VERY FREE RATIONAL CURVES IN FANO VARIETIES
1ZZET COSKUN AND GEOFFREY SMITH

ABSTRACT. Let X be a projective variety and let C' be a rational normal curve on X.
We compute the normal bundle of C' in a general complete intersection of hypersurfaces
of sufficiently large degree in X. As a result, we establish the separable rational con-
nectedness of a large class of varieties, including general Fano complete intersections
of hypersurfaces of degree at least three in flag varieties, in arbitrary characteristic. In
addition, we give a new way of computing the normal bundle of certain rational curves
in products of varieties in terms of their restricted tangent bundles and normal bundles
on each factor.

1. INTRODUCTION AND STATEMENT OF RESULTS

Spaces of rational curves on a proper variety X play a fundamental role in the bi-
rational geometry and arithmetic of X. Given a rational curve C' on X, the normal
bundle N¢jx controls the deformations of C' in X and carries essential information
about the local structure of the space of rational curves. Consequently, the normal
bundles of rational curves have been studied extensively when X is P" ([AR17, [Con00,
CRI8, [EVS&I, [EV82, IGS80, Ran07, [Sa82l [Sa80]) and more generally (see for example
[Br13, [CR19, K96, [LT19, [Shi2h]).

In this paper, we study the normal bundle of rational curves in certain complete
intersections in homogeneous varieties with the goal of showing the separable rational
connectedness of the general such complete intersection. We work over an algebraically
closed field £ of arbitrary characteristic.

A variety X is separably rationally connected (SRC) if there exists a variety Y and a
morphism e : Y x P! — X such that the induced morphism on products,

e@ Y xP'xP' - X x X,

is dominant and smooth. We refer the reader to [K96)] for a discussion of the properties
of SRC varieties. By the Birkhoff-Grothendieck theorem, every vector bundle on P! is
a direct sum of line bundles. Hence, the normal bundle of a smooth rational curve C'
on X can be written as Nojx = @1§i§dim(X)—1 O(a;). The curve C' is called very free if
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N¢|x is ample or equivalently every a; is positive. The bundle N¢|x is called balanced if
la; —a;j] <1 foralli,j. If X is a smooth variety over an algebraically closed field, then
X is SRC if X contains a very free rational curve [K96, Theorem IV.3.7].

In characteristic 0, rationally connected varieties, and in particular smooth Fano va-
rieties, are SRC [K96, Theorem V.2.13]. Kollar points out that SRC is the suitable
generalization of rational connectedness to arbitrary characteristic and asks whether ev-
ery smooth Fano variety in positive characteristic is SRC. Kollar’s question has been
answered affirmatively for general Fano complete intersections in P* [CZ14] [Ti15]. Like-
wise, if X is any smooth Fano complete intersection of type (dy,...,d.) of Fano index
at least 2 and char(k) > max(dy,...,d.), then X is SRC [STZI1§]. In a different di-
rection, the paper [CR19] gives sharp bounds on the degree of very free rational curves
on general Fano complete intersections in P". On the other hand, certain special Fano
hypersurfaces are known not to have very free curves of low degree [Br13] [Shi2a].

For varieties other than smooth complete intersections less is known. Generalizing
[Ti15], Starr-Tian [ST18] have shown that a smooth projective separably uniruled variety
X with cyclic Picard group is SRC if and only if the groups H(X, A%(T* X)) vanish for
i=1,...,dim(X), where T*X denotes the cotangent sheaf of X.

In this paper, we give further examples of SRC varieties in positive characteristic. In
the case of Grassmannians, our result reads as follows.

Theorem 1.1. Let dy,...,d. > 3 be integers. If Y ;_, d; < n, then a general complete
intersection Y = (\;_, Y; of hypersurfaces Y; of degree d; in the Grassmannian G(k,n)
1s SRC.

Remark 1.2. More generally, let C' be a general rational normal curve of degree e in
G(k,n) in its Pliicker embedding. Let Y; C G(k,n) be general hypersurfaces of degree
d; > 3 containing C' and let Y = 05:1 Y;. Then Ngjy is balanced. This remains true
regardless of whether Y is Fano.

Observe that Y is Fano precisely when n > Y ;_, d;. Hence, if

e(n—idZ) > k(n—k)—c,

then C'is a very free rational curve on Y. This gives the optimal degree bound for a
very free rational curve on such a Fano complete intersection.

Remark 1.3. Results of Starr and Tian [ST18] imply that all smooth Fano complete
intersections in the Grassmannian are SRC provided that the char(k) is larger than an
explicit bound. Our result has no restriction on the characteristic, but requires generality
and includes restrictions on the degrees of the defining equations.

Similar statements hold for flag varieties and products.
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Theorem 1.4. (1) Let X be a flag variety. Let H be the minimal ample divisor
on X, and let Dq,...,D. be divisor classes such that for each i, D; — 3H 1is
effective. Let'Y be a complete intersection of general hypersurfaces Yy, ...,Y. of
classes Dy,...,D.. If —-Kx — Dy —---— D, is ample, then'Y is SRC.

(2) Let X be a product of projective spaces. For each 1 < i < ¢, let D; be a divisor
class of degree at least 3 on each factor space. Let'Y be the general complete
intersection of hypersurfaces of type Dy,...,D.. If —Kx — Dy — -+ — D, is
ample, then Y is SRC.

Remark 1.5. A similar result holds for any homogeneous space—indeed, any Schubert
variety—on which one can find a very free rational normal curve in the smooth locus.

See Theorem [3.4] and Proposition [3.5] for further examples.

To prove Theorems [I.1] and we construct very free rational curves on these com-
plete intersections. We consider a general rational normal curve C' in X and show that
the normal bundle of C' in a general complete intersection Y containing C' is balanced.
In particular, if the complete intersection is Fano and the degree of C' is sufficiently large,
then C'is a very free rational curve on Y. Our main technical result is the following.

Theorem 1.6. Let X C P" be a linearly normal Cohen-Macaulay projective variety of
dimension m whose ideal is generated in degree k. Let C' be a rational normal curve of
degree e in P™ contained in the smooth locus of X. Assume C' is very free in X. Let H
denote the hyperplane class in P™. Fixz some integer c < m — 2. For each 1 <1 < ¢, let
D; = d;H + E; be a Cartier divisor class on X with d; > max(k,3) and E; an effective
Cartier divisor class such that

HY(X,0(E;)) — H°(C,O(E)|c)

is a surjection and each divisor class (d; —3)H + E; is base point free. Let'Y be the zero
locus of a general section of @;_, O(D;). If

C- (—KX— Z Di> >m—c+1,

1<i<e
then 'Y has a very free rational curve and is SRC.

Moreover, the normal bundle of a rational curve C' in X determines its normal bundle in
a general complete intersection Y containing it. We make this precise in Theorem [2.1]

In Section [ we discuss the normal bundle of rational curves in products. Given a
map f : P! — X, let N; be the vector bundle determined by the exact sequence

0— TP — f*TX — Ny — 0.

Theorem 1.7. For 1 < i < r, let f; : P* — X, be an immersion into a variety X;,
which is smooth along the image of f;. Set X = X; x --- x X, and let f : P* — X be
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the map induced by the maps f;. Suppose the characteristic p of the base field k is zero
or there exists © such that

HOPY (T X)) (p + 2) — H' (P, TP (p + 2))

is surjective. Then there exists a deformation g of [ such that ¢g*(TX) = f*(TX) and,
for alld € Z,

hO(P', Ny (d)) = max(h°(P', f*(T*X(d))) —d + 1, > _ hO(P', Nj(d))).

i=1

The splitting type of a vector bundle on P! is determined by the cohomology of its
twists. Hence, Theorem determines the splitting type of N, in terms of Ny, and
fTX;. In general it is not possible to determine the Ny in terms of Ny, and fT'X;;
hence taking a deformation is crucial for our argument. The deformation we use involves
pre-composing the maps f; with automorphisms a; of P!

Example 1.8. Let X; and X, be smooth threefolds and for i € {1,2} let f; : P* — X
be immersions. Suppose fi(TX:1) = f5(TXs) = O(5)%? @ O(6) and Ny, = Ny, =
O(6)®O(8). Based on this information, the normal bundle of C' = f; X fo(P') C X x X,
in X; x X, could be as unbalanced as O(5)%% & O(6)%% & O(8), but after a deformation
will be O(6)°.

Remark 1.9. The bundle N, in Theorem will not always be balanced because the
normal bundles of f;(P!) in each of the factor spaces X; need not have similar degrees.
For instance, if f; : P! — X; and fo : P! — X, are embeddings of smooth rational
curves in smooth surfaces with self-intersection dy, ds respectively, and dy,dy < 0, then
the normal bundle of the diagonal map f : P! — X; x X, will be O(2) & O(d;) ® O(dy).
Any deformation of f(P') will also have this normal bundle.

Organization of the paper. In section [2, we prove Theorem In section [3] we
apply Theorem to complete intersections in Grassmannians, flag varieties and some
weighted projective spaces. In section [ we prove Theorem [1.7]

Acknowledgments. We would like to thank Mateusz Michalek, Eric Riedl, Jason
Starr, Bernd Sturmfels and Kevin Tucker for invaluable conversations about the subject
matter of this paper. We also thank the referee for helpful suggestions.

2. COMPLETE INTERSECTIONS IN SRC VARIETIES

2.1. Normal bundles of rational curves in complete intersections. In this sec-
tion, we will prove Theorem [I.6] Theorem is a consequence of the following result,
which allows one to control the normal bundles of rational curves in certain complete
intersections.
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Theorem 2.1. Let X C P" be a projective variety whose ideal sheaf is generated in
degree k. Let C' be a rational normal curve of degree e contained in the smooth locus of
X. Let ¢ < dim(X) — 2 be an integer. For 1 < i < ¢, let D; = d;H + E; be Cartier
divisor classes on X, where d; > max(k, 3), H is the hyperplane class and E; are effective
divisors such that the restriction map

H°(X, E;) — H°(C, Ej|c)
18 surjective. Given a surjective map

q € Hom (NC|X; @ O(Dz)|c> s

1<i<c

there are hypersurfaces Y; with [Y;] = D; such that if Y = (),_, Yi, then Y is smooth of
codimension ¢ along C' and N¢y = kerq.

To prove Theorem 2.1 we will use the following property of the divisor classes D;.

Definition 2.2. Let X be a projective variety and let C' be a smooth curve contained
in the smooth locus of X. For any Cartier divisor class D on X, the exact sequence

0= ZZx = Zox — Ngx = 0

induces a map H(Z¢\x (D)) — HO(NaX(D)). If this map is surjective, we say D is
NaX—surjective.

We first prove two lemmas that show that certain divisors are NEI -surjective.

Lemma 2.3. Let X C P" be projective variety and let C' be a smooth curve contained in
the smooth locus of X. Let H denote the hyperplane class in P". Let d be an integer such
that dH is N§p.-surjective and HI(N;‘(W(CZH)]C) = 0. Then dH|x is N, y-surjective.

Proof. Since Hl(N;‘(‘Pn(dHHC) = 0, the natural map HO(NaPn (dH)) — HO(NaX(dH))
is surjective. Since dH is Napn—surjective, the copmposition

H(Zeypn (dH)) — HP(Ngyx (dH))
is also surjective. The lemma follows from the commutativity of the square
H(Zepn(dH)) —— H°(Zeyx(dH))
HO(Ngjpn (dH)) —— HO(Ngy(dH)).
O

Lemma 2.4. Let C' be a smooth rational curve contained in the smooth locus of a proper
variety X. Let D and E be Cartier divisor classes on X with E-C > 0 such that
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(1) D is Ny x-surjective;
(2) HY(Ox(E)) — H°(Oc(E)) is surjective.
15 globa enerated.
(3) N¢yx (D) is globally g d
Then D + E s Nax—surjective.

Proof. Consider the commutative square

H%(Zeix (D)) ® HY(Ox (E)) —— H(Zex (D + E))

| |

HO(N¢g x (D)) @ HY(Oc(E)) —— H(Ngx (D + E))

The vertical map on the left-hand side is surjective by the first two hypotheses. Since
N x (D) is globally generated, we have an exact sequence
0= M — H (NS x(D)) ® Oc = Ngx (D) =0,

where M is the kernel of the natural evaluation map. By construction H°(M) = 0
and the long exact sequence of cohomology implies that H'(M) = 0. Since C is a
rational curve and E-C > 0, we have H'(M(E)) = 0. Twisting the sequence by O¢(F)
and taking cohomology, we see that the bottom horizontal map is surjective. Hence, the
composite map H°(Z¢\x (D)) @H(Ox (E)) — HO(NE‘X(D—I—E)) is surjective. Therefore,
the right vertical map H(Zejx (D + E)) — H°(Ng (D + E)) is surjective as well. [

The following is a special case of a theorem of Rathmann. For completeness, we
provide the proof.

Theorem 2.5 (Theorem 3.1, [Ratl6]). Let C' be a rational normal curve of degree e in
P". For any b € Z, let L be a line bundle of degree b on C. If b > 1, then the map

HO(P", Zeypn (2H)) ® HY(C, L) — H°(C, N¢ypn (2H) ® L)
18 surjective.
Proof. Let C' be the rational normal curve embedded via the map
i:(s,t) > (s 87, ..., t%,0,...,0).

We will carry out our calculation on P!. The ideal of C' is generated by the quadrics
fij = xix; — 27— for 1 <i < j < e and the linear forms .44, ..., z,. Moreover,

P Njpn = O (=€) & Op1 (—e — 2)5,
where the terms in the former summand are sections dx; € H O(Pl,i*(NaPn)(e)) for

e < i < n, and the terms in the latter summand can be chosen to be sections ¢; €
HO(P*,i* (Ngypw ) (€ + 2)) given by

q = SQdZI?H_Q + t2dx; — 2stdxiyq
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with 0 <7 < e—2. A basis of global sections of Né‘Pn(QH) ® L then consists of sections
sktlq; with k+¢ = e+b—2 and sections s*t‘dx; withi > eand k+¢ =e+0b. If k > b—1,
the section s*t‘q; is the image of fior1 ® st — fir1041 ® st and if k < b— 1, s*t'q; is
the image of fis pro0 @ t° — fir10 pro ® st®1. Likewise, given i > e, the section s*t‘dx;
is the image of zyz; ® s® if kK > b, or the image of x,_yz; ® t° if K = 0. Hence, the map
is surjective. 0

Proposition 2.6. Let f : C' — X be an immersion of a smooth rational curve C in
a variety X smooth along C. Let Dy, ..., D. Cartier divisor classes on X that are
NaX—surjective. Then, given a surjection

q: Neyx — € Oc(Di)
1<i<c
there exist divisors Y; containing C with class D; such that'Y := ﬂlgigc Y; is smooth of
codimension ¢ in X along C and the inclusion Ncjy — Ngjx is the kernel of q.

Proof. The map ¢ is equivalently a global section of @, ;<. N¢x(Di). Since each D; is
N x-surjective, there is some s € H°(C, D, ;<. Zoix(D;)) such that ¢ is the image of
s under the natural map

HC, @) To(D) = H(C, @D Nepw (D)
1<i<c 1<i<c
The section s induces global sections s; of each Z¢ix(D;). Set Y; = V(s;). Then each
Y; contains C, and has class D;. Moreover, the sections s; give canonical isomorphisms
h; : Oy,(D;)|c = Ny,x|c, and the natural map

¢ : Nejx — @ Ny, x|c
1<i<c
is hoogq, where h : @ ,<;c.Oc(Di) = D <ic. Vvix|c is the direct sum of the h;. The
map ¢ induces a surjection of vector bundles,

¢ TX|c = P NMyxle.

1<i<c

Set Y = (),<;<. Yi. Since ¢” is surjective, it does not drop rank at any point of C; in
particular, the fiber of ker(g”) at a point p € C consists of all v € T,X that are contained
in each of the tangent spaces 7,,Y;. Hence, TY |¢ = ker(¢”), and TY|¢ is a vector bundle
of rank dim(X') — c¢. Therefore, Y is smooth of codimension ¢ along C', and we have that
TY|c = TX|c is the kernel of ¢”. The induced map of normal bundles Nejy — Nejx
is the kernel of q. 0

Remark 2.7. Whether ker q is balanced for general Y; depends on the starting bundles.
For example, the general kernel of O & O(2)%? — O(2) is O & O(2) and not balanced.
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If the starting normal bundle is balanced and the assumptions of Proposition hold,
then the normal bundle of the complete intersection will stay balanced.

Proof of Theorem[2.1. Let C be the rational normal curve of degree e on X. First,
we show that D; is NE‘X—surjective. Since d; > 3, by Theorem d;H is Ngl]Pm—
surjective. The sheaf N _’;{W(diH ) is globally generated, since it is the quotient of the
globally generated sheaf Ty~ (d; H). Hence, H'(C, N pn(diH)|c) = 0. By Lemma ,
we conclude that d;H is Nél -surjective. Lemma then implies that D; = d;H + E;
is Na -surjective. The theorem is now a consequence of Proposition . 0

2.2. Proof of Theorem Our next goal is to prove Theorem using Theorem
[2.1] The proof requires a couple lemmas.

Lemma 2.8. Let E and F be globally generated vector bundles on P*. Assume that
Hom(E, F) is globally generated. If rk(E) > rk(F) and deg(F) > deg(F'), then the
kernel of a general map E — F is globally generated.

Proof. We first prove the result if F' is a line bundle O(b). By the hypotheses, we have

E=@, ..., 0(a) with 0 < a; < b for every i, and a; + --- + a, > b. Reorder the q;
such that

O=a1=...=ay <ap41 < ... < ay.
Given i with 7" < i < r, define

A — 0 ifi=1'

| min(b,apyq - +a) P>

Define the map ¢ : E — F by the matrix
o= [0 o 0 st g AvetAra o A sb*ATtA”*I} .

Then ¢ is surjective, and it induces a surjection H°(E(—1)) — H°(F(—1)). To see this,
consider the global section s*~971t/ € H°(F(—1)). There is some r'+1 < 4 < r such that
Ai_1 < j < A;. Then s*771#/ is the image of the section s/~ 1#/=4i-1 ¢ H°(O(a; — 1))
under ¢. If K = ker(¢), then H'(K(—1)) = 0, so K is globally generated. Hence, if
E — F'is general, its kernel will also be globally generated.

We now proceed by induction on the rank of F'. We have proven the result if rk(F") = 1.

Suppose the result has been proven for all F' of rank at most s — 1. We establish the
result for F' of rank s. Let ' = P,_,.,O(b;) and E = P, O(a;) with

bsz...ZblzaTZ...Zal

and ) ;a; > 3 °5b;. Let f: E — F be general, and set F' = @, ; O(b;) By the
inductive hypothesis, the restricted map £ — F” has globally generated kernel K. More-
over, the map Hom(E, O(b,)) — Hom(K, O(bs)) is surjective since Ext'(F’, O(b,)) = 0.
So the induced map f : K — O(bs) is also general, and has globally generated kernel by
the result for line bundles. OJ
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The next lemma is a variant of [K96, Theorem IV.3.11].

Lemma 2.9. Let g : X — S be a flat morphism with a connected base S. Suppose
that for some s € S, X, has an immersion i, : P* — X such that i*T X, is ample.
Then there is an open subset S C S such that for any s’ € S’, there is an immersion
iy o Pt — X5 where i*T Xy is ample.

Proof. Let U C X be the open subset of X on which g is smooth. The set U includes
the image of the immersion i;. By the proof of [K96, Theorem IV.3.11], there is an open
subset V of the Hom-scheme Homg(Pk, U) including i, such that for any ¢/ € V the
pullback i"*(Ty/s) is ample. Moreover, the projection Homg(Pg, U) — S is smooth in a
neighborhood of 5. Hence, the image of V' in S contains an open set S’ 5 s with the
desired properties. 0

Proof of Theorem[1.6. Let X C P", Dy,...,D,, and C be as in the statement of the
theorem. By Theorem , given a general surjection ¢ : Nojx = @,,.. O(D;)|c, there
exist hypersurfaces Y/, ..., Y/ with [Y/] = D; such that Y’ = (,.,. Y/ is smooth along
C and N¢pyr = ker(q). Since C' is a rational normal curve in projective space, we have
that every direct summand of N¢|x has degree at most deg(C') + 2 by|CR19, Corollary
2.6], so the bundle N, @D, ;.. O(D;)|c is globally generated. In addition, g is general
and deg(N¢jyr) > m — ¢ — 1 by hypothesis. By Lemma applied to the morphism
NC\X<_1) — ®1§i§cO<Di)’C<_1)’ Nc‘yl is ample.

Since smoothness and ampleness are open in families, if Y7, ..., Y. are general hyper-
surfaces containing C, then Y =1, ;.. Y is smooth along C' and N¢yy is ample.

Moreover, Y is an irreducible variety of dimension m — ¢, as we now show. Let
X = Blo(X) with exceptional divisor E. The divisor 3H — E is very ample on X, as
the restriction of the analogous very ample divisor 3H — E on Bl (P") to X. Since
(d; — 3)H + E; is base-point free, the divisor classes D; — E on X are also very ample.
By the Bertini irreducibility theorem [Benlll, Theorem 1.1], the complete intersection
of ¢ < m — 2 general hypersurfaces of classes D; — E, ..., D. — E on X is irreducible.
Likewise, Y is irreducible of dimension m — ¢

Hence, there is a very free rational curve in the smooth locus of Y, and every com-
ponent of Y has dimension m — ¢ . If U is the family of all complete intersections of
hypersurfaces of classes Dy,...,D., and 7w : Y — U the universal complete intersection,
then 7 is flat by [Mat86, Theorem 23.1]. By Lemma the general complete inter-
section Y, in this family contains a very free rational curve in its smooth locus and is

SRC. O

3. APPLICATIONS OF THEOREM [1.6l

In this section, we use Theorem to prove that certain types of varieties are SRC.
To apply the theorem to complete intersections on a particular variety X, we need to
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find a very free rational curve on X, linearly normal with respect to the ample class on
X, that has sufficiently large degree that its restriction to complete intersections could
be very free. We handle the two cases of Theorem as the following two lemmas.

Let Gr(k,n) denote the Grassmannian parameterizing k-dimensional subspaces of an
n-dimensional vector space V. More generally, for a sequence of nonnegative integers
0 <k <ky<--+ <k, <n, the partial flag variety F(ki,...,k.;n) is the parameter
space of all partial flags

OQVMCV]@C“'CV]CTQV',
where each Vj, is a k;-dimensional vector space.

Lemma 3.1. Let X = F(ky,...,k;n) be a flag variety. Let X — Gr(ky,n) x -+ X
Gr(k.,n) be the canonical embedding, and let H be the sum of the pullbacks of the hy-
perplane classes on each Gr(k;,n). For each i with 1 < i < ¢, let D; be a divisor class
on X such that D; — 3H 1is effective. Let Y be the general complete intersection of c
hypersurfaces of class Dy,...,D.. If —Kx — Dy — -+ — D, is ample on X, then 'Y is
SRC.

Proof. The complete linear series | H| gives an embedding of X into projective space PV,
whose image is cut out by quadrics in PV by [Ram87, Theorem 3.11]. Hence, to apply
Theorem [I.6] we must find a very free rational normal curve C on X of large H-degree
such that H°(X, H) — H°(C, H|¢) is surjective.

Fix a basis e, ..., e, of the n dimensional vector space V' in which X parameterizes
flags. We start by constructing a rational curve on the Grassmannian Gr(k.,n) with
nice properties. Let i : P! — Gr(k,,n) send a point (s,t) to the span V4, (s,t) of the k,

vectors
n—ky

Uk (,8) = Y 8" H ey
i=0
with 1 < j < k,. We note two properties of the image curve C' = i(P'):

e The restriction of the universal subbundle of Gr(k,,n) to C is anti-ample; indeed,
it is isomorphic to O(k, — n)®*.

o If Gr(k,,n) is embedded in projective space by the Pliicker embedding, then the
image of C' is a rational normal curve. For if 0 < a < k.(n — k,) is an integer
satisfying a = b(n — k) + ¢ with b, ¢ integers and 0 < ¢ < n — k,., the monomial
sthr(n=kr) ig expressible as the restriction of the Pliicker coordinate X; to C,
where [ is the set of k, coordinates

I={{1,2,....bbn—k.+b+1—cn—Fk.+b+2n—k.+b+1,....n—1,n}.

We now extend this map to a map ¢ : P* — X that will retain these two proper-
ties. We define the maps i : P* — Gr(k;,V) inductively, downward from r. First
define the map 7 : P* — Gr(k,,n) as above; the above construction also gives a basis
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Vg, 1(8,1), .o, Uk, 1, (8, ) for each vector space V. (s,t). Now suppose that we have a map
i: P! — Gr(kip1,n) and a basis vk 1,1(8, 1), - .., Ukyyy kiys (5, 8) for the spaces Vi, (s, t).
For each (s,t) € P!, define Vj,(s,t) as the span of the vectors {v, ;|1 < j < k;}, with

, — Gkit1—k; . kig1—Fk; .
Uku]<87 t) =s" vki+17](87 t, ) +1 Uk jtkipr—ki-

This gives a map 7 : P! — Gr(k;,n). Repeating this process, we get a map i : P* —
Gr(k;, V) for every 1.
Set §; = min{k;1 — k;|i < j <r —1}. If we write vy, ; in the form

k;
ki—€4
Uk, (s, 1) = g ces" Tt e,
=0
then, inductively, we have
Co = ...Ck =1.

As a result, the Pliicker coordinates on Vj,, restricted to ', include the monomials

Ski(nfki% S(kifl)(nfki)tnfkl" ) tkz(nfkl)

Since these include both the top power of s and of t, Vi, (s, t) is everywhere k;-dimensional.
By construction, the vector spaces Vj, (s, t) fit into a chain of subspaces

{0} C Vi, (s,t) C - C Vi, (s,t) C V.

Hence, we have amap i : P — X. The image C of ¢ has degreed = >, .., ki(n—Fk;) with
respect to H. Moreover, any monomial st~ can be realized as a product of the Pliicker
coordinates on each Grassmannian factor. Hence, the image of C' under the Pliicker
embedding of X is a rational normal curve. Finally, T X |¢ is a quotient of Hom/(S,., Qk, ),
where Sy, is the universal sub-bundle on Gr(k,,n) and Q, the universal quotient bundle
on Gr(ki,n). Since Sy, is anti-ample, TX|c is ample. If Y is a codimension ¢ Fano
complete intersection satisfying the hypotheses of the lemma containing C' C X, we
have that — Ky is the restriction of an ample divisor on X. In particular, the difference

—Ky — H is nef. As aresult, since C- H =3, _,_ ki(n —k;), we have

—Ky - C =) ki(n— k).

i=1
Then, by Theorem [L.6], the general complete intersection in the class of Y is SRC and
in particular contains a very free curve that is a deformation of C. OJ

Remark 3.2. Even in situations where Y is not Fano, the proof of Lemma produces
rational curves with calculable normal bundles on Y. For instance, if

(~Ky =Dy == D,)-C >0,
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where C' is the rational curve constructed in the proof, then C' will have a globally
generated normal bundle in the general complete intersection containing it, so we can
conclude that the general complete intersection Y is separably uniruled.

Lemma 3.3. Let X be a product of projective spaces. For each 1 < j < ¢, let D; be a
a diwisor class of degree at least 3 on each factor space. Let'Y be the general complete
intersection of ¢ hypersurfaces of classes D1, ..., D¢. If —Kx — Dy —---— D, is ample,
then Y is SRC.

Proof. Let X = P™ x --- x P and let C' be a rational curve embedded in X as a
rational normal curve of degree a; in each factor P%. Let H; be the pullback to X of
the hyperplane class on P%, and set H = Hy + --- 4+ H;; H is the minimal ample class
on X. The curve C is very free in X, and is linearly normal under the embedding of X
in projective space by H. If ¢ =0, then Y = X and C being very free shows X is SRC.

Now suppose that Y is a Fano complete intersection containing C' satisfying the con-
ditions of the lemma and of codimension ¢ > 1. We have that — Ky |¢ has degree at least
H - C, since H is the minimal ample class on X. Since H -C' =a; + -+ + a, = dim X,
the inequality

Ky -C>dim(X) —c+1
holds. Then by Theorem Y is SRC. O

Lemmas [3.1] and [3.3] collectively imply Theorem Theorem [1.1] is a special case of
Lemma B.1]

Theorem [1.6| certainly applies in some other instances; as the following results il-
lustrate, in many cases the only real obstacle to applying it is finding a well behaved
rational curve in the starting variety X. For instance, we have the following statement
about Schubert varieties in homogeneous varieties.

Theorem 3.4. Let V. C P" be a linearly normal homogeneous variety defined over an
algebraically closed field k, let X C V be a Schubert variety of dimension m, and suppose
that X has a very free rational curve C' contained in the smooth locus of Y that is also
a rational normal curve in P™ of degree e. Let {d;}1<i<c be a collection of integers, each
at least 3, and suppose

—Ky-02m+1—c+e(z d;)
1<i<e

. Then a complete intersection of Y with ¢ general hypersurfaces D; each of degree d; is
SRC.

Proof. By [Ram87, Theorem 3.11], X is cut out in P" by linear and quadric hypersurfaces.
Given any very free rational curve C' on X that is a rational normal curve in P", and
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{di}1<i<c satistying the inequality of the hypothesis, we have
C-(—Kx — Z D;))>m—c+1.

1<i<c
Then by Theorem[1.6] if Dy, ..., D, are general hypersurfaces of degrees d, ..., d., and
Y =DiNn---ND.NX is smooth, we have that Y is SRC.

It remains to show that a general complete intersection contains a very free curve that
is a deformation of C'. In deformation theoretic terms, we want the map

H°(Nejpn) — H (€D O(d:H)|c)

1<i<c

to be surjective. This surjectivity follows from the very freeness of C' in the complete
intersection.

O
Likewise, Theorem [1.6| applies to some weighted projective spaces.

Proposition 3.5. Let X be the well-formed weighted projective space P(ag, . .., ay). Set
a =lem(ay,...,an), and let a = a'r be an integer such that O(a) is very ample on X
and X is cut out in P(H°(O(a))*) by quadrics Suppose that for each 0 < i < m there
exists an integer 0 < b; < ma; such that each integer 0 < £ < ma can be expressed as a
sum £ = cobg+ - - -+ ¢by, with each ¢; a nonnegative integer and ma = cog~+- - -+ CpQp,.
LetY be a smooth Fano complete intersection of general hypersurfaces each of (weighted)
degree at least 3a in X. Then'Y is SRC.

Proof. The result is trivial if X is a weighted projective surface, since X is SRC as a
rational variety and any smooth Fano curve on it is isomorphic to P!. Therefore, we
may assume m > 3. Let b; satisfy the hypotheses of the proposition.

Let i’ : P! — X be a map given by via the formula

i'(s,t) = (stogmaobo o ghmgmam=bm)
Then, by the hypothesis on the b;, the weighted degree a polynomials on X include
monomials that restrict to every monomial s™¢,...,t™ on P!; in particular, the com-

position map ¢ : P! — P(H°(X,0O(a))) embeds P! as a rational normal curve. By
upper semicontinuity of cohomology, if i : P* — X is given by a general m + 1-tuple of
polynomials,

i(S,t) = (fO(Sat)7 R fm(sat»
with each f; a polynomial of degree a;m, then i(P!) will also produce a rational normal
curve in P(HY(X,O(a))). Since i is general, no two functions f; vanish simultaneously,
so by the well-formedness of X, i maps P! into the smooth locus of X. So the curve

C = i(P') is a very free curve, because the restricted tangent bundle T'X | is a quotient
bundle of the ample bundle B, ., O(ma;) on C.
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Regarding X as a projective subvariety of PV = P(H°(X,O(a))), let Y1,...,Y. be
general hypersurfaces containing C' with each D; of degree d; > 3, and let Y =Y, Nn---N
Y.. If Y is smooth and Fano, we have ag + - -+ + a,, — a(dy + - -- + d.) > 0, whence

—Ky -C=m(ag+ -+ ay —aldy +--- +d.)) >m

By Theorem [1.6} if ¥; are general hypersurfaces of degree d; in P(H°(X,O(a))), then
their complete intersection is SRC provided it is smooth and Fano. U

Example 3.6. This lemma applies to the weighted projective space P(1,...,1,a,,) if
m > 2. If a = a,,, O(a) is very ample and its image is cut out by quadrics. And b, 1 =
m, b,, = ma,,, and b; = i otherwise verifies the additional combinatorial hypothesis of
the result.

4. ProDUCTS

In this section, we discuss the normal bundles of rational curves in products of vari-
eties.

Products of SRC varieties are SRC as the following argument shows. Let X; and X5
be SRC varieties and let C; be a very free curve in X;. Let C' be an immersed (1,1)
curve in Cy x (. Then we have the exact sequence

0 — NC|C1><CQ — NC‘XIXXQ — N01X02|X1><X2|C — O

Since the first and last bundles in this sequence are ample, the one in the middle is as
well. In general, the normal bundles of the two projections of C' in X; and X5 do not
determine the normal bundle of C'in X; x X,. However, if C' is general, Theorem
asserts that Nejx, «x, is a general quotient of the restricted tangent bundle T'(X; x X5)|c
by TC.

Our next goal is to prove Theorem Let f: P! — X, x X, be an immersion. For
any integer d, we have an exact sequence

0= Ni(d) = f(T" X, & T Xy)(d) — O(d — 2) — 0.
Let Vi 4 C H°(P', O(d — 2)) be the image of H(P!, f*(T*X;)(d)) in the associated long

exact sequence. Let v; 4 denote the dimension of V4. If Vi 4 and V54 are transverse,
then the image of HY(P!, f*(T*X1)(d)® f*(T*X5)(d)) in H°(P!, O(d—2)) has dimension
min(d—1,v; 4+vs4). In general, Vi 4 and V, 4 do not have to be transverse. For example,
if X1 = Xy and f; = fs, then Vi 4 = V5 4. However, if f is general and £ is a field of
sufficiently large characteristic, the following proposition guarantees that V; 4 and V54
are transverse. Set

dy = min{d > 2| Vi,y = H(P',O(d — 2)) or Vau = H'(P',O(d — 2))}.

Serre vanishing guarantees the existence of this d.
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Proposition 4.1. Assume the characteristic of the base field is 0 or p > dy—1. Let the
maps fi : P! — X, and fo : P! — X5 be immersions, and let o : P1 — P! be a general
automorphism. Let f: P' — X1 X Xy be given by (f1, f20«). Then, for any d, V14 and
Va.q are transverse.

Proof. Fix an integer d. If v =d —1 or v94 = d — 1, the result is trivial, so we assume
both v1 4 <d—1and v94 < d—1. The maps f; and f, induce maps

Df; : HO(P', frT*X;(d)) — H(P', T*P(d)).

Set V = H°(P!, T*P!(d)) and let V; and V5 be the images of f; and f, respectively. There
is a natural action of SL, on H°(P', T*P!(d)) such that a € SLy acts by composition
an = noa. Then the image of HO(P!, (f*T*(X; x X5))(d)) in V is the span of V; and
aV,. We want to show that for general o these two vector spaces are transverse.

Suppose first that v1 4+v24 < d — 1. Using an isomorphism T*P! =2 O(—2), we fix an
identification H°(P', T*P'(d)) with H°(P!,O(d — 2)) as an SL, representation for the
remainder of the proof. Let g,...,g,,, be a basis for V3, so each g; is a degree d — 2
homogeneous polynomial in coordinates s, on P'. Set vy := g1 A -+ A Gy € A2V
By [Ya96, Lemma 2.3] and the bound on p, we have that the Wronskian

0 9v2.d "1
g1 a9t o preatIl
9 9v2,d—1
Gvoa  5i9vaa - ppza—TIvaa

does not vanish everywhere. Pick coordinates s,t on P! such that the Wronskian does
not vanish at ¢ = 0. Let U be the smallest subrepresentation of A¥?(V') containing vs.

For any a let V,, be the S Ls representation S*V;, where V] is the natural 2-dimensional
representation of SLy,. The Wronskian map is a map of representations A"24V — V,,
where b = Ugvdm. Then Vj, is the highest weight direct summand of A"24V — V,,
so since U is not in the kernel of the map A"24V — V}, U must contain V, C A"2<V . In
particular, the element of V, C A4V, vl = 5372 A ... A gd717%24¢2471 g in the span of
v9 under the SLy action.

By a similar argument, if we set v; as the element of A"4V" corresponding to Vi, we
have that v} := t472 A ... A st~ 14471704 §g in the SLy span of v;. As a consequence,
because v| A v} is nonzero, for some a € SLy we have v; A avy # 0. Then V; and oV,
have zero intersection.

If v10+v94>d—1,let V/ C Vi be a subspace of complementary dimension to V5.
Then the argument above establishes that for some «, V/ and aV, span V, giving the
desired result. 0

Proof of Theorem[I.7. Let the maps f; : P! — X be as in the statement of the result.
Suppose char(k) = 0 or char(k) = p and H°(P', f{(T*X,)(p+2)) — H°(P', T*P'(p+2))
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is surjective; by hypothesis, this can always be accomplished by permuting the indices.
In what follows, we assume the characteristic is positive, because the characteristic zero
case merely requires removing all reference to the characteristic. Since the product maps

HOP, TP (p + 2)) @ HO(P', O(a) — HOP', T"PX(p + a + 2))
are surjective for all a > 0, the above hypothesis implies that for all d > p + 2 the maps
HO(PY, fH(T*X,)(d)) — H°(P', T*P'(d)) are surjective.

Set Y; = Xy x---xX;. Define g; : P! — Y; inductively by g; = f1 and ¢; = (gi_1, fioa,),
where «; is a general automorphism of P*. Since o} (E) = F for any vector bundle £ on
P!, we have that g;(TY;) is isomorphic to (fi,..., fi)*(TY;). In addition, because the
map

HY (P, f(T"X1)(d)) — H° (P, T"P'(d))
is surjective if d > p + 2, the maps
HY (B, g; (T°Y)(d)) — HO(F' TP (d))
are surjective as well, since ¢ (T*Y;)(d) has f;(T*X1)(d) as a quotient.
If d > p+ 2, we have

0/l * _ 1 0/ml k%
W (P, Ny (d) = B°(P, g/ (T"Yi)(d)) —d + 1
automatically, verifying the result. Finally, if d < p+ 1, applying Proposition [£.1] to the
pair of morphisms (g;_1, f;), we have

RO(P', N (d)) = max(hO(P, g7 (T*Y;)(d)) — d + 1, IO(P*, N7 (d)) + h°(P', N%.(d))).

Combining these formulas, noting h°(f;(T*X)(d)) > h°(N} (d)), and setting g = g,, we
have that ¢*(TX) = f*(TX) and

hO(P', N} (d)) = max(h°(P', f*(T"X)(d)) — d + 1, Z hO(P', N (d))).

O

Remark 4.2. The restriction on the characteristic is needed in Proposition [4.I}—and
hence in Theorem . Let char(k) = p > 3, and let f : C' — P? be the rational curve
embedded by the map
(s,t) = (sPTh, Pt stP tPTH1).

The restricted cotangent bundle T*P3|¢ is O(—p —2)%? & O(—2p), and the induced map
T*P3|c — T*C is given by (s?,t?,0). In particular, the image of the map on H° induced
by this map does not change if f is precomposed with an automorphism. The map
(foa,f): C — P x P? induced by twisting f hence gives a map H°(P!, (f*T*(P3 x
P?))(d)) — H°(P', T*P'(d)) with an image of dimension max(0, min(2(d—p—1),d—1)).
Consequently, Nepsyps has splitting type O(—2p)®* & O(—2p—2) & O(—p—2)®? instead
of the general splitting type.
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