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ABSTRACT. Let X be a K3 surface with Picard group Pic(X) = ZH such that H® = 2n. Let M (v) be
the moduli space of Gieseker semistable sheaves on X with Mukai vector v. We say that v satisfies weak
Brill-Noether if the general sheaf in My (v) has at most one nonzero cohomology group. We show that given
any rank r > 2, there are only finitely many Mukai vectors of rank r on K3 surfaces of Picard rank one where
weak Brill-Noether fails. We give an algorithm for finding the potential counterexamples and classify all such
counterexamples up to rank 20 explicitly. Moreover, in each of these cases we calculate the cohomology of the
general sheaf. Given r, we give sharp bounds on n, d, and a that guarantee that v satisfies weak Brill-Noether.
As a corollary, we obtain another proof of the classification of Ulrich bundles on K3 surfaces of Picard rank
one. In addition, we discuss the question of when the general sheaf in My (v) is globally generated. Our
techniques make crucial use of Bridgeland stability conditions.

1. INTRODUCTION

Brill-Noether theory for line bundles on curves has played a central role in developing algebraic geometry
since the 19th century (see [2]). However much less is known about Brill-Noether theory for higher rank
vector bundles on curves. For vector bundles on higher dimensional varieties, even the first step of Brill-
theory, computing the cohomology of the generic vector bundle in a moduli space, is extremely challenging.
Indeed, this step has been carried out in full for very few surfaces, such as minimal rational surfaces and
certain del Pezzo surfaces [7, 9, 16, 22].

The problem of computing the generic cohomology of stable sheaves underlies many of the fundamental
problems in the field, ranging from the construction of theta divisors and Ulrich bundles to classifying Chern
characters of stable bundles and understanding the birational geometry of the moduli space of sheaves (see
[8, 11, 34]). Moreover, vanishing of higher cohomology and global generation play key roles in the S-duality
conjecture (see [26]). In this paper we undertake the problem of computing the cohomology of a generic
sheaf in a moduli space of stable sheaves on a K3 surface of Picard rank one. The Brill-Noether theory for
K3 surfaces has been investigated by numerous authors (see for example [24, 27, 39]).

Weak Brill-Noether. Let X be a K3 surface such that Pic(X) =~ ZH with H?> = 2n. Let v be a Mukai
vector with v2 > —2 and let Mp(v) denote the moduli space parameterizing S-equivalence classes of
Gieseker semistable sheaves on X with Mukai vector v.

We say that v satisfies weak Brill-Noether if the general sheaf £ € My (v) has at most one nonzero
cohomology group. If v satisfies weak Brill-Noether, then the Euler characteristic and the slope completely
determine the cohomology of the general sheaf in M (v). In this paper, we study the problem of charac-
terizing the Mukai vectors v that satisfy weak Brill-Noether. Our main qualitative result is the following.

Theorem 1.1. Let X be a K3 surface such that Pic(X) =~ ZH with H*> = 2n. Let v = (r,dH,a) be a
Mukai vector with v: > —2, r > 2 and d > 0.

(1) For each v = 2, there exists a finite set of tuples (n,r,d,a) for which v fails to satisfy weak
Brill-Noether (Theorem 8.8).

(2) If n = r, then v satisfies weak Brill-Noether (Theorem 8.3).

(3) If a < 1, then v satisfies weak Brill-Noether (Proposition 4.2, Proposition 9.13).
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@ Ifd=r [%J + 2, then v satisfies weak Brill-Noether (Theorem 8.5).

Remark 1.2. Let E be a stable locally free sheaf on a K3 surface of Picard rank one. By Serre duality,
to compute the cohomology of F, we may assume that d > 0. Moreover, if d = 0 and F has a section,
then £ =~ Ox. Hence, it suffices to consider Mukai vectors with d > 0. In this case, stability implies that
H?(X, E) = 0, so we need to compute H%(X, E) and H(X, E).

Example 1.3. The linear system |H| defines a morphism f : X — P"*! The pullback of the tangent
bundle f*TP"*! is a spherical stable bundle on X with Mukai vector

vo=(n+1,(n+2)H,n?+3n+1).
The pullback of the Euler sequence
0— Ox — (’)X(H)@(””) - f*TIP’"H =0

shows that h?(f*TP"+1) = n? + 4n + 3 and R (f*TP"*1) = 1. Since f*TP"*! is the unique point in its
moduli space, v fails weak Brill-Noether. Consequently, parts (2) and (4) of Theorem 1.1 are sharp.

In Section 9, we classify the boundary cases in Theorem 1.1. In Theorems 9.9 and 9.11, we classify the
Mukai vectors v = (r,dH, a) with n < r < 3n such that v fails weak Brill-Noether and we compute the
cohomology of the general sheaf for these v. Our main result in this direction is the following.

Theorem 1.4. [Theorems 9.9 and 9.11] Let X be a K3 surface such that Pic(X) = ZH with H> = 2n.
Let v = (r,dH,a) be a Mukai vector such that n < r < 3n and d > 0. Then v fails to satisfy weak
Brill-Noether if and only if v belongs to one of the following three cases:

() v=(n+r2 () +r)H, (7%1)2 +n), wherery |n+1land1 <1y <+/2n;

1
(2) v = (r,(r +1)H,nr + 2n) with2n < r < 3n;
(3) v=(3n,(3n +2)H,3n + 4n + 1) withn > 1.

In Theorem 9.14, we classify all the Mukai vectors with a = 2 for which v fails weak Brill-Noether.
We find that there is a unique pair (n,v), with n = 1 and v = (5,3H,2), which fails to satisfy weak
Brill-Noether. Hence, part (3) of Theorem 1.1 is also sharp.

More importantly, given a rank r, we provide an easy-to-implement, purely-numerical algorithm for
enumerating a finite set of Mukai vectors that contain all the Mukai vectors v of rank r that do not satisfy
weak Brill-Noether. We do this by means of Theorem 6.4, which asserts that if v fails weak Brill-Noether,
then there must exist a spherical character vy satisfying certain inequalities with respect to v. For each rank,
a computer can easily list the Mukai vectors v for which such a v; exists. Similarly, for a given Mukai
vector v, it is easy to verify whether the conditions of Theorem 6.4 are satisfied.

Our algorithm then provides a canonical resolution of the general sheaf in My (v) for each Mukai vector
that fails weak Brill-Noether. In the hundreds of examples we have studied, this resolution allows one to
compute the cohomology of the general sheaf in M (v). In Section 11, we list all the pairs (n, v) where v
is a Mukai vector of rank at most 20 failing weak Brill-Noether on Picard rank one K3 surface of degree 2n,
and in each case, we compute the cohomology of the generic sheaf in the corresponding moduli spaces.

Applications to Ulrich bundles. An immediate consequence of Theorem 1.1 (3) is a classification of stable
Ulrich bundles on K3 surfaces of Picard rank 1. The problem of constructing and classifying Ulrich bundles
has received a lot of attention in recent years. Aprodu, Farkas and Ortega have constructed Ulrich bundles
on K3 surfaces of Picard rank 1 [1]. More generally, Faenzi [13] has constructed Ulrich bundles on arbitrary
K3 surfaces.

Proposition (4.4). Let X be a K3 surface with Pic(X) = ZH. There exists an Ulrich bundle of rank r with
respect to mH if and only if 2 | rm. Moreover, when an Ulrich bundle of rank r exists, it has Mukai vector

v ; H(r, (3T2m) H,r(2m?n — 1)) In particular, there exists an Ulrich bundle of any rank r = 2 with respect
to .
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Global generation. When v satisfies weak Brill-Noether, we also study when the general sheaf in M (v)
is globally generated. Our qualitative result can be summarized as follows.

Theorem 1.5. Let X be a K3 surface such that Pic(X) =~ ZH with H> = 2n. Let v = (r,dH, a) be a
Mukai vector withv? > -2, r >2,d > 0and a > 2.

(1) If n = 2r, then the generic sheaf in My (v) is globally generated (Proposition 8.10).
2) Ifn>1landd =r [2—7” +2, then the generic sheaf in M (v) is globally generated (Theorem 8.12).

When n = 1, H is not very ample, but defines a two-to-one map onto P2. As a consequence, the twists of
the ideal sheaf of a point I,,(H ) and I,,(2H ) are not globally generated. This complicates the answer when
n = 1. See Theorem 8.12 for a precise statement in that case.

Remark 1.6. Being globally generated is not an open condition. However, it is an open condition among
sheaves with vanishing higher cohomology. Let E be a sheaf with vanishing higher cohomology. If a < 0,
then h(X, F) < r and E % 0%, hence E cannot be globally generated. It is easy to classify £ witha = 1
which are globally generated (see Remark 8.14). Hence, we may restrict our attention to Mukai vectors with
az=2.

In parallel to our approach to the weak Brill-Noether property, we give an easy-to-implement, numerical
algorithm for checking that the general sheaf in M (v) is globally generated. Theorem 6.4 provides a set
of inequalities such that if v does not satisfy these inequalities and the general sheaf in My (a,dH,r) is
locally free, then the general sheaf in M x (v) is globally generated. These conditions are easy to verify for
any given Mukai vector.

Ample bundles. If F is a globally generated vector bundle, then E(H) is globally generated and ample.
Therefore, Theorem 1.5 also gives a certificate for the ampleness of bundles on a K3 surface of Picard rank
one. The following is an immediate consequence of Theorem 1.5.

Corollary 1.7. Let X be a K3 surface such that Pic(X) =~ ZH with H?> = 2n. Letv = (r,dH,a) be a
Mukai vector withv? > -2, 7> 2,d > 0anda > 2. Let vy = (r,(d + 7)H,a + (2d + r)n).

(1) If n = 2r, then the generic sheaf in Mg (v) is ample.

(2) Ifn > land d > r |2 | + 2, then the generic sheaf in My (vy) is ample.

The strategy. Let us take a moment to briefly outline our approach, in which Bridgeland stability plays
a central role. Let Ia denote the ideal sheaf of the diagonal in X x X. We show in Lemma 3.1 that the
dual of the Fourier-Mukai transform F' := CIJ%_, (E)Y controls the vanishing of cohomology and global
generation of E. More precisely, we show that if F' is a coherent sheaf, then the higher cohomology of E
vanishes, and if, furthermore, F' is locally free, then E is globally generated. This reduces understanding
the higher cohomology and global generation of E to understanding properties of F'.

Minamide, Yanagida and Yoshioka in [30] exhibit a chamber C in the Bridgeland stability manifold, such
that for a Bridgeland stability condition o € C in this chamber, the Bridgeland moduli space M, (r,dH, a) is
isomorphic to the Gieseker moduli space M (a, dH,r) via the correspondence sending E to @%ﬁ <(E)Y.
Hence, if the generic sheaf E in the moduli space My (r, dH, a) is Bridgeland o-semistable, then the higher
cohomology of E vanishes. Furthermore, if the generic member of My (a,dH,r) is locally free, then F
is globally generated. The third author has classified the moduli spaces of sheaves on K3 surfaces whose
generic member is not locally free (see [38] and Proposition 2.3).

This translates the question of weak Brill-Noether into the problem of determining when the generic sheaf
E in Mg (v) is still o-semistable for o € C. If not, then there must be a totally semistable Bridgeland wall
between the Gieseker chamber and C. Using the classification of totally semistable walls in [3], we obtain a
numerical algorithm for deciding when the generic sheaf is o-semistable. This provides a finite set of Mukai
vectors which fail weak Brill-Noether.

Moreover, if the generic F fails to be o-semistable, the largest strictly semistable wall provides a canoni-
cal resolution of E. In practice, this allows one to compute the cohomology of the generic sheaf even when
it does not vanish. In Section 10, we develop general techniques for computing the cohomology.
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Further Directions. Our investigations here point the way towards a new approach to the (weak) Brill-
Noether problem in general, at least for surfaces. Without further theoretical developments, our techniques
here can be applied immediately to the following question.

Problem 1.8. Classify the Mukai vectors v that satisfy weak Brill-Noether on K3 surfaces of higher Picard
rank.

Lemma 3.1 and Proposition 3.4 are applicable when the K3 surface has higher Picard rank; however, the
classification of totally semistable walls from [3] becomes much more intricate as the rank of the Picard
group increases.

The necessary ingredients to apply our techniques to other surfaces, at least those of Kodaira dimension
zero, largely exist or are easily obtained. Lemma 3.1 generalizes to arbitrary surfaces, and the classification
of (totally semistable) Bridgeland walls has been carried out for abelian surfaces in [42], for Enriques sur-
faces in [32], and for bielliptic surfaces in forthcoming work of the second author. The final ingredient in
our technique is Proposition 3.4 which applies already to abelian surfaces [30]. Generalizing each of these
results to arbitrary surfaces and applying our technique would solve the following problem.

Problem 1.9. On an arbitrary surface, classify the Mukai vectors of stable sheaves that satisfy the weak
Brill-Noether property.

Even for Picard rank one K3 surfaces, our work addresses only the first step towards a higher rank Brill-
Noether theory. Now that we have a clearer picture of the generic cohomology, the next step is the study of
the cohomology jumping loci and their geometry.

Problem 1.10. Describe the cohomology jumping loci in My (v), e.g. their non-emptiness, number of
components, dimension, and singularities.

The general structure of cohomology jumping loci for moduli spaces of sheaves on arbitrary varieties has
been studied in [12] and on K3 surfaces specifically in [23, 24] under various assumptions. By studying the
possible Harder-Narasimhan filtrations along Bridgeland walls that are not necessarily totally semistable,
using the dimension estimates from [32], it should be possible to push our technique further in order to
systematically study these jumping loci, also known as Brill-Noether loci.

A related topic in the study of vector bundles and their moduli is the question of ampleness. Recently,
Huizenga and Kopper have classified moduli spaces whose general member is globally generated and ample
on minimal rational surfaces [18]. It would be interesting to carry out their program on K3 surfaces.

Problem 1.11. Classify the Mukai vectors v for which the general sheaf in My (v) is ample.

Another problem coming out of our classification of Mukai vectors that satisfy weak Brill-Noether is the
following.

Problem 1.12. Compute the cohomology of the tensor product of two general stable sheaves on a K3
surface.

This problem is central to the study of the S-duality conjecture. To the best of our knowledge, the solution
of this problem on surfaces is known in full generality only for P2 [10].

Organization of the paper. In Section 2, we introduce basic facts concerning moduli spaces of sheaves on
K3 surfaces and Bridgeland stability. In Section 3, we explain our main strategy in more detail and introduce
the totally semistable Bridgeland walls that will play a crucial role in our analysis.

In Section 4, we prove numerical restrictions on the totally semistable Bridgeland walls that arise. This
basic analysis suffices to classify Ulrich bundles on K3 surfaces of Picard rank one in Proposition 4.4. In
Section 5, following [3], we describe for a generic sheaf the Harder-Narasimhan filtration along the totally
semistable Bridgeland walls that arise.

In Section 6, we derive the final set of inequalities that govern our study of the weak Brill-Noether and
global generation problems. The main result is Theorem 6.4. In Section 7, we show that if a Mukai vector
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(r,dH,a) satisfies weak Brill-Noether, then the Mukai vector (r, dH, a’) also satisfies weak Brill-Noether
for any a < o’ . This reduces our initial search for Mukai vectors that fail weak Brill-Noether to those with
maximal a.

In Section 8, we prove our main qualitative theorems. The main results are Theorems 8.3, 8.5 and 8.8. In
Section 9, we classify the boundary cases of Mukai vectors that fail weak Brill-Noether.

In Section 10, we introduce general techniques for computing the cohomology of the general sheaf in
cases when v does not satisfy weak Brill-Noether. The main tool is the canonical resolution coming from
the Harder-Narasimhan filtration with respect to Bridgeland stability along a wall.

Finally, in Section 11, we classify all Mukai vectors with rank at most 20 that fail to satisfy weak Brill-
Noether and compute the cohomology of the general sheaf.

Acknowledgments. We would like to thank Arend Bayer, Aaron Bertram, Jack Huizenga, John Kopper
and Emanuele Macri for many valuable conversations. In addition, we thank the anonymous referee for
encouraging us to prove the full equivalence in Lemma 3.1.

2. BACKGROUND RESULTS

In this section, we review the necessary background concerning moduli spaces of sheaves on K3 surfaces
and Bridgeland stability conditions. Some excellent references for the material on classical stability are
[14, 19].

2.1. The Mukai lattice. Let X denote a K3 surface and let NS(X') denote the Néron-Severi space of X.

The algebraic cohomology H i’:lg(X ,Z) of X decomposes as

5e(X,Z) = H)(X,Z) ®NS(X) @ H'(X,Z).

Let DP(X) denote the bounded derived category of coherent sheaves on X and let K (X) denote K -group

of X. Define the Mukai vector v : K(X) — H}, (X, Z) by

V(E) := ch(E)\/td(X) = (r(E), c1(E),r(E) + cha(E)) € Hy, (X, Z),
where ch(E) is the Chern character of F and td(X) is the Todd class of X. Given two Mukai vectors
v = (r,c,a) and v/ = (1, ,d’), the Mukai pairing is defined by
{(r,e,a),(r',d,;d)y=c-d —rd —r'acZ,
where — - — is the intersection pairing on H2(X, Z). The Mukai pairing has signature (2, p(X)) and satisfies
(V(E),v(F)) = =X(E,F) = = Y (- 1) ext/(E, F)
i
for all B, F' € D(X), where ext!(F, F) = dim(Ext!(E, F)). The pair (H*

Ge(X,Z),{(_, ) is called the
algebraic Mukai lattice. Given a Mukai vector v e H ;klg (X, 7Z), we denote its orthogonal complement by

L (X,Z) | (v,w)y=0}.

vii={weH},

Sometimes we will need to take the dual Mukai vector vV of a given Mukai vector v = (7, ¢, a) defined by

vY 1= (r,—c,a). A Mukai vector v is primitive if it is not divisible in H}},(X,Z). A Mukai vector v is
spherical if v> = —2 and isotropic if v = 0. We say a primitive Mukai vector v = (r, ¢, a) is positive if
v2 > —2, and either

(1) r > 0;or

(2) r =0, cis effective, and a # 0; or
B)r=c=0anda > 0.

We will see that positive Mukai vectors and their multiples are the Mukai vectors of semistable sheaves.



6 IZZET COSKUN, HOWARD NUER, AND KOTA YOSHIOKA

2.2. Gieseker and slope semistability. Let H be an ample divisor on X. All sheaves in this paper will be
coherent and pure dimensional. Let E be a pure d-dimensional coherent sheaf on X. Then the Hilbert and
reduced Hilbert polynomials of F are defined by
d
m P E.H(M
Pg p(m) = x(E(mH)) = aq- g + lLot, pgu(m)= ’ad(),
respectively. A sheaf E is H-Gieseker semistable if for every proper subsheaf F' < E, pp (m) < pg g (m)
for m » 0. The sheaf E is H-Gieseker stable if the inequality is strict for every proper subsheaf F'.
Given a torsion-free sheaf F, define the H-slope pf(E) of E by

chi(F)-H

A sheaf E is slope or pr-semistable if for every proper subsheaf F' — E, ug(F') < pg(E). The sheaf is
slope or i r-stable if the inequality is strict for every proper subsheaf F'. Using Hierzebruch-Riemann-Roch
to write out pr i (m) for a torsion-free sheaf E, one sees that the first term of pg g (m) is p(E), so we
have implications

prr-stable = stable = semistable = i z7-semistable.

Every torsion-free sheaf E' admits a unique Harder-Narasimhan filtration
O0=FycFkFic---cE,=F
such that the successive quotients F; = F;/E; 1 are semistable with

pF«;,H(m) > pFiflyH(m)

for all + and m » 0. Furthermore, a semistable sheaf admits a Jordan-Hélder filtration into stable sheaves.
While the Jordan-Holder filtration need not be unique, the associated graded object is unique. Two semistable
sheaves with the same associated graded object are called S-equivalent. There exists a projective moduli
space M x g (V) parameterizing S-equivalence classes of H-Gieseker semistable sheaves of Mukai vector v
[15, 28, 29]. When the surface X or the ample H is implicit, we will denote the moduli space simply by
Mg (v)or M(v).

When X is a K3 surface, the basic properties of the moduli spaces are well-understood. We summarize
the key facts that will play a crucial role in our analysis.

Theorem 2.1. Let X be a K3 surface over an algebraically closed field k, and let v = mvg e H, ;“lg(X ,Z),
where vq is a primitive positive Mukai vector and m > 0. Then Mx g (V) is non-empty for any ample
divisor H. If H is in-fact generic! with respect to v, then we also have the following claims.

(1) The moduli space Mx g (v) is non-empty if and only if v3 > —2.

() If m = 1orv3 > 0, then dim Mx g (v) = v + 2.

(3) When v3 = —2, then M x,H(V) is a single point parameterizing the direct sum of m copies of a

spherical bundle. When v3 = 0, then dim Mx g (v) = 2m.
(4) When vg > 0, My (v) is a normal irreducible projective variety with Q-factorial singularities.

We have collected in Theorem 2.1 the cumulative and combined work of many mathematicians. In the
form presented here, the first claim is proven in [40, Theorems 0.1 and 8.1]. When H is generic, (1) and (2)
follow from the more general result Theorem 2.6 below, while (3) is [4, Lemmas 7.1 and 7.2]. Finally, (4)
is [20, 35, 36].

The next two theorems record when M x 7 (v) contains p-stable sheaves or locally free sheaves.

Proposition 2.2 ([38, Remarks 2.2 and 3.3]). Let X be a K3 surface with Pic(X) = ZH and H? = 2n.
Let v = (Ir,ldH,a) € H},(X,Z) be a Mukai vector with ged(r,d) = 1 and Mx u(v) # @. Then
Mx g (V)" = @ if and only if

1We refer to [33] for the definition of generic. It always exists when vy is positive.
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(1) r4 nd?+1,v2 =0, and v is not primitive; or
() 7| nd?* + 1 and v? < 22

Proposition 2.3 ([38]). Let X be a K3 surface with Pic(X) = ZH and H? = 2n. Letv = (r,dH,a) €

H}, (X, Z) be a Mukai vector. Then M, (v) consists only of non-locally free sheaves if and only if

(1) v? > 0 and either
(@) v = (1,0, —1)eP = (1,IpH, Ip*n — 1) for some l,p € Z, or
(b) v = (1,0, —1)eP? = (1,pH, p?>n — 1) for some |, p € Z; or
() v2 =0andv = m(r3,rodoH, d?n) for m,ro, dy € Z such that d>n — roag = —1.

Proof. If v is primitive, then the result follows directly from [38, Prop. 0.5]. If v is non-primitive, then the
proof of [38, Lemma 3.1] still gives the result without assuming primitivity. U

2.3. Bridgeland stability conditions on K3 surfaces. Let .4 be an abelian category which is the heart of
a bounded t-structure on DP(X). The central charge Z : K(A) — C is a group homomorphism which
we assume factors through v : K(A) — Hj, (X, Z). Asin [5], a Bridgeland stability condition is a pair
o = (Z, A) satisfying the following conditions:
(1) For every nonzero object E € A, Z(E) = re"™® for some 7 > 0 and ¢ € (0, 1]. This condition
allows us to define the o-slope of a nonzero object E € A by

R(Z(E))
E)y=——"-——=.
A nonzero object E' € A s called o-semistable if for every proper subobject F' — E in A, i (F) <

to (E).
(2) The pair (Z,.A) satisfies the Harder-Narasimhan property, namely that every object has a finite
Harder-Narasimhan filtration with o-semistable quotients of decreasing slopes.
(3) For a fixed norm | - | on H}), (X, Z), there exists a constant C' > 0 such that for all o-semistable £
we have |Z(E)| = C|v(E)|.
A Bridgeland stability condition o is called geometric if for every point z € X, the skyscraper sheaves k(z)
are o-stable. We now give the main example of a geometric Bridgeland stability condition [6].

Example 2.4. Let 3,w € NS(X )R be two real divisor classes, with w ample. For E € DP(X), define
Zso(E) = (1% v (E)).

If E has Mukai vector (7, ¢, a), then we can write Zg () more explicitly as

2 _ 2
Z/BM(E):—a—rﬂ ~ +c-f+iw-(c—rp).
Let Ag, be defined by
e HP(E)=0forp¢ {—1,0},
Agpi=4 E€D(X) | o HHE)e Fao, :
° HO(E) € 7-54'0

where F3 , and 73, are defined by
(1) Fg,, is the set of torsion-free sheaves I’ such that for every subsheaf F’ "< F we have SZ 57w(F/ ) <
0;
(2) T3, is the set of sheaves 1" such that, for every non-zero torsion-free quotient 7' — (), we have
%Z@M(Q) > 0.
As long as (3, w) satisfies (e57™ v ) € Rx for all spherical vi = (7, ¢, a) with r > 0, which is guaranteed
if w? > 2, the pair 08w = (Z8w, Agw) is a geometric Bridgeland stability condition [6, Lemmas 6.2 and
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6.3]. Furthermore, up to group actions, all geometric Bridgeland stability conditions on a K3 surface arise
this way (see [6, Proposition 10.3]).2

In particular, if Pic(X) = ZH, where H is the ample generator, and we write § = sH and w = tH, then
the geometric Bridgeland stability conditions of form o, ;) := osp,t correspond to points in the subset HO

of the upper half-plane H = {(s,t) € R?|t > 0} defined by

(1) - ) {0 ] 0 v)eRa b

V1€A+(X)

where AT (X) is the subset of spherical Mukai vectors v with rkv; > 0. Here we must take ¢ > 0 to
ensure that w = tH is ample.

2.3.1. Walls. The set Stab(X) of Bridgeland stability conditions on X has the structure of a complex man-
ifold [5, Corollary 1.3]. Let Stab'(X) denote the connected component of Stab(X) containing geometric
stability conditions. For a fixed Mukai vector, the space StabT(X ) admits a well-behaved wall and cham-
ber structure that will be the key to our results. More specifically, given a Mukai vector v € H* (X, 7Z),

alg
there exists a locally finite set of walls (real codimension one submanifolds with boundary) in StabT(X )
depending only on v, with the following properties (see [6, 37] for the (1) and (2)):

(1) When o varies in a chamber, that is, a connected component of the complement of the union of
walls, the sets of o-semistable and o-stable objects of class v do not change. If v is primitive, then
o-stability coincides with o-semistability for o in a chamber for v.

(2) When o lies on a wall W c Stab'(X), there is a o-semistable object of class v that is unstable in
one of the adjacent chambers and semistable in the other adjacent chamber. If o = (Z, A) lies on a
wall, there exists a o-semistable object E' of Mukai vector v and a subobject F' = F in A with the
same o-slope but v(F') ¢ Rv.

(3) Assume Pic(X) = ZH, where H is the ample generator with H? = 2n. Then writing 8 = sH and
w = tH, the stability conditions described in Example 2.4 correspond to points (s, ¢) in the subset
HO of the upper half-plane H defined in (1). Let v(E) = (r,dH, a). If an object F' of Mukai vector
v(F') = (r1,d1 H, ay) destabilizes F, then there are two possibilities. If 1d = rd;, or equivalently
i (E) = p(F), then the wall determined by F' is a vertical half-line

dy — ard
S = M’ t>0.
ra—ray
Otherwise, the wall determined by [’ is a semi-circle C:((fg)) with center («, 0) and radius p given
by
ral — ria ard — ady
(2 p?=a?—

«= 2n(rdy —rd)’ n(rdy —rid)’

The distinct walls are disjoint and nested [25, Theorem 3.1].

(4) Given a polarization H € Amp(X) and the Mukai vector v of an H-Gieseker semistable sheaf,
there exists a chamber G for v, the Gieseker chamber, where the set of o-semistable objects of class
v coincides with the set of H-Gieseker semistable sheaves [6, Prop. 14.2].

Definition 2.5. Let v € H}}, (X, Z). A stability condition o € Stab'(X) is called generic with respect to v

if it does not lie on any wall for v.

2Since we do not make any significant computational or theoretical use of these group actions here, we omit their definition.
See [4, 6] for more details.
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2.3.2. Moduli stacks and moduli spaces. For o € Stab'(X), let M, (v) be the moduli stack of o-semistable
objects E with v(E) = v and let MZ (v) the open substack of o-stable objects. By [37, Thm. 4.12], M, (v)
is an Artin stack of finite type. We say two objects E; and F in M (v)(k) are S-equivalent if they have the
same Jordan-Holder factors. For o € Stab'(X) generic with respect to v, M (v) (resp. M2 (v)) admits
a projective coarse moduli scheme M, (v) (resp. MZ(v)), which parameterizes S-equivalence classes of
o-semistable (resp. o-stable) objects E with v(E) = v (see [4] and [30]).

The following result, which generalizes Theorem 2.1, gives precise conditions for nonemptiness of the
moduli spaces M, (v) and is proven in [3] and [4].

Theorem 2.6 ([3, Thm. 2.15],[4, Theorem 1.3]). Let X be a K3 surface over k, and let o € StabT(X) bea
generic stability condition with respect to v.= mvg € H:lg(X, 7)), where v is primitive and m > 0.

(1) The coarse moduli space M, (v) is non-empty if and only if vi > —2.
(2) Either diim My (v) = v + 2 and M:(v) # @, orm > 1 and v} < 0.
(3) When Vg > 0, M,(v) is a normal irreducible projective variety with Q-factorial singularities.

2.3.3. Wall-crossing and Birational transformations. There is a beautiful correspondence between crossing
Bridgeland walls and birational transformations between the corresponding moduli spaces, as originally
envisioned in [6]. In this subsection, we summarize the relevant details of this correspondence from [3],
where it is shown how to classify the geometric behavior at a wall in terms of a certain hyperbolic lattice.

Letve H} o (X,Z) with v > 0, and let W be a wall for v. We will say a given Mukai vector vy induces
W if W is a connected component of the set { o € Stab'(X) ’ ZZ:((V‘?) eR } We say o¢ € W is generic if

it does not belong to any other wall, and we denote by o, and o_ two generic stability conditions nearby W
in two opposite adjacent chambers. Then all o -semistable objects are still op-semistable, but the existence
of op-stable objects dictates much of the birational behavior exhibited by crossing VW. While Bayer and
Macri achieved a complete classification of walls, and the associated birational transformation, we will only
be interested in totally semistable walls. Recall that a wall W is called totally semistable if M (v) = &
for any o9 € V. That is, every object in M, (v) becomes strictly oo-semistable. Their result gives the
following classification of totally semistable walls.

Proposition 2.7. Let W be a wall for v with v> > 0. Then W is totally semistable if and only if W is
induced by either

(1) a spherical class vy such that {v,vi) <0, or
(2) an isotropic class vy such that (v,vi) = 1.

3. STRATEGY

In this section, we describe our approach to studying the weak Brill-Noether property and global genera-
tion. Let X be a K3 surface with Pic(X) = ZH, H? = 2n. Let E be a stable sheaf with the Mukai vector
v(E) = (r,dH,a) € H (X,Z),d > 0and x(F) = r + a > 0. By Serre duality and stability,

alg
H*(X,E) ~ Ext*(Ox, E) ~ Hom(E,Ox)" = 0.

Hence, the weak Brill-Noether property reduces to the vanishing of H'(X, E) for a generic sheaf E ¢
My (v). We will also investigate for which v, the generic sheaf ' € My (v) is globally generated, equiva-
lently the evaluation map

3) f:H*(X,E)® Ox — E,

is surjective.

We will study the Brill-Noether and global generation questions using a certain Fourier-Mukai transform.
Let I be the ideal sheaf of the diagonal A < X x X, let 7 and 75 denote the two projections from X x X
to the two factors and let <I>§(A_> + : DP(X) — DP(X) be the integral functor whose kernel is Ia. The
fundamental fact behind our approach is the following result.
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Lemma 3.1. Let E be a coherent sheaf with no zero-dimensional torsion and set I := <I>§(A_) <(E)Y. Then

(1) Fisacoherent sheafif and only if H'(X, E) = 0 fori > 0 and E is generically globally generated.

(2) F is a torsion-free sheaf if and only if H'(X, E) = 0 fori > 0 and E fails to be globally generated
in at most finitely many points.

(3) F is alocally free sheaf if and only if H'(X, E) = 0 fori > 0 and E is globally generated.

Proof. For each E € Coh(X), tensoring the exact sequence
0—In - Oxxx > 0aA—0

by 7} E and pushing forward by 72 gives the exact triangle
4) %2 (E) > RI(X,E)®Ox — E
inducing the long exact sequence

0 —— HOPR2 (B)) — HYX,E)®O0x —L— E
®) —— HY(®2, (BE) —— HY(X,E)® Ox —— 0

— HA®2 (E) —— H*X,E)®Ox — 0.
Note that f in (5) is the evaluation map from (3). By definition, F'¥ = @ﬁ?_} (E)VY = <I>§(A_) <(E), so
H(D2 | (E)) = HI(FY) = Ext'(F, Ox).

For the first claim of the lemma, we observe that if F is a coherent sheaf, then Ext'(F, Ox) a coherent
sheaf supported in codimension at least ¢, so Hi(<1>§?_) (E)) is torsion for 7 > 0. The exact sequence (5)
then implies that H* (X, F) = 0 for i > 0 and that the cokernel of f, Ext!(F,Ox) is torsion, so E is
generically globally generated. Conversely, if H*(X, E) = 0 for i > 0, then dualizing the exact triangle (4)
gives the exact triangle

EY - HYX,E)"® Ox — F
whose long exact sequence immediately gives
HI(F) = HTY(EY) = Ext'TH(E, Ox)

fori > 1. As E has no zero-dimensional torsion, Ext?(E, Ox) = 0 for ¢ > 2 by [19, Proposition 1.1.10],
so HY(F) = 0 fori > 1. We automatically have H*(F) = 0 for i < —1, and since f is assumed to be
generically surjective, fV: Hom(E,Ox) — H%(X,E)" ® Ox is injective so that H~1(F) = 0 as well.
Thus F'is a coherent sheaf.

If F is torsion free coherent sheaf, then Ext! (F, O ) is 0-dimensional, and by the first claim H'(X, E) =
0 for i > 0. Thus f is surjective in codimension 1. Conversely if H(X, E) = 0 for4 > 0 and f is surjective
in codimension 1, then F'is a coherent sheaf (by the first part) such that £ xt! (F, Ox) is 0-dimensional (by
(5)). As Ext*(F,Ox) = 0, F must be torsion-free [19, Proposition 1.1.10].

Finally, if F is a locally free sheaf then H?(X, E) = 0 for i > 0 by the first part and Ext'(F,Ox) = 0
fori > 0, so f is surjective. Conversely, if H*(X, E) = 0 fori > 0 and f is surjective then Ext'(F, Ox) =
Hi(D'2  (F)) = 0fori > 0. Thus F is locally free. O

Remark 3.2. The implications in Lemma 3.1 translating a property of F' into a property of E are true
with no assumption about the torsion of E. The condition on zero-dimensional torsion is there to prevent
trivial obstacles to the opposite implication as zero-dimensional sheaves have vanishing higher cohomology
without F' necessarily being a sheaf. For example, from (5) we see that for a point p € X with skyscraper
sheaf C,, <I>§(A_) x(Cp) = I, the ideal sheaf of p. Thus I’ = I} is a complex of positive amplitude.
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Remark 3.3. Let us remark further that the weak Brill-Noether property does not imply generic global
(E)Y to be a sheaf. For example, let X

generation so that both conditions are indeed necessary for @%ﬁ b
be a K3 surface with Pic(X) = ZH, where H? = 2. For a general E € My (4,5H,5), we have an exact

sequence

where v(Iz(2H))

0— Ox(H)® - E - Iz(2H) — 0

= (1,2H,—1). Hence H*(X, E) = 0 for i > 0 but the evaluation map f: H(X,E) ®

Ox — FEis not generically surjective since it factors surjectively through Oy (H)®3 with cokernel I7(2H)

and kernel a rank six locally free sheaf K. From (5) it follows that { !

HO (q)g?_) <(E) V) sits in a short exact sequence

(v}

X—-X

(E)

) - ox(-

0 — Ext'(Iz(2H), Ox) — H° (Q)ﬁ?_}X(E)V) — Hom(K, Ox) — 0

So @g?ﬁ «(E)Y is again a complex of positive amplitude.

Lemma 3.1 reduces cohomology vanishing and global generation to understanding the object (I)é?; X
which we will study using Bridgeland stability conditions and wall-crossing. There is a distinguished cham-
ber C in Stab’(X) such that if & is a stability condition in C and E is a o-semistable object of class v, then
<I>§(A_) «(E)Y is a Gieseker semistable sheaf of Mukai vector (a, dH, ). We now make this precise.

Recall from Example 2.4 that, up to the natural group actions, any geometric Bridgeland stability condi-
tion o is equal to 0, 4) := oy gy for some (s,t) in the subset HC of the upper-half plane defined in (1). By
[43, Prop. 2.16], H” contains the regions U seen in Fig. 1 and defined by

ek )

(6)

Furthermore, I,/ (z € X) is a o, 4)-stable object for (s

(s,t) e U-_.

U+:={(St

FIGURE 1.

The regions U
t

H) and

(E)Y,

JeUiand I, (re X)isa 0 (s,t)-Stable object for

Given the Mukai vector v = (r,dH, a) of a stable sheaf F, let C} be the semi-circular wall defined by

fis ) (1 [1])

(N

= p(s,) (E), equivalently by

t2+s(s—d(i§2)>=0
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Observe that C{j contains the origin, and moreover, if 1 » s > 0 and t > /s (ﬁ - s), then

s,y (L [1]) > ps,e)(E), so we let C be the chamber containing these points and whose closure contains

C{. The following result is crucial for studying q)g?a ~(E)Y.

Proposition 3.4 ([30, Thm. 4.9] ). Assume that (s,t) € C. Then we have an isomorphism
My, . (r,dH,a) = Mg(a,dH,r)

T(s,t)

by sending E € M,,_, (r,dH,a) to @g?_)X(E)V.

(s,)

Let 0 < so « 1 and ¢p > 0. Then oy, 4, is in the Gieseker chamber G, and the Bridgeland moduli space
M, ., (r,dH, a)is isomorphic to the Giescker moduli space My (r, dH, a) of semistable sheaves. If there
is a path in U from the Gieseker chamber to C which does not intersect any totally semistable walls, then the
generic £ € My (r,dH, a) is 0(,)-semistable for (s,t) € C. Proposition 3.4 then implies that the Fourier-
Mukai transform CI)ﬁ?H <(E)Y € Myg(a,dH,r). In particular, (I)éé‘; (E)Y is a torsion-free coherent sheaf
so that H*(X, E) = 0 for i > 0 and the evaluation map is surjective in codimension one by Lemma 3.1. If,
moreover, the generic sheaf in My (a,dH, ) is locally free, then the generic E € My (r,dH, a) is globally
generated.

FIGURE 2. The walls between G and C
t A

Yo,

S

Otherwise, since the Bridgeland walls are nested semicircles, there exists a totally semistable wall be-
tween C) and the Gieseker chamber G as in Fig. 2. In order to study this totally semistable wall we must
study the following set of Mukai vectors:

Definition 3.5. For a Mukai vector v = (r,dH,a) with d > 0, let Dy, be the set of Mukai vectors vi =
(r1,d1H, ay) such that
d—ad
) V2= 2 (e=0,1), d>dy >0, (v,vi)<v2+2, and 25— %% .
rid — rd;

The following proposition motivates the definition above.

Proposition 3.6. Let v = (r,dH, a) be a Mukai vector such that v > 0, d > 0, and v> > —2. Then the
following conditions are equivalent.



THE COHOMOLOGY OF THE GENERAL STABLE SHEAF ON A K3 SURFACE 13
(1) Mu(v) n M, (v)# @ for (s,t) € C.
2) Dy =9 anda = —r.

Moreover, if these conditions are satisfied and E € My (v) is generic, then H (X, E) = 0 for i > 0.

Proof. Suppose that M (v) N M, , (v) = @ for (s, t) € C, which is equivalent to the existence of a totally
semistable wall between C and G. Let the largest totally semistable wall be Cy, with vy = (r1,d1H,a1). By
Proposition 2.7, v is either isotropic (v = 0) with (v, v1) < 2 or spherical (v = —2) with (v, v;) < 0.

Moreover, since Cg contains the origin, Cy, intersects the vertical line s = 0 at the point (0,¢) with

O<t= M. As %Z(s,t)(vl)a %Z(&t)(v - Vl) > 0 for (S,t) eCY

n(rid—rdy) vy W€ have

0<dy—ris,(d—dy)— (r—ry)s,

so we must have 0 < d; < d as s can be arbitrarily small for (s,t) € Cy,. Ifdy > 0, then vy € Dy.
Otherwise, d; = 0, so from —2rja; = V% = —2efore = 0,1, we gete = 1 and r; = a; = +1. Hence,
vi =(1,0,1) = v(Ox)orvi = —(1,0,1) = v(Ox|[1]). As Ox € A5 m)[—1] for (s, t) € Uy, it cannot
define a wall for v in U.. So the only possibility is vi = v(Ox[1]). As 0 > (v, v(Ox[1])) = r + a, so
a<-—r.

For the converse, by Proposition 2.7, if a > —r, then (v,v(Ox[1])) = r + a > 0, so Ox[1] cannot
define a totally semistable wall. As D, = & as well, there cannot be any other totally semistable walls
either, so the proposition follows. O

Remark 3.7. We have a bijective correspondence

D(r,dH7a) - D(a,dH,r)
(’rlalea al) g (ahlea 7’1)‘

4., REDUCTIONS ON POSSIBLE TOTALLY SEMISTABLE WALLS

Proposition 3.6 provides a numerical criterion for determining the Mukai vectors for which the weak
Brill-Noether property might fail. We give further restrictions on the possible totally semistable walls. In
Lemma 4.1, we show that D,, does not contain isotropic vectors. Then we consider two cases, depending on
the sign of a. We first show in Proposition 4.2 that when a < 0 there is at most one totally semistable wall
between G and C, which we classify completely. Then in Lemma 4.3, we show that if a > 0, any v; € Dy,
satisfies rd — rd; > 0 and a1d — ad; > 0. We observe in Proposition 4.4 that our purely numerical
reductions already give enough information to classify Ulrich bundles.

4.1. Initial reductions on D,.

Lemma 4.1. Let v = (r,dH,a) be a Mukai vector such that v > 0, d > 0, and v?> > —2. Then Dy, does
not contain isotropic vectors.

Proof. If vi € D, satisfies v% = 0, then nd% = rya1, so r1 and a; always have the same sign and cannot
vanish.

Now we consider two cases, depending on the sign of r1d — rdy. If rid — rd; > 0, then r; > r%l = 0.
The last condition in the definition of Dy, gives a1d — ad; > 0 as well. Since a;d — ad; is an integer, in

2
particular we have a;d — 1 > ad;. Using the fact that a; = "T—Cil, we conclude that
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Hence,
1 2
(v,v1) =2nddy — ria — ra; = 2ndd; — <nd1d — ) r — TLCll
r1 dy r1
1
) :rldl ((’I“ld — rdl)nd% + T%)

1 1 1
> d2 2 > d2 2 > 2d =9
Tldl(n 1+71) r1d1< 1+71) Tldl( 171) )

a contradiction.
If instead 71d — rd; < 0, then a1d — ad; < 0. We dispense quickly with the case » = 0. In this case,

0 > rid so ry is negative and

nd?

O>a1d—ad1: — d—adl.

1

Dividing by d; > 0 and multiplying by 1 < 0, we have
nddy > ria,
and combining with 2 > (v, vy) = 2ndd; — r1a gives
ndd; > ria > 2ndd; — 2,

so nddy, = 2ndd, a contradiction.

Now we suppose that » > 0. We break this case into two, and assume first that v2 = —2. Then
= @ > 0, and
dd? d*d d dd d
O>a1d—ad1=n TR l(rdl—rld)——l
T1 T T rTr1 T
d d
= 71 (n(?”dl — Tld) — 1) s
r 1
which implies that
d
(10) (”) (rdy — 1) < 1.
™

If 71 and a; are negative, the assumption a > 0 implies that (v,v;) = 2ndd; — ra — ra; > 2, a
contradiction. Hence, we may assume that 1 and a; are positive. Expressing (v, v1), we get

v,v1) = 2nddy — r1a — ray = 2nddy — 1y - Sl —r ndi
V1 1—" 1 1— 7" . .
1

(1)
- (2ddyrr — r2d? — r2d?) — n__n (rd; —rid)? — n ,
rr r rr r

from which it’s clear that (v, v;) < 0. Substituting (10) into (11), we get

0> <V,V1> < _ (’I”dl —dT1d> T d1 I T ™
r

which is impossible since (v, vy ) is an integer.

We may therefore assume that v2 > 0. Then a1d — ad; < 0 implies that a; < ady

If ry is positive, then

I
ad1
nd% =ra <ri—.
d
The condition v2 > 0 is equivalent to g < %n, sorid — rd; < 0 gives

a d d1
- < —n<—n,
d " r 1
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which leads to a contradiction since then
2 T1 (ldl rld%n

< —= < = nd?.
ndy 7 o ndy
So we may suppose that r; and a; are negative.
Solving
2 >{v,v1) =2nddy —ria —ra;
for a, gives
2ndd; — 2 — ray
a < .
1
Hence, we have
2ndd; — 2 — ras

ag—<a<
dq 1

Multiplying by r; reverses the inequality to give

d d

ndd; = nd% <d> =ria <> > 2ndd; — 2 — ra;.

1

Thus
1< nddi <2+rag <2+a; <2,
which is an immediate contradiction because of the two strict inequalities and the fact that all quantities
involved are integers. U
Next we analyze the Mukai vectors v with a < 0 and classify all the totally semistable walls.

Proposition 4.2. Let v = (r,dH, a) be a Mukai vector such that v > 0, d > 0, and a < 0. Then there
are no totally semistable walls between G and C unless x(v) = r + a < 0, in which case the unique totally
semistable wall is defined by Ox[1]. In particular, v satisfies weak Brill-Noether.

Proof. We begin by showing that if a < 0, then Dy, = &.

By Lemma 4.1, if v{ € Dy, then v¥ = —2 and (v, v1) < 0. From v? = —2, we get r1a; = nds + 1 so
that r; and a; have the same sign. Moreover, rearranging 0 > (v, vy) = 2ndd; — ria — ray, we get
(12) ari > 2nddy, — ray.

We consider two cases based on the sign of r1d — rdy. If rid — rd; > 0, then we have r; > r%l = 0.

Thus a; > 0 as well. Dividing (12) by 1 and using a < 0, we get
O>a> 2ndd1—1"a1'
r1

Hence, r1 > 0 implies

d? +1
2ndd1<ra1:r<n 1+ >

1
Multiplying by 1 and using r; > r%l, we obtain
2nrdy < 2nddyry < nrdy + 7.

Rearranging this becomes
0<r(nd?—1) <0,
a contradiction.
Therefore, we must have r1d — rd; < 0 and a1d — ady < 0. Since a < 0, we must also have a; < 0 and
r1 < 0. As a;d — ad; is an integer, we must in fact have a1d — ad; < —1. Similarly, (v,vi) < —1, so
dividing (12) by r; we can bound a:

ard+1 2ndd; + 1 — ra;
<a< .
dy 1
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Multiplying this by r1d; < 0, we get
riaid+1ry = and% +di — raids.
Rearranging this we get
2ndd% +di <raid+raidi +r <Kriaid+ry = ndd% +d+r.

Isolating ry gives
r=ndd? +dy —d=dnd? —1)+dy = d; >0,
a contradiction. Thus Dy, = &, as claimed.

It now follows from Proposition 3.6 that there are no totally semistable walls between G and C if a > —r
and thus that H'(X, E) = H?*(X,E) = 0 for generic E € My(v). Moreover, it follows that there is a
unique totally semistable wall given by Ox[1] if x(v) = r + a < 0. Thus Ox[1] must be a destabilizing
quotient and the Harder-Narasimhan filtration for stability conditions below the wall defined by Ox[1] is
given by

(13) 0— Royp)(E) = E — (Ox[1])®7 -0,

where Rp 1](E) € My(—a,dH,—r) (see [3, Proposition 6.8]). Since v/ = (—a,dH,—r) satisfies
x(v') > 0, the first statement of the proposition implies that the generic F' € Mpy(v') is o-stable as
v’ has no totally semistable walls and H'(X,F) = H?(X,F) = 0. Thus for generic E € M,(v),
Ro,n)(E) = F e Mg (v'). Taking the long exact sequence of cohomology sheaves corresponding to (13),
we get that F sits in a short exact sequence of sheaves

002" L F o E-0.

Taking the long exact sequence of cohomology for this short exact sequence gives that H'(X, E) =
H?*(X, E) = 0 for generic E € My (v), as required. O

Finally, when a > 0, we only need to consider the possibility that r;d — rd; > 0 by the following result.

Lemmad4.3. Letv = (r,dH, a) be a Mukai vector such that r,a = 0, d > 0. Thenvy = (r1,d1H,a1) € Dy
satisfies rid — rdy > 0.

Proof. Suppose instead that r1d — rd; < 0. Since —2 = v% = 2nd% — 2rjay, r1 and a; have the same sign
and cannot vanish. If 7; > 0, then the assumption r1d — rd; < 0 implies that

d d
n— < n—l, and aid —ad; <0O.
T T

Hence,

d
nd%—i—l =ria <7 (del>

Furthermore, the condition that v > —2 is equivalent to
nd 1
<

~

a
d ~r rd
Combining these inequalities, we have

d 1 d 1 d
nd%+1<r1d1 (%) < rdp <n+d) < rdp <nl+d> :nd%-i-,rl 1.
T T 1 T T

The inequalities r1d — rd; < 0 and d; < d force r; < r, so that T}gl < 1, a contradiction.

If instead 1 < 0 and a; < 0, then {v,vy) = 2ndd; — ria —ra; = 2+ a +r > 2, leading to a
contradiction with the definition of Dy, . ]
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4.2. Classifying Ulrich bundles. Recall that an Ulrich bundle on a polarized surface (Y, A) is a bundle F
such that all the cohomology groups of F(—A) and F(—2A) vanish. As an application of our discussion
of Dy, we can classify Chern classes of Ulrich bundles on Picard rank one K3 surfaces and recover the
following theorem of Aprodu, Farkas and Ortega [1] (see also [13]).

Proposition 4.4. Let X be a K3 surface with Pic(X) = ZH. There exists an Ulrich bundle of rank r with
respect to mH if and only if 2 | rm. Moreover, when an Ulrich bundle of rank r exists, it has Mukai vector

v ; ér, (327”) H,r(2m?n — 1)) In particular, there exists an Ulrich bundle of any rank r = 2 with respect
to .

Proof. The conditions x(E(—mH)) = 0 = x(E(—2mH)) imply that

r+a+rm?*n—2mdn =0
(14)

r+a+ drm*n — 4mdn = 0.

Solving for d and a gives v = (r,dH,a) = (r, (322) H,r(2m?n — 1)). As

2
V2=’I“2<7”L<7§> +1>>0,

there exists £ € Mpy(v) if and only if 2 | rm. To see that the generic such E is Ulrich we apply Proposi-
tion4.2 to v/ = v(E(—mH)) and v = v((E(—2mH))"). Since v/ = (r, ("*) H, —r) = V", it follows
from Proposition 4.2 that the generic E' € My (v') satisfies H*(X, E') = 0 for all i. As E'(—mH)" is
generic in My (v') as well, we see that H*(X, E'(—mH)") = 0 for all i as well. It follows from Serre

duality that H(X, E'(—mH)) = 0 for all i, so E = E'(mH) is Ulrich. O

5. THE HARDER-NARASIMHAN FILTRATION OF THE GENERIC SHEAF

When My (v) n Mpmy(v) = @ for (s,t) € C, there exists a totally semistable wall between the
Gieseker chamber and C and we cannot apply Lemma 3.1 and Proposition 3.4. However, we obtain a
Harder-Narasimhan filtration of the generic sheaf in My (v) and can compute its cohomology using this
filtration. In this section, we will study the properties of this filtration.

By Lemma 4.1, the maximal totally semistable wall is defined by some vi € Dy with v¥ = —2 and
(v,vi) < 0. Let Cy, be the corresponding semicircle defining the wall. Let o := 0(s,t) be a stability
condition such that (s,t) € Cy, and 0 < s « 1. Let 0,0, € U, be stability conditions sufficiently close
to o such that o_ is above (7, and o, is inside C7,. Since 7, is the maximal totally semistable wall, the
generic object of M,_(v) is a Gieseker semistable sheaf E with v(E) = v.

Let A be the subcategory of DP(X) consisting of o-semistable objects £’ with ¢, (E’) = ¢, (E), where
E € Mp(v). Let $) be the hyperbolic lattice spanned by v(E’) (E' € A). As Cy, is defined by a spherical
class v € 9, there are two possible cases to consider by [3, Prop. 6.3].

5.1. One spherical object. The first possibility is that £ contains a unique spherical class up to sign. Then
we are in Case (b) of [3, Prop. 6.3], so there is a unique o-stable spherical object 77 € A with v(7) € $ and
v(T1) = v is the unique effective spherical class in §). The next lemma describes the Harder-Narasimhan
filtration of the generic sheaf in this case.

Lemma 5.1. Assume that $ contains a unique effective spherical class vi. Let T be the corresponding
o-stable spherical object. Then for a general sheaf E € My (v), there is an exact sequence

(15) 0 - Hom(Ty,E)®@T) — E —> F — 0

where Ext'(Ty, E) = 0 fori # 0 and F is a o-stable object such that v(F)? = v2. Moreover, T} is a stable
spherical vector bundle.
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Proof. Since (v, v1) < 0, either Hom(7, E') or Hom(E, T}) is nonzero. Since T} is o-stable, T} is either
a subobject or quotient of every E' € My (v) which destabilizes F with respect to 0. We claim that 7} is
in fact a destabilizing subobject.
Otherwise, Hom(E, T1) # 0 and there exists a surjection E — T} in A. Let F' be the kernel. Hence, we
get a short exact sequence in A,
0—->F—->FE—->1T —0.

Taking cohomology sheaves, we conclude that F' is a sheaf. Moreover, by Lemma 4.3, if we write vi =
(r1,d1H,ay), then rid — rd; > 0, which implies that ;(F') > u(E), contradicting the Gieseker stability
of E. Thus Hom(E,T7) = 0 and 77 is a destabilizing subobject of a general £ € My(v). By taking
cohomology sheaves of the destabilizing sequence, 77 € Coh(X). Hence, T is a simple and rigid sheaf,
which must be a Gieseker stable locally free sheaf by [31, Prop. 3.14].

The fact that (15) gives the Harder-Narasimhan filtration follows from [3, Lemmas 6.8 and 8.3]. As
F and T} are non-isomorphic, o-stable objects of the same slope, Hom(73, F') = 0, so it follows from
v(F) = v —hom(T}, E)vy and v(F)? = v2 that

hom(T1, E) = —(v,v1) = hom(T1, E) — ext!(Ty, E) + ext?*(Ty, E).

By Serre duality, ext?(7}, E) = hom(E,T;) = 0 from above, so it follows that ext! (T}, E) = 0 as we
wanted. O

5.2. Two stable spherical objects. Otherwise, by Case (c) of [3, Prop. 6.3], there are exactly two o-stable
spherical objects Tj and 77 in A. We now describe the Harder-Narasimhan filtration of the general sheaf in
this case.

Lemma 5.2. Assume that A contains exactly two o-stable spherical objects Ty and Ty with v(T;) € $) for
i =0,1and that {v,v(T})) < 0.
(1) If v? = —2, then the unique E € My (V) is in the abelian category generated by Ty and Ty. In
particular, if hY(T;) = 0 for i = 0, 1, then h(E) = 0.
(2) If v2 = 0, then the general E € My (V) sits in an exact sequence

0—>F1—>E—>F2—>O

in A such that Fy is generated by T;, i = 0,1, Fy = ®(E) for an equivalence ® : D*(X) —
DP(X), and F is o-stable . If h*(T;) = 0 fori = 0,1, then h*(E) = h'(F).

Proof. Set ug := v(Tp) and u; := v(73). By [3, Prop. 6.3], (ug,u;) > 2 and the effective cone of Hy
is generated by ug and u;. Hence, vi = aug + bu; with a,b € Z=(. Since (v, vy) < 0, without loss of
generality, we may assume that (v, u;) < 0. One can check that Cy, = Cy, and u; € Dy. Thus we may
set vy = uj = (r1,d1H,a1). Recall by Lemma 4.3 that 7y > 0 and r;d — rd; > 0. The same argument as
in Lemma 5.1 proves that 77 is a destabilizing subobject of the generic £ € My (v) and that moreover, T}
is a spherical Gieseker stable locally free sheaf. We recall further from [3, Prop. 6.3(c)] that in this case $)
is non-isotropic.

Given a spherical class u € $), the spherical reflection py is defined by py(v) = v + (v, uyu. Let u;

(1 = 2) be the (—2)-vectors defined by

u =py, (up),
(16) 2 Pu1( O) -
u; = — pui—l(ui_z) (7’ = 3)'

Fori > 0, let T, be the unique o_-stable object with v(7 ) = ;. In particular, 7, = T; fori = 0, 1.
If v2 = —2, then by [3, §6], there exists i such that £ = T;”. We note that 7, € A, (i > 1) are generated
by Ty and 77 by [3, Lemma 6.2]. This gives part (1).

Otherwise, v2 > 0 since §) is non-isotropic, and

CZ)U_(Tl_) < Cba_(TQ_) <--< ¢0_(E) < ¢a_(TO_)-
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Fori > 1, we set
(17) Fi={T7, .., T, T; := {E€ A| Hom(E,F) = 0, F € F;}.
Then (7;, F;) is a torsion pair of A. Set A; := (T;, F;[1]) to be the tilting of A at this torsion pair fori > 1,
and set Ay = A. Then T € A; for all i > 0. For a spherical object T', let Ry : D?(X) — DP(X) be the
spherical functor, i.e.,
Ry (E) := Cone(RHom(T,E)® T — E), E € DP(X).
We have equivalences R;— : A; — A; 1 and R - ° R preserves stability (cf. [32, section 6.2]).
Form > 1, we set
(18) Co = {xeH|{x,um) <0,{(x,upms1) = 0},
and we letCp := {2 €9 | 0 < {(z,u;),i = 0,1}. Assuming that v > 0, it follows from (v, u;) < 0 that
there is an mo € N such that v € Cp,,. We set ¥ := RT; o RT; ©---0 Rp— . Then by [32, Section
mo
6.2] W is an equivalence A,,, =~ A which induces an isomorphism M, (v) = M, (¥(v)) if mg is even
(resp., M,_(v) = M,, (¥(v)) if mg is odd), where ¥(v) € Cy. By [3, Lem. 6.5], there is a o-stable object

o+

E' e My, (¥(v)). Hence M,_(v) contains an irreducible object of A, ([3, Prop. 6.8]).
For a general E € M,_(v) = Mg(v), we set E™ := E and E' := R~ o RT_2 o---0 R, (E)
' it mg

. +1
(0 < i < mg). We prove by induction on i that each E" satisfies the conclusion of the lemma. If i = 0,

then by definition v(E") = ¥(v) € Cy and E° € M, (¥(v)) is o-stable and thus an irreducible object of
Ao = A. Thus we may take Fy = E°, Fy =0, and ¢ = id proving the lemma when = 0.
Now suppose we have shown that E*~! sits in an exact sequence

0->F'>E1'SFE 150
in A with F f_l generated by 7,7 = 0,1 and ng_l o-stable. As R, induces an equivalence between A;
and A,_1, it follows by induction that E' is an irreducible object of A; since FE) is an irreducible object of

Ao. Thus Hom(7; [1], E') = Hom(E", T, [1]) = 0. Applying Ry to E", we get the exact triangle
(19) T7 @ Hom(T; , E') - E' - E'"™' - T, ® Hom(T", E")[1].
Since T}, E' E~le A, (19)is regarded as an exact sequence in .A:

0— 7, ® Hom(T; ,E') > E' > E" ! > 0.
Define F} := F3 ' and F} to be the kernel of the composition of surjections in .A:

E' - BT FL

Then F} sits in a short exact sequence

0— T, ® Hom(T; ,E") - F{ —» F]7' -0

in A. The induction hypothesis then gives the claim since 7T; is generated by Ty and 77. Thus £ = E™0 sits
in the required short exact sequence with Fb = Ejy = RT; o RT; o---0R,- (E),as required. The second
mo

claim follows. O

6. COMPARING WITH THE WALL DEFINED BY Ox|[1]

In this section, we observe that we can divide Dy, into two groups, corresponding to whether the totally
semistable wall lies above or below the wall defined by Ox[1], and we prove that to study the weak Brill-
Noether problem, we can ignore those totally semistable walls below the wall defined by Ox[1]. In order
to prove that Ox[1] defines a wall, we must first prove that Ox[1] is o-stable throughout U :

Lemma 6.1. Ox([1] is 0(,4)-stable for (s,t) € U,.
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Proof. Suppose that Ox[1] is not 0(s,t)-semi-stable. By Mukai’s Lemma (see [3, Lemma 6.1]), we have an
exact sequence in A, 4

0—>A—>(’)X[1]—>B@k—>0
with B a 0, -stable spherical object such that ju(, 4y (Ox[1]) > ji(s4)(B). The long exact sequence of
cohomology objects
0—H ' (A) > O0x > H (B)® - H(A) -0
implies that B[—1] € F,g ) is a simple and rigid sheaf. Hence, B[—1] is Gieseker stable by [31,
Prop. 3.14]. Let v(B[-1]) = (r1,d1H,a1). Then Hom(Ox, B[—1]) # 0 implies that d; > 0 and
B[—1] € F(sp¢m) implies that d; — 715 < 0. Thus s > %.
If ¢ were sufficiently large, then Ox[1] would be 0(s,¢)-Stable and thus we would have
ts,t) (Ox[1]) < s, (B).
Hence, (s, t) is below the semi-circular wall Cy, defined by vi = v(B) = —(r1,d1H, a;). The equation

of C7, is
2 2(7”1 —CL1)
b= \/H2 a7 *,

and (7, intersects the boundary curve of U from (6) at the point

2dy (11 — ay) 242
5) ’
2m —a)? +diH? 2 (o _ gy)2 4 @2H2)
d

2dyi(r1—a1) : v
2(r1—a1)2+d3H? < = < s, and (s,t) is below CV1’

(6), a contradiction to (s,t) € U,.
Thus Ox[1] is o, 4 -semistable for all (s, t) € U,.. Since Uy is an open set and v(Ox[1]) is primitive,
Ox[1] must in fact be o, ;)-stable throughout U, as claimed. O

Since (s,t) must also be below the boundary curve in

Now we consider vi € D, whose wall C7, is below the wall defined by Ox[1]. Let (0,¢;) denote the

. . .. . . — 2
intersection of the semi-circular wall C7, with the line s = 0. Then % = %t% On the other hand,

the wall defined by Ox[1] intersects the ¢-axis in the point (0, 4/ %) Thus we see that Cy, lies below the
wall defined by Ox[1] if and only if a1d — ad; < r1d — rd;. We show that we can ignore such elements of
Dy in studying the weak Brill-Noether problem.

Lemma 6.2. Let v = (r,dH, a) be a Mukai vector such that r,a = 0, d > 0, and v? > —2.

(1) If ard — ady < r1d — rdy for all v, € Dy, then v satisfies weak Brill-Noether.
(2) Moreover, if v satisfies v2 > 0and a1d — ad; < rid — rd; for all vi € Dy, then v satisfies weak
Brill-Noether.

Proof. The hypothesis in (1) is equivalent to every totally semistable wall being below the wall defined
by Ox/[1], which is not itself totally semistable. Thus the generic sheaf E' € My (v) is o, -stable for

0<s<Lt=4/7%
Ox[1]. By Lemma 6.1, Ox|[1] is 0(, 4)-stable. Hence, Hom(E, Ox[1]) = 0 for o(, ) as above since then
t(s,)(E) > p1(s4)(Ox[1]) and both objects are o, ;)-stable (for generic £ € My (v)). By Serre duality,

HY(X,E)" = Ext'(Ox, E)¥ = Ext'(E, Ox) = Hom(E, Ox[1]) = 0.
Furthermore, the vanishing of H2(X, E) follows since
H*(X,FE) = Ext>(Ox, E) = Hom(E,Ox)" =0
by (classical) stability and the fact that d > 0.

—¢6 and 0 < € « 1, i.e. in the adjacent chamber below the wall defined by
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In (2), we may suppose that the maximal totally semistable wall C' = C7 is induced by v with aid —
ady = rid —rdy, ie. C = C\‘:((’)X[l] Then we are in the situation discussed in Section 5.2. As Ox|[1]

)-
is o-stable throughout U, and (v, v(Ox|[1])) = r + a > 0, we may assume that 7y = Ox|[1], so that
up = v(Ox|[1]), and vi = u; = v(7T7) is the Mukai vector of the o_-stable spherical destabilizing
subobject T of every E € M,_(v) = Mg(v).

Since v2 > 0 we have v € C,,, for some m € N. As O x[1] € A; for all i > 0 and the generic object of
My (v) is an irreducible object of A,,, as we noted in the proof of Lemma 5.2. If Hom(E, Ox[1]) # 0,
then since A4,, is Artinian, we have an exact sequence in A,,

0— By — Ox[1] > By — 0
such that F is generated by E and Hom(FE, E5) = 0. Since
Hom(F;, Ey) =0 and Ext'(Ox[1],0x[1]) =0,
it follows that Ext!(E, E') = 0, which shows that F is rigid, contradicting v > 0. Thus
Hom(E,Ox[1]) =0
for generic E € My (v). The vanishing of H (X, E) and H2(X, E) then follow as before. O
Example 6.3. In this example, we generalize Example 1.3 significantly. Assume that n = 1 and that
A contains Ox (H). Then, by repeating the argument of Lemma 6.1, we see that Ox (H) is a 04, 1)
stable object, where (s, o) is on the semi-circular wall where Ox (H) and Ox[1] have the same slope and
0 < sp « 1. Let F; be the Fibonacci numbers. For v = F; 1 1v(Ox(H)) + F;_1v(Ox/[1]), there is a stable
sheaf F' € My (v) fitting in an exact sequence
(20) 0 — Ox(H)® 1 — E — Ox[1]®F-1 — 0.

For example, we may take E to be the pullback from P? of the twist of a Steiner bundle (see for example
[17, Thm 1.4 and Example 1.5]). In particular, E'is oy, s,)-semistable. Since E is oy, )-stable for ¢ > 0,
E must in-fact be o (s, 4)-stable for all ¢ > to. Therefore My (v) N Mo, (v) # @ fort > to. For even i,
we have v = 2, so applying Lemma 6.2, we get v satisfies weak Brill-Noether. For odd i, v> = —2, and
thus E as in (20) is the unique element of M (v). Taking cohomology sheaves, we can express E as in the
following short exact sequence

0— 0% = Ox(H)®F+1 — E -0,
from which we see that h! (X, E) = F;_1. Observe that
V(E) = (F, Fi1H, Fiy2).
By imitating a similar construction for Steiner bundles on higher dimensional projective spaces, we can
construct similar counterexamples to weak Brill-Noether when n > 1.
We summarize the discussion in Sections 3, 4 and 6 in the following theorem.

Theorem 6.4. Let v = (r,dH,a) be a Mukai vector such that r,a > 0, d > 0, and vZ > —2 Let
D{,BN < Dy be the set of Mukai vectors vi = (r1,d1 H, a1) satisfying

0<dr; —dir <da — dya.
If v does not satisfy weak Brill-Noether, then D3N # @. Suppose that v satisfies weak Brill-Noether and

a = 2. If the generic E € My (v) is not globally generated, then either Dy, # & or My (a,dH,r) consists
of non-locally free sheaves.

Proof. If DEN = &, then by Proposition 3.6 and Lemma 6.2 all totally semistable walls in U, (if there
are any) are below the wall defined by Ox|[1] so that the generic E € My (v) has HY(X,E) = 0 for
i > 0. If Dy = @, then by Propositions 3.4 and 3.6, we have that <I>§(A_)X(E) Ve My(a,dH,r) for generic
E € my(v). If My(a,dH,r) generically consists of locally free sheaves, then the generic E € My (v) is
globally generated by Lemma 3.1. U
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Remark 6.5. Let v = (r,dH,a) be a Mukai vector such that r,a > 0,d > 0, and v2 > —2. If v
fails to satisfy weak Brill-Noether, then Theorem 6.4 concretely asserts the existence of a Mukai vector
vy = (r1,d1H, ay) satisfying the following inequalities.

(D) v =2

(2) 0<di <d;

(3) drl — d17“ > 0;

(4) da1 - dla > 0;

(5) 0> <(v,vy) =2nddy — ria —ray;

6) 0 <dry —dir <da; — dya
In particular, given v if there does not exist vy satisfying these inequalities, then v satisfies weak Brill-
Noether. Observe that given v, checking for the existence of v is an easy numerical task.

7. COUNTEREXAMPLES TO WEAK BRILL-NOETHER OF MINIMAL SQUARE

Let v = (r,dH, a) be a Mukai vector with 7,d > 0 and v? > —2, and consider the related Mukai vector
v/ = (r,dH,a — c) for ¢ = 0. In this section, using elementary modifications, we show that if v satisfies
weak Brill-Noether, then so does v’. In particular, in classifying counterexamples to weak Brill-Noether, we
make the task easier by restricting our search to those Mukai vectors with maximal a, or equivalently with
minimal v?.

Proposition 7.1. Let v = (r,dH, a) be a Mukai vector with v,d > 0, and v? = —2. Let ¢ > 0 be an integer:
If there exists E € My (v) such that H(X, E) = 0, then (r,dH,a — c) satisfies weak Brill-Noether. In

particular, if some E € Mg <r, dH, [@J) satisfies HY(X, E) = 0, then v satisfies weak Brill-Noether.

Remark 7.2. The condition v? > —2 is equivalent to a < @, so for fixed (7, d), (r, dH, {@J) is

the Mukai vector of a stable sheaf of rank r and degree d with smallest square. Proposition 7.1 tells us that
we may focus our efforts on studying this Mukai vector.

Proof of Proposition 7.1. We prove the proposition by taking general elementary modifications at points.
General elementary modifications preserve p-(semi)stability and the property of a sheaf having at most
one nonzero cohomology group [7, Lemma 2.7]. Unfortunately, elementary modifications do not preserve
Gieseker semistability in general, so we will need to take some care.

Let M g (v)** be the moduli stack of u-semistable sheaves E with v(E) = v, and let M g (v)*® be the
open substack of M 7 (v)#5* consisting of u-stable sheaves. We write a Mukai vector as v = (Irg, ldyH, a),
where ged(rg, dg) = 1. Then v2 = —2if and only if | = 1 and roa = d3n + 1. In particular, ro | (d3n + 1).

We first assume that either 79 { (d3n + 1) or ro | (d%n + 1) but c satisfies ¢ > —<V717Z°>, where

o

H!(X, E) = 0. In particular, we must have
0<h(X,E) =h’(X,E) + h*(X,E) = x(X,E) =7 +a.

For a general quotient

vy = (ro,doH,ag) and ag = so that v3 = —2. By assumption we have E € My(v) such that

[+ E— @i_ika,,
the map on global sections is either surjective or injective, depending on whether ¢ < r +a orc > r + a,
respectively, and we must have Ker f € Mg (v')*** where v/ = (Irg,ldoH, a — ¢). Thus

HY(X,Kerf)=0 or H°X,Kerf) =0,

respectively, and from stability and Idy > 0 we see that H2(X, Ker f) = 0, so Ker f has at most one non-
trivial cohomology group. The condition ¢ > —% is equivalent to {v’, vo) = 0. Thus by Theorem 2.1

and either Lemma 2.3 and Proposition 2.4 or Section 3.3 of [38], respectively, we have that M g (v')** is
an irreducible, open, and dense substack of M g (v')#**. As the vanishing of H' or HY, respectively, is an
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open condition, it follows that v’ satisfies weak Brill-Noether, and the generic sheaf in M (v’) is locally
free as long as lrg > 1.
We next assume that 7 | (d2n + 1) and ¢ < —%. Let Ey be the unique y-stable locally free sheaf

with v(Ey) = vo = (ro,doH, ap), where roag = d%n + 1. Thenec < —<V;7Z°> is equivalent to (v/, vy < 0

and ¢ > 1 implies that (v, v() < 0 as well. Observe that we may write v = [vg — bv(k,) with b € Zx,
where k; is the skyscraper sheaf of a point x € X. It was proven in [41, Thm. 2.3] that the Fourier-Mukai

functor q)i([l_]) + : DP(X) — DP(X) gives an isomorphism

Mu(lvg —bv(ky)) — Mu((bro —)vy —bv(ky))

21

@b E - oI (B),
where

(22) € = Ker(Ey X Ey — Oa).

Since {(brg — l)vy — bv(ks), vy ) = —(v,vg) > 0, it follows from [38, Section 3.3] that M g ((bro —
1)vy —bv(ks))"* is an open dense substack of M ((bro — l)vy — bv(kz)). Moreover, if (bro —l)ro > 1,
then a general member F' of My ((brg — I)vy — bv(k,))"® is locally free. By stability, for such an F' we
have Hom(Eyp, V) = Hom(F, Ep) = 0, so it follows that a general member £ € M (v) fits into an
exact sequence

(21—bro)

(23) 0—FY—E—EY — 0.

If instead (brg — [)rg = 1, thenrg = 1 and v = (1,0, —1)e®!, In this case, by [38, Proposition 3.4] we
have an exact sequence

(24) 0— E — Ox(dogH)® - A—0

where A is a 0-dimensional torsion sheaf of length [ + 1.

We claim that the existence of E € My (v) with H'(X, E) = 0 implies that H!(X, Ey) = 0. Indeed,
observe first that H'(X, E') = 0 for the generic B’ € Mpy(v). Now if (brg — [)rg = 1, then Ey =
Ox(doH), so HY(X,Ey) = H'(X,Ox(dgH)) = 0 by Kodaira vanishing since dy > 0. Otherwise
(bro — l)ro = 2, and the generic sheaf E € M (v) sits in the exact sequence (23). Then F'V is a p-stable
locally free sheaf of positive slope, so we must have H2(X, FV) = 0. As H'(X, E) = 0, it follows from
the long exact sequence associated to (23) that H'(X, Ey) = 0.

Returning to proving that v’ satisfies weak Brill-Noether, we first write v/ = v — cv(k,) = lvg — (b +
c)v(k;) and note that it suffices to assume that v’ is primitive. Since ¢ > 0, v/ > —2. If either v’ is
isotropic or ((b + ¢)rg — l)rg = 1, then every E € My (v') is the kernel of E' — A, where A is an
Artinian sheaf. Indeed, suppose first that v/ = 0. Then I = (b + ¢)rq, s0

v = Ivg — (b+¢e)v(ky) = (b+¢)(rovo — v(ks)),

and thus b + ¢ = 1 by primitivity. As b € Z>¢ and c € N, we must have b = 0 and ¢ = 1. Then by [38,
Section 3.3] any E’ € My (v') sits in a short exact sequence

(25) 0—E — EY° -k, —0,

so we may take A = k, and then H'(X,E’) = 0 forall E' € My (v'). If instead 7o = 1 andb+c = [ + 1,
then as in (24), we may take A = (—Bii%ka In this case the claim follows from Lemma 7.4 below.
Otherwise 79 > 2 or (b + ¢)rop — 1 > 2. By Lemma 7.4, the kernel of the generic quotient f :
EY — @'k, satisfies Hom(Ep, Ker f) = 0 and either H'(X,Ker f) = 0 or H(X,Ker f) = 0.
By Lemma 7.5, Mg (v’) is an irreducible, open, and dense substack of the same irreducible component of
M (v')#55 as Ker f for generic f. The proposition then follows from the openness of H' or H vanishing
as before. U



24 IZZET COSKUN, HOWARD NUER, AND KOTA YOSHIOKA

In the remainder of the section we prove the lemmas cited in the proof of Proposition 7.1. Recall that
we write v = [vo — ev(k,) where vo = (ro,doH,ap) such that vi = —2, and we may assume that
H'(X, Ey) = 0. Moreover, we may assume that v2 > 0 and (v, vq) < 0 so that 2 > ery > [.

Lemma 7.3. Let p < rot. Then for a general quotient f : Ef — T, with T a O-dimensional torsion sheaf
of length t, Hom(Ey, Ker f) = 0.

Proof. Let Ey ® Hom(Ey,T) — T be the evaluation map. As hom(Ey,T) = rot, for a p-dimensional
subspace V' < Hom(Ey, T'), we consider
f:Ey®V — Ey®Hom(Ey,T) — T.
Then Hom(Ey, Ey ® V') — Hom(Ey, Ey ® Hom(Ey, T')) is injective and
Hom(Ey, Ey ® Hom(Ey, T)) — Hom(Ey, T)
is an isomorphism. Hence Hom(Ejy, Ker f) = 0. O

Lemma 7.4. Assume that erq > I, that is, v> > 0. For a general quotient f : E((?l — @®F_ ks,
Hom(Ey, Ker f) = 0 and Ker f has at most one non-trivial cohomology group.

Proof. We write [ = mrg + p (0 < p < r9). Since erg = [, (e — m)rg = p > 0. We set
& = Ker(Ey ® Hom(Ep, kz) — k).

Let F' be the kernel of a general quotient Egap — @®_{"ky,. Asp < (e —m)rg, it follows from Lemma
7.3 that both Hom(Ey, £;) and Hom(Ejy, F') vanish. Then E := @, &,, ® F satisfies Hom(Ey, E) = 0.
Since Hom(FEp, Ker f) = 0 is an open condition, we get the first claim.

If we further assume that x(Ep) > e, then the generic such f induces a surjection on global sections, so
H'(X, Ey) = 0 implies that H*(X,Ker f) = 0 for a general f. On the other hand, if ¢ > Ix(Ej), then
the generic such f induces an injection on global sections, so H°(X, Ker f) = 0. Either way, Ker f has at
most one nontrivial cohomology group, as required. ([l

Lemma 7.5. Let My (v)"550 be the open substack of My (v)*s$ consisting of E € My (v)*** such that
Hom(Ey, E) = 0. If rg = 2 or erg — | = 2, then My (v) is an open and dense substack of Mg (v)550.
In particular Mg (v)*$*0 is irreducible.

Proof. The proof is similar to [38, Lem. 2.3]. For the Harder-Narasimhan filtration
OcFicFkc---cF,=F

of E, F;/F;_, are semi-stable sheaves with v(F;/F;_1)2 > 0. We set v; := v(F;/F;_1). Then it is
sufficient to prove [38, (2.11), (2.13)].

We first assume that g > 2. Then [38, (2.10)] holds. Hence [38, (2.11), (2.13)] hold.

We next assume that 79 = 1 and erg — [ > 2. In this case, we may assume that vo = v(Ox) and
v = (1,0, —a) with a > 2. If v¥ > 0, then {v;, v;) > 2. Hence [38, (2.11)] holds. If v¥ = 0, then we write
vy = 1V}, where v/ is primitive. Observe that

<V17V - V1> - lll = l/1(<vll7v> - 1) = lll

Hence
2<vi,vj> - +s—1)+1
1<j
(26) ={vi,v—vi)—1}) + Z vi,viy—(s—1)+1

1<i<y
>+ (s—1)(s—=2)—(s—1)+1=>1.

Hence [38, (2.13)] holds.
The irreducibility is a consequence of [41, Thm. 1.4]. U
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8. CONSEQUENCES OF THEOREM 6.4

Let X be a K3 surface with Pic(X) = ZH and H? = 2n. In this section, we derive consequences of
Theorem 6.4.

8.1. Uniform bounds on n. We first show that if n > r, then the generic sheaf in M (v) has no higher
cohomology. We begin by noting several useful numerical observations.

Lemma 8.1. Let v = (r,dH,a) be a Mukai vector with r > 0,d,a > 0 and v’ > —2. Let vi =
(r1,d1H,ay1) € Dy. Set k = day; — ady and m = dry — dyr. Then

1

(27) (v,v1) = ——(m(nd3 — 1) — 2rdy + kr?)

r1dy
Proof. We have (v,vi) = 2ndd; —ria —ray. By Remark 6.5 (1), a; = M. By assumption @ = 941=F

y T1 y p dl
Substituting for a and a; using these two relations, we obtain
1
(v, vi) = 2ndd; — d—l(d(nd% +1) — kry) — %(nd% +1)
1
= rds ((dry — dyr)(nd? — 1) — 2rdy + kr?).

This is the desired formula. U

Lemma 8.2. Letv = (r,dH, a) be a Mukai vector withr > 2,d,a > 0 and v = —2. Set m = dry — dyr.
(1) If vi € Dy, thenr1 < 1 and

di < mi 2r 2r+ 1
min | —, — + — | .
! n’ mn  \/n

. BN 2
(2) Moreover, if vi € DS, then dy < .

Proof. Letvy € Dy. Setk = da; — ad; and m = r1d — rd;. By Remark 6.5 (3) and (4) both k£ and m are
positive integers. First, we show that r; < r. Using Remark 6.5 (5) and Lemma 8.1, we have

1

0> (v,v1) = ——(m(nd? — 1) — 2rd; + kr?)
ridy
1
= (nd? — 1) — 2rdy + kr?)
ridy
1
= s ((n— 1)d% + (dy — r)2 —r? 4 kr% -1)= rds (7“% —r?— 1)
1
= m((rl —r)(r1+7)—1),
Hence, r; < r. Since V% = —2, it follows that gcd(ry,dy) = 1. If 11 = 7, then dy # r since r > 2. Thus
(di — )2 = 1so thatif r; = r then
(28) 0>mn—10)d2+(dy—r)*=r?+ri—1=(n—-1)d? >0,

a contradiction. Thus we have 1 < r.
For the inequalities on d;, observe that as m and n are positive integers, the quantity

(29) mnds — 2rdy —m + kr?

is nonnegative unless

- 2r + A/4r2 + dm2n — dmnkr?

(30) dq
2mn




26 IZZET COSKUN, HOWARD NUER, AND KOTA YOSHIOKA

If m = 1, since 4nkr% > 4n, we conclude that d; < QR—T as desired. Similarly, if v; € D‘?N ,thenm < k
2r

and we conclude that d; < >-. This concludes the proof of part (2) of the lemma. Returning to the case

when v € Dy, and m > 2 and noting that

\/41"2 + 4m?2n — dmnkr? < 2r 4+ 2m+/n,

we see that
2r 1 T 1

31 di<—+—=<—+ —.
D YT vn oono \/n

To conclude the proof of the lemma, let us show that d; < % If instead di > %, then it follows that
- < ﬁ < 1. Since d; is a positive integer, we must have d; = 1, son > 2r. Since m > 2, the quantity in
(29) satisfies

mn—2r —m4+kri=2rm—2r—m+1=(2r—1)(m—1) >0,

a contradiction. ]

Theorem 8.3. Let v = (r,dH, a) be a Mukai vector withr > 2, d,a > 0 and v? = —2 on a K3 surface X
with Pic(X) = ZH and H? = 2n. Ifn > r, then H' (X, E) = 0 for the generic sheaf E € My (v).

.. _ | nd?+1
Proof. By Proposition 7.1, we may assume that a = [f

J. By Theorem 6.4, it suffices to prove that

D{,BN = @. Assume to the contrary that vi = (r;,d1H,a1) € D{,BN. Set m = dry — rdy. By Lemma 8.2,
we have d; < % Since d; is a positive integer, n > r implies that m = d; = 1. Hence, d = % and
a; = ”T—tl In particular, r; divides both 4+ 1 and n + 1. Moreover, since n = r

Y {nd2+1J _ {n(r—&-l)z—i-rfJ

r 7’7"%

2 2 ’

. [T(n+1)(r+1)+r%J _ (n+1)(r+1)
rri Y

By Remark 6.5(6), we have

1 1 1 1
1<a1d—a<(n+ J(r+1) (n+1)(r+ ):07
T1 T1 1

a contradiction. I
Remark 8.4. Theorem 8.3 is sharp. Let X be a K3 surface as in Theorem 8.3. Let
v=(n+1,(n+2)Hn*+3n+1).
Then the unique bundle E € My (v) has resolution given by
0 Ox - Ox(H)""? > E -0
and h'(X,E) = 1.

8.2. Uniform cohomology vanishing. In this subsection, we give a uniform effective bound on d that
guarantees that weak Brill-Noether holds.

Theorem 8.5. Let v = (r,dH,a) be a Mukai vector withr > 2,a = 0,d > 0 and v’ > —2 on a K3
surface with Pic(X) = ZH and H? = 2n. If

then v satisfies weak Brill-Noether.
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Proof. By Proposition 7.1, it suffices to prove the theorem under the additional assumption that a =
{@J By Theorem 8.3, we may also assume that » > n, hence [%J > 1. In the proof, we will make

these additional simplifying assumptions. By Theorem 6.4, it suffices to show that DEN = &,
Suppose to the contrary that vy € DBN Setm = rid —rdy and k = da; — ad;. By Lemma 8.2 (2), we
have that d; < =~~. We will use the following observation several times.

Remark 8.6. If r; = 1, then the inequality m < da; — ady implies that d; < % Indeed, if r; = 1, then
d=m+rdy and a1 = ndl + 1. Hence

41
m < (m+rd)(nd +1) — {n(m trdy)” + J dq

r
2
nm- +1
= m+rd —nmds — {J dy.
r
Rearranging, we see that nmd? < rd; and thus d; < ——, as claimed.

Returning to the proof of the theorem, if m > 4, then d; < |~ | . Since d; is a positive integer, | 5~ | > 1.
From | Z| > 2[4-], we see that
m = rid—rd = rlr[ J+27‘1—7‘[ 4 J = (27”1—1)7”[LJ + 21
2n 2n
> 2r—Dr+2rm=>r+2.
2
Hence dl < 71((2T1—1T)T+2T)
=d—r>r2—r+2>2rsince r > 2. Hence, d; < 1, which is a contradiction. Thus we must have
1 <m < 3.
If m = 3,thend; < [3—TJ Since d; is a positive integer, we may assume [%J > 1. In that case, observe

that
r 2r r 2r
[—J > | — unless l—J =|—1|=1.
n 3n n 3n

2
3=mz=nrr [TJ+2T1—T[ TJ =rr+2r =4,
n 3n

Since d; is a positive integer, we must have n = r; = d; = 1. In that case,

If|Z] > [%’;J, then

a contradiction. Hence, we must have [%J = [%J =1 and
m=3=rr+2r—r= (1 —1)r+2r.

We conclude that r; = d; = 1 and d = r + 3. By Remark 8.6, we must have 1 = d; < 3% < %, which is a
contradiction. We conclude that m < 2.
If m = 2, then d; < | Z|. Hence,

m>r1r[ J+2r1—rlrJ 2(7‘1—1)T{£J+2T1.
n n n

If ry > 2, it follows that 2 = m > r +4 > 2, a contradiction. Thus ; = 1. Hence, by Remark 8.6, we must
have d; < [ﬁj Since d; is a positive integer, we may assume the latter is positive. Then, we conclude that

m=2>r {J+2—T{TJ> [ J+2>2
n 2n 2n
a contradiction.

We must therefore have m = 1. Note that 2 | Z | + 1 > [fJ If ; > 3, then

2
m:1>r1rl J+27’1—r{ TJ>3r[TJ+2r1—r<2[TJ+1>>2r1>6,
n n n
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a contradiction. On the other hand, if 7; = 1, then by Remark 8.6 d; < [%J Hence,
T T
m=1>r[7J—|—2—r[—J =2,
n n

another contradiction.

We conclude that m = 1 and r; = 2. In this case, the inequality 1 < a;d — ad; implies that d; < r+3

not
Indeed, from the equalities 2d = 1 + rdy, 2a; = nd% 4+ landa = [@J, we see that n, d; and r are all
odd and

nrds +2nd; 3
az ———— — —.
4 4

Hence,

rnds +nd? +rdy +1  nrd +2nd? 3
4 - 4 Tah

1 < ald—ad1<

(r+3)dy —nd? + 1
1 :

This easily implies d; < % If n > 1, then n > 3 since n is odd. Then d; < % + 1. We obtain

m=1>2r[£J+4—rlIJ—r>4,
n n

which is a contradiction. We thus conclude m = n = 1 and r; = 2 and d; < r + 2. Substituting
m=1=>2244—r>—2r=r>—2r+4>4.
This contradiction shows that D2V = & and completes the proof of the theorem. (|

Remark 8.7. Theorem 8.5 is sharp. For example, setting v = (n + 1, (n + 2)H,n? + 3n + 1), we see that
the generic sheaf in My (v) has nonvanishing H'. Furthermore, if d = r [%J + 1, then DE¥ is not always
empty. For example, let

v— (T,(rm+1)H,W[;J2+2nm+["j1J).

Then vi = (1,|Z|H,n [%f + 1) € DBN. The cohomology of the generic sheaf may vanish even when
DBN — &, but this will require a more detailed analysis, which we will undertake in the rest of the paper.

8.3. Finiteness of counterexamples. As a corollary of our discussion so far, we see that given r > 2 there
are only finitely many Mukai vectors v = (r,dH, a) with vZ > —2 such that the generic sheaf in My (v)
has more than one nonzero cohomology group. Starting in Section 9, we will turn to the classification of
these Mukai vectors.

Theorem 8.8. Let X be a K3 surface with Pic(X) = ZH and H? = 2n. Fix r > 2. Then there are finitely
many tuples (n,v = (r,dH, a)) with d > 0 such that v does not satisfy weak Brill-Noether.

Proof. By Theorem 8.3 and Proposition 7.1, v satisfies weak Brill-Noether unless n < r. Hence, there
are only finitely many possible values for n. Fix n. By Theorem 8.5 and Proposition 7.1, v satisfies weak
Brill-Noether unless d < r [%J + 1. Hence, for each n, there are only finitely many possible values of d
for which v fails weak Brill-Noether. Fix n and d. By Proposition 4.2, if a < 0, then v satisfies weak
Brill-Noether. Since v2 = 2nd? — 2ra > —2, we always have that nd?> + 1 > ra. Hence, there are finitely

many possible values of a for which v fails weak Brill-Noether. O

Remark 8.9. Given an arbitrary, fixed polarized surface (X, H) and a fixed rank r» > 2, there are only
finitely many Chern characters where the moduli space fails to satisfy weak Brill-Noether (see [8, Theorems
3.6 and 3.7]). Theorem 8.8 shows that this finiteness remains true even if we vary X over all K3 surfaces of
Picard rank one.
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8.4. Uniform global generation. In this subsection, we obtain a uniform sufficient condition for the generic
sheaf in M (v) to be globally generated.

Proposition 8.10. Let v = (r,dH, a) be a Mukai vector withr > 2, d > 0, a > 2 and v? > —2 on a K3
surface X with Pic(X) = ZH and H? = 2n. If n > 2r, then Dy = @ and the generic E € My (V) is
globally generated.

Proof. Under the assumptions of the theorem, Theorem 8.3 implies that the higher cohomology of the
generic sheaf in M (v) vanishes. By Theorem 6.4, if Dy = @ and My (a,dH, r) has a locally free sheaf,
then the generic sheaf in M (v) is globally generated. By Proposition 2.3, if My (a,dH,r) does not have
any locally free sheaves, then:
(1) Either v2 > 0 and (a, dH, r) has the form (I, IpH, Ip?>n — 1) or (1, pH, p>n — 1) for some integers
p, 1. The assumption @ > 2 rules out the second possibility. The assumption n > 2r implies that
Ip?n —1 > 2r —1 > r (as r > 2) and precludes the first possibility.
(2) Orv? = 0and (a,dH,r) = b(r¢, rodoH, d>n) for integers b, 79, do which satisfy d2n—roag = —1
for some integer ag. The assumption n > 2r precludes this possibility since d%n > 7.
We are thus reduced to checking that D, = &. Suppose vi = (r1,d1H,a1) € Dy. By Remark 6.5(5) and
Lemma 8.1, we have

0> m(nd? —1) —2rdy + kr? = 2r(d2 —dy) — 1+ kr} > 0,

a contradiction. Hence, Dy, = & and the proposition holds.

Remark 8.11. Proposition 8.10 is sharp. If n < 2r — 1 and v = (r, (r + 1)H, a) with

. n+1
Mm+2n—r<a<min|nr+n-+r,nr+2n+ ,
r

then vi = (1, H,n + 1) € D,,. We will analyze these cases in greater detail in the rest of the paper.

Theorem 8.12. Let v = (r,dH,a) be a Mukai vector withr > 2, d > 0, a > 2 and v > —2o0nak3
surface X with Pic(X) = ZH and H? = 2n. Assume that

2
d=r {TJ +r
n
Ifn = 1, assume further that 2d > 2a+r. Then Dy, = & and the generic E € My (v) is globally generated.

Proof. As
H przor |t easr ||,
n n n
the higher cohomology of the generic sheaf in My (v) vanishes by Theorem 8.5. By Proposition 8.10,
we may assume that n < 2r. Consequently, d > 2r. By Theorem 6.4, if D, = @& and My(a,dH,r)
has a locally free sheaf, then the generic sheaf in My (v) is globally generated. By Proposition 2.3, if
My (a,dH,r) does not have any locally free sheaves, then:
(1) Either v2 > 0 and (a, dH, r) has the form (I, IpH, Ip?>n — 1) or (1, pH, p*n — 1) for some integers
p, 1. The assumption a > 2 rules out the second possibility and the assumption d > 2r > r + 2
precludes the first possibility.
(2) Orv? = 0and (a,dH,r) = b(r3, rodo H, dn) for integers b, 7o, dy which satisfy d3n—roag = —1
for some integer ag. By assumption

2
d=brody =r VJ +r = 2nb3d§ + bdin.
n

Hence, g > 2nbd8 + don. Then there cannot be any integers ag that satisfy d%n —roag = —1.



30 IZZET COSKUN, HOWARD NUER, AND KOTA YOSHIOKA

We conclude that under the assumptions of the theorem, My (a,dH,r) has locally free sheaves. To prove
the theorem it suffices to show Dy, = @.

For a contradiction, assume that vi = (r;,d1H,a;) € Dy. Set m = rid — rd;. By Lemma 8.2 (1),
di < | 2], so n < 2r since d; is a positive integer. Hence,

2r 2r 2r
mzrr|—|+rrm—r|—|=1—Dr|—|+7rr.
n n n

If r; = 2, thenm > 3r. By Lemma 8.2 (1),
g < 2r N 1 - 2 N 1
"o T yn S 3n T Un
Hence, d; = 1and n = 1 or 2. Since r1a; = nd% + 1, we conclude that either n = 1 and v; = (2, H, 1) or
n = 2and vi = (3, H,1). In the latter case, m > 5rand 1 = d; < % + %, which is a contradiction. If
n=1andv, = (2,H,1),
0>{v,vi)=2d—2a—r.
The latter is at least 0 by assumption, which is a contradiction.
We may assume that r; = 1. Then m > r. Hence, d; < % + ﬁ We conclude that the possible pairs are
(n,d1) = (1,1),(1,2),(2,1) or (3,1). If d; = 1,n = 3, then
0>(v,viy)=2m—2r+k>=2r—2r+k=5~Lk>0,
a contradiction. If d; = 1,n =2, thenm =d —r > r2. Since r > 2,
0>v,vid=r?—2r+k>k>0,

another contradiction. If d; = 2,n = 1,then m = d — 2r > 2r> —r = r(2r — 1) > 3r. Hence,
1 1
0> {v,vy) = 5(3m—47“+k) > 5(97"—47“—1—/{) > 0,

which is a contradiction. Finally, if 1 = dy = n = 1, then vy = (1, H, 2). In that case, since 2d > 2a + r

3
<V7V1>=2d—a—2r>d—§r>r2_g>0'
This concludes the proof that under the assumptions of the theorem D, = & and with it the proof of the
theorem. o

Remark 8.13. When n = 1, X is a double cover of P? and the line bundles Ox (H) and Oy (2H) are
not very ample and their sections are pullbacks of sections of Op2(1) and Op2(2), respectively. Even when
r =1, 17(2H) is not globally generated when the length of the zero-dimensional scheme is at least 1.

Remark 8.14. Being globally generated is not an open condition. However, it is an open condition in the
locus where the higher cohomology vanishes. To characterize the Mukai vectors v = (r, dH, a) that satisfy
weak Brill-Noether and for which the generic sheaf in M (v) is globally generated, one may concentrate
on the case a > 2. Indeed, recall that x(v) = r + a, so if v satisfies weak Brill-Noether and the generic
E € My (v) is globally generated, then x(v) > 0 and there is a short exact

0->M-0pe L goo

In particular, we must have ¢ > 0 for the evaluation map f: (’)Sf“ — E to be surjective. If a = 0, then
ho (E) = rand if M # 0, it would have to be a torsion sheaf, which is impossible, so f: E = oy,
contradicting @ = 0. Finally, if @ = 1, then F has a resolution of the form

0 — Ox(—dH) —» O - E —0.
Equating Mukai vectors, we see that r = 1 + nd?, sov = (nd? + 1,dH, 1) and v(E)? = —2. The unique
E e My/(v) satisfies E = &3P (0 (—dm)).



THE COHOMOLOGY OF THE GENERAL STABLE SHEAF ON A K3 SURFACE 31

9. INITIAL CLASSIFICATIONS

In this section, we classify Mukai vectors with small invariants for which weak Brill-Noether fails. We
will concentrate on the cases when 0 < r < 3, when r is small relative to n, and when 0 < a < 2. We
will study the Bridgeland resolution at the maximal totally destabilizing wall in greater detail to compute
the cohomology.

9.1. Quotients of negative rank. The quotients in the Bridgeland resolution may have negative rank. The
following lemma describes the possibilities.

Proposition 9.1. Let r,d,a > 0 and (s,t) € U,.
(1) If (s, t) is sufficiently close to (0,0), then

Mg (=r,dH,a) = My(a,dH, —7)

given by £ — @g? <(E)Y.
(2) If 7 > a, then there is a unique totally semistable wall W. For 1 < i < 2, let 0; := 0(sp4,11) be
stability conditions in the two chambers separated by the wall with tQ <1<t
(a) For the generic E € My, (—r,dH,a), @%_)X(E)V is a two-term complex fitting in the
distinguished triangle

(32) (Ox [P = @2 (B)” = Rox( @, x(E)"),
where Rp  1)(® XHX( )V) e My (r,dH, —a)
(b) IfE € M(,Q( r,dH, a) is generic, then

2 (E)Y e My(a,dH, —r).

(3) If r < a, Then <I>§(A_>X(E)v € My(a,dH, —r) for a generic E € M, dH, a).

(sH,tH) (_Tv
Proof. Since a > 0, Proposition 3.4 implies part (1).

We now set v := (—r,dH, a) and classify the totally semistable walls for v. By part (1) for v/ =
(a,dH,—r), any F' € Mg (v') has the form F = <I>§(A_>X(E)V where ' € M, (v) and (so,0) is
sufficiently close to (0,0). By Proposition 4.2, there are no totally semistable walls for v/ in U, unless
X(v') = a —r < 0, in which case the unique totally semistable wall in U is given by Ox[1]. Thus if
r < a, then there is no totally semistable wall for v/ between G and C. Thus for arbitrary (s',t') € Uy, the
generic I € My (v') is o(y 4 -stable and if F' = @%HX(E)V, then £ € M(,4)(v) is generic, where now
(s,t) is arbitrary, giving part (3).

Now we prove part (2). If » > a so that x(v') = a — r < 0, there is a unique totally semistable wall
for v/ between G and C, corresponding to Ox[1]. Thus there is a unique totally semistable wall T in U
for v. Let 0; = 0(sy,) such that (s,t1) (resp. (s,t2)) is above (resp. below) W. Then for the generic
E € M, (v), we have <I>§(A_>X(E)V € Mg, (v'), and similarly, for the generic E € M,,(v), we have
@%HX(E)V € My, (v') n Mg (v'), giving (b). Thus by (13) from the proof of Proposition 4.2, for the
generic £ € M, (v), <I>§(A_) y(E)Y sits in a distinguished triangle

(33) (OX[DP™ = @R (E)” = Royn)(®Xx (E)");
where ROXD](@%HX(E)V) € My(r,dH, —a), as required. Now,
M(SH,tH)(r7 dH’ CL) = {E|E € MH<T7 de CL)}

for s < d/r and Mg 1) (r,dH,a) = {F|F € My(r,—dH,a)} for s > d/r.
For a generic E[—1] € My, (r,—dH, —a), since s > 0 > —d/r, F = (E[-1])Y € My (r,dH, —a). O
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9.2. Ranks 0 and 1. In this subsection, we show that all Mukai vectors v = (r,dH,a) with d > 0 and
r = 0, 1 satisfy weak Brill-Noether. We also show that if in addition a > 2, then the generic sheaf in My (v)
is globally generated unlessn =r = 1,d = 2 and 2 < a < 4. We begin by a useful lemma.

Lemma 9.2. Let v = (r,dH, a) be a Mukai vector with v? = —2, r,a > 0, and d > 0. Assume that n > r
and vi = (r1,d1H,a1) € Dy. Set m = rid — rdy and k = a;d — ady. Then di = 1 and one of the
following holds:

D) rmd=r+1,ra=n+1landr; < 27’,;"; or

Q) n=r,v=(rr+2)Hr>+3r+1)and v, = (1, H,r + 1); or
B)n=r=1v=(1,dH,2d—1)(d>2)and vi = (1, H,?2).

Proof. By Lemma 8.2, if vi = (r1,d1H,a1) € Dy, then d; < Q—n’" Since n > r and d; is a positive integer,
we conclude that d; = 1. Hence, r1a; = n + 1. By Lemma 8.1 and Remark 6.5 (5), we have

0>m(n—1)—2r + kr.

If n > 2, then as n > r, we must have m < 2. We conclude that:

(1) m=mrid—r=1andr; <q/2rk_";or

(2) m = 2 and hence, n = r, k = r; = 1. We conclude that vi = (1, H,r + 1) and v = (r, (r +
2)H,r% + 3r + 1); or

B)n=r=1andk =r  =1,sothat vy = (1,H,2) and v = (1,dH,2d — 1) and d > 2 since
m=d—1>1

0
If we apply this lemma in ranks zero and one, we get the following two results:

Proposition 9.3. If v = (0,dH,a) is a Mukai vector with d > 0, then v satisfies weak Brill-Noether.
Moreover, if a = 2, then the generic E € My (v) is globally generated.

Proof. Letv = (0,dH, a) be a Mukai vector with d > 0 and @ > 0. Lemma 9.2 implies that D, = &. By
Theorem 6.4, the generic E € My (v) has H' (X, E) = 0. On the other hand, if a < 0, then Proposition 4.2
implies that v satisfies weak Brill-Noether.

Now let a > 2. Suppose the generic E € My (v) is not globally generated. Since D, = &, Theorem 6.4
implies that the generic sheaf in My (a, dH,0) is not locally free. By Proposition 2.3, this is only possible
if (a,dH,0) = (I,IpH,lp?n — 1), as a > 2 by assumption and v> > 0. Solving this equality gives
Il =p=mn=1,sothat a = 1 contrary to our assumption that a > 2. O

Proposition 9.4. Let v = (1,dH, a) be a Mukai vector such that d > 0 and v* = —2. Then v satisfies weak
Brill-Noether. If a > 2, then the generic E € My (v) is globally generated unlessn = 1 andv = (1,2H, a)
fora =2,3,4.

Proof. When r = 1, it follows from Lemma 9.2 that if Dy # &, thenn = 1,d > 2, v = (1,dH,2d — 1),
and Dy = {v1}, where vi = (1, H,2). Indeed, if n > 2, then Dy = & as

2r—n
k

Therefore, except for the case n = 1 and v = (1,dH,2d — 1), Dy, = &, so Theorem 6.4 implies that
v satisfies weak Brill-Noether. Moreover, by Proposition 2.3, My (a,dH, 1) contains locally free sheaves
when a > 2unlessn = 1 and v = (1,2H,2) or v = (1,2H,4). Hence, the generic sheaf in My (v) is
globally generated except in these two cases.

Returning to the case when n = 1 and v = (1,dH,2d — 1), we observe that Dy, = & where vy =
(1,dH,d? +1). Theorem 6.4 and Proposition 7.1 then imply that v satisfies weak Brill-Noether in this case
as well. For the question of global generation, we consider the Harder-Narasimhan filtration for the generic

1<m <
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E € Mp(v) along the wall W induced by vi = (1, H,2), which is the unique effective spherical class in
. Lemma 5.1 then implies that the generic E € My (v) sits in a short exact sequence

(34) 0— Ox(H)—>E—F —0,
where Ox (H) is the unique stable bundle of Mukai vector v; and F is a o-stable object such that v(F') =
(0,(d — 1)H,2d — 3). By Lemma 9.2, Dy, = & and by Proposition 9.3, Dy = &, so applying
@%HX (_)Y to (34), we get
I I I
0= @@ x(F)" = o5 x(B)" — & x(Ox(dH))” — 0.
By Propositions 3.4 and 3.6,

12 (Ox(dH))Y € My(2,H,1) and %2 (F)¥ € My(2d — 3,(d — 1)H,0)
for generic F' € Mg(0,(d — 1)H,2d — 3). If d > 3, then the generic element of My (2d — 3, (d —
1)H,0) is locally free by Proposition 2.3, so for generic F € My (v), we have <I>§(A_) «(E)Y is locally free
since (I)ﬁ?ﬁ +(Ox(dH)) is locally free. Thus by Lemma 3.1, for d > 3 the generic £ € Mpy(v) satisfies
H'(X,FE) = 0fori > 0 and is globally generated.

It remains to consider n = 1 and v = (1,2H, a) for 2 < a < 4.° In this case, the generic E € My (v) is
not globally generated by Remark 8.13. U

9.3. Ranks 2 and 3. We next classify moduli spaces of rank 2 and 3 sheaves where weak Brill-Noether
fails. We begin by a numerical observation.

Lemma 9.5. Let v = (r,dH,a) be a Mukai vector such that v > 2,a > 0,d > 0, and vZ > —2. Ifthe
generic E € My (v) has H (X, E) # 0, then DEN # @, where vo = (r,dH, l@J) Moreover, for any

vy = (r1,diH,a;1) € D‘I?ON, if we set m = rid — rdy and k = a1d — agdy, then

1 d?+1
(35) 1<k=ad—aopdy = o (—nmddy + rd — ridy) + dy {n : }
1
and
d>+1
(36) 1 < nddym < rd —ridy + rrid; {n + } —rry,
r

where {__} denotes the fractional part. In particular, 1 < dynm < r + ri(r — 2).

Proof. The first claim follows from Proposition 7.1, so to prove the remaining claims it suffices to assume
that v = vq. If vi = (r1,d1 H, a1) € DBV, the condition 6.5(4) becomes

241 211 211
1<k=a1d—a0d1=d<nd1+ >_dl(nd—|— _{nd—l— })
T

(&) T
nd? + 1}

1
= — (rd(nd} + 1) — r1di(nd® + 1)) + d; { .

Tr1

1 241
— (nddy(rdy — r1d) + rd — r1dy) + ds {”d + }
.

Tr1
nd? + 1}

1
= — (—nmddy + rd —ridi) + di {
rr1

We thus obtain (35). Rearranging this equation and using condition 6.5(3) gives

d?+1
1<ndd1m<7“d—7“1d1+7«7«1d1{n + }—7“7“1-
r

3The additional case when a = 3 is the d = 2 case of v = (1,dH,2d - 1).
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Using the facts that d; < d and {@} < % we get

1 <nddym < rd—ridy + mdi(r —1) —rry <rd+ ridi(r —2) < rd + rd(r — 2),
and dividing by d gives the final inequality in the lemma. U

Theorem 9.6. Let v = (r,dH,a) be a Mukai vector such that2 < r < 3,a > 0,d > 0, and v > —2. If
the generic E € My (v) satisfies H' (X, E) # 0, then

(1) n=1andv = (2,3H,5), or

(2) n=1andv = (3,4H,5), or

3) n=2andv = (3,4H,11).
In these cases h'(E) = 1.

Proof. By Proposition 7.1, it suffices to consider first when a = [@J .

T

First, suppose r = 2. If vy € D{?ON , then by Lemma 9.5
1< dimn < 2,

so it follows from 0 < r; < rthatn = r; = d; = m = 1. We conclude that n = 1, v; = (1, H,2) and
vo = (2,3H,5). For E € My(2,3H,5), h}(E) = 1 by Example 6.3.

Next suppose £ € My (2,3H,4) is a generic sheaf. Then ug = —(1,—H,2) and u; = (1, H, 2) are the
Mukai vectors of the two unique o-stable objects Ty = Ox(—H)[1] and T1 = Ox (H) with Mukai vector
in $), respectively. As Ry, (v) = (0, H,0) is a minimal vector in its orbit, Lemma 5.1 implies that E fits in
an exact sequence

0 — Ox(H)® - E — Ry, (E) — 0,
where R, () € M, (0, H,0) is o-stable. By the proof of Proposition 9.3 D (g 0y = &, so the generic L €
Mg (0, H,0) is still o-stable. Thus Ry, (E) € My (0, H,0). Then H'(X, E) = 0 by taking cohomology of
the short exact sequence. Proposition 7.1 and Theorem 6.4 now imply the proposition when r = 2.

Next, suppose 7 = 3. Let v € DfON . By Theorem 8.3 and Lemma 8.2, we may assume 1 < n < 2 and
1 < 71 < 2. First, suppose n = 2. Then there are no spherical classes with ; = 2, so we must have r; = 1.
By Lemma 9.5, it follows that

1<2dim < 4,
sod; = m = 1. We conclude that when n = 2, DBV = & unless vo = (3,4H,11), in which case
Dy = {(1, H,3)}.

We claim that the unique Eg € My (3,4H,11) has h'(Ep) = 1. Indeed, the sheaf Ej fits in a short exact

sequence

0 — Ox(H)® — Ey — Ro, (m)(Eo) — 0,
by Lemma 5.2, where Ro, (f)(Eo) € Ms(—1,0,—1). As Ox[1] is o-stable of the same Mukai vector, we
must have Ry gy (FEo) = Ox/[1]. Taking cohomology gives h'(Eg) = 1.

On the other hand, we claim that the generic E € My (3,4H,10) has H*(X, E) = 0. It is easy to see
that D3 4510y = {(1, H,3)}, so Lemma 5.2 implies that the generic £ € My(3,4H,10) fits in a short
exact sequence

0— Ox(H)® — E = Ro (g)(E) = 0,
where R () (E) € M (0, H,1). By Proposition 9.3, the generic L € My(0, H,1) is o-stable because
D(07H,1) = J, SO
(07 H, 1) = ROX(H)(3a 4H, 10)
is a minimal vector in its orbit, and R, (g)(E) € M4 (0, H,1) n My(0, H,1). Then taking cohomology
gives H' (X, E) = 0, as required. By Theorem 6.4 and Proposition 7.1, we conclude that when r = 3 and
n = 2, v satisfies weak Brill-Noether unless v = (3,4H,11).

Now we may suppose that n = 1. If 1 = 2, then Lemma 9.5 implies that 1 < d;(2d — 3d;) < 4. Since

r1 divides d% + 1, dy and m = 2d — 3d; must both be odd. We conclude that the only possibilities are:
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(1) di = 3, m = 1, in which case vi = (2,3H,5) and vo = (3,5H,8). We will discuss this case
below.
(2) dy = 1, m = 3, in which case v = (2, H,1) and vy = (3,3H, 3). In this case, a1d — apd; = 0,
which is a contradiction.
(3) dy = m = 1,in which case vi = (2, H,1) and v = (3,2H, 1). In this case, a;d — ad; = 1 = m.
Since Dy, = {v1}, by Lemma 6.2, the cohomology of the generic sheaf in M (vy) vanishes.
If 11 = 1, then Lemma 9.5 implies that 1 < d;(d — 3d;) < 3. The possibilities are:

(1) d1 = 3, m = 1, in which case vi = (1,3H,10) and vy = (3,10H, 33). In this case, a;d — ad; =
1 = m, so by Lemma 6.2, the cohomology of the generic sheaf in M (vg) vanishes.

(2) di = 1, m = 3, in which case vi = (1, H,2) and vo = (3,6H, 12). In this case, a1d — apd; = 0,
which is a contradiction.

(3) di = 2, m = 1, in which case v; = (1,2H,5) and vo = (3,7H, 16). We will discuss this case
below.

(4) di =1, m = 2, in which case vi = (1, H,2) and v = (3,5H,8). Since

Dy, ={(1,H,2),(2,3H,5)}

and for both of these a1d — apdy = m, by Lemma 6.2, the cohomology of the generic sheaf in
My (vo) vanishes.
(5) di = m = 1, in which case vi = (1, H,2) and vo = (3,4H,5). We will discuss this case below.
We need to discuss the remaining two cases. First, let vo = (3,7H,16) and vi = (1,2H,5) =
v(Ox(2H)). By Proposition 9.3, the generic L € My (0, H, 1) is o-stable because Do f,1) = . Thus

(Oa H, 1) = ROX(QH) (37 TH, 16)

is a minimal vector in its orbit, so by Lemma 5.2 the generic sheaf E' € My (3, 7H, 16) sits in a short exact
sequence

0— OX(2H)®3 - E— R(’)X(QH)(E) — 0,

where Ro (o) (E) = L € My (0, H,1) n My(0, H,1). Taking cohomology we see that H*(X, E) = 0.

Finally, let vo = (3,4H,5). The generic L € Mp(0,H, 1) is o-stable because Dy _1) = 2.
Thus (0, H,—1) = Ro (m)(3,4H,5) is a minimal vector in its orbit, so by Lemma 5.2 the generic £ €
M (3,4H,5) fits in a short exact sequence

0— Ox(H)® - E — Ro (g)(E) = 0,

where Rop, gy (E) = L € My(0,H,—1) n M,(0, H, —1). The Mukai vector (0, H, —1) satisfies weak
Brill-Noether by Proposition 9.3, so we must have H!(X, L) = C since x(L) = —1. We conclude that
WX, E) = 1.

Itis easy to see that D3 4774y = {(1, H,2)}. It follows from Lemma 5.2 that the generic F' € My (3,4H,4)
sits in a short exact sequence

0— Ox(H)® - E— Roy(m)(E) =0,

where Ro, (g)(E) € M5(1,2H,0). If Ro, (i) (E) € Mg (1,2H,0), then h'(E) = 0 by Proposition 9.4
and the long exact sequence of cohomology. By Lemma 9.2, Dy 2570) = < as the only possibility is
(1, H,2) which doesn’t pair negatively with (1,2H,0). Thus the generic member of My (1,2H,0) is o-
stable, as required. We conclude that when n = 1 and r = 3, M (v) satisfies weak Brill-Noether except
when v = (3,4H,5). O

Remark 9.7. One can carry out this analysis for increasing rank, but the number of possibilities grows
rapidly. In Section 11, we will classify all of the Mukai vectors that violate weak Brill-Noether up to rank
20 with the aid of a computer search.



36 IZZET COSKUN, HOWARD NUER, AND KOTA YOSHIOKA

9.4. Classification of moduli spaces where weak Brill-Noether fails when r is small relative to n. By
Theorem 8.3, all Mukai vectors with » < n satisfy weak Brill-Noether. In this subsection, we study the
cases when n < r < 3n. We split our classification into two theorems studying the possibilities when
n < r < 2nand 2n < r < 3n, respectively. In both theorems, it is useful to express certain important
quantities, such as v2, in terms of k, m, 1, d1,n, and r, where vi € Dy.

Lemma 9.8. Let v = (r,dH, a) be a Mukai vector such that r,a = 0 and d > 0. For vi = (r1,d1H,a;) €
Dy, set k = a1d — ady and m = r1d — rdy. Then ry divides r — dymn, so using the division algorithm we
may write r — dymn = r%q +riswhere q = 0and 0 < s < ry. Thus

2r
o 2nm — 2 ) (rdy +m) o d
V2_T+< dl) (kr—(qn—i—s) (rl—km)>

dy r? 1 r1

Moreover, Ry, (V) =

— dy — kr?
< (g71 + S)Tld LT R ,(—=di(gr1 + s) + kry) H,—(qr1 + s)a1 + kd1n> )
1
Proof. Since r1d — dir = m and r1a; = d%n + 1, r1(may; — d) = di(dymn —r). As ged(ri,dp) = 1,
rq divides r — dymmn, so using the division algorithm we may write r — dymn = r%q + r1s where ¢ = 0
and 0 < s < 7. Solving for d in the definition of m, for @ in the definition of k, and for a; in the equation

v? = -2, we get

di dy
(37) = (dymn —1) + rk
dyr dy
1
=—/(rk — (r1q + s)d)
dy

:d11 (m —(qr1+9) (ler?m)) '

For the claim about the spherical reflection, by Lemma 8.1 we have

m(nd? — 1) — 2rdy + kr?
ridi '

(v,viy=

Using this we compute the components of Ry, (v) = v + (v, v} )vy. For the rank, we get

T+

1
Tr; (m(nd} 1) = 2rdy + krf) =—(di(mndy — ) = m + kr?)

1
=—(qr1+s)r1 + d—l(—m + kr?);

for the first Chern class we get
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i 1
d+ ﬁ( m(ndy — 1) — 2rdy + kr?) =T—(r1d +m(nd? —1) — 2rd; + kr?)
1d1 1

1 _ 2
39) = (di(mndy — 1) + kry)

1

zr—(—dl(qu +s)r] + k:r%)
1

=—di(qr1 + s) + kry;

and for the final component we get

a+ —( (nd? — 1) — 2rdy + kr?)

r1di
ard —k ai
=T g (mlnd} = 1) = 2rdy + ki)
1
T rdy (a1(r1d + m(nd} — 1) — 2rdy + kr) — kr1)
1
(40) =——(a1((mndy — r)dy + kr}) — kry)
Cridy

1

=W(a1(—(qr1 + s)ridy + k‘r%) — kry)
1dy

1
=—ai(qr1 +s) + 7(kr1(nd% + 1) — kry)
ridy
=—ai(qr1 + s) + nkd,.
O

Theorem 9.9. Let X be a K3 surface such that Pic(X) = ZH with H> = 2n. Let v = (r,dH, a) be a
Mukai vector such that n < r < 2n, d > 0. Then the generic E € My (v) satisfies H(X, E) # 0 if and

only if
( n+1) > <n+1>2 )
n+r3, +7r | H, +n
r1 1

for somery | n+ 1and 1 < 71 < /n, in which case h* (X, E) = 1.

Remark 9.10. In the exceptional cases of Theorem 9.9, we have v = —2. In particular, if v as in Theo-
rem 9.9 satisfies v2 > 0, then H!' (X, F) = 0 for the generic E € My (V).

Proof. By Proposition 7.1, we may first suppose that

2
V=Vg = (’I“,dH, {nd +1J)

r

and suppose that v; € DBV induces the largest totally semistable wall. By Lemma 8.2, d; < % < %.
Hence, 1 < md; < 3.

If d; = 2 or 3, then m = 1. In these two cases, we will now show that k = a;d — ad; = 1 and v > 0.
It will then follow from Lemma 6.2 that v satisfies weak Brill-Noether in these cases.

When d; = 2, we have r1d = 2r + 1 and r1a; = 4n + 1. Substituting r < 2n and d; = 2 into Equation
(35) of Lemma 9.5, we obtain

2 a2 +1 2 -1
1<a1d—2a<—+2{n * }<_+2r <
.

r r
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Hence, a1d — ad; = 1. By Lemma 9.8,

2n —r)(2r +1
v2=7“+(n T)gr )>r>0,
1

as claimed.
Similarly, when d; = 3, we have r1d = 3r + 1 and r1a; = 9n + 1. By Lemma 8.1,

0>9n—1—6r+kr?>9n—1—12n+ kr?.

Hence, 3n > kr% Substituting r < 2n and d; = 3 into Equation (35) of Lemma 9.5, we obtain

"] T
3n r—1 r—1
+ < +

1 241
1<a1d3a<(nd3ﬁ)+3{nd * }

as claimed.
We are thus reduced to considering the case d; = 1. Substituting d; = 1 and < 2n into (36), we get

nd? + 1

1<ndm<'rd—r1+rm{ }—rr1<2nd—r1.

Hence,m =1,r1d =r+ 1landrja; = n + 1. By Lemma 8.1,
0>(n—1)—2r+kri>-3n—1+kri.

Thus kT% < 3n and 1 < +/3n. In particular, r; < n.
By Lemma 9.8, using d; = 1, m = 1, we can write

r—nz’r%q+sr1,

where 0 < s < r;. Let f = {@} Then

n+1)(r+1 n(r + 1)2 + r2 S —1 s
ald—az( Jr+1) nr+l) Lpfogqro+124 % 4y
2 2
T Ty 1 T T

We claim that either a;d —a =land ¢ =1,s = f =0orajd —a = g + 1. Since r > n, if s = 0, then
q = 1and

-1
ald—a:q—i-T—i-f.

Since a1d — a is an integer and ¢ — 1 < r, we conclude that ¢ < ai;d —a < ¢+ 1. Furthermore, a1d —a = ¢

only if ¢ = 1 and f = 0. We may now assume that s > 1 and ¢ > 0. Since r?q < r, we have that 1< %2

1
Hence,
1 s -1 S s 1
— <241 +—+f<—+5+f<2
rri T1 T rri T1 Tl

Since a;d — a is an integer, we conclude that a;d —a = g + 1.
First, suppose that (¢, s) = (1,0). Then k = ¢ + 1, and substituting m = 1 = d; into Lemma 9.8 gives

vi= (' dH,d)=Ry,(v) = (=1+7r1(r1 —8),(r1 — 8)H,n — q — a1s),

which satisfies 0 < 7’ < r, and d’ > 0. Since r1d — r = m = 1, [39, Theorem 2.5] implies that the generic
E € My (v) sits in a short exact sequence

0— E?7<V’vl> —-F—->F —0,
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where E; € My (vy) and F' € My (v') is generic. Since

vi=(v)?= 7?1(1"1(7"1 —8)(rig+ )+ (r1 —s)n— (rig+s)) > 0,
it follows by induction that the generic F' € My (v') satisfies H'(X, F) = 0. Since r; < n, Theorem 8.3
implies that H'(X, E1) = 0. The long exact sequence of cohomology now implies that H'(X, E) = 0 for
the generic £ € My (v).

Finally, consider the case (g, s) = (1,0). We then have r = n+77, and k = 1, so that settingm = 1 = d
in Lemma 9.8 we get

v = (r',dH,d") = Ry, (v) = (-1,0,-1) = v(Ox|[1]).
Thus v? = (v/)? = —2, so the unique E € My (v) fits in the short exact sequence
0—O0x —EP - E -0,

from which it is clear that H*(X, E') = C since H!(X, E1) = 0 by Theorem 8.3.
To finish the proof, we need to show that the generic E € Mpy(v) has H'(X,E) = 0, where v =
vp — (0,0,1) and

n+1 n+1

Vo = (n+r%,((T)+r1)H,( - )? +n)

as in the previous case. From r1d — r = 1 we see that the generic F' € M (v) sits in an exact sequence

0 EY Y LB F oo,
where F' € My (v') is generic with
v =Ry,(v) =v—ai(r;,H,a1) = (r} —1,r H,n —1).
We have H'(X, F) = 0 by Theorem 8.3. Thus H!(X, E) = 0, as required. O
Our next theorem classifies the failure of weak Brill-Noether when 2n < r < 3n.

Theorem 9.11. Let X be a K3 surface such that Pic(X) = ZH with H?> = 2n. Let v = (r,dH,a) be a
Mukai vector such that 2n < r < 3n, d > 0, and a > 0. The generic E € My (v) satisfies H'(X, E) # 0
if and only if v belongs to one of the following three cases:

(1) v=(r,(r+1)H,nr+2n) with2n < r < 3n;

Q) v =(n+r2 () 4 r)H, ()2 4 n), where vy | n + 1 and /n < r1 < A/2n;

T1 T1

(3) v=3n,(3n +2)H,3n? + 4n + 1) withn > 1.

Proof. By Proposition 7.1, it suffices to first assume

d>+1
v:voz(r,dH,{n + J)

r
Then suppose that v = (r;,d1H,a1) € D\I?N induces the largest totally semistable wall. Set m = rid —

rdy. By Lemma 8.2, d; < % < %. Hence, 1 < md; < 5. In particular, if 3 < d; < 5, then m = 1 and if
di =2,thenl <m < 2.

The case d; = 5. If d; = 5, then m = rid — 5r = 1. Substituting m = 1 and r < 3n into Lemma 9.5
(35), we obtain

1 d?+1
1<a1d—5a=(—5nd+1"d—57“1)+5{n i }
7T r

1
< —(—2nd —5r) +5 < 5.
rri

Since d = a; (mod 5), a;d must be a square modulo 5. We conclude that a;d — 5a = 1 or 4.
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If a1d — 5a = 1, then by Lemma 9.8
9 2<T+(5n—r)(5r+1)>>0.

v:=—
2
5 T

Lemma 6.2 eliminates this case.
Now suppose that k = a;d — 5a = 4. Then by Lemma 9.8

v = (r',d'H,d) = Ry,(Vv)

_ <5n_r+ 47”%—1, (5(571—7“) +4r%>H720n+ (25n+1)(5n—r))’

5 1 r%

where 0 < 7’ < rand d’,a’ > 0. Since r1d — 5r = 1, by [39, Theorem 2.5], the generic E € My (v) sits
in a short exact sequence

0— E?_<V’Vl> —-F—>F —0,

where Ey € My (vy) and F € My (V') is generic. Note that v? = (v/)? = 2 (W‘w + 47“) > 4n, so
1

v’ cannot be one of the cases (1)-(3) and thus by induction on the rank we may assume that ! (X,F)=0.
Substitutingm = 1, k = 4, d; = 5 and » < 3n into Lemma 8.1, we see that 47"% < 5n, hence r; < n. By
Theorem 8.3, H'(X, ;) = 0, and thus H!(X, E) = 0 as required.

The case d; = 3,4. If d; = 3 or 4, then m = r;d — dyr = 1. Substituting m = 1 and r < 3n into
Lemma 9.5 (35), we obtain

rr1

1 d?+1 d
1< aid—dia = 7(—ndd1 +7’d—d17’1) +d1{n T’+ } < —71 +d; < dj.

Since r1a1 = r1d = 1 (mod dy), we must have a1d = 1 (mod dy). Hence, a1d — dia = 1. It is easy
to check that v2 > 0 in both cases, therefore Lemma 6.2 guarantees that v satisfies weak Brill-Noether in
these cases.

The case d; = 2. If d; = 2, then m = 1 or 2. If m = 2, then substituting » < 3n into Lemma 9.5 (35), we
obtain

1<a1d_2a:(_4”d+7’d—27“1)+2{n : }<2,

Ty T

We conclude that k£ = a1d — ad; = 1 < m, contrary to our assumption that v; € D‘],BN so that k > m. We
must therefore have m = rid — 2r = 1 and r1a; = 4n + 1. Hence, 71, a1, di and a;d — 2a are all odd
integers. By Lemma 9.8, we may write

r—2n=qr%+sr1,

where 0 < s < 7. Set

d? +1 1
A::ald—Q(n * >:2q+r1q+5+2<5_>7
T

™r 1 T

sothat A < a;d—2a < A+ 2. Observe that A > 2qg unless s = 0 and ¢ = 1 or 2, in which case A = 2¢ — %
or 2¢q, respectively. Since a;d — 2a > A is an odd integer, we conclude that it is at least 2¢ + 1. On the other

hand, using s < r; — land rig + s < %, we see that

1 -1 1 —drry — 4r?
A<2q+—L+2 n - - =2q+2+#<2q+2.
rir 271 1 T 2rir

Therefore, k = a1d — 2a = 2q + 1 or 2q + 3.



THE COHOMOLOGY OF THE GENERAL STABLE SHEAF ON A K3 SURFACE 41

First, let k = 2¢ + 1. If s > =}, then since r; is odd we have s > —“2“ and
1
2q+1>A:2q+r1q+8+2<8—>
rry r1 r

ry+1 r—i—l 2 2r—3r1 +1
>+ 44224 Srogrl+ T s 0041,
T 2rry 1 T 2rry

a contradiction. The final inequality follows from r1s < rig + rs <n < 5 and s > %1 which give 7 > r}
<

and thus 2r — 3r; +1 > 2rf —3r; + 1 = (2r; — 1)(r1 —1) > 0. Hence, s < “5=. If ¢ = 0, then
ard —2a =1 = rid — 2r, and it follows from s < = L and Lemma 9.8 that

9 rd—d 2r+1—d d-—1
r— =7r— = =

2 2 2
Lemma 6.2 eliminates this case. Otherwise, ¢ > 1 and from k£ = 2¢ + 1, we get by Lemma 9.8 that

vi=(r',d'H,d') = Ry,(V)

I
=
|
IS
»
\%
e

v

21 2 —25) —
— (Tl 5 r18, (r1 —2s)H, n(r s) — (gm1 + S)> .

™

As s < ”2_1 "> 0andd > 0. By [39, Theorem 2.5] and m = r1d—2r = 1, the generic £ € My (v)
sits in a short exact sequence

0— E®_<v’v1> —-F - F -0,
with By € My (vy) and F € My (v') generic. From g > 1, we see that 2 < 72q + r1s < n,so 71,7’ < n.
Thus H'(X, F) = 0 = H'(X, E1) by Theorem 8.3. Thus H'(X, E) = 0.
Next, let £ = a1d — 2a = 2¢ + 3. Then
v =(r',dH,d") = Ry,(Vv)
_ (37"% — 227‘18 - 1’ (3r1 — 25)H. 2n(3ry — 2s) — (rq + s)) .
1

It is clear that r > 7/, d’ > 0. By Lemma 9.8 we get that

4 1
v'2—v2—6n+q(r1(3r1—23)—1)+s(3r1—2s)—3< ny >

!
>2n+q(ri(3r —2s) — 1) + s(3r1 —2s) + (a1 — 1) > 2n,

where we use s < 71 — 1. As all the counterexamples in the theorem satisfy either v = —2 or v2 = 2n,
it follows as in the d; = 5 case that resolving the generic sheaf £ € My (v) using [39, Theorem 2.5] and
using induction gives the required cohomology vanishing.

The case d; = 1. If d; = 1 and m > 3, then Lemma 9.5 (35) and r < 3n imply that

nd2—|—1}
<1,
r

1
1< —(—mnd+rd—r) + {
rT1

which is a contradiction. We conclude that if d; = 1, then m = 1 or 2.
Suppose first that 71d — r = 2. Since r1a1 = n + 1,71 | r — 2n and we can write

r—2n = T%q—krls,

where 0 < s < 7. Set

+ =+ —.
T T rri

a2 +1 29 — 1 2
Azald—(n + >:q+ q s s
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Since
2g —1 s 2s 1 2qr1 + 2s s
q +7+7__,+Q17+7
T T T T 1 71
1 1 r1—1 1 1 1
Tl L R
T 7’1 ™ T 7‘1 T

we have that g < A < ¢+ 1. Since A < a1d — a < A + 1, we conclude that a1d —a = g + 1.
If ¢ = 0, then ayd — a < r1d — r and H'(X, E) = 0 for the generic £ € My (v) by Lemma 6.2.
If ¢ =1, then a;d — a = rid — r and by Lemma 9.8 we have
vZ =2((ry — s)d — 4).
If v2 = —2 theneitherd = landr; —s =3ord =3andr —s = 1. Ifd = 1, thenr > r| = r + 2,
which is a contradiction. If d = 3, then r; = s+ 1,sousing 3ry —r = 2andr — 2n = r% + 7r18, we get
n=—r%+2r1—1=—(7‘1—1)2<0,

a contradiction. Thus v2 > 0 in this case, and Lemma 6.2 guarantees that v satisfies weak Brill-Noether
this case.
If ¢ = 2, then by Lemma 9.8 we have

vi= (' dH,d)

— Ry, (v) = <r%—ms—2,(m —s)H,—q—1+ <n: 1) (r1 —8)> ;

1

where ' > —1,d' > 1.

Suppose first that v’ = —1. Thenry = land v/ = (-1,H,n—¢q) = (-1,H,3n —r), v = (r,(r +
2)H,nr +4n +1). Let v := ve = (r,2H,1) for r > 3. We have Dy = @, so Propositions 3.4 and 3.6
imply that for a generic E’ € My (v), we have <I>§(A_>X (E")Y € My (1,2H,r),i.e. <I>§(A_)X(E’) vV =14(2H),
where Z is a generic O-dimensional subscheme of length 4n 41 — . Moreover, by Lemma 3.1 (5), a generic
E’' € My (¥) sits in a distinguished triangle

I2H)Y —» O¢ !t - F.
Thus a generic £ € My (v) sits in a distinguished triangle
Iz(H)Y — Ox(H)® 1 - E.
Dualizing and taking the long exact sequence of cohomology sheaves, we see that E is locally free with
dual sitting in a short exact sequence
0—EY - Ox(—H)¥ ! - I;(H) - 0.
Taking cohomology gives
WYX, E) = h(X,EY) = h%(X,I7(H)) = max{0,n + 2 — (4n + 1 — )}
= max{0,r + 1 — 3n}.
Hence, h' (X, E) = 0 unless » = 3n, in which case h'(X, E) = 1. Note that here n > 1, otherwise we
would have n = 1,r = 3 and ¢ = 1 contrary to assumptions. This gives case (3) in the theorem.

If instead 7’ > 0, or equivalently r; > 1, then the assumption ¢ > 2 implies that 7y < n since by
Lemma 8.1, (¢ + 1)r? < 4n + 1. Theorem 8.3 thus implies that H'(X, E1) = 0. Moreover, as

r’=T%—r13—2<r%+rls<r%q+rls=r—2n<n

for the same reason we have H'(X, F') = 0 for the generic F' € My (v'). Now, the generic E € My (V)
sits in a short exact sequence

0 - EZ ™YY & E - Ry, (E) -0,
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where Fy € Mp(vy) and Rg, (E) € M,(v') is generic. By Lemma 9.2, Dy, = @, so in fact Rg, (E) =
F e My(v'). Hence, HY (X, E) = 0.

Finally, we may assume d; = 1, m = rid —r = 1 and rja; = n + 1. By Lemma 9.8, we can write
r—n= r%q + r158 where 0 < s < r1. As usual, set
nd? + 1) g—1 s s

=q+—+—+—.
T ™ rri

A:ald—<

Itis easy tocheckthatq < A < gq+1and A = gifandonlyif¢g = land s = 0. Since A < a1d—a < A+1,
we conclude that either £k = a1d —a = A =qg(sothatg=1land s =0)ork =a1d —a=q + 1.
Ifg=1,s=0,sothat ayd — a = 1, then

1 1 1
e (et () () () )
™ 1 1
1 1\?
- (n+r%, <<n+ ) +r1> H, (n+ > +n>
1 !
v = (r',d'H,d") = Ry, (v) = (1,0, -1) = v(Ox][1])
and v2 = (v')?2 = —2, so the unique E € My (v) fits in the short exact sequence
0—0x - EPM - E 0,
Since H'(X, E1) = 0 by Theorem 8.3, we conclude that
HY(X,FE) = H*(X,0x) = C.

and by Lemma 9.8,

This gives case (2) of the theorem.

We are left to consider the case k = a;d —a = ¢ + 1. By Lemma 8.1, (¢ + 1)7“% < 5n. Hence,
rm <nunlessn =2,g=0andry =3orn=1,¢g=0andr; = 2. If n = 2,9 = 0,r; = 3, then
vy = (3,H,1)and v = (5,2H,1). Since (v, vy) = 0, we can eliminate that case. If n = 1,¢ = 0,r; = 2,
then vi = (2, H,1) and v = (3,2H, 1). In this case, H' (X, E1) = 0 by Theorem 9.6. Otherwise 1 < n
and Theorem 8.3 implies that H' (X, E1) = 0.

By Lemma 9.8 we get

2
ri—ris+1l)n—r
v':<r',d’H,a’>=(Tf—ﬁs—l»(“—sw’(1 e )
1

where clearly v’ > 0 and d’ > 1, and

2 _prs—1
v2=(V')2=2<n+(r1 Lo )r)>0.

2
1

If ¢ = 0, then a1d — ady = 1 = r1d — rd; so Lemma 6.2 eliminates this case, and we may assume that
q = 1. It follows that
r'=r%—rls—1<T%q+7”18=7“—n<27%
so v’ satisfies weak Brill-Noether by Propositions 9.3 and 9.4 and Theorems 8.3 and 9.9. Since 72 —r1s+1 >
2 —ri(rp —1)+1 =7y +1,ifr; > 2, thena’ > 0andr’ > 0, so for generic F' € My (v'), we have
H'(X,F) = 0. By [39, Theorem 2.5], from r1d — rd; = 1 we see that the generic E € M (v) sits in a
short exact sequence
0> EY YY" LB F oo,

where F' € My (v') is generic. The vanishing of H' (X, E1) and H!(X, F) gives the vanishing of H (X, E).

If instead, 7, = 1, then v/ = (0, H,2n —r) and v = (r, (r + 1) H, nr + 2n). By [39, Theorem 2.5], from
rid — rdy = 1 we see that the generic F' € M (v) sits in a short exact sequence

0— E?%v’vo — FE - Og(L) — 0,
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where Oy (L) € My (v') is generic. By Proposition 9.4, H' (X, E1) = 0. Taking cohomology we conclude
that

hY(X,E) = h(X,05(L)) =r—2n> 0.

This gives case (1) of the theorem.

To conclude the proof we show that the next Mukai vector in each of the series defined by Case (1)-(3)
does not define a counter-example. In Case (1), the next Mukai vector is v = (r, (r + 1)H, nr + 2n — 1).
Keeping vi = (1, H,n + 1), we have (v,vi) =2n(r+1)—r(n+1)—nr—2n+1=1—-r <0, so

v/ = Ry, (v) = (1,2H,3n — r) = v(Iz(2H)),

where Z is a O-dimensional subscheme of length r +n + 1. As rid —rd; = 1, it follows from [39, Theorem
2.5] that the generic E' € My (v) fits in a short exact sequence

0— Ox(H)®=Y & B — I,(2H) — 0,
where Z € Hilb"™"1(X) is generic. For such Z, H'(X,I7(2H)) = 0, so H'(X, E) = 0 as claimed.

2
In Case (2), the generic stable sheaf E with Mukai vector v = (n + 732, (”tl + r1> H, (”H) +n—1)

T 1

fits in an exact sequence,

n+1

0—E" —E—F—0,

where v(E;) = (r1, H, ™) and F is a generic stable sheaf with v(F) = (r? — 1,71 H,n — 1). As r1 and

1
72 — 1 are both less than or equal to 2n, by induction H'(X, F;) = H*(X, F) = 0. Hence H'(X, E) = 0.
In Case (3), the generic stable sheaf £ with Mukai vector v = (3n, (3n + 2) H, 3n? + 4n) fits in an exact
sequence

0— Ox(H)* - E - Oy(D) — 0,

where Q257 (D) is a general line bundle on a curve with class 2H and Euler characteristic n. Since such a
line bundle has no higher cohomology, it follows that H' (X, E) = 0. O

Corollary 9.12. Let 1 be a positive integer which divides n + 1. For i = 0, let

v(i) = <n+7~%, ((n:; 1) +r1> H, (n;; 1>2 —i—n—i) .

Then My (v(i)) fails to satisfy weak Brill-Noether if and only if i = 0. If E € My (v(0)), then h*(E) = 1.

Proof. As in the proof of Theorems 9.9 and 9.11, E' € My (v(0)) fits in an exact sequence

®n+l+
O—>(’)X—>E1(T1 Tl)—»E—»O,

where By € My((r1, H, %)), Since h!(E;) = 0, we conclude that H'(E) =~ H?(Ox) =~ C. On the

T1
other hand, if F € My (v(1)) is generic, then F fits in an exact sequence

®n+1
0—E " —-E—F—0,

where F is generic in My (w) with w = (r? — 1,71 H,n — 1). We claim that DZV = &. Indeed, let
w' = (n— 1,71 H,r} — 1) so that DBN = & by Theorem 8.3. Then DY = & by Remark 3.7. It follows
that ! (F) = 0 and consequently h!'(E) = 0. The corollary then follows from Proposition 7.1. O
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9.5. Small values of a. In this subsection, we study the failure of weak Brill-Noether for Mukai vectors

v = (r,dH,a) with small values of a. Proposition 4.2 shows that if a is negative then weak Brill-Noether
holds for My (r,dH, a).

Proposition 9.13. Let v = (r,dH, 1) be a Mukai vector with v2 > —2suchthatr > 0,d > 0. If Dy # @,
then

n=1, v=<r,<T;1>H,1> and Dy = {(2,H,1)}.

Moreover, for v = (r,dH,a) withr > 0, d > 0, and a < 1, v satisfies weak Brill-Noether.

Proof. The first claim follows from Remark 3.7 and Lemma 9.2.

Assume that v = (r,dH, 1) and whenn = 1,v = (r, (“3}) H,1). Then DZY < D, = @. Theorem 6.4
implies that the generic E € My(r,dH, 1) satisfies H'(X, E) = 0. By Proposition 7.1 and the fact that
r >0, (r,dH, a) satisfies weak Brill-Noether for all a < 1.

Ifn = land v = (r, (1) H,1), by Theorem 6.4 and Proposition 7.1, it suffices to show that the
generic sheaf B € Mpy(r, (") H,1) satisfies H'(X, E’) = 0. As D(T,(%)Hl) consists of the unique
Mukai vector vi = (2, H,1), vy is the unique effective spherical class in the primitive isotropic sublattice

). Lemma 5.1 implies that the generic £/ € My (r, (“51) H, 1) fits into a short exact sequence

0—-Ty - FE —F—0,

where T is the unique stable spherical sheaf with v(7}) = v and F is a o-stable object such that v(F') =
(r — 2, (%5%) H,0). By Proposition 4.2, Dy = @ and the generic F' € M, (v(F)) is a stable sheaf with
vanishing H'. As H'(X,T) = 0 by Theorem 9.6, we get H*(X, E') = 0. O

Theorem 9.14. Let v = (r,dH,2) be a Mukai vector with v? > —2 such that r > 0, d > 0. If Dy # @,
then either

(1) n = 1 and one of the following holds
(a) v=(11,5H,2) and vi = (5,2H,1)
(b) v =(23,7H,2) and vi = (10,3H,1)
(c) v=(r,dH,2)withd >3,2d—3<r<2d—1landvy = (2,H,1)
(d) v=(12,5H,2) and vy = (5,2H,1); or
(2) n = 2 and one of the following holds
(@) v=(11,4H,2) and vi = (3, H,1)
(b) v=(7,3H,2)and v = (3,H,1)
(c) v=(8,3H,2)and vy, = (3, H,1); or
3)n=3 v=(11,3H,2),andv = (4,H,1).

Moreover; the generic E € My (v) satisfies H'(X, E) = 0 except whenn = 1 and v = (5,3H, 2).
Proof. Let vi € Dy,. As in the proof of Proposition 9.13, conditions Remark 6.5 (3) and (5) imply
0> {(v,v1) > nd; —1—2r.

d2
Thus r; > % and

nd% +1 2r+1 1
0<a; = < =2+ .
1 1 1

If r; =1, since a; = nd% + 1 < 3, we conclude that either

n=dy=1,a1=2,{v,v1)=2d—2r—2, or
di=1,n=2 a1 =3, {v,vi)y=4d — 3r — 2.
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Since d — r > 1, {v, vy ) cannot be negative in either case. Hence, 7y > 1 and a; = 1l or2. If a; = 2,
then Remark 6.5 (4) gives 2d — 2d; > 0, so that we can write d = d; + s for a positive integer s. Since
2r1 = nd% + 1 and r1d — dir = 1, we obtain

0 > 2nddy — 2r1 — 2r = 2ndd; — 2r

+—=s5s

dy+d 2
dq dq

d ! 2+ 2 > —1
n - - - - )
T dy
which is a contradiction.

We conclude that if vi = (r1,d1H,a1) € Dy, thena; = 1,7 = nd% + 1, d = 2d; + s for a positive

integer s and r < %{1. Then (v, v;) < 0 becomes

dy dy
In particular, 1 < nd; < 3. If n = d; = 1, then s can be an arbitrary positive integer and vy = 2, d = 2 + s.
Hence, d is an arbitrary integer greater than or equal to 3. Furthermore,
rid—rdi=2d—r>0 and 0> 2ndd; —ria—ra1 =2d—4 —r.

Hence, 2d > r > 2d — 4. This gives case (1)(c).
If d; = 1and n > 1, then from 0 > s(n — 1) — 3, we conclude thatn = 2,1 < s <2orn =3,s = 1.
First assume n = 2. Then v; = (3, H,1). If further s = 2, then d = 4 and

2d1 +d 1 1 1
0>2nddy —2r1 —r = 2ndd; — 1 1+ +=s<nd1—>—4+.

rid—rdy =12 —1r > 0> 2ndd; —ar; —ayr = 10 — r.

Hence v = (11,4H,2), which is case 2(a). If s = 1,thend =3and9—7 >0 >6—7r,s07 < r < 8.
Hence, v = (7,3H,2) or v = (8,3H,2) giving cases 2(b) or 2(c). Finally, if n = 3, s = 1, we have
vi=(4,H,1),d=3and 12 —r > 0 > 10 — r. Hence, v = (11,3H, 2), which is case (3).

Ifd > 1,thenn =s=1and2 < d; < 3. Ifdy = 2,thenvy = (5,2H,1),d = 5 and 25 — 2r >
0 > 10 — r. Hence, v = (11,5H,2) or v = (12,5H,2), which are cases 1(a) or 1(d). If d; = 3, then
vy = (10,3H,1),d = 7and 70 — 3r > 0 > 22 — r. Hence, v = (23,7H,2), which is case 1(b). This
concludes the classification.

Lemma 6.2 implies that the generic £ € My (v) satisfies H'(X, E) = 0 in cases (1)(a),(b), and (d),
(2)(b) and (c), and (3). In case (2)(a), we have (v,vy) = —1, so Lemma 5.2 implies that the generic
E € Mpy(v) has HN-filtration

0—-Ty,—>F—>F—Q0,
where T} is the unique stable spherical sheaf with v(77) = (3, H,1) and F' is a o-stable object such that
v(F') = (7,3H,1). By Proposition 9.13, Dy (py = @, so the generic F' € M,(7,3H, 1) is a stable sheaf
that is o-stable and satisfies H'(X, F) = 0. Moreover, Proposition 9.13 shows that H!(X,T}) = 0, so
H(X, E) = 0 for generic E € My(v).

In case (1)(c), first suppose that v = (2d — 1, dH, 2). Then the generic F € M (v) fits in the short exact

sequence

0— T1®3 —-F—>F—>0
with My (2, H,1) = {T 1} and F € M,(2d — 7,(d — 3)H,—1). If d > 4, then the generic F' € M,(2d —
7,(d — 3)H,—1) is in My(2d — 7,(d — 3)H, —1) and satisfies H'(X,F) = 0 by Proposition 4.2. As
H'(X,T1) = 0 by Proposition 9.13, we get H* (X, E) = 0 for generic E € My (v) whend > 4. If d = 3,
then v = (5,3H, 2), and the unique £ € My (5,3H,2) sits in a short exact sequence

(41) 0—0x »T% - E -0,

from which we get h! (X, E) = 1.
Next suppose that v = (2d—2, dH, 2). In this case, the generic E € M (v) sits in a short exact sequence

0T 5 F—>F -0,
with F e My (2d — 6, (d — 2)H,0) for d > 3. Thus h' (X, E) = h!(X, F) = 0 by Proposition 9.13.
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Finally suppose that v = (2d — 3,dH,2). In this case, the generic E € M (v) sits in a short exact
sequence
0-Ty—->F—>F—0,
with F e My (2d —5,(d — 1)H, 1) for d > 3. Thus h' (X, E) = h!(X, F) = 0 by Proposition 9.13. [

Small values of d. Finally, the following corollary discusses the cases for small values of d.

Corollary 9.15. Let X be a K3 surface such that Pic(X) = ZH with H?> = 2n. Letv = (r,dH,a) be
a Mukai vector such that 0 < a,r, 0 < d < 3 and vZ > —2 Thenv satisfies weak Brill-Noether unless
n=1landv = (2,3H,5) orv = (5,3H,2).

Proof. By Proposition 9.3 and Proposition 9.4, we may assume that 7 > 2. By Proposition 7.1, we may
consider the Mukai vector vy with the smallest square. Let v € D{?ON .Sincedry —rdy > 0and0 < r; <r
by Lemma 8.2, we must have 0 < d; < d.

If d = 1, then DBV = &, proving the corollary in this case.

Ifd=2,thend;y =1,2r; —r>0andajr1 = n+ 1. Hence,r1 <n+landr < 2n + 1 < 3n. The
corollary in this case then follows from Theorem 9.9 and Theorem 9.11.

Ifd=3,thend; =1or2.Ifd; =1,then3r;y —r >0andair1 =n+ 1. Ifa; = 1,then3a; —a > 1,
implies that ¢ < 2 and the corollary follows from Theorem 9.14. In this case, we get the exception n = 1
and v = (5,3H,2). Otherwise, r; < n and r < 3n. By Theorems 8.3, 9.9 and 9.11, the cohomology
vanishes unless n = 1 and v = (2,3H,5). If d; = 2, then 3r; —2r > 0, a1m, = 4n+ 1 and 1 < 3a; — 2a.
Ifa; = 1or2,then 1 < 3a; — 2a implies that a < 2. Hence, the corollary follows from Theorem 9.14. If

a1 = 3,thenr; < 4”; L and r < 2n. The corollary follows from Theorems 8.3 and 9.9. O

Remark 9.16. The case d = 1 of Corollary 9.15 was proved by Markman in [27].
Corollary 9.17. Let X be a K3 surface such that Pic(X) = ZH with H?> = 2n. Letv = (r,dH,a) be

a Mukai vector such that 0 < r, v2 > —2and nd® < 3r — 1. Then v satisfies weak Brill-Noether unless
n=1landv = (5,3H,2).

Proof. By Proposition 9.3 and Proposition 9.4, we may assume that 7 > 2. As v > —2, it follows from
nd? < 3r — 1 that a < 3. By Propositions 4.2 and 9.13 and Theorem 9.14, we conclude that the only v that
does not satisfy weak Brill-Noether occurs when n = 1 and v = (5,3H, 2). u

10. GENERAL THEOREMS FOR COMPUTATIONS

In this section, we describe several techniques for computing the cohomology of the generic sheaf in
M H (V) .

10.1. Destabilizing Lines bundles and Torsion Quotients. This family of examples accounts for about
half of the vectors with Dy, # &. Although this theorem will be subsumed by Theorem 10.6, we highlight
it here for the prevalence of these examples.

Theorem 10.1. Let v = (r,dH, a) be a Mukai vector such that r,a > 0 and d > 0 and v2 > —2. Suppose
that vi = (1,d1H, 1 + d?n) € Dy, induces the largest totally semistable wall and satisfies tk Ry, (v) = 0.
Then the generic E' € My (v) satisfies

hY(X,E) = max{0,r(nd? + 1) —a} and h*(X,E)=0.
Proof. From the assumption that
0=1rkRy,(v)=r+{v,vi)r; =1 +<{v,v1),
we get (v, vy) = —r. Thus
Vo = Ry, (v) = v + (v,vi)vi = (0,d — rdy,a — r(nd? + 1)).

By Remark 6.5 (3), we have d — rd; = r1d — rdy > 0, so by Proposition 9.3, the generic L € My (vs) is
0 (s,1)-stable for all (s,t) between G and C. By Proposition 9.4, the same holds for Ox (d1 H), the unique
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element in My (vy). Moreover, we must have vZ = (Ry,(v))? = 2n(d — rd;)? > 0. It follows from
Lemmas 5.1 and 5.2 that the generic E' € My (v) has Harder-Narasimhan filtration given by the short exact
sequence in A:

0— OX(le)(-BT - E— ROX(chH)(E) — 0,

where Ro, (4, 1) (E) = L is generic in My (v2). As H(X,Ox(d1H)) = 0 for i > 0 and vy satisfies weak
Brill-Noether, we get

hY(X,E) = h (X, L) = max{0, —(a — r(nd? + 1))},

as claimed. O

10.2. The effect of tensoring. Given a Mukai vector v = (r,dH, a) for which we know the generic coho-
mology, it is natural to study how h' changes as we tensor by O(pH) for p > 0. The following proposition
demonstrates the fruitfulness of this approach.

Proposition 10.2. Let X be a K3 surface with Pic(X) = ZH and H? = 2n. Let p > 0 be a positive

integer. Let E be a stable sheaf with v(E) = (r,dH, a) such that d > 0. Set F), := @%E;((Ox(—pH)).
Then

hom(E, F,) < h' (X, E(pH)) < hom(E, F,) + h' (X, E)x(Ox (pH)).
In particular; if HY(X,E) = 0, then h*(X, E(pH)) = hom(E, F,). If, in addition, % > zﬁﬂ’ then
HY(X, E(pH)) = 0.
Proof. Since H'(X,Ox(pH)) = 0 for i # 0, we have
H(X, RT(X, E) ® Ox (pH)) = H(X, E) ® H(X, Ox (pH)).
Tensor the distinguished triangle
O x(E) - RI(X,E)® Ox — E — ¢y (E)[1]
from Lemma 3.1 by Ox (pH). Since H?(X, E) = 0, taking R['(X, —) gives
H1<X7 E) ®HO(X7 OX(pH)) - Hl(X,E(pH))
- H*(X, 03, ¢ (E) ® Ox(pH)) — 0.
Thus
W (X, B3y (B) © Ox (pH)) < W' (X, E(pH)
(“2) < WX, 9, (B) ® Ox (pH)) + I} (X, E)h(X, Ox (pH))
= h*(X, %y (E) ® Ox(pH)) + h' (X, E)x(Ox (pH)).

We claim that h? (X, @&AHX (E)®Ox(pH)) = hom(E, F},) and that F}, is a stable sheaf of slope —
The proposition easily follows from this claim. By adjunction and Serre duality, we have

WX, @« (B) ® Ox (pH)) = ext*(Ox (—pH), 85, ( (E))
=h0m( Xﬁx( )OX( ))
= hom(FE, <I>X_,X(OX( H)))
(B, Fy).

Proposition 9.4 implies that ®’2 2 (Ox(pH))Y € Mp(p*n + 1,pH, 1), and by Grothendieck duality,
ola  (Ox(pH))¥ = &3P (Ox(—pH)) = F,. The claim follows. O

p n+1'

(43)

= hom(F
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Remark 10.3. Let £ € My (v) be generic. If H*(X, E) = 0, then
h'(X, E(pH)) = hom(E, F},)
by Proposition 10.2. Since
—~(v,v(Fp)) = —{v, (np® + 1,pH, 1)) = a(np?® + 1) + r — 2npd,
as in Lemmas 5.1 and 5.2, [3, Lemma 6.8 and Proposition 8.3] imply that
hom(E, F,) = max{0, a(np® + 1) + r — 2npd}.
Hence, if v satisfies weak Brill-Noether, then
Y (X, E(pH)) = max{0, a(np* + 1) + r — 2npd}.

By Remark 10.3, when v satisfies weak Brill-Noether, we can calculate the cohomology of E(pH ) for
all p > 0. When v does not satisfy weak Brill-Noether, so that H*(X, E) # 0 for the generic E € My(v),
it follows that Dy, # &. To determine the cohomology of F(pH ), we relate the totally semistable walls of
v(E(pH)) = ePHv to the vectors in Dy,.

Recall from (2) that for vi = (r1,d1H, a1), the wall C7| is defined by

d— ad; 2 v2
44 42 a2 g2 me—adk q _v
@4 tls-a)=a n(rd; — rid) (7 =) 2nr?’
where o = % is necessarily less than d/r (i.e. we are only considering the family of circles to

the left of s = d/r). This expression for the equation of the circle makes it clear that we can study Cy, by
referring only to «, the s-coordinate of its center. It is useful to consider the purely numerical wall given
by (44) for arbitrary « (in the range that makes sense) and denoted by CY. We will refer to such circles as

pseudo-walls. Moreover, the wall C:;ﬁ:,’l for ePHv is just CY , shifted to the right by p. In other words,

C’gﬁ:;" = CY + (p,0). We observe that (44) is equivalent to

(45) t?+s% —2as = —2a% + .

Proposition 10.4. Let v = (r,dH,a) be a Mukai vector with v,d > 0 and v? > —2. Let p be a positive
integer, and assume that a > —pdn, with strict inequality if n = 1 = p. Then Dn, < P (D, U

{(1,0,1)}).

Proof. Let vy = (ry,dyH,a}) € Dou,\{(1,pH,p?>n+1)}, where (1,pH, p?n +1) = v(Ox (pH)). From
Definition 3.5, it follows that C’f:H" n{s = 0,t > 0} # @. Moreover, since e P is an isometry of
1

H},(X,Z) and

e PV = (rf, (d) — rip)H, d} + rip’n — 2nd}p),

it follows that e P v/ € Dy if and only if CY oy N {s=0,t>0} # @. As we noted above, CY_,;; , =
1 1

Csz" — (p,0). Thus for v} # v(Ox(pH)) € D puy, we can summarize this equivalence geometrically

by e P} € Dy if and only if the semicircle C’ff,oH", which intersects {s = 0,¢ > 0}, also intersects the
1

positive ray {s = p,t > 0}. So we want to show that for any v| # v(Ox(pH)) € D puy, Cf;ZH" intersects

the positive ray {s = p,t > 0}.
Since we do not know anything a priori about the invariants of v/, we prove a more general claim.
Namely, we claim that if « is such that Cng" N {s=0,t >0} # &, then C’ng" N{s=pt>0}#0

v

and this pseudo-wall is contained in H°. As Cf;H  HPY is one such semi-circle, this will guarantee that
1

ePHv! e Dy for every v(Ox (pH)) # v € Dpn., as required.
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To prove the claim, let A be the unique value of « such that CipH" contains the origin. Observe that all
of the C’f;pH" that we are interested in lie above CipHV as guaranteed by the requirement that

CéV A {s=0,t>0} # 2.
Hence, it suffices to show that Cf\pH" N {s =p,t =0} # & and that if (s, ) € H satisfies
(46) 12+ 52 — 25 > —2) (4 4 p) + GHEnEdp o g )

™m

then (s,t) € H” in (1). Note that this is just the part of the vertical strip {0 < s < p,t > 0} lying above the
circle ijH".

As a first step, a simple calculation using (45) gives A = %7:;@ =L+ QZ&TZT’; - 80 (46) becomes
47) ?+s2—2Xs>0,0<s<p.

Moreover, we see that Cf{pHV N {s = p,t = 0} # @ since setting s = p and solving for t2 in (45) for ePHy
gives

dn + a)

48 2 = plpdn +a) _

( ) n(d + Tp) 9
SO CipHv e {S =p,t = O} = {(p’ pé?jﬁ:pc;))}

It remains to prove that the subset described in (47) is contained in H°. We observe that the circle CipH"
gets larger with ), so it suffices to prove that the subset
(49) P4+ —ps>00<s<p

is contained in HY, which is just (47) for the minimal possible value of A\ = g, occurring when a = —pdn.
To do this, we break the interval (0, p) into three pieces. We will refer to Fig. 3 to help explain our
argument.

ePHy P
Cy VoA > 1§

_ 1 _ 1
T STPTam
FIGURE 3. Bounding Cf{pHV from below

When 0 < s < ﬁ, we claim that the region describe in (49) is contained in U, . Indeed, let D be the
right semi-circle given by
1

S 2Vn

1 1
)2:7’0<5<7

2
(50) s2 4 (t " N



THE COHOMOLOGY OF THE GENERAL STABLE SHEAF ON A K3 SURFACE 51

whose lower half gives the boundary curve of U, (which is blue in Fig. 3). Then it is easy to see that

pH p
Dy n 06/2 V= {(070), (SOatO)}7 S0 = m, to = \/ﬁpso.

Thus tg/sp = py/n > 1 (from the restriction on p and n in case a = —ndp). It follows that (s, to) is on the
upper half of D . As C;;; Vv lies above the boundary curve of U, (i.e. the lower half of D) near the origin,

and the entire lower half of D+ lies below the line ¢ = s, it follows that Cefz Vv lies above the boundary

curve of Uy when 0 < s < \F’ giving the claim.
We similarly define D_ to be the left semi-circle given by

VRS
NG 2[

whose lower half gives the boundary curve of U_ + (p,0). As the maxima of the lower halves of D,

(&) (s—p)2+(t— <s<p,

and D_ are identical (equal to t = ﬁ), we can connect the these lower halves by the line segment
{2\% <5< p — 2\%, = 2\%} to give the blue curve in Fig. 3. As the center of a circle C’f\pH" is A, the

center of C’ /2 Vis £, so the symmetry of a circle about its center guarantees that ce /2 Vv, which is the red

curve in Fig. 3, remams above the blue curve.

AsU, c H and U_ + (p,0) = HO by [43, Prop. 2.6], we see that when 0 < s < <

1

5 f orp— 5=
. H .

s < p, the region above C;;’Q Vs in HO.

To conclude the proof, suppose that (s, ¢) in (49) with ﬁ s<p— \lf were not in H°. Unwinding

the definition of H° in (1), we see that

=m {(s,t)e]HI

Vi EA+ (X)

di : < 1
s=—,1< :

r1 Tl\/ﬁ
Thus it follows that there is some vy = (r1,d1 H, a1) € A4 (X) such that (s, ¢) satisfies

dq 1
§=—,t < ——.
1 Tl\/ﬁ

As Cz /o v is above blue horizontal line in Fig. 3 for these values of s, so we have ¢ > =

which forces

2y/n’
r1 = 1. Thus s = d; is an integer satisfying 1 < s —1,s0p = 2 and we have
L>t>\/—52—i-ps= ]9—2—(3—8)2>1
N 4 2/ =77
a contradiction. I

Remark 10.5. Even when a < —pdn, the same argument allows one to determine precisely how Dy, and
D pu ., are related.

The significance of this result is that it allows us to study v with small d relative to r. Then, from the
result we can determine the largest totally semistable wall for veP" by comparing the totally semistable
walls determined by vi = v(O(pH)) = (1,pH,1 + p?n) and vi = v}ePH, where v| € D, gives the
largest totally semistable wall for v. Whichever of these two walls has larger radius is the largest totally
semistable wall for vePH . In particular, when D, = @, we know the only possible totally semistable wall
for vePH is given by vi = (1,pH,1 + p?n), from which it is easy to determine the cohomology of the
generic sheaf in Mg (veP™). This is the motivating rationale for the following results.

Theorem 10.6. Let r,d, i be integers such thatr > 0, d > 0, and i > 0. Let E € Mx(v) be a generic
sheaf.
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(1) Ifv = (r,dH, —i) withi < r, then h*(X, E) = 0 and
WYX, E(pH)) = max{0,r — 2pdn — (p*n + 1)i}

forp > 0.

(2) Let v = (r,dH,1 — i) withi < r + land if n = 1, assume that v # (2d — 1,dH,1). Then
hY(X,E) = 0and

W (X, E(pH)) = max{0,r — 2pdn — (p*n +1)(i — 1)} for 0<p<d.

Moreover;, if v2 = 0, then h*(X, E(dH)) = 0. If v = -2, then h'(X, E(dH)) =
RY(X,E((d + 1)H)) = 0. Finally, ifn = 1 and v = (2d — 1,dH, 1), then H (X, E(pH)
forallp = 0.

Q) Ifv = (r,dH,2 — i) withi < r + 2, then h' (X, E) = 0 except ifn = 1 and v = (5,3H,?2).
Moreover, if v is not one of the vectors listed in Theorem 9.14, we have

1 and
)=20

WYX, E(pH)) = max{0,7 — 2pdn — (p*n +1)(i — 2)} for 0<p< g,
except whenn =1, v = (d2+1 dH,2) and p = %53, In this case, h'( (dT) H))
@ Ifn = 1land v = (5,3H,2), then we have h'(X,E) = 1 hl(X E(H)) 3 and

Y (X, E(pH)) = 0 forp = 2.
(b) If v is one of the vectors in cases (1)(c), (2)(a),(b) and (c), and (3) of Theorem 9.14 and
v # (5,3H,2) whenn = 1, then H (X, E(pH)) = 0 for p > 0.
(¢) Incase (1)(a), W(X,E(H)) =5 and h'(X, E(pH)) = 0 forp > 2
(d) In case (1)(b), R (X, E(H)) = 13, h}(X, E(2H)) = 5, and h'(X, E(pH)) = 0 forp > 3
(e) In case (1)(d), h'(X, E(H)) = 6 and h'(X, E(pH)) = 0 forp > 2.

Proof. Let us prove (1) first. By [21, Theorem 0.1], X_,;( induces a birational map
MH(V) - MH(Za dH, _T)a
so by the proof of Lemma 3.1, the generic E € My (v) fits into a short exact sequence of sheaves
(52) 0- 0% L ESala (B)1]-0.
Setting F' = Pla ¥, x (F)[1] and taking cohomology, there is a short exact sequence
0— HY(X,E) —» H'(X,F) - C®~) _
Since h*(X, F) = —x(F) = r — i by Proposition 4.2, H*(X, E) = 0 as claimed.
Tensoring (52) by Ox (pH) (p > 1) and taking cohomology, we see that k! (E(pH)) = h'(F(pH)).
Note that
X(F(pH)) =i — 7+ 2pdn + p*ni = —r + 2pdn + i(p*n + 1),

soifi < ig:= max{[ggisz], 0}, then x(F(pH)) < 0 and thus

h'(X, E(pH)) = h'(X, F(pH)) = —x(F(pH)) = r — 2pdn —i(p*n + 1) > 0

by Proposition 4.2.

Next we show that if i > ig, then h'(X, E) = 0 = max{0,r — 2pdn — (p?n + 1)i} by induction on
r. Observe first that ;g < r since ;}iﬁﬂl < 5 < r — 1. By Proposition 7.1, it suffices to consider the
case i = 4. Tensoring (52) by Ox(pH) (p > 1) and taking cohomology, we see that b (X, E(pH)) =
hl(X,F(pH)‘). By induction, the generic F' € My (ig, dH, —if,) satisfies H'(X, F'(pH)) = 0, where
%%dl”], 0} < dg. From the definition of iy, x(F(pH)) = 0, so applying Proposition 7.1
to F(pH)) which is generic in its moduli space, we get that H'(X, F(pH)) = 0 as well. This gives
HY(X,E(pH)) = 0 as required.

Now we prove (2). By part (1), it suffices to consider the case 7 = 0. By Proposition 9.13, Dy, = & unless
n=1landv = (r, (%) H,1), in which case Dy = {(2, H,1)}. In this case, v = (2, H, 1) is the unique

i 1= max{|
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effective spherical class v in the primitive isotropic sublattice §) defined by the wall Cy,. By Lemma 5.1,
the generic E € My (v) fits into a short exact sequence

(53) 0—-T1 —-E—F—0,

where 77 is the unique stable spherical sheaf with v(7) = v; and F is a o-stable object such that v(F') =
(r —2,(%5%) H,0). By Proposition 4.2, Dy(ry = @. Thus the generic F' € M,(v(F)) is a stable sheaf
with vanishing H' by Theorem 6.4. As H'(X,Ty) = 0 by Theorem 9.6, we get H' (X, E) = 0. As
d= (=) 3)>1> - for p > 1, it follows from Proposition 10.2 that hY (X, E(pH)) = 0 for all
p=1.

Now we study the case where Dy, = &. It follows that <I>§(A_>X(E)V € My(1,dH,r). Applying
Hom(O(—pH ), _) to the distinguished triangle

\%

¢ (E) - RI(X,E)® Ox — E,
and using Serre duality, we get
(X, E(pH)) = h°(X, @2y (E) (—pH))

= max{x(®, y ()" (-pH)), 0}

= max{0,r + (p*n + 1) — 2pdn}
if 0 < p < d, as required. Suppose that p = d. Then if v2 > 0, then @g?_,X(E)V # Ox(dH), so
h'(X, E(dH)) = 0. If, on the other hand, v? = —2 so that @%HX(E)V Ox(dH), then h' (X, E(dH)) =
1 while K1 (X, E((d + 1)H)) = 0.

Finally, we prove (3). By parts (1) and (2), it suffices to consider ¢ = 0. If v is not one of the excep-

tional cases in Theorem 9.14, then Dy, = @, so for generic £ € Mp(v) we have F' := @%_}X (E)Y €
My (2,dH,r). Hence as long as F'(—pH) # (2,3H,5) when n = 1, it follows that

h'(X, B(pH)) = h°(F(~pH)) = max{0, x(F(~pH))}
= max{0,7 — 2pdn + 2(p*n + 1)}

forO<p< % by Theorem 9.6.

It only remains to consider one of the exceptional cases in Theorem 9.14 when D, # &.

In cases (1)(c), (2)(a),(b) and (c), and (3), the generic E € My (v) satisfies H*(X, E(pH)) = 0 for
p = 0 by Theorem 9.14 and Proposition 10.2 except when n = 1 and v = (5,3H,2). In this case, the
unique E € My (5,3H,2) sits in the short exact sequence (41)

0—0x »>T% - E -0,
where 77 is the unique element of My (2, H, 1). From this we see that
h'(X,E(pH)) = 3n' (X, T1(pH))

forevery p > 1. So h}(X,E) = 1, b (X, E(H)) = 3, and h}(X, E(pH)) = 0 for p > 2.

It remains to consider cases (1)(a),(b), and (d). It follows from Proposition 10.2 that the generic F €
My (v) satisfies HY (X, E(pH)) = 0 for p > 2 in cases (1)(a) and (d), and p > 3 in case (1)(b). Consider
(I)(a) first. Then (v, vy) = —1, so the generic £ € My (11,5H, 2) sits in a short exact sequence

0->Ty —>E—F—0,

where F' € M,(6,3H,1) is generic and My (5,2H,1) = {T1}. By Proposition 9.13, as F' is generic, we
must have F' € M (6,3H,1). Moreover, it follows that there is a short exact sequence

0— (I)ngax(F)v - CI%(A_))((E)V - (bg(A_»)((Tl)v — 0,
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where 2\ (T1)¥ = Ox(2H) and &2 (F)¥ € My(1,3H,6). Thus
h'(X,BE(H)) = i°(X, & ((E)Y (~H))
= 10X, Ox(H)) + h°(X,®%2  (F)V(~H)) =3+2=5.

Now consider (1)(d). Then {v,v;) = —2, so the generic sheaf E' € M (12,5H,2) sits in a short exact
sequence
()—>T1®2—>E—>F—>O,

where F' € M,(2,H,0) is generic and My (5,2H,1) = {T1}. By Proposition 4.2, we must have F' €
My (2, H,0). Moreover, it follows that there is a short exact sequence

0= @R (F)Y = @R (B)Y — (8, (T1)")®* -0,
where ®2 \(T1)¥ = Ox(2H) and &2 (F)¥ € My(0, H,2). Thus
WX E(H)) = WX, @3¢ (B)Y (=H))
= 200(X, Ox (H)) + hO(X, 82 (F)V(~H)) = 6+ 0 = 6.

Finally, we consider case (1)(b). Then {v,v;) = —1, so the generic £ € M (23, 7H,2) sits in a short
exact sequence
0—-Ty —>FE—>F—Q0,

where F' € M,(13,4H,1) is generic and My (10,3H,1) = {11}. By Proposition 9.13, we must have
F e My (13,4H,1). Moreover, it follows that there is a short exact sequence

0— @ y(F) — 2 y(B) — @ (1) -0,
where &2 (T1)¥ = Ox(3H) and &2 (F)¥ € My(1,4H,13). Thus
WX, E(pH)) = h°(X, 9, (E)Y (—pH))
= 10(X,0x((3 = p)H)) + KO(X, B2,y (F)" (~pH)).
This gives h! (X, E(H)) = 13 and h!(X, E(2H)) = 5 for generic E € My (23,7H,2). O

Proposition 10.7. Let v = (r,dH,a) with r,a > 0, d > 0, and v> > —2. Suppose that d = 7 and
assume that there is a semistable sheaf E with v(E) = v.
(1) Ifa > (#) d, then a = d = 1, and My (v) = {Ep}, in which case H'(X, Eo(pH)) = 0 for
p = 0andp > 2, while h' (X, Eq(H)) = 1.
2) If0 < a < (#) d, then for generic E € My(v), h'(X,E(pH)) = 0 forp = 0Oand p > 2,
while h' (X, E(H)) = max{(n + 1)a — (n — 1)d, 0}.
Proof. If v2 = —2, then it is easy to see that a = d = 1. Otherwise, 0 < v2 = 2d(nd — (n + 1)a) which is

equivalent to a < <ni+l) d.

Thus if a > (#) d, then a = d = 1, as claimed, and in this case v = vo = (n + 1, H,1) and
vZ = —2,50 My(v) = {Ep}. Proposition 9.13 implies that h'(X, Ey) = 0, and Proposition 10.2 implies
that h! (X, Eo(pH)) = 0 for p > 2. The unique sheaf Eo(H) € My (n+1, (n+2)H,n?+3n+ 1) satisfies
h' (X, Eq(H)) = 1 as it sits in a short exact sequence

0— Ox — Ox(H)¥"" - Ey(H) — 0.

_n_

) d. Observe that we can write
n+1

Otherwise, we may assume that 0 < a < (

v = dvg — b(0,0,1),
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where vo = (n+ 1,H,1) and b € Z satisfies 0 < b = d — a < d. Now the unique Ey € Mp(vo)
satisfies h! (X, Ey) = 0 from the previous paragraph. Moreover, we see that a < (#) d is equivalent to

(n + 1)b = d, so we may apply Lemma 7.4 and Lemma 7.5 to see that the generic E € My (v) is on the
same irreducible component as the kernel of a generic quotient

b
frE§ » P ka,,

i=1
which satisfies Hom(Ep, Ker f) = 0 and H*(X, Ker f) = 0. By semicontinuity, it follows that H! (X, E) =
0. Proposition 10.2 and its proof then imply that
hY(X,E(H)) = dim Hom(FE, Ey) = max{0, (n + 1)a — (n — 1)d},
and h' (X, E(pH)) = 0 for ,p > 2. O

11. THE MUKAI VECTORS OF RANK AT MOST 20 VIOLATING WEAK BRILL-NOETHER

Let X be a K3 surface such that Pic(X) = ZH with H? = 2n. In this section, we list the Mukai vectors
v = (r,dH,a) with d > 0, vZ > —2 and 0 < r < 20 such that the moduli space Mx (v) does not satisfy
weak Brill-Noether. By Proposition 9.13, we may also assume that a > 2. Throughout the section, let
E € My (v) be a generic sheaf. We also compute h!'(E) and record the Mukai vector v; that defines the
largest totally semistable (T'SS) wall.

First, we have the following five families:

(1) Let r; be an integer that divides n + 1. Let

1 1\?
v:(n—i—r%,(n—i_ +r1>H,(n+ > +n>.
1 1
Then the largest TSS wall is given by vi = (rl, H, "7?) and h'(E) = 1 (see Corollary 9.12).
(2) Let0 < p,j and 0 < 7 < r be three integers. Let

v = (7“, (rp + ) H,np*r + 2njp — z) )
Then by Theorem 10.6, the largest TSS wall is given by
vy = (1,pH7 np? + 1) ,  hYE) = max (0,7’ — 2npj — (np* + 1)z) )

(3) Let0 < p < jand 0 < i < r + 1 be three integers. If n = 1, assume that (r, j,7) # (25 — 1,7, 1).
Let

v = (r, (rp + 5)H,np*r + 2njp + 1 — 2) )
If p < 7, then by Theorem 10.6, the largest TSS wall is given by
vy = (1,pH, np? + 1) . hY(E) = max (0,7“ —2npj — (np* +1)(i — 1)) :

If p=jand v? = —2, then h'(E) = 1.
(4) Let0 < p < j/2and 0 < i < r + 2 be three integers. Let

v = (r, (rp + j)H,np’r + 2njp + 2 —1i).

Other than the exceptional cases when n = 1 that are described in Table 1, by Theorem 10.6, the
largest TSS wall is given by

vi = (1,pH, np? + 1), hY(E) = max (0,7 — 2npj — (np* +1)(i — 2)) .
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v Vi r1(E)
(7 (44 (£52) (552)) H2 4 did—3) + (£42) (%)3 (1, (452) 1. (452)" + 1) g
(5,8H, 13) (2,3H,5) 3
(11,16 H,23) (1,H,2) 5
(23,30H, 39) (10,13H,17) 13
(23,53H,122) (10,23H,53) 5
(12,17H, 24) (5, 7H, 10) 6

TABLE 1. Exceptional counterexamples when n = 1

™™m

(5) Suppose that n + 1 divides r, and let a be a positive integer such that a < —5<5. Let

(n+1)2"
T 2rn
v=|r|r+——|Ha+rn+ .
(- 55) 1)

Then by Proposition 10.7, the largest TSS wall is given by

-1
vi=(1,H,n+1) and h'(E)= max (o, (n+1)a— M) :
n+1
Outside of these five families, the Mukai vectors with r < 20 that are counterexamples to weak Brill-
Noether are listed in Table 2. To compute the list, we fixed the rank and let a computer list the finitely
many potential counterexamples guaranteed by Theorem 8.8. We made the computations faster by using

nd?+1
T

Proposition 7.1 to assume that a = [ J, and then we had a computer find the finitely many solutions to

the inequalities in Theorem 6.4. The full list of potential counterexamples for 2 < r < 20 with maximal a is
available on the second author’s website.* We then used the Harder-Narasimhan filtration along the largest
TSS wall to calculate the cohomology of the generic sheaf.

In Table 2, we include Dy, the cohomology of the generic sheaf and an explanation of how we calculate
this cohomology. Given the space constraint in the table, let us elaborate what we mean in the “Reason”
column by means of some representative examples. They come in three flavors.

First, when we only list a short exact sequence as the reason, we are indicating which vy € D, defines
the largest TSS wall, the corresponding short exact sequence in .4, and that taking the long exact sequence
of cohomology is enough to calculate the cohomology. For example, when n = 1 and v = (11,6H,3),
Dy, consists of the single Mukai vector v; = (2, H, 1). The spherical twist induced by v; gives Ry, (v) =
(1,H,~2). Since #4=%41 > 1, the wall induced by vy is above the wall induced by O [1], which is the
only TSS wall for (1, H, —2) by Proposition 4.2. Thus for the generic ideal sheaf I4,; of a 0-dimensional
subscheme of length 4, the twist 4, (H) is still stable for o along the wall determined by v;. Thus for
generic F € My (v), its Harder-Narasimhan filtration across the wall is given as in Table 2, where Es11
denotes the unique stable vector bundle in Mg (vy). As vy = (2, H,1) and (1, H, —2) satisfy weak Brill-
Noether and the latter Mukai vector has x < 0, when we take the long exact sequence of cohomology we
get

0=H"X,F11)" > H(X,E) » H(X, Iy (H)) —» H*(X, E2,11)° = 0,
giving h'(X, E) = hY(X, Iyp(H)) = 1, as claimed. When all vectors in Dy, give the same wall, we
indicate which resolution we choose to use to calculate cohomology.

In the next flavor of exceptional counterexample, we similarly give the largest TSS wall, which has the

given form by the same reasoning. However, taking the long exact sequence on cohomology only gives a
lower bound for h!(X, F):

h'(X,E) = h' (X, E(—pH))x(Ox (pH)).

4https ://drive.google.com/file/d/1_LE3IjdF11X8celcdb-1s_0K636KI6Jp/view?usp=sharing
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n v Dy hH(E) Reason

1| (11,6,3) (2,1,1) 1 E3 |, — E - Lip(H)

1] (11,17,26) {(1,1,2),(2,3,5)} 3 Proposition 10.2+E3 5 o < E —» I4p (2H)

2 | (11,15,41) {(1,1,3),(3,4,11)} 4 O(H)HE§411 - E

1] (12,7,4) (2,1,1) 2 ES,,— E—Og(L)

1| (12,19, 30) {(1,1,2),(2,3,5)} 6 ES, . — E — Og(L) with x(L) = 0

1] (13,8,5) {(2,1,1),(5,3,2)} 3 El ,—> E— O(-H)[1]

1] (13,2L,34) | {(1,1,2),(2,3,5),(5,8,13)} | 8 El .. — E— O[]

1| (15,8,4) 2,1,1) 2 B3 11— B — Ispi(H)

1| (15,9,5) (2,1,1) 1 EJ 4 = E — I (2H)

1| (15,22,32) (1,1,2) 7 Proposition 10.2

1 | (15,23,35) {(1,1,2),(2,3,5)} 6 Proposition 10.2 implies b (E) < 6
E] 35— E = Ispi(2H) = h' (E) > 6

1 | (15,24, 38) {(1,1,2),(2,3,5)} 3 Proposition 10.2 implies A (E) < 3
El ¢ E— Itp(3H) = h'(E) > 3

1] (16,9,5) (2,1,1) 3 ES,, = E— O (L) with x(L) = =3

3| (16,9, 15) 2,1,2) 1 ES,,— E— Oy(L) with x(L) = —1

1| (16,23,33) (1,1,2) 8 Proposition 10.2

1| (16,25,39) {(1,1,2),(2,3,5)} 9 By 5 — E—» Ou(L).x(L) = -1

2 | (16,21, 55) (1,1,3) 5 Proposition 10.2

31 (17,9,14) (2,1,2) 1 ES 9 = E — Ispt(H)

2 | (17,12,17) (3,2,3) 1 ES,;— E— O[]

1 | (17,25,36) (1,1,2) 7 Proposition 10.2

2| (17,22,57) (1,1,3) 6 Proposition 10.2

1| (18,10,5) (2,1,1) 1 E§,1—>FE—FEz3 3

1| (18,26,37) {(1,1,2),(5,7,10)} 8 Proposition 10.2

1| (18,28,43) {(1,1,2),(2,3,5)} 3 Proposition 10.2 implies b (E) < 3

ES,S 5 > E—» FE243= hl(E) >3

1] (19,10,5) 2,1,1) 3 ES, = E — Igpe(H)

1| (19,11,6) 2,1,1) 2 E9 14— E — Ispe(2H)

1| (19,27,38) {(1,1,2),(5,7,10)} 9 Proposition 10.2

1| (19,28,41) (1,1,2) 9 Proposition 10.2

1 | (19,28,40) (1,1,2) 7 Proposition 10.2

1| (19,29,44) {(1,1,2),(2,3,5)} 9 Proposition 10.2 implies A1 (E) < 9
EY 45— E — Igpt(2H) = h1(E) 2 9

1| (19,30,47) {(1,1,2),(2,3,5)} 6 Proposition 10.2 implies b1 (E) < 6
EY 5 — E - Igpe(3H) = h'(E) > 6

2 | (19,25,65) (1,1,3) 4 Proposition 10.2

3 [ (19,24, 91) {(1,1,4), (4,5,19)} 5 Ef ;10— E > O]

1| (20.11.6) @LD 4 BN > E— Ox(L).x(L) = —4

1| (20,12,7) 2,1,1) 3 E}% = E— Oau (L), x(L) = =3

3 [ (20,11,18) (2,1,2) 2 EN , > E— 0g(L),x(L) = -2

1 (20,28,39) (1,1,2) 10 Proposition 10.2

1 (20,29,42) (1,1,2) 10 Proposition 10.2

1 (20,29,41) (1,1,2) 8 Proposition 10.2

1| (2031,48) {(1,1,2),(2,3,5)} 12 El% ;= E— Ou(L).x(L) = —2

1| (20,32,51) {(1,1,2),(2,3,5)} 9 Proposition 10.2 implies A1 (E) < 9

Ei% o E — Oop(L) and x(L) = 1imply 9 < h(E)
2 | (20,26,67) (1,1,3) 5 Proposition 10.2
1| (20,48,115) (1,2,5) 3 Proposition 10.2

TABLE 2. The table of exceptional counterexamples

Writing d = pr + do with 0 < dy < r, we have dy > 75 in these examples, so hom(E(—pH), F;,) = 0

by stability, where F}, ~ @%ﬁ +(Ox(pH))Y is the unique stable sheaf of Mukai vector (p*n + 1, pH, 1). It
then follows from Proposition 10.2 that h'(X, E) < h!(X, E(—pH))x(Ox (pH)), so we get equality and
thus the values given in Table 2.
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The final flavor of examples use Proposition 10.2 in a complementary way. Here we indicate Propo-
sition 10.2 alone as the reason. This is because we have already shown in our check that for generic
E e My(v), HY(X, E(—pH)) = 0 for the same p as above. Thus Proposition 10.2 tells us that h' (X, E) =
hom(E(—pH), F}), and by [3], for generic £ € My (v),

hom(E(—pH), F,) = —(ve " (p’n + 1,pH, 1)),

giving the results in the table.

Let us summarize how to use our table and classification. Given a Mukai vector v = (r,dH, a) with
1 < r < 20and v? > -2, if (n,v) appear together in Table 2, then the cohomology of the generic
E € Mpy(v) is given there. If not, one checks if v falls into one the five families enumerated above, in
which case we give a formula for the cohomology. In all other cases, v satisfies weak Brill-Noether.
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