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Abstract   

Owing to the value of DNA-wrapped single-walled carbon nanotube (SWNT) based sensors for 

chemically-specific imaging in biology, we explore machine learning (ML) predictions DNA-SWNT 

serotonin sensor responsivity as a function of DNA sequence based on the whole SWNT fluorescence 

spectra. Our analysis reveals the crucial role of DNA sequence in the binding modes of DNA-SWNTs to 

serotonin, with a smaller influence of SWNT chirality. Regression ML models trained on existing datasets 

predict the change in the fluorescence emission in response to serotonin, ΔF/F, at over a hundred 

wavelengths for new DNA-SWNT conjugates, successfully identifying some high- and low-response DNA 

sequences. Despite successful predictions, we also show that the finite size of the training dataset leads 

to limitations on prediction accuracy. Nevertheless, incorporating entire spectra into ML models enhances 

prediction robustness and facilitates the discovery of novel DNA-SWNT sensors. Our approaches show 

promise for identifying new chemical systems with specific sensing response characteristics, marking a 

valuable advancement in DNA-based system discovery. 

 

1. Introduction  

Single-wall carbon nanotubes (SWNTs) represent promising nanomaterials for sensing and imaging a 

broad variety of biomolecules1. Their large potential is attributed to their non-bleaching near-infrared 

fluorescence emission, which is suitable for analyte detection in a wide range of complex biological 

samples2–6. To be used in sensing applications, SWNTs are often noncovalently functionalized by 

adsorbed polymers, solubilizing them in aqueous environments through the formation of a "corona phase" 

on the SWNT surface. Adsorbed polymers create a surface for analyte adsorption, and a diverse range 

of polymers have been utilized for SWNT functionalization, including nucleic acids, peptides, surfactants, 

lipids, and peptoids7–19. 

Among the various functionalization approaches, single-stranded DNA-functionalized SWNT conjugates 

are the most ubiquitous. They have been extensively employed in optical sensing of biologically important 

small analytes5,9,20–23, as well as for polynucleotide delivery in genetic transformation applications24,25, 

and for chirality sorting of multi-chirality SWNT samples into chirality-pure constituents12,26–30, or SWNT 

enantiomer separation31,32. In the context of DNA-SWNT conjugates utilized for optically sensing 

molecular analytes or separating SWNT chiralities, the DNA sequence plays an essential role. The DNA 

must simultaneously exhibit high affinity binding to both analytes and the underlying SWNT surface. 

Furthermore, this binding should result in a significant change in the SWNT optical response, ΔF/F, only 
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in the presence of the target analyte. Identifying new DNA-SWNT nanomaterials that exhibit sensitive 

and specific responses to desired small molecule analytes poses a challenging problem, requiring the 

development of innovative data science approaches9.  

Recently, advanced data analytics approaches have been used to predict new nanomaterials with 

specific biological behaviors33. Many of these approaches involve the acquisition and curation of large 

datasets in experiments, followed by the use of the artificial intelligence (AI) algorithms to understand 

and predict material properties and functional behaviors based on these datasets. The nanomaterial 

development and optimization with AI has been done for purposes of developing new nanomedicines 

and nanomaterials for drug delivery34,35, nanomaterials for detection of cancer biomarkers36,37, 

nanomaterials for sensing biologically important analytes9 or toxic metabolytes38, as well as predicting 

the interactions of nanomaterials with the complex biological environments, such as nanomaterial 

biodistribution39 or adsorption of proteins to nanomaterial surfaces40.  

In the context of predicting nanomaterials that serve as optical sensors for molecular analytes, the desired 

functionality typically involves a discernible change in the emission spectrum as the analyte is introduced. 

This spectrum provides the intensity of the sensor light emission across various wavelengths, serves as 

an indicator of the analyte's concentration. Efficient development of sensing nanomaterials would benefit 

from the ability to predict complete emission spectra for nanomaterials of diverse compositions. One way 

to achieve this goal is to experimentally prepare numerous systems with varying compositions, acquire 

the emission spectra in response to the selected analyte, and use the resulting data to train machine 

learning (ML) models for predicting new materials with improved emission response to the analyte. So 

far, ML approaches have demonstrated success in predicting absorption and emission wavelengths and 

quantum yields for molecules, offering comparable results to traditional methods (e.g. density functional 

theory calculations) but at a fraction of the computational cost41. Neural network-based ML models are 

also successful at predicting multidimensional optical spectra and fluorescence properties of 

chromophores in complex environments42. Different types of ML models were also adept at predicting 

the fluorescence emission spectra of nanomaterials used as fluorescent or luminescent probes43, as well 

as for predicting emission spectra of DNA-templated silver nanoclusters, for which the training accuracies 

were found to be greater than 80%44.  

In recent years, ML methods have made significant strides in addressing various questions related to 

DNA-SWNT-based materials. For instance, ML facilitated a systematic exploration of DNA sequences 

for sorting carbon nanotubes, effectively separating specific chiralities from SWNT samples typically 

prepared as mixtures of chiralities45,46. ML models were also developed using optical signals from DNA-

encapsulated quantum-defect-modified SWNTs in serum samples from individuals with ovarian 

carcinoma and healthy counterparts37. These models demonstrated an impressive ability to detect 

ovarian cancer, achieving 87% sensitivity at 98% specificity when tested on new patient serum samples. 

Another recent study introduced a DNA-SWCNT–based photoluminescent sensor array, leveraging 

optical responses to train ML models for detecting gynecologic cancer biomarkers in patient samples and 

fluids36. In our research, we applied ML classification and regression techniques to predict the response 

of DNA-SWNT sensors to a crucial neurotransmitter, serotonin9, whose biological functions in the brain 

and throughout the human body warrant further investigation. Our ML approaches successfully predicted 

five new sensors with responses surpassing any of the other DNA-SWNT conjugates in the original 

dataset. Combinations of directed evolution and machine learning-based prediction were also shown to 

be successful in discovery of new serotonin-responsive DNA-SWNT nanosensors, with improved 

sensitivity and selectivity for serotonin over dopamine23.  

In our earlier work9, ML models were trained solely on the responses of DNA-SWNTs to serotonin at a 

single wavelength (1195 nm), extracted from a spectrum encompassing optical responses across a range 

of wavelengths (850 nm – 1340 nm). Notably, the remaining information from the broader spectrum was 
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left untapped in ML predictions. In the current study, we leverage information from multiple wavelengths 

in the experimental spectra to train models for predicting wavelength-specific ΔF/F responses for DNA-

SWNT conjugates featuring new DNA sequences. For each novel sequence, ΔF/F responses are 

predicted at over a hundred wavelengths. Following the prediction of segments of emission spectra, we 

then conduct statistical analyses to create a distribution of ΔF/F predictions for a given sequence. This 

examination allows us to assess the robustness and confidence levels of predictions for sensors with 

high responses. While the goal of our earlier work was identifying new unique sequences for high 

response sensors of serotonin and experimentally validating them9, the objective of our present work 

addresses a narrower question, whether machine learning models trained on experimental data for 

multiple wavelengths can yield more predictive and robust results, compared to models trained on data 

for a single wavelength.  

 

2. Methods 

2.1. Dataset preparation and preprocessing. The dataset used to train and test ML models contains 

the fluorescence emission spectra of DNA-SWNT conjugates with varying DNA sequences before and 

after the addition of 100 μM serotonin analyte. The spectra were obtained for samples in aqueous 

solutions, and the experimental conditions were described in detail in Refs.9,47. The dataset was 

assembled from the data for 136 different DNA-SWNT samples, each containing a unique DNA 

sequence, summarized in Table S1. SWNT samples contained SWNTs of different chiralities and DNA 

molecules had sequences of the type C6X18C6, where X18 was the variable part of the sequence. The 

collected spectra of fluorescence emission reported intensity values at wavelengths in the near infrared 

range between 850 nm and 1340 nm. For all spectroscopy measurements, we excited our multi-chirality 

candidate nanosensors with a 721 nm laser. This laser wavelength predominately excites (10,2), (9,4), 

(8,6), (10,5) and (8,7) nanotube chiralities which predominately emit in the ~1100-1300 nm red shifted 

range. For each DNA-SWNT sample, there were spectra of the sample before and after the addition of 

100 μM serotonin. The fluorescence response of each DNA-SWNT sample, ΔF/F(λ) (also called simply 

ΔF/F), was calculated as ΔF/F(λ) = (F(λ)-F0(λ))/ F0(λ), where F0(λ) and F(λ) are the measured 

fluorescence intensities at a given wavelength λ before and after the addition of serotonin, respectively. 

Since the experiments were performed in triplicate, the final fluorescence response of each DNA-SWNT 

sample was chosen to be an average of the triplicate measurements. Out of the total of 136 different 

DNA-SWNT systems in the original dataset, six systems were reserved for independent validation of our 

ML models, resulting in a final dataset of 130 DNA-SWNT systems that is used for training and testing 

the ML models.  

Examination of ΔF/F(λ) values for all the DNA-SWNT conjugates in our dataset revealed that some 

wavelengths are associated with ΔF/F values that are strongly sequence-dependent and span a wide 

range, whereas other wavelengths are associated with ΔF/F values that are similar for all the examined 

sequences and span a narrow range (Figure S1a). The wavelengths at which ΔF/F values span a narrow 

range are likely to be unhelpful for training the ML models, and we eliminated them from our dataset 

using a defined quantitative criterion. This criterion finds the wavelengths (parts of the spectra) for which 

ΔF/F values span a wide range. For all wavelengths, we determined the maximum and minimum ΔF/F 

values, (
∆𝐹

𝐹
)
𝑚𝑎𝑥

 and (
∆𝐹

𝐹
)
𝑚𝑖𝑛

, across all 130 DNA-SWNT conjugates present in our dataset. Then, we 

identified the wavelengths at which the difference between the minimum and maximum ΔF/F values was 

greater than a defined threshold value t:  

𝐷𝑚𝑎𝑥−𝑚𝑖𝑛 = (
∆𝐹

𝐹
)
𝑚𝑎𝑥

− (
∆𝐹

𝐹
)
𝑚𝑖𝑛

> 𝑡   (Eq. 1) 
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Here, the wavelengths of interest for training the ML models are those for which ΔF/F values span a 

relatively large range, namely, when Dmax-min > t = 1.5. With t = 1.5, approximately 30% (312 out of 1025) 

of the wavelengths are selected for the subsequent training of ML models. Figure S1a shows the regions 

of spectra that are selected for ML model development using the threshold defined in Eq. 1.  

Next, we examined the distributions of ΔF/F values at specific wavelengths. Examples of these 

distributions at several wavelengths are shown in Figure S2. We posited that the quality of the ML models 

is going to be better if the distribution is broader (spanning a larger range of ΔF /F values) and bimodal 

in nature. The criterion in Eq. 1 already selected the wavelengths that span the larger range of ΔF/F 

values. Next, we removed some of the DNA-SWNTs with ΔF/F values falling in the middle of the 

distributions as described below, in order to obtain a more bimodal-like distribution at each wavelength. 

Increasing the bimodality in distributions leads to better separation in ΔF/F values of high and low 

response systems: for example, our previous work showed that increasing the bimodality of distributions 

and increasing the separation in ΔF /F values of two classes of systems (high and low response systems) 

led to higher f1 scores of the classification ML models9. Bimodal distribution leads to a clear separation 

of data points with high response (large ΔF/F values on the right side of the distribution) and data points 

with low response (small ΔF/F values on the left side of the distribution). This separation is compatible 

with our ML approach that is based on binary classification, in which the data points should be classified 

into either of two classes (high or low response) and should ideally be well separated from each other. 

Our selective filter removes some parts of data where the class/response of the sequence is borderline, 

which may remove noise from the trained models in case our classification of the borderline data points 

is incorrect.  

The mathematical criterion for removing the sequences from the middle of the distribution was 

wavelength-specific. At each wavelength j, λj, we calculated the median and mean ΔF/F values. The 

average of the mean and median, α, represents the center of the distribution at a given wavelength. The 

parameters defining the range of ΔF/F values around α from which some datapoints will be removed to 

create a gap in the dataset is depicted in Figure S1b. This range has a flexible point around which the 

sequences will be removed, α’ = α + imm, where imm is a variable that increases the average of the 

mean and median and is defined to be one of the values in the set {0, 0,05, 0.1, 0.15, 0.2}. The range 

also has a flexible width, which is varied by a variable called tolerance, tol. The sequences that are 

removed from the dataset at a given wavelength have ΔF/F value between α’ and the upper threshold, 

fupper, or have ΔF/F between α’ and the lower threshold, flower. The upper and lower thresholds are defined 

as fupper =  α’ + tol and flower =  α’ – tol. The removal of sequences with ΔF/F between the two thresholds 

results in a dataset of DNA-SWNTs with high response to serotonin (ΔF/F > fupper, shown as a green 

region in Figure S1b) and DNA-SWNTs with low response to serotonin (ΔF/F < flower, shown as a gray 

region in Figure S1b). We would like to note that if a sequence is removed from the dataset associated 

with one wavelength, that sequence can still be retained in the dataset associated with a different 

wavelength. Overall, our approach considers and scans the entire spectra of DNA-SWNT conjugates, 

before applying the selective filter to focus on the most informative parts of the spectral data based on 

the dataset and threshold settings. 

The sequence space of the DNA sequences within our dataset (Table S1) was analyzed using the t-

distributed stochastic neighbor embedding (t-SNE) analysis within the BinderSpace package48.  

2.2. Machine Learning Model Training. The preprocessed dataset described above was used to train 

regression ML models using the Support Vector Machine (SVM) algorithm, which stands out as a favored 

algorithm in supervised learning, particularly adept at handling scenarios with small sample sizes and 

high-dimensional data challenges49. Each regression model used the DNA sequence as input and 

predicted ΔF/F at a given wavelength as output. The 18-nucleotide (nt)-long DNA sequences were 

represented as one-hot encoded (1 x 72) vectors. The DNA sequence vector dimensions were 
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determined by each of the 18 positions in the DNA sequence being occupied by one of four possible 

nucleotides, A, C, T, and G. The model training procedure was designed to iterate until it identified a 

predetermined number of regression models. Namely, the procedure continued until it found five models 

with coefficients of determination, r2, surpassing 0.4, when comparing the predicted and the measured 

ΔF/F values of the testing part of the dataset at a given wavelength.  

 

 
Figure 1. Analysis of relative fluorescence emission changes in response to serotonin analyte for SWNTs 
of different chiralities in DNA-SWNT conjugates. a. The system under investigation. b. Example spectra of one 
of the DNA-SWNT sensors (sequence ID 7). Fluorescence spectra before the addition of serotonin to DNA-SWNT 
suspension (black trace) and after the addition of 100 μM serotonin (red trace). c. Plot of cumulative ΔF/F values 
and ΔF/F values from 1195 nm wavelength (for (8,6) SWNT) from spectra of selected 96 DNA sequences in 
response to serotonin. d) Plot of ΔF/F values read at 1195 nm and ΔF/F values at four other wavelengths from 
spectra of the same 96 DNA sequences in response to serotonin.  
 

 

3. Results and Discussion   

3.1. Fluorescence emission change of DNA-SWNT conjugates in response to serotonin in the 850 

nm to 1340 nm wavelength range. Previous experiments collected the fluorescence emission of DNA-
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SWNT conjugates for 30-nucleotide-long DNA sequences of the type C6X18C6, where X labels variable 

nucleotides in strands, obtained before and after the addition of the serotonin analyte9,47. These samples, 

and specifically the SWNTs in these samples, are optically active, providing the near infrared 

fluorescence emission spectra of DNA-SWNT conjugates (Figure 1a-b). The collected spectra have 

multiple peaks of varying intensity, which correspond to emissions by SWNTs of different chiralities 

present in the experimentally prepared samples. For all 136 DNA-SWNT conjugates in the original 

dataset, the intensity of the optical emission either stayed the same or increased to a variable extent after 

the addition of serotonin.  

 

In our previous work, our analysis and machine learning efforts were focused on the fluorescence 

emission at ∼1195 nm center wavelength, which corresponds to the emission of SWNTs with (8,6) 

chirality. Here, we first examine how the fluorescence emission change (ΔF/F) varies in response to 

serotonin at specific different wavelengths and for the integrated response over all the wavelengths 

(cumulative ΔF/F, also labeled as 〈∆𝐹/𝐹〉𝜆). The plots in Figure 1c-d examine the correlations between 

the fluorescence emission change (ΔF/F) at 1195 nm and either the averaged response over all the 

wavelengths, 〈∆𝐹/𝐹〉𝜆, or wavelengths 861 nm, 1127 nm, 1283 nm and 1300 nm. All the plots show 

strong correlations between ΔF/F at 1195 nm by (8,6) SWNT and the other examined ΔF/F responses. 

The weakest correlations are observed between ΔF/F values at 1195 nm and 860 nm, with the Pearson 

coefficient of 0.69, and the strongest correlations are observed between ΔF/F values at 1195 nm and 

1283 nm, as well as 〈∆𝐹/𝐹〉𝜆, where the Pearson coefficients are 0.93 and 0.94, respectively. The 

observed significant correlations suggest that it is the DNA molecule when adsorbed to the SWNT that 

primarily determines the analyte binding strength, the extent of the perturbation of the SWNT environment 

by the analyte, and the intensity of emission by DNA-SWNT samples present in the system. The 

observation also suggests a possibility that some DNA sequences have a special binding mode to 

serotonin analyte in the presence of a hydrophobic SWNT surface, since the SWNT chirality plays a less 

significant role in analyte binding at the SWNT surface and the intensity of DNA-SWNT fluorescence 

emission. 

Furthermore, we examined DNA sequences in our dataset from Table S1 and their associated ΔF/F 

responses at three different wavelengths using t-distributed stochastic neighbor embedding analysis, 

shown in Figure S4. Interestingly, at wavelengths 1195 nm and 1300 nm, the highest response 

sequences with ΔF/F values greater than 1.62 are mostly located in the region where the value of the t-

SNE2 component is greater than 0, indicating that the t-SNE2 component can distinguish the high 

response sequences from low response sequences. However, low response sequences span the 

complete t-SNE space. While this analysis shows that the highest response sequences occupy only half 

of the total sequence space, this part of the space is also occupied by many low response sequences. 

Therefore, while t-SNE analysis in Figure S4 shows promise for use in making future predictions of high 

response sequences, this procedure would also likely lead to many false positives. The motif analysis of 

the dataset in Table S1, reported in Ref.9, was not able to identify a few specific motifs that are highly 

correlated with high sensing response, but instead identified many motifs weakly correlated with high 

sensing response. 
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Figure 2. Machine learning workflow for predicting the fluorescence emission change (ΔF/F) of DNA-SWNT 
conjugates in response to serotonin. a) The input data contains ΔF/F values for wavelengths between 850 nm 
and 1340 nm for each of 130 DNA-SWNT conjugates experimentally examined in Refs.9,47 ΔF/F values were 
determined from the fluorescence emission spectra before and after the addition of 100 μM of serotonin. b) Using 
the input dataset, machine learning regression models are trained for each wavelength that has a wide distribution 
of ΔF/F values, as defined by a quantitative criterion described in Methods. The training is performed on random 
selections of the 80% of the dataset until at least five models are found for which the coefficient of determination, 
r2, is greater than 0.4 in the analysis of the measured and predicted ΔF/F values in the remaining 20% of the dataset. 
c) The saved regression models are used to predict ΔF/F values at selected wavelengths for DNA-SWNT 
conjugates with new DNA sequences. d) The predicted ΔF/F values for DNA-SWNTs with new DNA sequences are 
statistically analyzed to determine sequences that lead to outlier responses. e) One-hot encoded representation of 
DNA sequence (ID = 1) from Table S1. 
 
 
 

3.2. Predicting fluorescence emission change (ΔF/F) in response to serotonin by DNA-SWNT 

conjugates at selected wavelengths with ML regression models. Next, ΔF/F response to serotonin 

of DNA-SWNT conjugates for all the wavelengths across the spectra from previous experimental 

measurements9,47 was used to train machine learning regression models. The workflow of the approach 

taken in the present work is shown in Figure 2. The input dataset for training our models initially contained 

136 distinct DNA sequences, which in experimental systems wrap the SWNTs. The 18-nucleotide (nt)-

long DNA sequences were represented as one-hot encoded (1 x 72) vectors, and for each DNA 

sequence, there is an associated matrix of ΔF/F values at all measured wavelengths in the range from 

850 nm to 1346 nm.  

In the next step, we analyzed the distributions of ΔF/F values of all 136 DNA-SWNT conjugates at all 

wavelengths, one at a time. Example distributions, shown for three wavelengths in Figure S2, 

demonstrate that at some wavelengths, such as λ = 865 nm, there are very few ΔF/F values greater than 

1, resulting in narrow distributions. However, for other wavelengths, such as λ = 1195 nm and λ = 1300 

nm, the distributions are much broader and have a larger number of ΔF/F values greater than 1 and 

extending up to the value of 2. We hypothesized that the width of the distribution of ΔF/F values 

associated with the given wavelength may affect the quality of the machine learning models trained to 
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predict ΔF/F values for new DNA sequences in DNA-SWNT conjugates: the larger variability of ΔF/F 

responses is assumed to lead to machine learning models that will be better at distinguishing higher 

response from lower response sequences and thus be more successful. Therefore, we introduced a 

quantitative criterion to identify wavelengths with wider distributions of ΔF/F values, as described in 

Methods. The wavelengths for which the criterion was satisfied were then selected as wavelengths for 

which we train ML models to predict ΔF/F values for new DNA sequences in DNA-SWNT conjugates. 

Prior to training the models associated with individual wavelengths, some sequences with intermediate 

values of ΔF/F were removed from the input data, resulting in the input dataset with more bimodal ΔF/F 

distribution at a given wavelength. Furthermore, six DNA sequences, labeled S1 – S6, were removed 

from the training dataset of 136 sequences, to perform independent testing of trained models (Table S2). 

Three of these sequences had consistent low ΔF/F response to serotonin and three remaining sequences 

had consistent high ΔF/F response to serotonin in experiments. After the input data were processed as 

described, by removing the input data for S1 – S6 sequences, the wavelengths with narrow ΔF/F 

distributions, and some of the individual datapoints (sequences and their ΔF/F values) from the input data 

associated with the remaining wavelengths with the goal of achieving bimodal-like distributions, we 

trained ML regression models to predict ΔF/F values for new DNA sequences in DNA-SWNT conjugates 

at each retained wavelength. Each model is designed to predict ΔF/F value of a given sequence for a 

defined wavelength.  

For each defined wavelength, we trained many distinct support vector machine regression models (up to 

232), until we obtained at least five models for which the experimental ΔF/F and the predicted ΔF/F values 

resulted in a coefficient of determination r2 greater than 0.4 or until the maximum number of models was 

reached. Our procedure results in five predicted ΔF/F values for each selected wavelength for a new 

DNA sequence in DNA-SWNT conjugate. Finally, we prepare distribution plots of all the predicted ΔF/F 

values in the form of violin plots for all the new DNA sequences of interest. These plots are then examined 

for outlier sequences (with either exceptionally high or exceptionally low distributions of ΔF/F values), 

which can be suggested for experimental testing.  

 

 
Figure 3. Predicting ΔF/F values for DNA-SWNT conjugates at selected wavelengths using SVM regression 
models. a) Comparison of measured and predicted ΔF/F values for representative low response (S1, left) and high 
response (S4, right) sequences. ΔF/F values shown in green are predictions made from a single SVM regression 
model. b) Differences between the experimentally measured and the predicted ΔF/F values for six testing 
sequences S1 – S6. The points shown for each sequence represent the differences obtained from five independent 
SVM regression models (r2 > 0.4) at 289 selected wavelengths. The model parameters are defined in the inset.  
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The predicted fluorescence emission change (ΔF/F) in response to serotonin for selected range of 

wavelengths for two representative sequences, S1 and S4, are shown in Figure 3a. The plotted 

responses are obtained using one regression SVM model per wavelength. The predicted responses differ 

from the experimentally measured responses: the predicted ΔF/F values of the low response sequence 

S1 are overestimates and the predicted ΔF/F values of the high response sequence S4 are 

underestimates. Furthermore, the differences between the measured and the predicted ΔF/F values are 

significantly more pronounced for the high response sequence. However, there are also shared trends 

in the measured and predicted ΔF/F responses, namely, the peaks and valleys in the measured and 

predicted curves occur at similar wavelengths. We further examined the differences between the 

measured and the predicted ΔF/F values from ensembles of regression models at all the selected 

wavelengths (289 wavelengths in total) for all the six test sequences (S1-S6). As shown in Figure 3b, 

the predicted ΔF/F values of low response sequences (S1-S3) are always overestimates by a difference 

of 0.2 to 0.4. On the other hand, the predicted ΔF/F values of high response sequences (S4-S6) are 

always underestimates by a difference of 0.4 to 0.8. 

 

 

3.3. Procedure for predicting new DNA-SWNTs with high ΔF/F response to serotonin from 

distributions of predicted ΔF/F values at selected wavelengths. After training the SVM regression 

models at the selected wavelengths, we used them to predict ΔF/F values for six testing sequences S1 

– S6. The violin plots of all the predicted ΔF/F values for the six testing sequences are shown in Figure 

4. To determine the model parameters imm and tol that result in the most useful models, we examined 

the behavior of the distribution plots for imm values of 0, 0.05, 0.1, 0.15 and 0.2, and tol values of 0.05 

and 0.1. Since some choices of parameters lead to fewer than five models with r2 > 0.4 for some of the 

selected wavelengths, the number of wavelengths for which predictions are made varies (from 62 to 289).  

The violin plots in Figure 4 strongly vary in their widths, i.e. the range covered by the predicted ΔF/F 

values, in dependence of imm and tol parameter values. Some choices of imm and tol lead to broad violin 

plots that span a large range of ΔF/F values, such as when tol = 0.05, or when tol = 0.1 and imm values 

are large. For such wide violin plots, determining the nature of the response of the tested sequence is 

difficult, since the distributions in the violin plots overlap, and ΔF/FML-predicted values forming the 

distributions span a wide range of values, e.g. between 0.3 and 1.2. Despite overlapping distributions of 

ΔF/F values of sequences S1 – S6, most of the p-values examining these distributions are < 0.05, 

indicating that most of the distributions are statistically different (Figure S3). With such wide distributions, 

it becomes difficult to discriminate by visual analysis between sequence responses and to provide with 

high confidence new sequences which are likely to be either high or low response. However, the visual 

analysis can be used in conjunction with p-values to identify sequences with outlier distributions of ΔF/F 

values. 

The violin plot widths are narrowest when imm is set to 0 and tol is set to 0.1, and it is for such narrow 

distributions that we can most easily examine for which sequences the ΔF/F value distributions form 

outliers, as seen in Figure 4 (top right). For these settings of imm and tol parameters, the visual analysis 

allows us to identify S3 as a low response outlier, and S4 as a high response outlier. The p-value analysis 

(Figure S3) also confirms that sequences S3 and S4 are statistically different from the other sequences 

for these settings of imm and tol parameters. On the other hand, S1, S2, S5 and S6 sequences are 

predicted to have similar responses by our models, and their distributions of ΔF/F values overlap. These 

results show that our models can predict only some new sequences that will have low or high response 

in experiments, but our models do not have enough knowledge to predict many other possible 

sequences. This model deficiency is likely due to the relatively small size of the training dataset, 

compared to the large size of the space of all possible 18-nt long DNA sequences that can be chosen  
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Figure 4. Distributions of predicted ΔF/F values for S1 – S6 sequences, shown as violin plots, where ΔF/F values 
predict the response of DNA-SWNT conjugates to serotonin. ΔF/F values for each sequence are obtained from 
multiple wavelengths and from five distinct SVM regression models. The number of wavelengths contributing to the 
distributions, Nλ, and the parameters used in dataset curation, imm and tol are reported in each plot. The horizontal 
black lines in each violin plots indicate median values of ΔF/FML-predicted.  
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(418 ~ 69 x 109). Therefore, our models are likely to miss many high / low response sequences in that 

complete sequence space. However, they may be used to predict a subset of the useful sequences that 

can be then experimentally tested and may lead to the discovery of new DNA-SWNT sensors with the 

desired high or low response to the selected analyte.  Overall, our results confirm that ensembles of ML 

models trained to predict ΔF/F values of DNA-SWNTs at multiple wavelengths can predict and distinguish 

some DNA-SWNT conjugates with significantly different high / low response compared to other possible 

DNA-SWNT conjugates. 

 

 
Figure 5. Comparison of ΔF/F values predicted at a single wavelength (1195 nm) and distributions of ΔF/F values 
predicted at multiple wavelengths for S1 – S6 sequences, shown as boxplots. The reported ΔF/F values predict the 
response of DNA-SWNT conjugates to serotonin. The values are shown for imm = 0.05 and tol = 0.1, where the 
number of wavelengths contributing to the distributions, Nλ, is 162.  

 

 

After examining the distributions of ΔF/F values predicted at multiple wavelengths for S1 – S6 sequences, 

Figure 5 compares one of these distributions to ΔF/F values predicted at a single wavelength (1195 nm), 

as done in our previous work9. Both individual predictions and the distributions of predictions exhibit 

similar trends, with sequence S3 showing the smallest predicted ΔF/F values, and sequence S4 

exhibiting the largest predicted ΔF/F values. While the trends remain consistent, the distributions offer a 

broader range of predicted ΔF/F values. Utilizing such distributions may enhance confidence in 

predictions, facilitating the selection of new sequences for experimental examination. 

 

 

4. Conclusion 

In this work, we built upon our prior success in machine learning approaches, which led to the prediction 

of five novel DNA-SWNT sensors with superior responses to serotonin compared to any DNA-SWNT in 

the original dataset. Our previous ML models, while effective, were trained solely on responses of DNA-

SWNTs to serotonin at a single wavelength (1195 nm) extracted from complete fluorescence emission 

spectra of the tested sample. Notably, the information residing in the remaining parts of the spectra was 

left untapped for ML predictions. Here, we address this limitation by leveraging information from multiple 
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wavelengths across all spectra obtained experimentally. Our analysis of the whole spectra of all the DNA-

SWNT conjugates in the dataset lead to the first important insight. The crucial role of DNA sequence 

suggests the potential existence of distinct binding modes of DNA molecules to the target analyte (here, 

serotonin) in the presence of a hydrophobic SWNT surface. Notably, our observations suggest that the 

SWNT chirality plays a less substantial role in influencing analyte binding.  

Our ML models trained in the present work predict ΔF/F response at over a hundred wavelengths for 

each sequence in the dataset of the tested DNA-SWNT conjugates. These predictions are then 

statistically analyzed to create a distribution of ΔF/F predictions for a given sequence. We evaluate the 

performance of this novel approach, which utilizes data from broader regions of experimental spectra, 

providing a comprehensive examination compared to the methodology outlined in Ref9. While our new 

machine learning (ML) models exhibit success in predicting specific high-response DNA sequences, 

some limitations are also apparent. The results demonstrate that our models, despite their efficacy, are 

constrained by their inability to comprehensively predict all potential sequences with either low or high 

response. This limitation stems from the relatively modest size of the training dataset in comparison to 

the vast space of all possible 18-nt long DNA sequences (~ 69 x 109). Consequently, our models might 

overlook numerous high- or low-response sequences in the complete sequence space. Nevertheless, 

they offer a valuable tool for predicting subsets of sequences that can be experimentally tested, 

potentially leading to the discovery of novel DNA-SWNT sensors with desired response profiles to specific 

analytes. 

It may be advantageous for future studies to incorporate more experimental data encompassing whole 

spectra as inputs for training ML models, as compared to using only single datapoints from each 

spectrum. This approach holds promise for generating distributions of predicted spectral response 

values, thereby increasing confidence in predictions, and guiding the selection of new systems for 

experimental testing. This refinement in model input has the potential to enhance the robustness of our 

predictions and facilitate the identification of sequences with specific response characteristics. Notably, 

the experimental workflow upon which our analysis is based, and the ML models developed here, are 

analyte-agnostic. Therefore, this work could seed rapid discovery of DNA-SWNT nanosensors for a large 

range of analytes. In summary, our new approach may be useful for future attempts to predict spectra of 

different chemical systems and to discover new DNA-based systems with a desired optical response to 

introduced perturbations.  
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https://github.com/vukoviclab/PySpectrotonin


13 
 

136 DNA-SWNT sequences is available at:  
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