
Distributional Cloning for Stabilized Imitation
Learning via ADMM

Xin Zhang
San Diego State University

xzhang19@sdsu.edu

Yanhua Li
Worcester Polytechnic Institute

yli15@wpi.edu

Ziming Zhang
Worcester Polytechnic Institute

zzhang15@wpi.edu

Christopher G. Brinton
Purdue University
cgb@purdue.edu

Zhenming Liu
College of William & Mary

zliu@cs.wm.edu

Zhi-Li Zhang
University of Minnesota

zhzhang@cs.umn.edu

Abstract—The two leading solution paradigms for imitation
learning (IL), BC and GAIL, each suffers from notable draw-
backs. BC, a supervised learning approach to mimic expert
actions, is vulnerable to covariate shift. GAIL applies adversarial
training to minimize the discrepancy between expert and learner
behaviors, which is prone to unstable training and mode collapse.
In this work, we propose DC – Distributional Cloning – a novel
IL approach for addressing the covariate shift and mode collapse
problems simultaneously. DC directly maximizes the likelihood
of observed expert and learner demonstrations, and gradually
encourages the learner to evolve towards expert behaviors based
on an averaging effect. The DC solution framework contains
two stages in each training loop, where in stage one the mixed
expert and learner state distribution is estimated via SoftFlow,
and in stage two the learner policy is trained to match both the
expert’s policy and state distribution via ADMM. Experimental
evaluation of DC compared with several baselines in 10 different
physics-based control tasks reveal superior results in learner
policy performance, training stability, and mode distribution
preservation.

Index Terms—imitation learning, neural ordinary differential
equations

I. INTRODUCTION

Imitation learning (IL) [2], [3] aims to learn sequential
decision-making policies directly from expert demonstrations,
without access to reward signals from the environment. State-
of-the-art (SOTA) IL approaches have primarily followed one
of two paradigms: behavior cloning (BC) [4] and generative
adversarial imitation learning (GAIL) [3].
Motivation. While both BC and GAIL have been studied
extensively, each has crucial limitations. On the one hand,
BC approaches employ supervised learning, which requires a
large amount of expert demonstrations to avoid compounding
errors due to covariate shifts [5], [6]. On the other hand, GAIL
approaches [7]–[18] connect IL with generative adversarial
networks (GAN) [19], but adversarial training processes are
intrinsically unstable [7], [15] and prone to mode collapse
(especially when learning from multi-mode expert demonstra-
tions) [8], [12], [13]. To see this, consider Figure 1, which
shows an example of different IL algorithms on the Reacher
task [10], [20] with four targets (Figure 1g). While the expert
tends to visit all targets equally (Figure 1h), the policy learned

by BC does not recover the expert distribution precisely due
to covariate shift (Figure 1a), and that learned by GAIL is
mode collapsed, primarily visiting the green target (Figure 1b).
In this work, we are motivated to design an IL methodology
that alleviates the covariate shift problem with a stabilized
training process and mode distribution preservation property
from expert demonstrations.
Our Distributional Cloning (DC). We propose DC –
Distributional Cloning – a novel IL approach that directly
maximizes the likelihood of observed expert and learner
demonstrations, and encourages the learner to evolve towards
expert behaviors via an averaging effect. DC contains two
stages in each training loop, with the 1st stage focusing on
accurately estimating the expert and learner state distribution,
and the 2nd stage pushing the learner policy towards the
expert’s policy. Figure 1f shows a quick view of our results:
DC gradually learns the expert behavior distribution and leads
to a learner policy preserving the mode visitation distribution
of the expert demonstrations. Our key contributions are as
follows:
• We are the first to propose and formulate the distributional

cloning (DC) problem as maximizing expert and learner
state-action distribution likelihood. The DC learner policy
evolves towards expert from guidance constantly averaged
over the expert and learner behaviors. It tackles the covariate
shift problem of BC and the training instability issue of
GAIL.

• We design a DC solution framework based on alternating
direction method of multipliers (ADMM) [21] to efficiently
update the learner policy, and encourage it to match expert
state-action distribution.

• Our evaluation on ten different physics-based control tasks
reveals that DC obtains superior results compared with
SOTA baselines in learner policy performances, training
stability, and mode distribution preservation. We made our
code available to contribute to the research community via
a Github link 1.

1The code for our experiments is available at https://github.com/
XinZhang525/DC.

818

2023 IEEE International Conference on Data Mining (ICDM)

DOI 10.1109/ICDM58522.2023.00091

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(I
C

D
M

) |
 9

79
-8

-3
50

3-
07

88
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

M
58

52
2.

20
23

.0
00

91

979-8-3503-0788-7/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Gordon Library WPI. Downloaded on May 15,2024 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Example results obtained by DC (Ours) and baselines on mode coverage. Right: (g) shows a Reacher task, with four
targets in different colors, (h) shows the mode coverage (i.e., state distribution) with expert policy. Left: (a)-(e) show the mode
coverage with BC policy (a), GAIL policy (b), DRIL policy (c), PWIL policy (d), and NDI policy (e). (f) shows the mode
coverage evolution (i.e., initial, 2nd and 4th loops) of a DC policy with the number of training loops. All the distributions are
visualized using kernel density estimation (KDE) [1]. A darker color indicates a more densely distributed region in the state
space. None of the compared approaches solve the mode collapse problem.

II. PRELIMINARIES

Notations. We denote S as a set of states, A as a set of
actions, P : S × A × S "→ [0, 1] as the transition probability
distribution, r : S × A "→ R as the reward function,
ρ0 : S "→ R as the distribution of the initial state s0, and
γ ∈ [0, 1] as the discount factor. An agent makes decisions
following a policy π : S × A "→ [0, 1], which specifies a
probability distribution of choosing an action a ∈ A at a state
s ∈ S . With s0 ∼ ρ0, then over time t, at ∼ π(at|st) and
st+1 ∼ P(st+1|st, at) according to the policy π. We will
denote the expert policy as πE , and the learner policy as π. We
denote Pπ(s, a) as the probability of observing a state-action
pair (s, a) when executing the learner policy π, and denote
PE(s, a) to represent PπE (s, a) for brevity. Moreover, for a
function h(s, a) of interest, we use an expectation over a policy
π to denote an expectation with respect to the trajectories it
generates, i.e., Eπ[h(s, a)] ! E[

∑∞
t=0 γ

th(st, at)].
Behavior Cloning (BC). BC [4], [22] is a supervised learning
solution to IL. It learns expert policy πE via minimizing the
KL divergence [23] between the learner policy π and expert
trajectories DE , i.e.,

max
π

E(s,a)∈DE
[log π(a|s)]. (1)

BC indeed maximizes the likelihood of observed trajectories
in DE when viewing transition probabilities as optimization

constants2. Considering limited amount of expert demonstra-
tion, BC can not view all states during training and suffers
from the covariate shift problem [5], [6].

III. OUR DC APPROACH

A. Problem Definition: Distributional Cloning
To avoid the covariate shift from supervised approaches

(e.g., in BC) and the instability from adversarial training (e.g.,
in GAIL), we introduce a distributional cloning paradigm to
learn the policy π by directly maximizing the likelihood of the
state-action pairs from the expert demonstration data DE and
learner demonstrations Dπ . The DC objective can be formally
modeled as the following optimization problem:

max
π,P

E(s,a)∈DE∪Dπ
[logP (s, a;π)]. (2)

Here, P (s, a;π) denotes the state-action distribution under the
learner policy π. Eq.(2) encourages the learner policy to match
expert state-action distribution.
Differences from BC. Notice that instead of maximizing
trajectory likelihood as in BC, DC maximizes the likelihood
of observed state-action pairs from both the expert and the
learner demonstrations. Enforcing information from learner
demonstrations Dπ familiarizes the learner policy with more

2The log likelihood of a trajectory τ is logP (τ) = log ρ0(s0) +∑∞
t=0 log π(at|st) +

∑∞
t=0 P(st+1|st, at). Terms log ρ0(s0) and

logP(st|st−1, at−1) are irrelevant constants.

819

Authorized licensed use limited to: Gordon Library WPI. Downloaded on May 15,2024 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Illustration of DC framework in one training loop.

expert-like behaviors and can help alleviate the covariate shift
problem. In addition, rather than stochastic gradient descent
(SGD) update, DC updates the learner policy π via ADMM
to combine and coordinate influences from expert action
matching and expert state matching.
Challenges. The DC problem is challenging from two aspects:
C#1 Implicit learner policy: Eq.(2) optimizes the joint dis-
tribution of state-action pairs P (s, a;π) without an explicit
form of the learner policy π. C#2 Non-differentiability: The
optimization of the DC problem in Eq.(2) requires sampling
over the learner policy π which breaks its differentiabilty and
makes the optimization hard.

To address these challenges, we propose the Distributional
Cloning (DC) framework shown in Figure 2. DC solves the
DC problem by decomposing the state-action joint distribution
P (s, a;π) with the state distribution P (s) and the learner
policy π(a|s). It iteratively imposes expert guidance to the
learner, and updates the learner policy via ADMM [21] to
handle the non-differentiability problem formalized next.

B. DC Solution Framework
We decompose the state-action joint distribution P (s, a;π)

with a state distribution P (s) and a learner policy π(a|s) and
formulate P (s, a;π) = P (s)π(a|s). Then, we derive from the
DC problem in Eq.(2) to the following DC objective:

max
π,P

E(s,a)∈DE∪Dπ
[logP (s) + log π(a|s)]. (3)

To solve this problem, we model the learner policy π as a
deep neural network parameterized by θ, and the expert-learner
mixed state distribution P using SoftFlow [24] parameterized
by ω. We apply SoftFlow as it is able to deal with the manifold
hypothesis [25], [26] and is more effective in uncovering
distribution modes. The training process in each loop involves
two stages, described in Figure 2 and Alg. 1: (Stage #1)
state distribution learning, where we train Pω to learn an
expert-learner mixed state distribution based on SoftFlow;
(Stage #2) policy learning, where we use expert and learner
demonstrations DE and Dπ and the learned state distribution
Pω to train the learner policy πθ with the objective in Eq.(3).

Algorithm 1 Distributional Cloning (DC)
Require: Initial parameters ω0 for the ODE system function

fω of Pω; initial parameters θ0 for the learner policy πθ;
expert trajectories TE containing sequences of state-action
pairs; total number of training loops L and number of
learner policy updates N .

Ensure: The ODE system function fω of the state distribution
Pω , learned policy πθ.

1: Sample state-action pairs DE from TE .
2: Update ω0 to ω1 by ascending with the gradients: ∆ω0 =

Es∈DE [∇ω0 logPω0(s)]. // Stage #1
3: Update θ0 to θ1 for N iterations via ADMM in Alg. 2. //

Stage #2
4: for each loop i = 1, 2, · · · , L do
5: Sample trajectories with πθi and store in Tπθi

.
6: Sample state-action pairs DE and Dπθi

respectively
from TE and Tθi with the same batch size.

7: Update ωi to ωi+1 by ascending with the gradients:
∆ωi = Es∈DE∪Dπ [∇ωi logPωi(s)]. // Stage #1

8: Update θi to θi+1 for N iterations via ADMM in Alg. 2.
// Stage #2

9: end for

Considering that initial random learner policy does not
provide meaningful information for learning expert state dis-
tribution, we only use expert demonstrations DE to train Pω

in the initial loop. After the first loop, the learner policy π
obtains some knowledge of the expert whose demonstrations
will be used to train the next loop state distribution Pω to
amplify the influence of expert state distributions and further
assist learner policy training.

However, P (s, a;π) decomposition does not solve the non-
differentiability challenge: updating the policy πθ with Pω

guidance involves action sampling which breaks the differ-
entiablity when updating πθ from expert demonstrations DE .
Thus, we apply ADMM [21] and breaks the optimization
problem over the learner policy π in Eq.(3) into two pieces,
i.e., BC (as expert action matching), and RL with Pω guidance
(as state matching). With the learned Pω , we follow an RL
approach and employ proximal policy gradient (PPO) [27] for
back-propagation, with the Adam optimizer [28] for updating
the policy πθ as is detailed in the following section.

C. ADMM for Learner Policy Update

Eq.(3) suggests two directions of learner policy πθ update,
i.e., an expert action matching update, and a state matching
update from learner demonstrations based on demonstration
state distribution logPω(s). The sampling process in the state
matching step breaks the differentiability for learner policy
πθ update, making it incompatible with the expert action
matching update. Consequently, we cannot use direct gradient
ascent. Additionally, directly viewing logP (s) + log π(a|s)
as a reward signal and applying PPO [27] to update learner
policy π does not consider gradients from log π(s) as a direct

820

Authorized licensed use limited to: Gordon Library WPI. Downloaded on May 15,2024 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

supervision. Therefore, we cannot only use policy gradient for
policy optimization.

To deal with such a problem, we utilize ADMM [21]
and treat the policy update in Eq.(3) as below constrained
optimization problem, i.e.,

max
π,π′

E(s,a)∈DE∪Dπ
[log π(a|s)] + E(s,a)∈DE∪Dπ′ [logP (s)],

s.t., π = π′ = z, (4)

where z is a global variable coordinating the equality between
local variables π and π′. Here the learner policy π tries to
mimic expert behavior, and its counterpart policy π′ tries to
match expert state distribution using guidance from expert-
learner state distribution Pω . The learner policy π and its
counterpart π′ are expected to be the same for the optimality in
Eq.(3) over π. Then, the augmented Lagrangian [29] of Eq.(3)
is,

L(π,π′, µ) = E(s,a)∈DE∪Dπ
[log π(a|s)]

+ E(s,a)∈DE∪Dπ′ [logP (s)]− µ

2
||π − z||22 −

µ

2
||π′ − z||22.

Based on the consensus optimization via ADMM, we have
z = π+π′

2
3 where the learner policy π and its counterpart

π′ are encouraged to be the same via the averaging effect.
Therefore, in each π training iteration, we use BC to update
π, and follow the RL approach to employ PPO [27] for back-
propagation over π′. The Adam optimizer [28] is used for
both π and π′. The updated π and π′ are averaged for the
next ADMM training iteration as is shown in Alg. 2. Conse-
quently, the learner policy averages information obtained via
BC and expert-learner state distribution. The expert portion of
information leads the learner policy towards expert behaviors.

Though there is no theoretical guarantee of the con-
vergence of ADMM in optimizing Eq.(4), we have tried
to regularize training to enforce convergence. In imple-
mentation, we included weight decay during training with
ADMM which encourages the Hessian matrices of the
E(s,a)∈DE∪Dπ

[log π(a|s)] and E(s,a)∈DE∪Dπ′ [logP (s)] func-
tions to approach positive semidefinite. This likely entails
approximately convex functions where ADMM has better con-
vergence guarantee [30]. In other words, the implementation
trick roughly ensures the three assumptions, i.e., bounded
Hessian matrix, subproblem solution equality and bounded
function value (page 5 Assumption A by [30]) in a global
consensus problem, and has a promise in convergence. Em-
pirical results in Sec. IV-A validates the good convergence
property in DC.

IV. EXPERIMENT

To evaluate our proposed DC methodology, we conduct
experiments on ten physics-based control tasks, including
CartPole [31], Reacher (with 1, 2 and 4 targets), Hopper,
Walker, HalfCheetah (with 1 and 2 running directions), Ant,
and Humanoid all simulated with MuJoCo [20]. From these

3Here we use π+π′

2 to express the element-wise parameter averaging
operation between two networks.

Algorithm 2 Policy Learning via ADMM
Require: Parameters θi for the learner policy πθ in loop

i; Parameters ωi+1 for the state distribution Pω; Expert
demonstrations TE containing sequences of state-action
pairs; total number of learner policy updates N .

Ensure: The learned policy πθi+1 .
1: Assign initial πθ parameter as θi,0 = θi.
2: for each iteration n = 0, · · · , N do
3: Copy πθi,n to get its counterpart πθ′

i,n
.

4: Sample trajectories with πθ′
i,n

and store in Tπθ′i,n
.

5: Sample state-action pairs DE and Dπθ′i,n
with the same

batch size.
6: Update πθi,n to πθi,n+1 by ascending with gradients:

∆θi,n = E(s,a)∈DE∪Dπθi,n
[∇θi,n log πθi,n(a|s)].

7: Take a policy step from πθ′
i,n

to πθ′
i,n+1

, us-
ing PPO update rule to increase the objective:
E(s,a)∈DE∪Dπ

θ′i,n
[logPωi+1(s)].

8: Assign πθ as πθi,n+1 =
πθi,n+1

+πθ′i,n+1

2 .
9: end for

experiments, we show that: i) DC performance improves
with increasing Pω update loop number whose ADMM-based
learner update approach converges empirically, and DC is
stable with different learning rates; ii) our DC learner policies
avoid mode collapse and covariate shift, by accurately pre-
serving the expert mode distribution; iii) DC learner policies
have comparable or better performance than IL baselines.
Implementation Settings and IL Baselines. We obtain expert
policies of all tasks by running TRPO [32] with their ground-
truth reward functions defined in the OpenAI Gym [33].
Then, we use the expert policies to generate expert demon-
strations. We use Reacher with two and four target modes,
and HalfCheetah with two target modes [20] respectively
(i.e., Reacher2, Reacher4 and HalfCheetah2) to analyze the
mode coverage of our DC vs IL baselines. Each expert policy
obtained by TRPO has a particular distribution of reaching
different target modes. We relegate more implementation de-
tails to Appx. A. Below are the five IL baselines we use to
compare with DC:
• Behavior Cloning (BC) [4]: Expert demonstrations as a set

of state-action pairs are split into 70% training data and 30%
validation data. The learner policy is trained with supervised
learning where actions are viewed as labels and states as
input features.

• Generative Adversarial Imitation Learning (GAIL) [3]:
GAIL is an IL method that consists of a generator as a policy
network mimicking the expert behaviors, and a discriminator
as a reward signal distinguishing between learner and expert
behaviors.

• Generative PRedecessor models for Imitation Learning
(GPRIL) [34]: GPRIL performs the state-action distribution
matching by jointly training the learner policy and the cor-
responding multi-step predecessor state-action distribution.

821

Authorized licensed use limited to: Gordon Library WPI. Downloaded on May 15,2024 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Performance and time with different loop numbers in
Hopper. Black bars show reward std.

Fig. 4: Policy performances with different learning rates using
GAIL and our DC in Hopper.

Fig. 5: Performance over
environment interactions in
Hopper.

Fig. 6: πθ parameter change
in L1-norm over ADMM it-
erations.

In each iteration, the predecessor state-action distribution is
estimated using masked autoregressive flows [35].

• Disagreement-Regularised Imitation Learning (DRIL) [36]:
DRIL pre-trains an ensemble of BC policies with expert
demonstration data, and uses RL to train a learner policy
whose cost function is proportional to the sum of the
variance of ensemble policies’ predictions.

• Primal Wasserstein IL (PWIL) [37]: PWIL ties the primal
form of Wasserstein distance with IL to match learner’s and
expert’s state-action distributions. It derives an upper-bound
of the Wasserstein distance via greedy coupling as the offline
reward for policy learning.

• Neural Density Imitation (NDI) [38]: NDI learns expert’s
occupancy measure as a reward and applies maximum
occupancy entropy RL to train a learner policy. It maximizes
a lower bound RKL divergence [23] between occupancy
measures of the expert and learner.

A. Ablation Studies

In this section, we explore how the training design, such
as the number of Pω update loops and learning rate changes
affect the model performance. We also investigate the conver-
gence property of the learner policy πθ update via ADMM in
terms of the model parameter changes and the training curve.
Below, we show our results from the Hopper task with 11

expert trajectories; similar observations were made for other
tasks.
Impact of the Pω update loop number. Figure 3 shows the
performance and time usage of DC with different loop num-
bers of Pω update where each loop contains 100 iterations
of learner policy πθ update with ADMM [21]. It shows
that Pω guidance is necessary for improving learner policy
performance, and with increasing loop number, the perfor-
mance of DC increases and converges at the 4th loop for the
Hopper task. The consumed time is roughly linear to the loop
number. We also compare DC when trained with one loop
where the learner policy πθ is updated for 1,000 iterations. It
shows that increasing learner policy update number is able to
attain comparable performance with that trained with multiple
loops while decreasing the computation time significantly.
Therefore, training the DC model with one loop for multiple
learner policy πθ update iterations via ADMM serves as a
practical choice to balance performance vs. computation cost.
We employ the single Pω update loop with 1,000 iterations
of learner policy πθ update implementation of DC for the
following experiments.
Impact of the learning rate. We further study DC’s robustness
in choosing different learning rates. Figure 4 shows the per-
formance of DC and GAIL given different learning rates.
It shows that DC works in a wide range of learning rates,
while GAIL tends to fail/crash when learning rates are 1e− 3
and higher. GAIL with adversarial training is less robust to
the change of learning rate due to vanishing gradient and
the complex interactions between the discriminator and the
generator [7], [15]. However, our DC updates the learner
policy πθ via ADMM which provides better robustness to
learning rate changes.
Convergence property. Figure 5 shows the performance
change with the number of environment interactions (self-
supervision steps). This figure shows that DC is able to attain a
higher return than GAIL given a small number of environment
interactions (at around 3–6×105 steps). An explanation is
that the trained Pω is good at guiding the learner policy πθ

to explore on those states frequently visited by the experts.
In addition, the ADMM update for the learner policy πθ

822

Authorized licensed use limited to: Gordon Library WPI. Downloaded on May 15,2024 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Results of DC (Ours) and baselines
on mode coverage in HalfCheetah2. All the
distributions are visualized using KDE [1].

Fig. 8: EMD vs. scaled return in tasks with multiple modes. The x-axis
is the EMD [39] between expert and learner policy state distribution.
The y-axis is the expected return (i.e., total reward), scaled so that the
expert achieves 1 and a random policy achieves 0.

demonstrates good model convergence property as is shown in
Figure 6. Moreover, differing from GAIL with two generator
and discriminator trained alternatively, DC avoids adversarial
training and employs the iterative two-stage training process to
training Pω and πθ separately, thus leading to fast and stable
convergence.

B. Mode Coverage

Figure 1 shows the results of Reacher4 with four mode
targets in different colors in Figure 1g, and Figure 7 shows the
results of HalfCheetah2 with two mode directions as running
forward and backward. Results of Reacher2 are in Appx. B
as its observations are similar to the Reacher4 task. Figure 1h
shows the mode coverage (i.e., the state distribution) of the
expert policy, where the expert tends to cover all four targets
(as four modes) evenly. The learner policy obtained by DC
preserves the expert mode coverage very well as shown in the
3rd figure in Figure 1f. On the contrary, BC learned policy
tends to visit the blue and red targets more as BC only matches
expert action distribution and is vulnerable to covariate shift.
The learner policy from GAIL is prone to mode collapse. It
only focuses on the green target out of the four. Consistent
with results in SOTA works [7], [8], [15], this mode collapse
is due to the adversarial training process in GAIL. DRIL,
PWIL and NDI also fail to cover the green target mode, the
red one and the yellow one as their defined reward function
likely encourages a mode seeking behavior. DC successfully
preserves the mode coverage from the expert, because it
uses SoftFlow [24] to accurately estimate the expert state
distribution, and the stabilized two-stage training to update
the learner policy.

In the HalfCheetah2 task in Figure 7, the x-axis represents
the running velocity, and the plots show the velocity distribu-
tions of expert and IL policies. The black curve demonstrates
two modes (i.e., running forward and backward) in expert

Task Approach Measure
EMD KL RKL

Reacher2

BC 1.01 2.60 4.38
GAIL 0.84 2.47 4.51
DRIL 1.00 2.51 4.25
PWIL 0.67 2.47 3.46
NDI 0.68 2.49 3.54
DC 0.58 2.47 3.35

Reacher4

BC 0.81 4.23 6.33
GAIL 0.41 4.49 6.22
DRIL 0.55 5.16 6.16
PWIL 0.52 5.13 5.95
NDI 0.54 5.15 6.02
DC 0.40 4.04 5.77

HalfCheetah2

BC 1.81 6.74 12.78
GAIL 1.75 4.52 18.13
DRIL 1.83 6.90 12.76
PWIL 1.56 4.23 12.56
NDI 1.60 4.26 12.63
DC 1.52 4.06 12.43

TABLE I: The EMD [39], KL and RKL between expert and
learned policy state distribution.

demonstrations. DC (blue curve) is able to preserve all modes,
while DRIL and BC are collapsed to running forward, GAIL
fails to reveal any mode, and PWIL and NDI concentrate more
on the forward mode. We further calculated the earth mover’s
distance (EMD) [39] between expert and learned policies’
state distributions as the x-axis in Figure 8 in the Reacher
and HalfCheetah tasks with multiple modes. A lower EMD
value indicates a better learner policy at recovering expert
demonstration modes, and the results echo the above observa-
tions quantitatively. The EMD, KL and RKL divergences [23]
between expert and learned policy state distribution are listed
in Table I. In all tasks, DC obtains the lowest EMD, KL and
RKL scores indicating its superior ability to recover expert
behaviors on tasks with multiple modes. We omit GPRIL as
no meaningful results are obtained.

823

Authorized licensed use limited to: Gordon Library WPI. Downloaded on May 15,2024 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

(a) Reacher. (b) Hopper. (c) Walker.

(d) HalfCheetah. (e) Ant. (f) Humanoid.

Fig. 9: Performance of learner policies in tasks with one mode. The y-axis is the expected return (i.e., total reward), scaled so
that the expert achieves 1 and a random policy achieves 0.

C. Performance of the Learner Policy from DC

Figure 8 shows the EMD [39] vs scaled return results in
Reacher and HalfCheetah with different numbers of demon-
stration modes. In all the tasks, DC has both lower EMD and
higher scaled return compared with baselines. This is because
SoftFlow is able to recover expert state distribution PE with
multiple modes well, and thus provides useful feedback for the
learner policy to recover expert behaviors. Comparing between
Reacher with 2 and 4 targets, DC shows a larger return margin
when the target modes are more distant from each other in
Reacher2.

Figure 9 shows the performances of the learner policies
from our DC and IL baselines under different numbers of
expert trajectories when they only contain one mode. In all
tasks, our DC learner policies have comparable performances
with GAIL, which is because expert demonstrations are able to
push learner policies towards expert behaviors without using
adversarial training. DC outperforms DRIL particularly with
a limited number of expert trajectories because the use of
a SoftFlow learned PE has good generalization ability and
provides useful feedback to learner policy π for a better
policy. Moreover, in both easy tasks (Reacher) and complex
tasks (Hopper and Walker), DC consistently outperforms BC
with different numbers of expert demonstrations, which is
because DC uses the state distribution matching on top of
the BC objective to overcome the covariate shift problem.
The performance of the BC learner policies increase with
more expert demonstrations, as more training data mitigates
the overfitting problem and compounding errors. However, the

GPRIL learner policies have the lowest performances in all
tasks. This is primarily because the policy is jointly learned
with its multi-step predecessor state-action distribution. With
random initial parameters for these two functions, it is hard
to progressively improve them jointly.

V. RELATED WORK

Imitation Learning (IL) has two solution paradigms, i.e.,
Behavior Cloning (BC) [4], [22] and Generative Adversarial
Imitation Learning (GAIL) [3]. BC learns the expert policy
via maximizing expert demonstration likelihood. It suffers
from covariate shift with limited demonstration [5], [6]. [36],
[40] aim to address this problem with learner-environment
interactions during training. GAIL [3] employs GAN to min-
imize the JS divergence between expert and learner state-
action distributions. Using the variational lower bound of an
f -divergence, several studies [5], [11], [12], [14], [41], [42]
extended GAIL from JS to any f -divergence. However, these
methods apply adversarial training, which leads to training
instability and mode collapse [8], [13].

Several recent works try to avoid adversarial training in IL
[34], [37], [38], [43], [44]. For this, Primal Wasserstein IL
(PWIL) [37] considers the primal form of Wasserstein distance
to match learner’s and expert’s behaviors. Neural Density
Imitation (NDI) [38] estimates expert’s occupancy measure
with which as a reward for reinforcement learning. Energy-
Based IL (EBIL) [43] stems from Max-Entropy IRL [45] and
estimates a surrogate reward function with score matching
from expert demonstrations. Imitative Models (IM) [44] learns
a flow model that assigns high likelihoods to expert-like

824

Authorized licensed use limited to: Gordon Library WPI. Downloaded on May 15,2024 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

trajectories for test time goal-directed planning. GPRIL [34]
applies masked autoregressive flows [35] to learn predeces-
sor state-action distribution in each training iteration, adding
complexity to learner policy update and burdening training.
Unlike these methods, we maximize expert and learner state-
action likelihood to avoid adversarial training and solve the
mode collapse problem simultaneously.
Normalizing Flow [46]–[50] is a generative model paradigm
that features data transformations between random noises (e.g.,
in Gaussian distribution) and training data samples. It explic-
itly learns a data distribution based on the (instantaneous)
change of variables formula and is trained via maximum
likelihood estimation [46], [49]. However, these models are
vulnerable to the manifold hypothesis and cannot deal with
data dimension mismatch. Consequently, they are not suit-
able for estimating the distribution of the data on a lower-
dimensional manifold [24]. SoftFlow [24] tackles these prob-
lems via estimating a conditional distribution of the perturbed
data samples to better capture the innate structure of the
manifold data. Therefore, we apply SoftFlow in this work.
Alternating Direction Method of Multipliers (ADMM) [21]
solves an optimization problem via breaking them into mul-
tiple subproblems. It coordinates the subproblems globally
to arrive at a solution. ADMM can serve as an alternative
to stochastic gradient descent as it allows parallel data pro-
cessing and avoids gradient vanishing [21], [51]. It has been
applied in RL [21], [51]–[53]. Under the guided policy search
(GPS) framework of RL, GPS with Bregman ADMM (GPS-
BADMM) [52] applies a variant of ADMM to decompose the
GPS objective into subproblems optimized over a trajectory
distribution and a learner policy. [53] solves the GPS problem
from a supervised learning perspective and introduces an
adversarial regularization to improve learner policy robustness
and generalizability. It decomposes the problem via ADMM
as trajectory optimization and policy learning. Unlike these
works, we employ ADMM on IL to help coordinate informa-
tion from expert supervision and learner exploration.

VI. CONCLUSION

In this work, we proposed DC – distributional cloning –
which trains a learner policy that employs expert averaging
effect by maximizing the likelihood of expert and learner
demonstrations. DC learned policies approach the expert
behavior gradually during training. Each training loop of
DC contains two stages, i.e., Stage #1 estimates the expert-
learner state distribution using SoftFlow, and Stage #2 trains
the learner policy to match both expert’s policy and state
distribution via ADMM. Comparing our DC with baselines
in ten different physics-based control tasks, we present supe-
rior evaluation results in learner policy performance, training
stability, and mode distribution preservation.

VII. ACKNOWLEDGEMENT

Yanhua Li was supported in part by NSF grants IIS-1942680
(CAREER), CNS-1952085, and DGE-2021871. Ziming Zhang

was supported by NSF grant CCF-2006738. C. Brinton ac-
knowledges support from NSF grants CNS-2146171, CPS-
2313109 and ONR grant N000142212305. Zhenming Liu was
supported by NSF grant IIS 2008557. Zhi-Li Zhang was
supported in part by NSF grants CNS-1901103, CCF-221231,
and CNS-222029.

REFERENCES

[1] S. J. Sheather and M. C. Jones, “A reliable data-based bandwidth
selection method for kernel density estimation,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 53, no. 3, pp. 683–
690, 1991.

[2] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, p. 1, ACM, 2004.

[3] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems, pp. 4565–4573,
2016.

[4] D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation,” Neural Computation, vol. 3, no. 1, pp. 88–97,
1991.

[5] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, pp. 627–635, 2011.

[6] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 661–668, 2010.

[7] R. Jena and K. Sycara, “Loss-annealed gail for sample efficient and
stable imitation learning,” arXiv preprint arXiv:2001.07798, 2020.

[8] C. Fei, B. Wang, Y. Zhuang, Z. Zhang, J. Hao, H. Zhang, X. Ji, and
W. Liu, “Triple-gail: a multi-modal imitation learning framework with
generative adversarial nets,” arXiv preprint arXiv:2005.10622, 2020.

[9] Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation learning
from visual demonstrations,” in Advances in Neural Information Pro-
cessing Systems, pp. 3812–3822, 2017.

[10] K. Hausman, Y. Chebotar, S. Schaal, G. Sukhatme, and J. Lim, “Multi-
modal imitation learning from unstructured demonstrations using gen-
erative adversarial nets,” arXiv preprint arXiv:1705.10479, 2017.

[11] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” arXiv preprint arXiv:1710.11248, 2017.

[12] L. Ke, M. Barnes, W. Sun, G. Lee, S. Choudhury, and S. Srini-
vasa, “Imitation learning as f -divergence minimization,” arXiv preprint
arXiv:1905.12888, 2019.

[13] S. Ghasemipour, R. Zemel, and S. Gu, “A divergence minimiza-
tion perspective on imitation learning methods,” arXiv preprint
arXiv:1911.02256, 2019.

[14] X. Zhang, Y. Li, Z. Zhang, and Z.-L. Zhang, “f -gail: Learning f -
divergence for generative adversarial imitation learning,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

[15] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[16] T. Franzmeyer, P. Torr, and J. F. Henriques, “Learn what matters: cross-
domain imitation learning with task-relevant embeddings,” Advances in
Neural Information Processing Systems, vol. 35, pp. 26283–26294, 2022.

[17] J. Liu, Q. Wang, and Y. Xu, “Ar-gail: Adaptive routing protocol
for fanets using generative adversarial imitation learning,” Computer
Networks, vol. 218, p. 109382, 2022.

[18] J. Lacotte, M. Ghavamzadeh, Y. Chow, and M. Pavone, “Risk-sensitive
generative adversarial imitation learning,” in The 22nd International
Conference on Artificial Intelligence and Statistics, pp. 2154–2163,
PMLR, 2019.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, pp. 2672–2680,
2014.

[20] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 5026–5033, IEEE, 2012.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine Learning, 2011.

825

Authorized licensed use limited to: Gordon Library WPI. Downloaded on May 15,2024 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

[22] J. Bohg, M. Pavone, and D. Sadigh, “Principles of robot au-
tonomy ii,” URL https://web.stanford.edu/class/cs237b/pdfs/ lecture/
lecture 10111213.pdfimitationlearning.pdf.[Online], 2020.

[23] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Transactions on Information theory, vol. 37, no. 1, pp. 145–151, 1991.

[24] H. Kim, H. Lee, W. H. Kang, J. Y. Lee, and N. S. Kim, “Softflow:
Probabilistic framework for normalizing flow on manifolds,” Advances
in Neural Information Processing Systems, vol. 33, 2020.

[25] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[26] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural computation, vol. 15, no. 6,
pp. 1373–1396, 2003.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[29] M. Fortin and R. Glowinski, Augmented Lagrangian methods: applica-
tions to the numerical solution of boundary-value problems. Elsevier,
2000.

[30] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” SIAM Journal on Optimization, vol. 26, no. 1, pp. 337–364,
2016.

[31] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
transactions on systems, man, and cybernetics, no. 5, pp. 834–846, 1983.

[32] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, pp. 1889–1897, 2015.

[33] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[34] Y. Schroecker, M. Vecerik, and J. Scholz, “Generative predeces-
sor models for sample-efficient imitation learning,” arXiv preprint
arXiv:1904.01139, 2019.

[35] G. Papamakarios, T. Pavlakou, and I. Murray, “Masked autoregressive
flow for density estimation,” arXiv preprint arXiv:1705.07057, 2017.

[36] K. Brantley, W. Sun, and M. Henaff, “Disagreement-regularized imita-
tion learning,” in International Conference on Learning Representations,
2019.

[37] R. Dadashi, L. Hussenot, M. Geist, and O. Pietquin, “Primal wasserstein
imitation learning,” arXiv preprint arXiv:2006.04678, 2020.

[38] K. Kim, A. Jindal, Y. Song, J. Song, Y. Sui, and S. Ermon, “Imitation
with neural density models,” Advances in Neural Information Processing
Systems, vol. 34, pp. 5360–5372, 2021.

[39] H. Ling and K. Okada, “An efficient earth mover’s distance algorithm
for robust histogram comparison,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 5, pp. 840–853, 2007.

[40] S. Reddy, A. D. Dragan, and S. Levine, “Sqil: Imitation learn-
ing via reinforcement learning with sparse rewards,” arXiv preprint
arXiv:1905.11108, 2019.

[41] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training generative
neural samplers using variational divergence minimization,” in Advances
in neural information processing systems, pp. 271–279, 2016.

[42] D. Arumugam, D. Dey, A. Agarwal, A. Celikyilmaz, E. Nouri,
E. Horvitz, and B. Dolan, “Reparameterized variational divergence
minimization for stable imitation,” 2019.

[43] M. Liu, T. He, M. Xu, and W. Zhang, “Energy-based imitation learning,”
arXiv preprint arXiv:2004.09395, 2020.

[44] N. Rhinehart, R. McAllister, and S. Levine, “Deep imitative mod-
els for flexible inference, planning, and control,” arXiv preprint
arXiv:1810.06544, 2018.

[45] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.,” in AAAI, vol. 8, pp. 1433–1438,
Chicago, IL, USA, 2008.

[46] D. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in International Conference on Machine Learning, pp. 1530–
1538, PMLR, 2015.

[47] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
real nvp,” arXiv preprint arXiv:1605.08803, 2016.

Task Training Expert Random policy
iterations performance performance

CartPole-v0 200 200±0 17± 4
Reacher-v2 200 -4.5±1.7 -93.7 ±4.8
Hopper-v2 1000 3624±19 8± 6
Walker-v2 1000 7002±33 -2±3

Ant-v2 1000 4838± 231 8 ± 124
HalfCheetah-v2 1000 4501±111 101±80
Humanoid-v2 1500 10400±89 101±35

TABLE II: Environment setup.

[48] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent
components estimation,” arXiv preprint arXiv:1410.8516, 2014.

[49] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” arXiv preprint arXiv:1806.07366, 2018.

[50] W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duve-
naud, “Ffjord: Free-form continuous dynamics for scalable reversible
generative models,” arXiv preprint arXiv:1810.01367, 2018.

[51] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Gold-
stein, “Training neural networks without gradients: A scalable admm
approach,” in International conference on machine learning, pp. 2722–
2731, PMLR, 2016.

[52] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[53] Z. Zhao, S. Zuo, T. Zhao, and Y. Zhao, “Adversarially regularized
policy learning guided by trajectory optimization,” arXiv preprint
arXiv:2109.07627, 2021.

APPENDIX

A. EXPERIMENT SETUPS

Resource usage. All experiments are run on GeForce
RTX2080. Pω training takes 6 hours for CartPole and Reacher,
and 12 hours for Hopper and Walker for 200 iterations.
Evaluation setup. We use the same amount of environment in-
teractions and expert demonstrations in GAIL, GPRIL, DRIL,
PWIL, NDI and DC , where information of each task is
shown in Table II. For all approaches, we evaluate their learner
policy performances in every iteration. The experiments with
multiple mode task settings all use 18 expert trajectories. The
evaluation score is achieved via evaluating the mean and std
of 50 trajectories generated with the learner policy.
Hyperparameter details. For training Pω , we set a noise
level ranges from 0 to 0.1. The learning rate is 1e− 4 for all
tasks. The training of π also has a learning rate at 1e−4 with
gradient clip 0.1.

B. MORE EXPERIMENT RESULTS

Figure 10 shows the mode coverage results of DC (ours)
and baselines over the Reacher2 task with two target modes.
It shows two mode targets from expert demonstrations in
Figure 10b. In this task, GAIL only visited the red target
and DC visited both targets as are shown in Figure 10c and
Figure 10d respectively. Table III shows detailed results of DC
and baselines in tasks with single expert demonstration mode.
Figure 11 shows the learning curves of the test tasks with a
single mode when demonstration number is 4. In all tasks,
DC has more stable training curves (with less mean return
perturbation) with higher convergence speed.

826

Authorized licensed use limited to: Gordon Library WPI. Downloaded on May 15,2024 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

(a) Reacher2 with two mode tar-
gets.

(b) Mode coverage of expert pol-
icy.

(c) Mode coverage of GAIL pol-
icy.

(d) Mode coverage of our DC
policy.

Fig. 10: Results obtained by DC (Ours) and baselines on mode coverage. (a): A Reacher task, with two targets in different
colors. (b)-(d) show the mode coverage (i.e., state distribution) with expert policy (b), GAIL policy (c), and our DC policy
(d). All the distributions are visualized using KDE [1]. A darker color indicates a more densely distributed region in the state
space.

(a) Reacher. (b) Hopper. (c) Ant. (d) Humanoid.

Fig. 11: Learning curve comparision between GAIL and DC (Ours). All tasks are shown 4 demonstrations. The y-axis is the
obtained return (i.e., total reward).

TABLE III: Learned policy performance.

Task Datasize BC GAIL GPRIL DRIL PWIL NDI DC (Ours)

CartPole

1 59±27 200±0 53±16 200±0 200±0 200±0 200±0
4 81±31 200±0 187±8 200±0 200±0 200±0 200±0
7 137 ±27 200 ±0 200 ±0 200±0 200±0 200±0 200±0

10 167± 30 200 ±0 200 ±0 200±0 200±0 200±0 200±0

Reacher

4 -10.27±2.14 -26.90±7.48 -12.55±3.54 -9.13±2.83 -10.44±3.46 -12.90±6.51 -9.32 ±3.00
11 -9.49±3.66 -12.77±8.90 -10.45±5.21 -7.11±2.23 -7.26 ± 2.06 -9.34±5.70 -6.23± 3.05
18 -8.89±3.83 -7.34±2.63 -9.96±5.01 -6.93±2.37 -6.81±2.02 -6.97±3.30 -6.21±2.49
25 -9.63±3.84 -6.64±2.47 -11.87±4.71 -6.90±2.65 -5.98 ± 2.10 -6.40±2.66 -5.82± 2.43

Hopper

4 2352± 894 3394±37 22± 1 898±132 3331±200 3248±53 3378± 164
11 2589± 635 3599± 4 407± 202 3150±184 3452±189 3491±24 3510± 34
18 3331± 66 3631± 3 1339± 1390 3611±3 3577±12 3565±17 3686± 8
25 3589± 56 3476± 5 1406± 844 3580±8 3530± 9 3512±9 3599± 8

Walker2d

4 1233± 969 4070 ±1010 557 ±357 555±148 4430±908 4393±177 4312± 918
11 3456± 863 5108± 410 1042± 75 4567±1231 6237±540 4953±121 6545± 461
18 4477± 1329 6671± 39 1464± 637 6886±202 6773±65 6294±78 6869± 65
25 5294± 1860 6815± 20 2254± 1006 6693±130 6973±45 6786±55 6920± 58

Ant

4 4204±289 4218±240 2722±36 3837±259 4602±151 4523±224 4623±150
11 4577±145 4105±223 2510±27 4515±239 4342±211 4500±189 4541±152
18 4736±75 4690±102 2755±183 4703±40 4649±101 4713±83 4738±82
25 4682±89 4735±54 2656±85 4690±75 4733±35 4753±64 4805±45

HalfCheetah

4 2070±528 3254±133 558±148 359±266 3688±400 3625±142 3660±406
11 3979±61 4015±344 2655±253 4063±50 4021±233 3922±173 4043±221
18 3911±416 4393±212 2666±186 4185±30 4520±53 4496±95 4523±65
25 4027±91 4423±104 3619±257 4227±26 4532±44 4417±90 4436±67

Humanoid
80 6145±1918 8268±1401 2048±1140 8789±639 8810±657 8321±822 8504±562

160 6722±1126 9994±1053 6023±1006 9507±832 9677±535 9892±753 9774±785
240 8834±998 9430±906 8091±878 9185±492 9798±281 9381±539 9294±385

827

Authorized licensed use limited to: Gordon Library WPI. Downloaded on May 15,2024 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

