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Abstract

Owing to the value of DNA-wrapped single-walled carbon nanotube (SWNT) based sensors for
chemically-specific imaging in biology, we explore machine learning (ML) predictions DNA-SWNT
serotonin sensor responsivity as a function of DNA sequence based on the whole SWNT fluorescence
spectra. Our analysis reveals the crucial role of DNA sequence in the binding modes of DNA-SWNTs to
serotonin, with a smaller influence of SWNT chirality. Regression ML models trained on existing datasets
predict the change in the fluorescence emission in response to serotonin, AF/F, at over a hundred
wavelengths for new DNA-SWNT conjugates, successfully identifying some high- and low-response DNA
sequences. Despite successful predictions, we also show that the finite size of the training dataset leads
to limitations on prediction accuracy. Nevertheless, incorporating entire spectra into ML models enhances
prediction robustness and facilitates the discovery of novel DNA-SWNT sensors. Our approaches show
promise for identifying new chemical systems with specific sensing response characteristics, marking a
valuable advancement in DNA-based system discovery.

1. Introduction

Single-wall carbon nanotubes (SWNTSs) represent promising nanomaterials for sensing and imaging a
broad variety of biomolecules'. Their large potential is attributed to their non-bleaching near-infrared
fluorescence emission, which is suitable for analyte detection in a wide range of complex biological
samples?®. To be used in sensing applications, SWNTs are often noncovalently functionalized by
adsorbed polymers, solubilizing them in aqueous environments through the formation of a "corona phase"
on the SWNT surface. Adsorbed polymers create a surface for analyte adsorption, and a diverse range
of polymers have been utilized for SWNT functionalization, including nucleic acids, peptides, surfactants,
lipids, and peptoids’°.

Among the various functionalization approaches, single-stranded DNA-functionalized SWNT conjugates
are the most ubiquitous. They have been extensively employed in optical sensing of biologically important
small analytes®%2°-23, as well as for polynucleotide delivery in genetic transformation applications®*%°,
and for chirality sorting of multi-chirality SWNT samples into chirality-pure constituents'26-3°, or SWNT
enantiomer separation®'32. In the context of DNA-SWNT conjugates utilized for optically sensing
molecular analytes or separating SWNT chiralities, the DNA sequence plays an essential role. The DNA
must simultaneously exhibit high affinity binding to both analytes and the underlying SWNT surface.
Furthermore, this binding should result in a significant change in the SWNT optical response, AF/F, only
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in the presence of the target analyte. Identifying new DNA-SWNT nanomaterials that exhibit sensitive
and specific responses to desired small molecule analytes poses a challenging problem, requiring the
development of innovative data science approaches®.

Recently, advanced data analytics approaches have been used to predict new nanomaterials with
specific biological behaviors®®. Many of these approaches involve the acquisition and curation of large
datasets in experiments, followed by the use of the artificial intelligence (Al) algorithms to understand
and predict material properties and functional behaviors based on these datasets. The nanomaterial
development and optimization with Al has been done for purposes of developing new nanomedicines
and nanomaterials for drug delivery®*3®, nanomaterials for detection of cancer biomarkers3637,
nanomaterials for sensing biologically important analytes® or toxic metabolytes®, as well as predicting
the interactions of nanomaterials with the complex biological environments, such as nanomaterial
biodistribution® or adsorption of proteins to nanomaterial surfaces*°.

In the context of predicting nanomaterials that serve as optical sensors for molecular analytes, the desired
functionality typically involves a discernible change in the emission spectrum as the analyte is introduced.
This spectrum provides the intensity of the sensor light emission across various wavelengths, serves as
an indicator of the analyte's concentration. Efficient development of sensing nanomaterials would benefit
from the ability to predict complete emission spectra for nanomaterials of diverse compositions. One way
to achieve this goal is to experimentally prepare numerous systems with varying compositions, acquire
the emission spectra in response to the selected analyte, and use the resulting data to train machine
learning (ML) models for predicting new materials with improved emission response to the analyte. So
far, ML approaches have demonstrated success in predicting absorption and emission wavelengths and
quantum yields for molecules, offering comparable results to traditional methods (e.g. density functional
theory calculations) but at a fraction of the computational cost*'. Neural network-based ML models are
also successful at predicting multidimensional optical spectra and fluorescence properties of
chromophores in complex environments*. Different types of ML models were also adept at predicting
the fluorescence emission spectra of nanomaterials used as fluorescent or luminescent probes*?, as well
as for predicting emission spectra of DNA-templated silver nanoclusters, for which the training accuracies
were found to be greater than 80%*4.

In recent years, ML methods have made significant strides in addressing various questions related to
DNA-SWNT-based materials. For instance, ML facilitated a systematic exploration of DNA sequences
for sorting carbon nanotubes, effectively separating specific chiralities from SWNT samples typically
prepared as mixtures of chiralities*>“6. ML models were also developed using optical signals from DNA-
encapsulated quantum-defect-modified SWNTs in serum samples from individuals with ovarian
carcinoma and healthy counterparts®’. These models demonstrated an impressive ability to detect
ovarian cancer, achieving 87% sensitivity at 98% specificity when tested on new patient serum samples.
Another recent study introduced a DNA-SWCNT-based photoluminescent sensor array, leveraging
optical responses to train ML models for detecting gynecologic cancer biomarkers in patient samples and
fluids®®. In our research, we applied ML classification and regression techniques to predict the response
of DNA-SWNT sensors to a crucial neurotransmitter, serotonin®, whose biological functions in the brain
and throughout the human body warrant further investigation. Our ML approaches successfully predicted
five new sensors with responses surpassing any of the other DNA-SWNT conjugates in the original
dataset. Combinations of directed evolution and machine learning-based prediction were also shown to
be successful in discovery of new serotonin-responsive DNA-SWNT nanosensors, with improved
sensitivity and selectivity for serotonin over dopamine?®.

In our earlier work®, ML models were trained solely on the responses of DNA-SWNTs to serotonin at a
single wavelength (1195 nm), extracted from a spectrum encompassing optical responses across a range

of wavelengths (850 nm — 1340 nm). Notably, the remaining information from the broader spectrum was
2



left untapped in ML predictions. In the current study, we leverage information from multiple wavelengths
in the experimental spectra to train models for predicting wavelength-specific AF/F responses for DNA-
SWNT conjugates featuring new DNA sequences. For each novel sequence, AF/F responses are
predicted at over a hundred wavelengths. Following the prediction of segments of emission spectra, we
then conduct statistical analyses to create a distribution of AF/F predictions for a given sequence. This
examination allows us to assess the robustness and confidence levels of predictions for sensors with
high responses. While the goal of our earlier work was identifying new unique sequences for high
response sensors of serotonin and experimentally validating them®, the objective of our present work
addresses a narrower question, whether machine learning models trained on experimental data for
multiple wavelengths can yield more predictive and robust results, compared to models trained on data
for a single wavelength.

2. Methods

2.1. Dataset preparation and preprocessing. The dataset used to train and test ML models contains
the fluorescence emission spectra of DNA-SWNT conjugates with varying DNA sequences before and
after the addition of 100 uM serotonin analyte. The spectra were obtained for samples in aqueous
solutions, and the experimental conditions were described in detail in Refs.®4’. The dataset was
assembled from the data for 136 different DNA-SWNT samples, each containing a unique DNA
sequence, summarized in Table $1. SWNT samples contained SWNTs of different chiralities and DNA
molecules had sequences of the type CsX13Cs, Where Xis was the variable part of the sequence. The
collected spectra of fluorescence emission reported intensity values at wavelengths in the near infrared
range between 850 nm and 1340 nm. For all spectroscopy measurements, we excited our multi-chirality
candidate nanosensors with a 721 nm laser. This laser wavelength predominately excites (10,2), (9,4),
(8,6), (10,5) and (8,7) nanotube chiralities which predominately emit in the ~1100-1300 nm red shifted
range. For each DNA-SWNT sample, there were spectra of the sample before and after the addition of
100 uM serotonin. The fluorescence response of each DNA-SWNT sample, AF/F(A) (also called simply
AF/F), was calculated as AF/F(A) = (F(A)-Fo(N))/ Fo(A), where Fo(A) and F(A) are the measured
fluorescence intensities at a given wavelength A before and after the addition of serotonin, respectively.
Since the experiments were performed in triplicate, the final fluorescence response of each DNA-SWNT
sample was chosen to be an average of the triplicate measurements. Out of the total of 136 different
DNA-SWNT systems in the original dataset, six systems were reserved for independent validation of our
ML models, resulting in a final dataset of 130 DNA-SWNT systems that is used for training and testing
the ML models.

Examination of AF/F(A) values for all the DNA-SWNT conjugates in our dataset revealed that some
wavelengths are associated with AF/F values that are strongly sequence-dependent and span a wide
range, whereas other wavelengths are associated with AF/F values that are similar for all the examined
sequences and span a narrow range (Figure S1a). The wavelengths at which AF/F values span a narrow
range are likely to be unhelpful for training the ML models, and we eliminated them from our dataset
using a defined quantitative criterion. This criterion finds the wavelengths (parts of the spectra) for which
AF/F values span a wide range. For all wavelengths, we determined the maximum and minimum AF/F

values, (A—F) and (A—F) , across all 130 DNA-SWNT conjugates present in our dataset. Then, we
F/max F /min

identified the wavelengths at which the difference between the minimum and maximum AF/F values was
greater than a defined threshold value t:

Do —min = (A?F)max - (A?F)mm >t (Eq. 1)



Here, the wavelengths of interest for training the ML models are those for which AF/F values span a
relatively large range, namely, when Dmax-min >t = 1.5. With t = 1.5, approximately 30% (312 out of 1025)
of the wavelengths are selected for the subsequent training of ML models. Figure S1a shows the regions
of spectra that are selected for ML model development using the threshold defined in Eq. 1.

Next, we examined the distributions of AF/F values at specific wavelengths. Examples of these
distributions at several wavelengths are shown in Figure S2. We posited that the quality of the ML models
is going to be better if the distribution is broader (spanning a larger range of AF /F values) and bimodal
in nature. The criterion in Eq. 1 already selected the wavelengths that span the larger range of AF/F
values. Next, we removed some of the DNA-SWNTs with AF/F values falling in the middle of the
distributions as described below, in order to obtain a more bimodal-like distribution at each wavelength.
Increasing the bimodality in distributions leads to better separation in AF/F values of high and low
response systems: for example, our previous work showed that increasing the bimodality of distributions
and increasing the separation in AF /F values of two classes of systems (high and low response systems)
led to higher f' scores of the classification ML models®. Bimodal distribution leads to a clear separation
of data points with high response (large AF/F values on the right side of the distribution) and data points
with low response (small AF/F values on the left side of the distribution). This separation is compatible
with our ML approach that is based on binary classification, in which the data points should be classified
into either of two classes (high or low response) and should ideally be well separated from each other.
Our selective filter removes some parts of data where the class/response of the sequence is borderline,
which may remove noise from the trained models in case our classification of the borderline data points
is incorrect.

The mathematical criterion for removing the sequences from the middle of the distribution was
wavelength-specific. At each wavelength j, A, we calculated the median and mean AF/F values. The
average of the mean and median, a, represents the center of the distribution at a given wavelength. The
parameters defining the range of AF/F values around a from which some datapoints will be removed to
create a gap in the dataset is depicted in Figure S1b. This range has a flexible point around which the
sequences will be removed, a’ = a + imm, where imm is a variable that increases the average of the
mean and median and is defined to be one of the values in the set {0, 0,05, 0.1, 0.15, 0.2}. The range
also has a flexible width, which is varied by a variable called tolerance, fol. The sequences that are
removed from the dataset at a given wavelength have AF/F value between o’ and the upper threshold,
fupper, OF have AF/F between o’ and the lower threshold, fiower. The upper and lower thresholds are defined
as fupper = @’ + tol and fiower = o’ — tol. The removal of sequences with AF/F between the two thresholds
results in a dataset of DNA-SWNTs with high response to serotonin (AF/F > fupper, Shown as a green
region in Figure S1b) and DNA-SWNTSs with low response to serotonin (AF/F < fiower, Shown as a gray
region in Figure S1b). We would like to note that if a sequence is removed from the dataset associated
with one wavelength, that sequence can still be retained in the dataset associated with a different
wavelength. Overall, our approach considers and scans the entire spectra of DNA-SWNT conjugates,
before applying the selective filter to focus on the most informative parts of the spectral data based on
the dataset and threshold settings.

The sequence space of the DNA sequences within our dataset (Table S$1) was analyzed using the t-
distributed stochastic neighbor embedding (t-SNE) analysis within the BinderSpace package*.

2.2. Machine Learning Model Training. The preprocessed dataset described above was used to train
regression ML models using the Support Vector Machine (SVM) algorithm, which stands out as a favored
algorithm in supervised learning, particularly adept at handling scenarios with small sample sizes and
high-dimensional data challenges*®. Each regression model used the DNA sequence as input and
predicted AF/F at a given wavelength as output. The 18-nucleotide (nt)-long DNA sequences were

represented as one-hot encoded (1 x 72) vectors. The DNA sequence vector dimensions were
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determined by each of the 18 positions in the DNA sequence being occupied by one of four possible
nucleotides, A, C, T, and G. The model training procedure was designed to iterate until it identified a
predetermined number of regression models. Namely, the procedure continued until it found five models
with coefficients of determination, r?, surpassing 0.4, when comparing the predicted and the measured
AF/F values of the testing part of the dataset at a given wavelength.
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Figure 1. Analysis of relative fluorescence emission changes in response to serotonin analyte for SWNTs
of different chiralities in DNA-SWNT conjugates. a. The system under investigation. b. Example spectra of one
of the DNA-SWNT sensors (sequence ID 7). Fluorescence spectra before the addition of serotonin to DNA-SWNT
suspension (black trace) and after the addition of 100 uM serotonin (red trace). c. Plot of cumulative AF/F values
and AF/F values from 1195 nm wavelength (for (8,6) SWNT) from spectra of selected 96 DNA sequences in
response to serotonin. d) Plot of AF/F values read at 1195 nm and AF/F values at four other wavelengths from
spectra of the same 96 DNA sequences in response to serotonin.

3. Results and Discussion

3.1. Fluorescence emission change of DNA-SWNT conjugates in response to serotonin in the 850
nm to 1340 nm wavelength range. Previous experiments collected the fluorescence emission of DNA-
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SWNT conjugates for 30-nucleotide-long DNA sequences of the type CsX18Cs, where X labels variable
nucleotides in strands, obtained before and after the addition of the serotonin analyte®4’. These samples,
and specifically the SWNTs in these samples, are optically active, providing the near infrared
fluorescence emission spectra of DNA-SWNT conjugates (Figure 1a-b). The collected spectra have
multiple peaks of varying intensity, which correspond to emissions by SWNTs of different chiralities
present in the experimentally prepared samples. For all 136 DNA-SWNT conjugates in the original
dataset, the intensity of the optical emission either stayed the same or increased to a variable extent after
the addition of serotonin.

In our previous work, our analysis and machine learning efforts were focused on the fluorescence
emission at ~1195 nm center wavelength, which corresponds to the emission of SWNTs with (8,6)
chirality. Here, we first examine how the fluorescence emission change (AF/F) varies in response to
serotonin at specific different wavelengths and for the integrated response over all the wavelengths
(cumulative AF/F, also labeled as (AF/F);). The plots in Figure 1c-d examine the correlations between
the fluorescence emission change (AF/F) at 1195 nm and either the averaged response over all the
wavelengths, (AF/F);, or wavelengths 861 nm, 1127 nm, 1283 nm and 1300 nm. All the plots show
strong correlations between AF/F at 1195 nm by (8,6) SWNT and the other examined AF/F responses.
The weakest correlations are observed between AF/F values at 1195 nm and 860 nm, with the Pearson
coefficient of 0.69, and the strongest correlations are observed between AF/F values at 1195 nm and
1283 nm, as well as (AF/F);, where the Pearson coefficients are 0.93 and 0.94, respectively. The
observed significant correlations suggest that it is the DNA molecule when adsorbed to the SWNT that
primarily determines the analyte binding strength, the extent of the perturbation of the SWNT environment
by the analyte, and the intensity of emission by DNA-SWNT samples present in the system. The
observation also suggests a possibility that some DNA sequences have a special binding mode to
serotonin analyte in the presence of a hydrophobic SWNT surface, since the SWNT chirality plays a less
significant role in analyte binding at the SWNT surface and the intensity of DNA-SWNT fluorescence
emission.

Furthermore, we examined DNA sequences in our dataset from Table S1 and their associated AF/F
responses at three different wavelengths using t-distributed stochastic neighbor embedding analysis,
shown in Figure S4. Interestingly, at wavelengths 1195 nm and 1300 nm, the highest response
sequences with AF/F values greater than 1.62 are mostly located in the region where the value of the t-
SNE, component is greater than 0, indicating that the t-SNE> component can distinguish the high
response sequences from low response sequences. However, low response sequences span the
complete t-SNE space. While this analysis shows that the highest response sequences occupy only half
of the total sequence space, this part of the space is also occupied by many low response sequences.
Therefore, while t-SNE analysis in Figure S4 shows promise for use in making future predictions of high
response sequences, this procedure would also likely lead to many false positives. The motif analysis of
the dataset in Table S1, reported in Ref.?, was not able to identify a few specific motifs that are highly
correlated with high sensing response, but instead identified many motifs weakly correlated with high
sensing response.
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Figure 2. Machine learning workflow for predicting the fluorescence emission change (AF/F) of DNA-SWNT
conjugates in response to serotonin. a) The input data contains AF/F values for wavelengths between 850 nm
and 1340 nm for each of 130 DNA-SWNT conjugates experimentally examined in Refs.247 AF/F values were
determined from the fluorescence emission spectra before and after the addition of 100 uM of serotonin. b) Using
the input dataset, machine learning regression models are trained for each wavelength that has a wide distribution
of AF/F values, as defined by a quantitative criterion described in Methods. The training is performed on random
selections of the 80% of the dataset until at least five models are found for which the coefficient of determination,
r2, is greater than 0.4 in the analysis of the measured and predicted AF/F values in the remaining 20% of the dataset.
c) The saved regression models are used to predict AF/F values at selected wavelengths for DNA-SWNT
conjugates with new DNA sequences. d) The predicted AF/F values for DNA-SWNTs with new DNA sequences are
statistically analyzed to determine sequences that lead to outlier responses. €) One-hot encoded representation of
DNA sequence (ID = 1) from Table S1.

3.2. Predicting fluorescence emission change (AF/F) in response to serotonin by DNA-SWNT
conjugates at selected wavelengths with ML regression models. Next, AF/F response to serotonin
of DNA-SWNT conjugates for all the wavelengths across the spectra from previous experimental
measurements®4” was used to train machine learning regression models. The workflow of the approach
taken in the present work is shown in Figure 2. The input dataset for training our models initially contained
136 distinct DNA sequences, which in experimental systems wrap the SWNTs. The 18-nucleotide (nt)-
long DNA sequences were represented as one-hot encoded (1 x 72) vectors, and for each DNA
sequence, there is an associated matrix of AF/F values at all measured wavelengths in the range from
850 nm to 1346 nm.

In the next step, we analyzed the distributions of AF/F values of all 136 DNA-SWNT conjugates at all
wavelengths, one at a time. Example distributions, shown for three wavelengths in Figure S$S2,
demonstrate that at some wavelengths, such as A = 865 nm, there are very few AF/F values greater than
1, resulting in narrow distributions. However, for other wavelengths, such as A = 1195 nm and A = 1300
nm, the distributions are much broader and have a larger number of AF/F values greater than 1 and
extending up to the value of 2. We hypothesized that the width of the distribution of AF/F values
associated with the given wavelength may affect the quality of the machine learning models trained to
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predict AF/F values for new DNA sequences in DNA-SWNT conjugates: the larger variability of AF/F
responses is assumed to lead to machine learning models that will be better at distinguishing higher
response from lower response sequences and thus be more successful. Therefore, we introduced a
quantitative criterion to identify wavelengths with wider distributions of AF/F values, as described in
Methods. The wavelengths for which the criterion was satisfied were then selected as wavelengths for
which we train ML models to predict AF/F values for new DNA sequences in DNA-SWNT conjugates.
Prior to training the models associated with individual wavelengths, some sequences with intermediate
values of AF/F were removed from the input data, resulting in the input dataset with more bimodal AF/F
distribution at a given wavelength. Furthermore, six DNA sequences, labeled S1 — S6, were removed
from the training dataset of 136 sequences, to perform independent testing of trained models (Table S2).
Three of these sequences had consistent low AF/F response to serotonin and three remaining sequences
had consistent high AF/F response to serotonin in experiments. After the input data were processed as
described, by removing the input data for S1 — S6 sequences, the wavelengths with narrow AF/F
distributions, and some of the individual datapoints (sequences and their AF/F values) from the input data
associated with the remaining wavelengths with the goal of achieving bimodal-like distributions, we
trained ML regression models to predict AF/F values for new DNA sequences in DNA-SWNT conjugates
at each retained wavelength. Each model is designed to predict AF/F value of a given sequence for a
defined wavelength.

For each defined wavelength, we trained many distinct support vector machine regression models (up to
23%2), until we obtained at least five models for which the experimental AF/F and the predicted AF/F values
resulted in a coefficient of determination r? greater than 0.4 or until the maximum number of models was
reached. Our procedure results in five predicted AF/F values for each selected wavelength for a new
DNA sequence in DNA-SWNT conjugate. Finally, we prepare distribution plots of all the predicted AF/F
values in the form of violin plots for all the new DNA sequences of interest. These plots are then examined
for outlier sequences (with either exceptionally high or exceptionally low distributions of AF/F values),
which can be suggested for experimental testing.
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Figure 3. Predicting AF/F values for DNA-SWNT conjugates at selected wavelengths using SVM regression
models. a) Comparison of measured and predicted AF/F values for representative low response (S1, left) and high
response (S4, right) sequences. AF/F values shown in green are predictions made from a single SVM regression
model. b) Differences between the experimentally measured and the predicted AF/F values for six testing
sequences S1 — S6. The points shown for each sequence represent the differences obtained from five independent
SVM regression models (r2 > 0.4) at 289 selected wavelengths. The model parameters are defined in the inset.



The predicted fluorescence emission change (AF/F) in response to serotonin for selected range of
wavelengths for two representative sequences, S1 and S4, are shown in Figure 3a. The plotted
responses are obtained using one regression SVM model per wavelength. The predicted responses differ
from the experimentally measured responses: the predicted AF/F values of the low response sequence
S1 are overestimates and the predicted AF/F values of the high response sequence S4 are
underestimates. Furthermore, the differences between the measured and the predicted AF/F values are
significantly more pronounced for the high response sequence. However, there are also shared trends
in the measured and predicted AF/F responses, namely, the peaks and valleys in the measured and
predicted curves occur at similar wavelengths. We further examined the differences between the
measured and the predicted AF/F values from ensembles of regression models at all the selected
wavelengths (289 wavelengths in total) for all the six test sequences (S1-S6). As shown in Figure 3b,
the predicted AF/F values of low response sequences (S1-S3) are always overestimates by a difference
of 0.2 to 0.4. On the other hand, the predicted AF/F values of high response sequences (S4-S6) are
always underestimates by a difference of 0.4 to 0.8.

3.3. Procedure for predicting new DNA-SWNTs with high AF/F response to serotonin from
distributions of predicted AF/F values at selected wavelengths. After training the SVM regression
models at the selected wavelengths, we used them to predict AF/F values for six testing sequences S1
— S6. The violin plots of all the predicted AF/F values for the six testing sequences are shown in Figure
4. To determine the model parameters imm and tol that result in the most useful models, we examined
the behavior of the distribution plots for imm values of 0, 0.05, 0.1, 0.15 and 0.2, and tol values of 0.05
and 0.1. Since some choices of parameters lead to fewer than five models with r? > 0.4 for some of the
selected wavelengths, the number of wavelengths for which predictions are made varies (from 62 to 289).

The violin plots in Figure 4 strongly vary in their widths, i.e. the range covered by the predicted AF/F
values, in dependence of imm and tol parameter values. Some choices of imm and tol lead to broad violin
plots that span a large range of AF/F values, such as when tol = 0.05, or when to/ = 0.1 and imm values
are large. For such wide violin plots, determining the nature of the response of the tested sequence is
difficult, since the distributions in the violin plots overlap, and AF/Fui-predicted Values forming the
distributions span a wide range of values, e.g. between 0.3 and 1.2. Despite overlapping distributions of
AF/F values of sequences S1 — S6, most of the p-values examining these distributions are < 0.05,
indicating that most of the distributions are statistically different (Figure S$3). With such wide distributions,
it becomes difficult to discriminate by visual analysis between sequence responses and to provide with
high confidence new sequences which are likely to be either high or low response. However, the visual
analysis can be used in conjunction with p-values to identify sequences with outlier distributions of AF/F
values.

The violin plot widths are narrowest when imm is set to 0 and tol is set to 0.1, and it is for such narrow
distributions that we can most easily examine for which sequences the AF/F value distributions form
outliers, as seen in Figure 4 (top right). For these settings of imm and tol parameters, the visual analysis
allows us to identify S3 as a low response outlier, and S4 as a high response outlier. The p-value analysis
(Figure S3) also confirms that sequences S3 and S4 are statistically different from the other sequences
for these settings of imm and tol parameters. On the other hand, S1, S2, S5 and S6 sequences are
predicted to have similar responses by our models, and their distributions of AF/F values overlap. These
results show that our models can predict only some new sequences that will have low or high response
in experiments, but our models do not have enough knowledge to predict many other possible
sequences. This model deficiency is likely due to the relatively small size of the training dataset,
compared to the large size of the space of all possible 18-nt long DNA sequences that can be chosen
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Figure 4. Distributions of predicted AF/F values for S1 — S6 sequences, shown as violin plots, where AF/F values
predict the response of DNA-SWNT conjugates to serotonin. AF/F values for each sequence are obtained from
multiple wavelengths and from five distinct SVM regression models. The number of wavelengths contributing to the
distributions, N,, and the parameters used in dataset curation, imm and fol are reported in each plot. The horizontal
black lines in each violin plots indicate median values of AF/FuL-predicted.
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(4"~ 69 x 10°). Therefore, our models are likely to miss many high / low response sequences in that
complete sequence space. However, they may be used to predict a subset of the useful sequences that
can be then experimentally tested and may lead to the discovery of new DNA-SWNT sensors with the
desired high or low response to the selected analyte. Overall, our results confirm that ensembles of ML
models trained to predict AF/F values of DNA-SWNTs at multiple wavelengths can predict and distinguish
some DNA-SWNT conjugates with significantly different high / low response compared to other possible
DNA-SWNT conjugates.
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Figure 5. Comparison of AF/F values predicted at a single wavelength (1195 nm) and distributions of AF/F values
predicted at multiple wavelengths for S1 — S6 sequences, shown as boxplots. The reported AF/F values predict the
response of DNA-SWNT conjugates to serotonin. The values are shown for imm = 0.05 and tol = 0.1, where the
number of wavelengths contributing to the distributions, N,, is 162.

After examining the distributions of AF/F values predicted at multiple wavelengths for S1 — S6 sequences,
Figure 5 compares one of these distributions to AF/F values predicted at a single wavelength (1195 nm),
as done in our previous work®. Both individual predictions and the distributions of predictions exhibit
similar trends, with sequence S3 showing the smallest predicted AF/F values, and sequence S4
exhibiting the largest predicted AF/F values. While the trends remain consistent, the distributions offer a
broader range of predicted AF/F values. Utilizing such distributions may enhance confidence in
predictions, facilitating the selection of new sequences for experimental examination.

4. Conclusion

In this work, we built upon our prior success in machine learning approaches, which led to the prediction
of five novel DNA-SWNT sensors with superior responses to serotonin compared to any DNA-SWNT in
the original dataset. Our previous ML models, while effective, were trained solely on responses of DNA-
SWNTs to serotonin at a single wavelength (1195 nm) extracted from complete fluorescence emission
spectra of the tested sample. Notably, the information residing in the remaining parts of the spectra was
left untapped for ML predictions. Here, we address this limitation by leveraging information from multiple
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wavelengths across all spectra obtained experimentally. Our analysis of the whole spectra of all the DNA-
SWNT conjugates in the dataset lead to the first important insight. The crucial role of DNA sequence
suggests the potential existence of distinct binding modes of DNA molecules to the target analyte (here,
serotonin) in the presence of a hydrophobic SWNT surface. Notably, our observations suggest that the
SWNT chirality plays a less substantial role in influencing analyte binding.

Our ML models trained in the present work predict AF/F response at over a hundred wavelengths for
each sequence in the dataset of the tested DNA-SWNT conjugates. These predictions are then
statistically analyzed to create a distribution of AF/F predictions for a given sequence. We evaluate the
performance of this novel approach, which utilizes data from broader regions of experimental spectra,
providing a comprehensive examination compared to the methodology outlined in Ref®. While our new
machine learning (ML) models exhibit success in predicting specific high-response DNA sequences,
some limitations are also apparent. The results demonstrate that our models, despite their efficacy, are
constrained by their inability to comprehensively predict all potential sequences with either low or high
response. This limitation stems from the relatively modest size of the training dataset in comparison to
the vast space of all possible 18-nt long DNA sequences (~ 69 x 10°). Consequently, our models might
overlook numerous high- or low-response sequences in the complete sequence space. Nevertheless,
they offer a valuable tool for predicting subsets of sequences that can be experimentally tested,
potentially leading to the discovery of novel DNA-SWNT sensors with desired response profiles to specific
analytes.

It may be advantageous for future studies to incorporate more experimental data encompassing whole
spectra as inputs for training ML models, as compared to using only single datapoints from each
spectrum. This approach holds promise for generating distributions of predicted spectral response
values, thereby increasing confidence in predictions, and guiding the selection of new systems for
experimental testing. This refinement in model input has the potential to enhance the robustness of our
predictions and facilitate the identification of sequences with specific response characteristics. Notably,
the experimental workflow upon which our analysis is based, and the ML models developed here, are
analyte-agnostic. Therefore, this work could seed rapid discovery of DNA-SWNT nanosensors for a large
range of analytes. In summary, our new approach may be useful for future attempts to predict spectra of
different chemical systems and to discover new DNA-based systems with a desired optical response to
introduced perturbations.
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A table of DNA sequences in DNA-SWNT conjugates within our dataset, and the assigned sequence
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All methods described in this section were implemented using the Python programming language. The
associated code is available for public access and can be found at the following GitHub repository:
github.com/vukoviclab/PySpectrotonin. The datasets of AF/F values at all the measured wavelengths for
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