical and computational framework and taking liquid metal 

fiber composites as examples. Meanwhile, the simulation results will also provide knowledge on 

the electromechanical behaviors of liquid metal fiber composites. Such simulation models and 

results will be useful to guide their design-optimization process towards better performance and 

more applications in soft electronics and multifunctional devices.  

This work establishes a computational and theoretical framework to model liquid metal fiber 

composites with a random fiber network. The simulation is based on finite element modeling of 

representative volume elements (RVEs) with both mechanical and electrical analysis performed. 

Constitutive models of the electromechanical behaviors are devised for both the stress-strain and 

conductivity-strain relations. The novel contributions of this work are two constitutive models for 

the conductivity-strain relations, one using a stretch ratio approach and the other using invariants. 

Both models are equivalent and users can choose either one for their convenience. Besides the 

conductivity models, we also provide a transversely isotropic hyperelastic model to capture the 

mechanical behaviors of the composite. It is noted that the proposed models can also be used for 

soft conductive materials in general and for both electrical and thermal conductance modeling.  

2 Computational modeling 

2.1 The computational model 

The major aim of the present work is to establish electromechanical constitutive models rather 

than simulating the fabricated composites directly [12]. Therefore, the computational model 

considered in this work is simplified from the experimental morphologies (Figure 1a) by assuming 

that liquid metal fibers are straight, continuous, and uniform (Figure 1b). For the simulation, three-
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dimensional (3D) RVEs comprising both the soft matrix and the liquid metal fibers are created 

using the commercial finite element package ABAQUS (version 2020, Dassault Systemes). The 

fiber network is generated using a Centroidal Voronoi Tessellations (CVT) algorithm [24]. This 

algorithm generates more evenly distributed seed points than other similar algorithms. Once the 

seed points are sampled, fibers with a diameter d are randomly created and oriented at seed points 

to generate a fiber network (Figure 1b). Only one fiber is created for each seed point.  The fiber 

generation process ceases once the given volume fraction of liquid metal fV  is reached. Instead of 

simulating a large RVE, we create three smaller RVEs (Figure 1c-e) to reduce computational cost. 

In our simulations, we found that the influence of network patterns on the stress-strain responses 

is marginal. The effective properties of the composite are the average of results from these three 

RVEs. The size of RVEs is 5 mm wide with the thickness ranging from 0.6 mm to 0.9 mm 

depending on volume fractions of liquid metal. Each RVE contains four layers of liquid metal 

fibers stacked along the thickness direction with the junction distance controlled at 0.75d as 

displayed in Figure 1f. In the finite element simulations, we assume that the fibers and the matrix 

are perfectly bonded. Composites with different volume fractions of liquid metal are generated by 

changing the fiber diameter. In this work, we investigate the composites with volume fractions of 

liquid metal as 5%, 10%, 15%, and 20%. The fiber diameters vary between 100µm to 250µm.  

In order to extract the stress-strain and conductivity-strain relations, electromechanical 

simulations were performed on these RVEs using ABAQUS. The computational procedure 

consists of a mechanical analysis step followed by an electrical conductivity analysis step similarly 

reported in [25]. More specifically, the electrical conductivity analysis is performed on a pre-

deformed RVE from the mechanical analysis step. Detailed analysis procedure is introduced below.  

2.2 Mechanical analysis 

The deformation of the composite RVE under an arbitrary loading condition is conducted first. 

The mechanical behaviors of the soft matrix and liquid metal are treated as nearly incompressible 

neo-Hookean solids. The soft matrix (Ecoflex 00-30, Smooth-On Inc.) is characterized by the 

initial shear modulus 3

mat 21.6 10    MPa [26] and bulk modulus mat mat500  . As reported 

in [18], large discrepancy between the soft matrix and liquid metal in mechanical properties leads 

to high computational cost and convergence difficulty. To overcome this issue, the initial shear 
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modulus and bulk modulus of liquid metal are approximated as 
matLM / 20   and LM mat  . 

The material properties of the soft matrix and liquid metal are summarized in Table 1. Next, the 

RVE is discretized by the hybrid element C3D4H. The mesh is refined until convergence is reached. 

Uniform displacement boundary conditions are imposed on the four lateral sides of the RVE, while 

the top and bottom surfaces are free. Average true stress (Cauchy stress) and true strain (spatial 

Hencky strain) are extracted from the simulation results for constitutive modeling usage. In 

addition, the displacement fields of each frame are exported for the electrical conductivity analysis 

step.   

2.3 Electrical conductivity analysis 

To evaluate the effective electrical conductivity of the composite at different stretching levels, 

an isothermal steady-state linear electrical conductivity analysis (coupled thermal-electrical step 

in ABAQUS) is performed on the deformed solid mesh imported from the mechanical analysis 

step. To ensure high accuracy of the results at the highly deformed configuration, a 10-node 

quadratic coupled thermal-electrical tetrahedron element DC3D10E is employed in the electrical 

conductivity analysis. Specifically, for each element, displacements of the six edge nodes are 

interpolated from that of the four corner nodes.  Moreover, the soft matrix is treated as an electrical 

insulator E

mat 0   whereas the liquid metal is a conductor with E

LM 3400   S/mm.  

As shown in Figure 2, the electrical conductivity equation can be formulated either in the 

reference configuration R  or the current configuration  . In the current configuration  , the 

current density j  is described by the spatial Ohm's law 

 Ej σ E  (1) 

where E
σ  is the spatial conductivity tensor, grad E  is the electrical field intensity vector, and 

  is the spatial electrical potential. Normally, the spatial conductivity tensor E
σ  is employed for 

simulation and applications given its clear physical meaning.    

Electrical boundary conditions on RVEs are key to the simulation. Note that the electrical 

conductivity of the composite is independent to the boundary conditions. However, we should 

apply special electrical boundary conditions to obtain the electrical potentials more easily. In 

particular, we specify a linear potential function on all the surface nodes as 
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 )( , ) ( x yxx y E E y   for all surface nodes (2) 

Two sets of electrical boundary conditions are applied by specifying either xE  or 
yE  along 

the two in-plane directions, respectively. The effective current density of the RVE is obtained by 

the volume-average of the element current density ej  of all elements, as  

 
1

e e

e

V
V

 j j  (3) 

where eV  denotes element volume and V is the total volume. Finally, the spatial conductivity tensor 

is obtained as [27] 

 E i

ij

j

j

E
   (4) 

where the current density ij  is from Eq. (3) and the electrical potential 
jE  is provided in the 

applied boundary conditions. By simulating the spatial conductivity of each deformed frame from 

the mechanical analysis step, we can obtain the conductivity-strain relations.   

3 Electromechanical constitutive modeling 

3.1 Hyperelastic stress-strain relation 

The soft composite with randomly oriented fibers can be considered as transversely isotropic. 

The mechanical properties are symmetric about the Z axis with the X-Y plane as the plane of 

isotropy defined in Figure 1.  We identify the direction normal to the isotropy plane by a unit 

vector N and n in the reference configuration and current configuration, respectively. The 

composite is modeled as a transversely isotropic hyperelastic material. Such a material can be 

characterized by a strain energy density function W  that depends on strain invariants and the 

structural tensor N N . There are many choices of strain energy density functions [28]. Herein 

we adopt a strain energy density function in the following form [28] 

      
2

1 4 1 4, 3 1
2 2

W I I I I
 

     (5) 

where the first term represents the isotropic part using a neo-Hookean model, the second term 

considers the anisotropic energy contribution,   and   are elastic constants. The invariants 1I , 

3I , and 4I  are defined as 
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 2

1 3 4tr , det , : ( )I I J I    C C C N N  (6) 

where TC F F  is the right Cauchy-Green tensor, F  is the deformation gradient and detJ  F .  

In this work, we consider the composite as incompressible with 1J  . The second Piola-

Kirchhoff stress S  (see Figure 2) of an incompressible hyperelastic material is obtained [29] by 

differentiating the strain energy function with respect to C  as 

 

   31 4

1

4

1,
2

1
  1

p IW I I
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I

 

     
 

 
      

 
 

S
C C

C I N N

 (7) 

where p  is a Lagrange multiplier representing the hydrostatic pressure, and I  is the identity 

tensor in the 3D space. 

Accordingly, the corresponding Cauchy stress (see Figure 2) 1 TJ σ FSF  is given by 

 4

4

1
1p I

I
 

 
      

 
 

σ I b n n  (8) 

in which Tb FF  is the left Cauchy-Green tensor, and recall that /n FN FN  is the unit vector 

along the thickness direction in the current configuration. 

3.2 Conductivity-strain relation  

Soft conductive composites are usually used as thin films and only the in-plane conductivity 

is of interest. Hence, the liquid metal composite considered here is electrically insulated along the 

thickness direction. For the sake of convenience, the spatial conductivity tensor E
σ  of the 

composite is defined in the two-dimensional (2D) space, and only the in-plane components are 

considered. Under in-plane uni-/biaxial loading, the spatial conductivity becomes orthotropic due 

to the stretch-induced anisotropy. Based on the simulation results, we aim to develop analytical 

expressions for the conductivity-strain relations. Two equivalent models are proposed below using 

stretch ratios (model I) and invariants (model II), respectively.   

Conductivity model I. Given that the material is isotropic in-plane, the spatial conductivity 

tensor E
σ  in the current configuration is coaxial to the left Cauchy Green tensor b. Therefore, we 

can express the spatial conductivity tensor in the principal directions, as 
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1 1 2 2

E E E

11 22    σ n n n n  (9) 

where 1
n  and 2

n  are the in-plane principal directions of b, and 1 and 2 indicate the two principal 

axes. The principal conductivity values E

11  and E

22  are unknown functions in terms of the stretch 

ratios 1  and 2 .  In this work, we propose the following exponential functions for them, as  

 

 

 

12 1 21 1 2 2

12 2 11 2 2 1

/E

11 1 2 0 1 2 12

/E

22 1 2 0 1 2 12

( , ) ,

( , )

bb b

bb b

a a e a e a e

a a e a e a e

  

  

  

  

   

   
 (10) 

in which 0 1 1 2 2 12 12, , , , , ,a a b a b a b  are seven model parameters to be calibrated. Note that Eq. (10) 

must satisfy a hidden symmetry condition E E

11 1 2 22 2 1( , ) ( , )       to make the model self-

consistent. 

Conductivity model II. Additionally, the spatial conductivity E
σ  can be represented in terms 

of invariants. Following the representation theory of tensor functions in the 2D space [30], the 

spatial conductivity tensor can be expressed in this explicit form  

 E

0 1  σ I b  (11) 

where b  and I  are the left Cauchy-Green tensor and identity tensor in the 2D space, which serve 

as the integrity bases, as 

 
11 12

21 22

1 0
,

0 1

b b

b b

   
    

  
b I  (12) 

Here we use the tilde sign to indicate symbols in the 2D space. In addition, the functional bases 

0 1 2( , )I I  and 
1 1 2( , )I I  in Eq. (11) are unknown functions of the invariants 

1 tr I  b  and 

2 detI  b .  In this work, we propose the following power laws for the functional bases as 

 
0 0

1 1

0 1 2 0 1 2

1 1 2 1 1 2

( , ) ,  

( , )

b c

b c

I I a I I

I I a I I








 (13) 

where 
0 0 0 1 1 1, , , , ,a b c a b c  are six model parameters to be calibrated from simulation data.  

We have three remarks for the two conductivity models in Eq. (9) and Eq. (11).  
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 The two models are equivalent. Model I is convenient for experimental calibration 

while the model II is convenient for simulation implementation. The model I has a 

clearer physical meaning.  

 The two models in Eq. (10) and Eq. (13) are phenomenological so that the specific 

function forms can be modified. In theory, one can use other functions as well, e.g., 

exponential, power, logarithmic, and polynomial functions. We choose the functions 

in Eq. (10) and Eq. (13) mainly by considering their accuracy and simplicity. The 

discovery of these specific expressions takes a lengthy trial-and-error process.  

 The model parameters are calibrated by using a least square optimization method from 

the simulation data. The optimization may result in multiple parameter sets depending 

on the initial guess values.  

3.3 Remarks on conductivity in the reference configuration 

For continuum modeling, physical quantities and governing equations can be formulated in 

either the reference or current configuration. As shown in Figure 2, one can also formulate Eq. (1) 

as a material Ohm’s law in the reference configuration as  

 E

R R Rj σ E  (14) 

where the subscript R indicates the reference configuration, and E

Rσ  is the material conductivity 

tensor (oppose to the spatial conductivity tensor E
σ ). This alternative version of Ohm’s law is not 

commonly used; but it is useful for the constitutive modeling purpose. The two Ohm’s laws can 

be correlated by tensor transformation. The transformation relations [31] are given as  

 

1

T

E 1 E T

,

,

R

R

R

J

J











j

EF

σ

Fj

E

Fσ F

 (15) 

Certainly, the two Ohm’s laws and two conductivity tensors are identical for small deformation. 

The two conductivity models in Eq. (9) and Eq. (11) are formulated in the current 

configuration. According to Eq. (15), they can be pulled back to the reference configuration as 

 E 1 E T

R J   Fσ σ F  (16) 

More explicitly, the material conductivity tensor corresponding to Eq. (9) and (11) are respectively, 
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 1 1 2

E E
E

2
11 22

2 2

1 2

R

J J 

 
   σ N N N N  (17) 

 E 1

0 1R J J  σ C I  (18) 

where 1J   for incompressible materials, C  is the in-plane right Cauchy-Green tensor, 1N  and 

2N  are the principal directions of C . Usually, the soft electronics applications prefer strain-

insensitive conductivity [12,17], which requires the material conductivity tensor E .R constσ  and 

the spatial conductivity tensor E σ b . Designing and fabricating soft conductors that exhibit such 

a special feature are significant future research tasks.  

4 Results and discussions 

We begin by investigating the mechanical behaviors of the liquid metal fiber composites. The 

three RVEs in Figure 1 are simulated and their average stress-strain relations are obtained. The 

hyperelastic material constants   and   in Eq. (8) are calibrated based on the simulation results. 

Herein, we consider three different loading scenarios that include uniaxial, biaxial with ratio 

/x yk   , and equibiaxial ( 1k  ). Figure 3 displays the stress-strain curves of the composites 

with different volume fractions of liquid metal (
fV = 5-20%). The true strain ( lnxx x ) is used 

in this figure. Figure 3a shows the stress-strain curves under uniaxial loading. The inclusion of 

liquid metal softens the composite with evidence that the stiffness decreases. Note that we have 

ignored the oxide layer of the liquid metal phase in this work. The stiffness the oxide plays an 

effect only when the liquid metal inclusions are sub-micron [32].  Besides the uniaxial data, the 

results for equibiaxial and biaxial loading are also shown in Figure 3b and Figure 3c-d, respectively. 

Overall, the proposed hyperelastic model in (5) and (8) fits well to the finite element simulation 

data. The two material constants   and   in the hyperelastic model are provided in Table 2. With 

higher volume fraction of liquid metal, both the isotropic material constant   and anisotropic 

material constant   decrease because that the strain energy contribution from the liquid metal 

phase is lower than that in the matrix. In general, the isotropic part is around one order of 

magnitude greater than the anisotropic part, indicating that this liquid metal fiber composite is 

weakly anisotropic. Moreover, the constant   approaches zero at the volume fraction of 20%.  
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In the following, we study the electromechanical behaviors of the composites. Note that we 

focus on the spatial conductivity E
σ  here. At first, we examine the effect of non-affine deformation 

on the spatial conductivity of the composite. The non-affine (i.e., non-uniform) deformation is 

induced by the stiffness mismatch between the matrix and fibers. If they have identical hyperelastic 

parameters, the overall deformation of the composite is affine; but in reality, the deformation is 

non-affine. It was known that such non-affinity has influence on mechanical behaviors of network 

materials [33], but there is no research on electromechanical behaviors. In order to elucidate this 

effect, we perform two sets of simulations: one is affine by assigning the fibers with the same 

hyperelastic properties as the matrix, and the other is non-affine by assigning different hyperelastic 

properties. Figure 4a presents the spatial conductivity versus stretch ratio under different loading 

conditions. It is observed that the spatial conductivity E

xx  in the current configuration increases 

with the stretch. Actually, the material conductivity E E 2

Rxx xx x    in the reference configuration 

derived from Eq. (17) decreases meanwhile, which is known as the piezoresistance effect. By 

comparing the affine and non-affine results, there is discrepancy between the conductivities under 

different loading conditions. In all scenarios here, the non-affinity increases the spatial 

conductivity. This phenomenon can be explained by comparing the microstructure changes under 

affine and non-affine deformation illustrated in Figure 4b. In Figure 4b, the liquid metal fibers are 

wider under non-affine deformation because they are softer and stretched more severely than the 

matrix, which facilitates local current flow and increases the overall spatial conductivity. There is 

another effect called junction effect here, which is more complicated. Take the equibiaxial case as 

an example, the network geometry is unaltered under stretch and so the spatial conductivity of the 

composite is expected to be constant. Nevertheless, we still observe a slight increase of the spatial 

conductivity, which is attributed to the electrical current leakage at junctions that improves the 

conductivity. In general, the spatial conductivity of the liquid metal fiber composites is related to 

the deformation mode, non-affinity, and junctions.  On the other hand, the material conductivity 

can be transformed using Eqs. (16) and (17) accordingly and will not be discussed here. 

Next, we present the spatial conductivity of the composite under different stretch deformation. 

In order to visualize the spatial conductivity response surfaces under arbitrary deformation, we 

plot the spatial conductivity as a function of stretch ratios x  and 
y . Figure 5 shows the 3D 
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surface of the spatial conductivity E

xx  under uniaxial and biaxial loading scenarios with different 

ratios k. The data are obtained from simulation. As shown in Figure 5, the spatial conductivity 

depends on the stretch mode. Different stretch ratios can either increase or decrease the spatial 

conductivity of the composite along different directions, depending on how they change the fiber 

orientations and the size of the junctions.  

The spatial conductivity data in Figure 5 are used to fit the conductivity model I with 

parameters provided in Table 3. Note that the principal stretch ratios 1  and 2  are used in model 

I. For the case 
x y  , we have 1 x   and 

2 y  ; otherwise, we have 
1 y   and 2 x  .  To 

show the influence of stretch deformation on the spatial conductivity clearer, some data in Figure 

5 are adapted and replotted in Figure 6. The principal spatial conductivity E

11  and E

22  are plotted 

versus the principal stretch ratio 1  in Figure 6. Overall, the proposed conductivity model I fits 

well with the simulation data for all volume fractions and deformation modes considered here, 

which validates the proposed constitutive model. The spatial conductivity E

11  is observed to 

increase with a greater ratio k. In contrary, the spatial conductivity E

22  decreases with a greater 

ratio k. This is because that a greater k ratio means that the composite is more stretched along the 

1-axis than the 2-axis, which makes the fibers aligned more toward the 1-axis. Specifically, for 

uniaxial stretching cases, the longitudinal spatial conductivity E

11  increases while the transverse 

spatial conductivity E

22  decreases under uniaxial stretch loading.  We have shown the data with 

different volume fractions of liquid metal in Figures 5 and 6, and the general trends are consistent.  

Finally, as introduced in Section 3.2, the spatial conductivity can also be expressed in terms 

of strain invariants 
1I  and 

2I . Figure 7 visualizes the 3D surfaces of spatial conductivity E

11  and 

E

22  in the invariant space with data adapted from Figure 5. These data are used to fit the proposed 

conductivity model II with optimal parameters given in Table 4. In addition, some data are also 

adapted and replotted in Figure 8 to show the comparison clearer. Overall, the results obtained 

from the model II show almost perfect agreement with the simulation results, which demonstrates 

the effectiveness of the proposed model. We recognize that the spatial conductivity surfaces in the 
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invariant space do not have very intuitive physical meaning. This type of constitutive model is 

merely convenient to perform simulations rather than to interpret physics. 

5 Conclusions 

Soft conductors are essential components in emerging technologies such as soft electronics 

and robotics. However, there is a lack of systematic constitutive modeling research on soft 

conductors. For soft conductors, there exist two Ohm’s laws in the reference and current 

configurations. Accordingly, we can define a material conductivity tensor in the reference 

configuration and a spatial conductivity tensor in the current configuration. We need to develop 

not only the stress-strain relations but also the conductivity-strain relations for constitutive 

modeling of soft conductors.  In this work, we consider liquid metal fiber composites as an example 

and studied their electromechanical behaviors. A hyperelastic model is established for their stress-

strain relations. Meanwhile, two models are proposed for their conductivity-strain relations, one 

using stretch ratios and the other using invariants. These electromechanical constitutive laws are 

fitted using data from finite element simulation with different loading scenarios. We have found 

that the proposed constitutive models can describe the electromechanical behaviors of liquid metal 

fiber composites pretty well.  Moreover, it is found that the composite’s conductivity either 

increases or decreases depending on the microstructure change, loading conditions, orientations, 

and configurations. For example, under uniaxial stretch, the longitudinal spatial conductivity 

increases while the transverse spatial conductivity decreases. In addition, we found that the 

intrinsic non-affine deformation and junction effect of the liquid metal fiber composites are found 

to improve their spatial conductivity. We expect that the proposed constitutive models can be used 

to describe the electromechanical behaviors of other soft conductors as well as thermal 

conductivity modeling.  
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Table 1. Material properties used for the simulation. 

 Shear modulus (MPa) Bulk modulus (MPa) Conductivity (S/mm) 

Soft matrix 3

mat 21.6 10    mat 10.8   E

mat 0   

Liquid metal 3

LM 1.08 10    LM 10.8   E

LM 3400   
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Table 2. Model parameters for the hyperelastic stress-strain relations of the composites. 

fV  (%)  (MPa)  (MPa) 

5 319.936 10  
35.351 10  

10 318.491 10  
33.174 10  

15 317.043 10  
31.140 10  

20 315.561 10  
30.015 10  
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Table 3. Model parameters for the conductivity-strain relations using model I.  

fV  (%) 0a (S/mm) 1a (S/mm) 1b  2a (S/mm) 2b  12a (S/mm) 12b  

5 72.43 -104.10 -0.5311 98.69 -0.2805 50.82 -35.12 

10 176.20 -230.90 -0.5311 185.70 -0.2805 117.90 -35.12 

15 311.80 -366.80 -0.5311 237.20 -0.2805 187.60 -35.12 

20 499.90 -514.10 -0.5311 240.50 -0.2805 215.00 -35.12 
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Table 4. Model parameters for the conductivity-strain relations using model II.   

fV  (%) 0a (S/mm) 
0b  0c  1a (S/mm) 

1b  1c  

5 59.44 -0.4513 0.2830 72.193 -0.7442 -0.1419 

10 125.66 -0.4184 0.2885 151.05 -0.7470 -0.1455 

15 199.63 -0.3878 0.2909 221.63 -0.7394 -0.1592 

20 294.89 -0.3324 0.2701 277.71 -0.7214 -0.1809 
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Figure Captions 

 

Figure 1. (a) Optical microscopy of a liquid metal fiber composite (image is adapted from [12] 

with permission); (b) A randomly oriented liquid metal fiber network constructed using the CVT 

algorithm; (c)-(e) Three different RVEs of the liquid metal fiber composites; and (f) Junction 

distance illustration.  

 

Figure 2. Continuum modeling of the electromechanical behavior of a soft conductor. The stress-

strain relation and conductivity-strain relation can be formulated either in the reference 

configuration R  or the current configuration  . There are two Ohm’s laws considering the two 

configurations. Accordingly, we can define a material conductivity tensor E

Rσ  and a spatial 

conductivity tensor E
σ .  

 

Figure 3. Stress-strain relations of the composites under different loading scenario: (a) Uniaxial 

loading, xx ; (b) Equibiaxial loading, 
xx yy  ; (c) Biaxial loading, xx ; and (d) Biaxial loading, 

yy . 

 

Figure 4. Conductivity-strain responses of the composite with affine and non-affine simulation for 

the case f 10%V  : (a) Electrical conductivity; (b) Electrical current density for 4x  . 

 

Figure 5. 3D surface plot of conductivity-strain relations under arbitrary biaxial loadings obtained 

from simulation: (a) f 5%V  ; (b) f 10%V  ; (c) f 15%V  ; and (d) f 20%V  . 

Figure 6. Conductivity-strain relations in the principal coordinate system from simulation and the 

conductivity model I. (a-d) E

11 ; and (e-h) E

22 . The principal coordinate system is used here.  

 

Figure 7. 3D surface plot of conductivity-strain relations in the invariant space under arbitrary 

biaxial loadings obtained from simulation: (a-d) E

11 ; and (e-h) E

22 . The principal coordinate 

system is used here. The data are adapted from Figure 5.  

 

Figure 8. Conductivity-strain relations in the invariant space from simulation and the conductivity 

model II.   (a-d) E

11 ; and (e-h) E

22 . 
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Figure 1. (a) Optical microscopy of a liquid metal fiber composite (image is adapted from [12] 

with permission); (b) A randomly oriented liquid metal fiber network constructed using the CVT 

algorithm; (c)-(e) Three different RVEs of the liquid metal fiber composites; and (f) Junction 

distance illustration.   
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Figure 2. Continuum modeling of the electromechanical behavior of a soft conductor. The stress-

strain relation and conductivity-strain relation can be formulated either in the reference 

configuration R  or the current configuration  . There are two Ohm’s laws considering the two 

configurations. Accordingly, we can define a material conductivity tensor E

Rσ  and a spatial 

conductivity tensor E
σ .  
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Figure 3. Stress-strain relations of the composites under different loading scenario: (a) Uniaxial 

loading, xx ; (b) Equibiaxial loading, 
xx yy  ; (c) Biaxial loading, xx ; and (d) Biaxial loading, 

yy . 
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Figure 4. Conductivity-strain responses of the composite with affine and non-affine simulation for 

the case f 10%V  : (a) Spatial conductivity; (b) Electrical current density for 4x  . 
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Figure 5. 3D surface plot of conductivity-strain relations under arbitrary biaxial loadings obtained 

from simulation: (a) f 5%V  ; (b) f 10%V  ; (c) f 15%V  ; and (d) f 20%V  .  
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Figure 6. Conductivity-strain relations in the principal coordinate system from simulation and the 

conductivity model I. (a-d) E

11 ; and (e-h) E

22 . The principal coordinate system is used here.  
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Figure 7. 3D surface plot of conductivity-strain relations in the invariant space under arbitrary 

biaxial loadings obtained from simulation: (a-d) E

11 ; and (e-h) E

22 . The principal coordinate 

system is used here. The data are adapted from Figure 5.  
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Figure 8. Conductivity-strain relations in the invariant space from simulation and the conductivity 

model II.   (a-d) E

11 ; and (e-h) E

22 .  


