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Membrane curvature sensing is essential for a diverse range of biological processes. Recent experiments have

revealed that a single nanometer-sized septin protein has different binding rates to membrane-coated glass beads

of one micron and three micron diameters, even though the septin is orders of magnitude smaller than the beads.

This sensing ability is especially surprising since curvature-sensing proteins must deal with persistent thermal

fluctuations of the membrane, leading to discrepancies between the bead’s curvature and the local membrane

curvature sensed instantaneously by a protein. Using continuum models of fluctuating membranes, we investigate

whether it is feasible for a protein acting as a perfect observer of the membrane to sense micron-scale curvature

either by measuring local membrane curvature or by using bilayer lipid densities as a proxy. To do this, we

develop algorithms to simulate lipid density and membrane shape fluctuations. We derive physical limits to

the sensing efficacy of a protein in terms of protein size, membrane thickness, membrane bending modulus,

membrane-substrate adhesion strength, and bead size. To explain the experimental protein-bead association

rates, we develop two classes of predictive models: i) for proteins that maximally associate to a preferred

curvature, and ii) for proteins with enhanced association rates above a threshold curvature. We find that the

experimentally observed sensing efficacy is close to the theoretical sensing limits imposed on a septin-sized

protein. Protein-membrane association rates may depend on the curvature of the bead, but the strength of this

dependence is limited by the fluctuations in membrane height and density.

I. INTRODUCTION

Membrane curvature is ubiquitous throughout cell biology

[1–4]: proteins that sense membrane curvatures can help lo-

cate the axis of cell division, determine cell polarity, facilitate

membrane remodeling, and serve as a cue for intracellular sig-

naling [5–10]. These proteins often act in tandem by binding

with each other to sense curvature cooperatively. However,

in the case of septin proteins, recent experiments have shown

that in addition to sensing curvatures via cooperative filament

formation [11, 12], even a single septin protein can distin-

guish between micron-scale membrane curvatures, preferen-

tially binding to membranes adhered to glass beads of different

radii with different association rates [13–15]. How do proteins

only a few nanometers in size effectively sense membrane cur-

vatures that are hundreds of times larger than themselves, on

the order of micrometers? This sensing ability is even more

remarkable because biological membranes undergo persistent

thermally-driven undulations [16]. Even if a protein could per-

fectly measure the instantaneous shape of the membrane at the

nanometer scale, these undulations drive the membrane away

from its average shape, confounding the protein’s attempts to

measure the membrane’s curvature. How can a protein reliably

make a measurement of micron-scale curvature in this noisy

environment?

The current strongest evidence that protein-membrane bind-

ing can be curvature-dependent at the single molecule level is

presented by the experiments in Figure 2B of [15]. The au-

thors measure the single-molecule association rates of septin

to membrane-coated beads, and find that the association rate

increases monotonically with bead curvature. These experi-

ments are performed with non-polymerizable septins, ruling

out the possibility of septin forming larger filaments. There

is also indirect evidence that SpoVM may have curvature-

dependent binding rates, though there are conflicting results

on whether the on-rates or off-rates are more sensitive to cur-
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FIG. 1. Thermal fluctuations of the membrane lead to discrepancies

between the average membrane shape and the instantaneous local

nanometer-scale membrane shape present at the protein’s location,

even if the protein perfectly observes the local shape.

vature [17, 18]. We note that many experiments conducted on

the curvature sensitivity of septins [11, 14, 15] measure the to-

tal adsorption of septins onto the membrane, which is highest

at intermediate bead curvatures [11]. These experiments do

not tell us whether a single septin has a binding preference, as

the adsorption depends on septin-septin interactions and other

complex factors [15]. We focus on the sensitivity of single

molecules to membrane curvature, because this is where we

expect physical constraints to play the largest role: it is more

difficult for a single septin to detect the curvature than for a

longer polymerized filament to do so.

Although there are descriptions of molecular mechanisms

employed by proteins when sensing nanometer-scale curva-

tures [19], curvature sensing at the micron-scale is less well-

understood [20]. Previous theoretical studies have modeled

the thermodynamics of curvature sensing [21] and the effects

of helix insertion on the membrane’s energy [22, 23]. Here, we

take a qualitatively different approach: we ask how precisely
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a protein could measure the micron-scale curvature of a mem-

brane if it made a perfect measurement of local membrane

shape or local lipid density, subject to the inevitable thermal

fluctuations of the membrane. This gives us the fundamental

physical limits to curvature sensing for an idealized protein,

akin to Berg and Purcell’s classic work on the limits of lig-

and concentration sensing for a perfect detector of a finite size

[24], and later follow-ups [25–28]. Our result builds on the

larger literature of sensing limits in different contexts, includ-

ing gradient sensing [29–33], flow sensing [34], and sensing

the mechanical properties of heterogeneous materials [35, 36].

To quantify curvature sensing in this way, we define a signal-

to-noise ratio (SNR) to indicate how well a protein is able to

extract useful information about the membrane’s shape despite

stochasticity. To support our analytical models, we develop al-

gorithms to simulate membranes with fluctuating height and

lipid densities. Curvature induces deviations in the packing of

lipids in the membrane bilayer, and proteins with amphipathic

helices insert themselves into bilayers [37, 38]. We study the

possibility that proteins that sense micron-scale curvature may

be using lipid packing as a proxy to sense membrane shape

[39].

We then show how our model can be fit to the single-

molecule association rate measurements of septin in [15]. Our

results show that septin may be functioning near its physical

limits in these experiments. We also find that the ability of

a single septin to discriminate between different micron-sized

beads requires the membrane to be strongly adherent to the

bead, suggesting that in vivo, single-molecule association is

not the likely driving factor of the observed curvature sensitiv-

ity of septin localization, and instead septin-septin interactions

must play the key role.

II. MODELS AND SIMULATION METHODS
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FIG. 2. Snapshots of thermally-fluctuating simulated membranes: i)

(left) a freely fluctuating flat membrane with no membrane-substrate

adhesion, and ii) (right) a membrane adhered to a bead of radius

𝑅 = 500 nm with adhesion strength 𝛾 = 1013 J/m4. System size is

𝐿 = 1.6 𝜇m. Note that due to the large difference in size scales and

strong membrane-substrate adhesion, fluctuations are not apparent in

the plot on the right. Simulation parameters: Table I.

A. Modeling membrane, bead, and membrane-bead adhesion

We represent the shape of the membrane in terms of its

height ℎ(r) above a two-dimensional plane as a function of

position r = (𝑥, 𝑦), i.e. using Monge gauge [40]. To induce a

curvature similar to the bead of [14, 15], we model a substrate

with a spherical bump of radius 𝑅 on a flat surface (Fig. 2). The

adhesion energy between the bead and membrane is harmonic,

𝐸adh =
𝛾

2

∫
dr(ℎ(r) − ℎbead (r))2, (1)

where 𝛾 is the strength of membrane-substrate adhesion,

ℎbead (r) traces the height of the bead at each position in the

𝑥𝑦 plane and serves as the equilibrium height, and the integral∫
dr is over the 𝑥𝑦 plane. This harmonic potential approxi-

mates more detailed potentials such as the Mie potential of [41]

or van der Waals interactions [42] (see Appendix F). The height

field ℎbead (r) is ℎbead (r) =

√︁
𝑅2 − 2𝑠2 + 2𝑠(𝑥 + 𝑦) − 𝑥2 − 𝑦2

with 𝑠 = 𝐿/2 for r within a distance 𝑅 of the bead center

(𝑠, 𝑠). We set ℎbead (r) = 0 outside this region, where the

membrane is adherent to a flat substrate.

B. Energy of membrane height and density changes

In addition to the membrane height, we also characterize

the membrane by the lipid densities in each leaflet. We use

the Seifert-Langer model [43, 44] to represent how the mem-

brane’s height couples to lipid densities. Due to membrane

curvature, the lipid densities measured at different depths into

the membrane bilayer will differ. We define the scaled lipid

densities of the upper and lower monolayers at the midsurface,

𝜌± ≡ (𝜓±/𝜙0 − 1), where 𝜓± are the number densities pro-

jected onto the bilayer midsurface and 𝜙0 is the equilibrium

number density of a flat membrane. The lipid density deviation

between the upper and lower monolayers at the midsurface is

𝜌 ≡ (𝜌+ − 𝜌−)/2, and the average density is 𝜌̄ ≡ (𝜌+ + 𝜌−)/2.

As shown in Fig. 3, when the membrane is bent to a positive

curvature and the lipids allowed to laterally relax, the den-

sity projected by the upper leaflet at the midsurface is greater

than that projected by the lower leaflet. (This is in contrast

to the density profile when momentarily bending the mem-

brane, where the midsurface densities are equal and the upper

and lower leaflets are stretched and compressed at the neutral

surfaces, respectively [45].)

The membrane’s total free energy 𝐸 consists of the sum of

the Helfrich free energy due to bending the membrane [46], the

energy due to lipid density deviations of the upper and lower

membrane monolayers away from their ideal values [43], and

the adhesion energy in Eq. (1),

𝐸 =

∫
dr

{ 𝜅
2
(2𝐻)2 + 𝑘

2
[(𝜌+ − 2𝑑𝐻)2

+(𝜌− + 2𝑑𝐻)2]
}
+ 𝐸adh, (2)

where 𝜅 is the membrane bending modulus, 𝐻 is the mean

curvature of the membrane such that 2𝐻 = −∇2ℎ(r), and 𝑘 is
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FIG. 3. A curved membrane induces deviations in the packing of

lipids in the bilayer. When the membrane is flat, the number densi-

ties of lipids projected by the two monolayers at the midsurface are

equivalent. However, when the membrane is curved and its lipids are

allowed to laterally relax to their minimum energy value, the upper

(+) and lower (−) monolayers project different densities at the midsur-

face. The steeper the curvature, the greater the difference between the

scaled densities 𝜌+ and 𝜌− . At steady-state, the neutral surface lipid

number densities 𝜙+ = 𝜙− . The distance between the midsurface and

either neutral surface is 𝑑.

the monolayer area compressibility modulus. (𝜌+ − 2𝑑𝐻) and

(𝜌− + 2𝑑𝐻) represent the deformations away from the ideal

lipid density in the upper and lower membrane monolayers,

respectively. 𝑑 is the “monolayer thickness”, i.e. the distance

between the bilayer midsurface and either neutral surface. The

sign conventions used for the mean curvature 𝐻 in Eq. (2)

are as in [44]. Since we do not model asymmetries in lipid

composition [47], we assume zero spontaneous curvature.

The membrane bending energy includes a term ∇2ℎ(r),
which can be more easily dealt with in Fourier space. We

choose our Fourier conventions to represent a finite system

size of dimensions 𝐿 × 𝐿, with the Fourier wave-vector q =
2𝜋
𝐿
(𝑚, 𝑛) such that −(𝑁 − 1)/2 ≤ (𝑚, 𝑛) ≤ (𝑁 − 1)/2 for

𝑁 × 𝑁 modes/lattice points, assuming 𝑁 is odd. The Fourier

transform pair for the membrane’s height is then

ℎq =

∫
𝐿2

drℎ(r)𝑒−𝑖q·r, ℎ(r) = 1

𝐿2

∑︁
q

ℎq𝑒
𝑖q·r, (3)

and similarly for the transform pairs 𝜌q, 𝜌(r) and 𝜌̄q, 𝜌̄(r).
Additional comments on the treatment of variables in Fourier

space are included in Appendix A.

The total free energy 𝐸 in Eq. (2) is computed by summing

the contributions due to each Fourier mode as

𝐸 =
1

𝐿2

∑︁
q

1

2
(ℎq, 𝜌q, 𝜌̄q)E ©­«

ℎq

𝜌q

𝜌̄q

ª®¬
∗

+ 𝐸adh, (4)

E =
©­
«

𝜅𝑞4 −2𝑘𝑑𝑞2 0

−2𝑘𝑑𝑞2 2𝑘 0

0 0 2𝑘

ª®
¬
. (5)

In Eq. (5), 𝑞 is the magnitude of the Fourier wavevector q.

The renormalized bending modulus is 𝜅 = 𝜅 + 2𝑑2𝑘 , which

describes the response of the membrane over short times when

lipids cannot laterally relax. A typical value of 𝜅 is about 20

𝑘𝐵𝑇 . The strength of membrane substrate adhesion 𝛾 can vary

over orders of magnitude in different contexts. To best model

the experiments in [14, 15], we use a fairly strong 𝛾 ∼ 1013

J/m4, unless otherwise stated. This is our estimate of adhesion

strengths of supported lipid bilayers (SLBs) on glass substrates

(see Discussion and Appendix F). The other parameter values

used in the model are included in Table I.

C. Dynamics and simulation of fluctuating membranes

A membrane that is deformed away from its equilibrium

state will relax over time. The dynamics of this process are

controlled by the viscosity of the fluid outside the membrane,

the membrane’s own viscosity, and the drag between the two

leaflets [43, 45, 48]. To these relaxation dynamics, we add

a stochastic term obeying a fluctuation-dissipation relation-

ship, which ensures that the system will evolve into thermal

equilibrium. The resulting stochastic dynamical equations for

evolving ℎq, 𝜌q and 𝜌̄q in time are (Appendix C)

𝜕

𝜕𝑡

©­«
ℎq

𝜌q

𝜌̄q

ª®¬
= −𝐿2

©­­
«

1
Ωℎ
𝜕𝐸/𝜕ℎ∗q

1
Ω𝜌
𝜕𝐸/𝜕𝜌∗q

1
Ω𝜌̄
𝜕𝐸/𝜕𝜌̄∗q

ª®®¬
+ ©­«
𝜉q

𝜁q

𝜒q

ª®¬
, (6)

where Ωℎ
−1

= 1/4𝜂𝑞, Ω𝜌
−1

= 𝑞2/(4𝑏 + 4𝜂𝑞 + 2𝜇𝑞2), and

Ω𝜌̄
−1

= 𝑞2/(4𝜂𝑞 + 2𝜇𝑞2). These Ω
−1 values play the role

of hydrodynamic mobilities for a membrane with monolayer

viscosity 𝜇 and intermonolayer friction 𝑏 embedded in a fluid

of viscosity 𝜂, setting the time derivative of a field 𝜔 in terms

of the force-like term −𝐿2𝜕𝐸/𝜕𝜔∗
q. Thermal fluctuations are

accounted for with the stochastic terms 𝜉q, 𝜁q and 𝜒q (Ap-

pendix C). The deterministic components in the equations for
𝜕ℎq

𝜕𝑡
and

𝜕𝜌q

𝜕𝑡
are consistent with the Seifert-Langer model, and

we derive
𝜕𝜌̄q

𝜕𝑡
from the hydrodynamic equations in [43] while

neglecting inertial effects. While we present these hydrody-

namic equations of motion for generality, our focus is on the

equilibrium properties of the system, which are independent

of the dynamic parameters 𝜂, 𝜇, 𝑏, etc. We will use this

dynamical model to sample from the equilibrium thermal dis-

tributions of ℎ(r), 𝜌(r) and 𝜌̄(r). A full understanding of the

dynamics of this problem should also include the effect of the

presence of the substrate near to the surface, which will alter

the hydrodynamic response [48, 49].

To simultaneously simulate the fluctuations of membrane

height and lipid density, we extend the Fourier-space Brown-

ian Dynamics (FSBD) approach [50]—so we will often refer

to our simulations as FSBD simulations as well. We simulate

the membrane by numerically integrating Eq. (6) in Fourier-

space, adding the appropriate thermal noise to each Fourier

mode of ℎq, 𝜌q and 𝜌̄q over the simulation timestep Δ𝑡. In-

verse Fourier transforms are used to obtain the corresponding

ℎ(r), 𝜌(r) and 𝜌̄(r). The amplitude of the thermal noise is

controlled by the system temperature and the mobility terms

Ω
−1, and is chosen to ensure that the probability distributions

of the membrane’s height and lipid densities obey the Gibbs-

Boltzmann form at steady-state. The simulation algorithms,

their derivations, and guidelines for choosing a manageable
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timestep for simulation convergence are included in Appendix

C. To ensure that our approach creates the correct equilibrium

distribution, we compared with an extension of the Fourier

Monte Carlo method [51] (Appendix K).

D. Modeling a protein as a perfect observer

To understand what limits a protein’s ability to sense mem-

brane curvature even in ideal circumstances, we treat the pro-

tein as a perfect observer, making a precise measurement of the

membrane curvature at the protein scale. The perfect observer

assumption means that the protein does not affect the mem-

brane in any way: it is a mere spectator. By a measurement

“at the protein scale,” we describe an average over a region

of the membrane of roughly the protein’s size 𝑎. The local

membrane curvature and local lipid density deviation sensed

by the protein can be defined as

𝐶𝑎 =

∫
𝐿2

dr𝐺𝑎 (r)
−∇2ℎ(r)

2
, (7)

𝜌𝑎 =

∫
𝐿2

dr𝐺𝑎 (r)𝜌(r), (8)

where 𝐺𝑎 (r) is a two-dimensional Gaussian weight centered

at the protein location, such that

𝐺𝑎 (r) =
1

2𝜋𝑎2
exp

−|r − rprot |2

2𝑎2
. (9)

We will always choose the protein to be located at the top of

the spherical bead, rprot = (𝐿/2, 𝐿/2).
In our FSBD simulations, the integrals in Eqs. (7)–(8) are

evaluated by summing over discrete membrane lattice points.

Membrane curvatures are computed from ℎq noting that the

Fourier transform of the curvature is {− 1
2
∇2ℎ(r)}q =

1
2
𝑞2ℎq,

then using the inverse Fast Fourier Transform to reconstruct

the curvature field − 1
2
∇2ℎ(r).

E. Model parameters and notation

The parameters in Table I are applicable unless otherwise

stated for a particular result or figure. Table II is a summary

of the notation we use for relevant variables.

The values used for 𝑘 and 𝜇 are consistent with typical values

in [52] and [53]. The solvent fluid viscosity 𝜂, the membrane

monolayer viscosity 𝜇, and the intermonolayer friction 𝑏 are

dynamical parameters that represent dissipative mechanisms,

and do not influence the equilibrium distribution, which only

depends on the energy of a particular state. (This is why we can

reproduce our FSBD results with Monte Carlo methods in Ap-

pendix K.) However, the dynamic parameters do determine the

rate at which disturbances relax and the magnitude of thermal

fluctuations—so they influence the stability properties of the

numerical algorithm and the equilibration time required. Our

approach has been to begin with somewhat-realistic dynamic

parameters, and then tune them to allow for easier convergence

(see Appendix C 2 a).
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FIG. 4. Probability densities from FSBD simulations of local mem-

brane curvatures and local lipid density deviations sensed by a protein

of size 𝑎 = 16 nm positioned at the top of membrane-adhered beads

of different diameters. Membrane-substrate adhesion 𝛾 = 1013 J/m4.

When the histogram distributions associated to different beads over-

lap considerably, there is more uncertainty about which bead resulted

in a particular local membrane curvature or density deviation sensed

by the protein. Timesteps Δ𝑡 = 3.2 ns, total time 𝑡sim = 0.016 sec-

onds. Other parameters: Table I.

III. RESULTS

A. Simulations of membrane-adhered beads

We simulate fluctuating membranes adhered to beads of

varying radii, where the bead curvature is𝐶bead = 1/𝑅. In Fig.

4, we show the distribution of local membrane curvature 𝐶𝑎

and local lipid density deviation 𝜌𝑎 that would be sensed over a

protein scale of 𝑎 = 16 nm such that 2𝑎 roughly corresponds to

the footprint of a yeast septin rod, which has an end-end length

of ∼ 32 nm [13]. We have chosen the membrane-substrate

adhesion appropriate for a supported lipid bilayer, which is

strongly adherent (Appendix F). These distributions show the

extent to which different beads could be distinguished by a

protein: when there is significant overlap between two distri-

butions, even a perfect detector would struggle to distinguish

between beads of these radii. As the bead radius is increased,

the average curvatures and density deviations sensed by the

protein decrease in magnitude—as we would expect, because

the bead is made locally flatter. The distributions for larger

beads overlap more substantially, so a protein that measures

a particular curvature or density value in this regime is sub-

jected to more ambiguity as to which bead the measurement

corresponds to.
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Parameter Notation Value

Protein size (sensing radius) 𝑎 16 nm

Membrane-substrate adhesion strength 𝛾 1013 J/m4

Membrane bending modulus 𝜅 20 𝑘𝐵𝑇

Monolayer area compressibility modulus 𝑘 0.07 J/m2

Monolayer thickness 𝑑 1 nm

Temperature 𝑇 310 K

Monolayer viscosity 𝜇 10−8 kg/s

Solvent fluid viscosity 𝜂 0.02 Pa·s
Intermonolayer friction 𝑏 107 J·s/m4

Simulation timestep Δ𝑡 3.2 ns

Total simulation time 𝑡sim 0.016 s

Edge length of simulated membrane 𝐿 1600 nm

Lattice points/Fourier modes per side 𝑁 73

TABLE I. Parameters used for theory and FSBD simulations unless otherwise stated.

Description Symbol Definition

Two dimensional position on the membrane surface r (𝑥, 𝑦)
Fourier-space wave-vector representing the membrane q 2𝜋

𝐿 (𝑚, 𝑛)
Magnitude of q 𝑞 2𝜋

𝐿

√
𝑚2 + 𝑛2

Renormalized membrane bending modulus 𝜅 𝜅 + 2𝑑2𝑘

Equilibrium number density of lipids for a flat membrane 𝜙0 –

Number density of lipids projected by the upper/lower leaflet onto the upper/lower neutral surface 𝜙± –

Number density of lipids projected by the upper/lower leaflet onto the midsurface 𝜓± –

Scaled lipid density projected by the upper/lower leaflet onto the midsurface 𝜌± 𝜓±/𝜙0 − 1

Deviation between lipid densities 𝜌+ and 𝜌− at the midsurface 𝜌 (𝜌+ − 𝜌−)/2
Average scaled lipid density at the midsurface 𝜌̄ (𝜌+ + 𝜌−)/2

Local membrane curvature sensed by a protein of size 𝑎 𝐶𝑎 Eq. (7)

Local lipid density deviation sensed by a protein of size 𝑎 𝜌𝑎 Eq. (8)

Protein kernel: two dimensional Gaussian weight centered at the protein’s location 𝐺𝑎 (r) Eq. (9)

Radius of a membrane-coated glass bead 𝑅 –

Curvature of a membrane-coated glass bead 𝐶bead 1/𝑅

TABLE II. Symbols and definitions for relevant variables

B. Quantifying sensing efficacy with signal-to-noise ratio

If a particular local curvature or density deviation is sampled

from the distributions in Fig. 4, can the bead size correspond-

ing to the sampled measurement be reliably determined? This

can be challenging due to overlapping distributions, since each

bead size is associated to a multiplicity of instantaneous 𝐶𝑎

and 𝜌𝑎 values. We summarize the way that thermal fluctua-

tions of the membrane could confound even a perfect detector

of curvature or lipid density in distinguishing between two

membrane-adhered beads of different sizes with a signal-to-

noise ratio (SNR) of

SNR =
(𝜇𝐴 − 𝜇𝐵)2

𝜎2
𝐴
+ 𝜎2

𝐵

, (10)

where 𝜇𝐴 and 𝜇𝐵 are the average membrane curvature 𝐶𝑎 or

lipid density deviation 𝜌𝑎 for two beads 𝐴 and 𝐵, and 𝜎2
𝐴

and

𝜎2
𝐵

are the corresponding variances of the membrane curvature

or density deviation sensed by the protein. The motivation for

this definition is to measure the distance between the means

of two histograms in Fig. 4 in terms of their variance. If

we define a variable 𝑋 which is the difference between the

measured variable on bead 𝐴 and the measured variable on

bead 𝐵, the SNR between 𝐴 and 𝐵 is ⟨𝑋⟩2/
[
⟨𝑋2⟩ − ⟨𝑋⟩2

]
,

which gives Eq. (10) because the variance of two independent

variables adds. The greater this SNR value is, the better a pro-

tein can distinguish between the two beads. SNR approaches

zero either if the beads are near-identical (𝜇𝐴 ≈ 𝜇𝐵) or the

noise 𝜎2
𝐴
+ 𝜎2

𝐵
is overwhelming. For our preferred curvature

model, we show in Section III E that—with some additional

assumptions—this SNR controls the largest possible ratio of

association rates of the protein to a bead of a given curvature

as compared to a bead with the protein’s preferred curvature,

and use this to estimate the experimental SNR.

We use our FSBD simulation to compute the SNR for pairs

of beads in Fig. 5, keeping the difference between their diam-

eters to be 200 nm. The smaller the beads, the better a protein

can distinguish between two similarly sized beads (i.e. higher

SNR). For beads on the micron-scale, the SNR is much smaller

than 1 when the beads are similarly sized (such as 1.2 𝜇m and

1.4 𝜇m diameters). This is true for both the SNR of curva-

ture sensing, SNR𝐶 , and the SNR of density sensing, SNR𝜌.

The decrease in SNR is largely driven by the decreasing sig-

nal: large beads have curvatures 1/𝑅 that are both increasingly
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FIG. 5. Sensing SNR for pairs of membrane-adhered beads with diameters ranging from 0.4 𝜇m to 1.4 𝜇m, with each pair having diameters

separated by 0.2 𝜇m. (Top-left) SNR𝐶 with 𝛾 = 1013 J/m4. (Top-right) SNR𝐶 with 𝛾 = 1011 J/m4. (Bottom-left) SNR𝜌 with 𝛾 = 1013 J/m4.

(Bottom-right) SNR𝜌 with 𝛾 = 1011 J/m4. Other parameters: Table I. Errors were computed with the block averaging method [54]. For each

pair of beads, the simulated curvature and 𝜌 trajectories were separated into 𝑁block = 4 blocks and the mean and variance computed for each

block to obtain SNRblock, which was averaged across the blocks to obtain the SNR plotted. The error bars indicate standard errors, computed

by dividing the standard deviation of SNRblock across the blocks by
√
𝑁block.

close to zero curvature, so the term (𝜇𝐴−𝜇𝐵)2 will shrink. As

we will see later (Fig. 8), for beads where the radii differ sig-

nificantly, e.g. 1 micron vs. 3 micron diameters, the SNR can

be appreciable. Changing the membrane-substrate adhesion

energy from a weakly-adherent membrane value (𝛾 = 1011

J/m4) to one appropriate to a SLB (𝛾 = 1013 J/m4) increases

the SNR.

To gain an understanding of how the SNR depends on the

protein size, the mechanical properties of the membrane, the

geometry of the bead, and the membrane-bead adhesion, we

develop a theoretical model for the SNR in the next section,

Sec. III C. We plot this theoretical result against the simulation

result and see good agreement, especially at strong membrane-

substrate adhesion (Fig. 5). When the adhesion is weak and

the bead pairs are large, the SNR is low; therefore, small differ-

ences arising from different instances of the same simulation

can be more pronounced. The deviation at small bead sizes

(∼ 200–300 nm radii) and weak adhesion (𝛾 ∼ 1011 J/m4)

is expected, and arises from the membrane not following the

bead perfectly (Appendix D).

C. Analytical calculation of the SNR

To find an analytical form for the SNR written in Eq. (10),

we need the average values of curvature and density deviation

on a bead as well as their standard deviations.

If the membrane is strongly adherent to the bead, on average

its shape will just be the bead’s shape, ⟨ℎ(r)⟩ = ℎbead (r). The

averaged mean curvature for a membrane adhered to a bead

is then − 1
2
∇2ℎbead (r). At the top of the bead (r = rprot), the

curvature is then

⟨𝐶𝑎⟩ ≈ 1/𝑅, (11)

where 𝑅 is the bead’s radius. Our assumption that the mem-

brane follows the shape of the bead can be checked with sim-

ulation: we see that it is reasonable at sufficiently large bead

sizes and strong membrane-substrate adhesion (Appendix D).

Given that the membrane is deformed to follow the bead, we

can find the value of 𝜌(r) that would minimize the energy of

the membrane, solving for 𝜌q such that 𝜕𝐸/𝜕𝜌∗q = 0 (using Eq.

(4)). This would be the steady-state 𝜌q, holding the membrane

shape fixed. We find

𝜌ss
q = 𝑑𝑞2ℎq. (12)

Inverting the Fourier transform, we see that the density at the

protein’s location is

𝜌ss (rprot) = −𝑑∇2ℎ(rprot) =
2𝑑

𝑅
. (13)

To approximate the standard deviation of the observed curva-

ture and density histograms, we start by noting that in Fig. 4,

the width of the histograms is broadly consistent across many

different bead diameters. 𝜎𝐴 and 𝜎𝐵 do not strongly depend

on bead size. In fact, for a large enough bead, the variances of
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the observed curvature are essentially those for a membrane

adherent on a flat substrate with the same adhesion strength –

the protein scale is much smaller than the size of the bead, and

locally the bead surface is nearly flat. We then propose as an

estimate of the SNR:

SNR𝐶 =

( 1
𝑅𝐴

− 1
𝑅𝐵

)2

2⟨𝐶2
𝑎⟩flat

, (14)

SNR𝜌 =

( 2𝑑
𝑅𝐴

− 2𝑑
𝑅𝐵

)2

2⟨𝜌2
𝑎⟩flat

, (15)

where 𝑅𝐴 and 𝑅𝐵 are bead radii for beads 𝐴 and 𝐵, and ⟨𝐶2
𝑎⟩flat

and ⟨𝜌2
𝑎⟩flat are the membrane curvature and density variances

sensed by a protein of size 𝑎 when the membrane is bound to a

flat substrate. These variances can be worked out analytically

in some cases, and by simple numerical quadrature in others.

1. Variances of membrane height and density when bound to a flat

substrate

For a planar membrane adhered to a flat substrate ℎbead = 0,

the adhesion energy of Eq. (1) is just a simple harmonic

penalty, 𝐸adh =
𝛾

2

∫
drℎ(r)2

=
𝛾

2𝐿2

∑
q |ℎq |2. Then, the com-

plete energy of Eq. (4) is simply represented as

𝐸flat
=

1

𝐿2

1

2

∑︁
q

(ℎq, 𝜌q, 𝜌̄q)E ©­«
ℎq

𝜌q

𝜌̄q

ª®¬
∗

, (16)

E =
©­«
𝜅𝑞4 + 𝛾 −2𝑘𝑑𝑞2 0

−2𝑘𝑑𝑞2 2𝑘 0

0 0 2𝑘

ª®
¬
. (17)

Using Wick’s theorem [55], the variances of the Fourier modes

of height and density are

⟨|ℎq |2⟩ = 𝐿2𝑘𝐵𝑇E−1
ℎℎ =

𝐿2𝑘𝐵𝑇

𝜅𝑞4 + 𝛾
, (18)

⟨|𝜌q |2⟩ = 𝐿2𝑘𝐵𝑇E−1
𝜌𝜌 = 𝐿2𝑘𝐵𝑇

(2𝑑2𝑘 + 𝜅)𝑞4 + 𝛾
2𝑘 (𝜅𝑞4 + 𝛾)

, (19)

⟨| 𝜌̄q |2⟩ = 𝐿2𝑘𝐵𝑇E−1
𝜌̄𝜌̄ =

𝐿2𝑘𝐵𝑇

2𝑘
, (20)

where the subscripts ℎℎ, 𝜌𝜌, and 𝜌̄ 𝜌̄ denote elements of the

matrix inverse E−1.

2. Variances of curvature and densities sensed by a protein

Assuming that the protein is a perfect sensor of the mem-

brane curvature and density, the curvature and density devia-

tion sensed by the protein can be determined by the weighted

integrals over the membrane in Eqs. (7)–(8). Since these inte-

grals are linear in the height and density fields, it is relatively

simple to compute the variance of the protein-sensed curva-

ture𝐶𝑎 and protein-sensed densities 𝜌𝑎, 𝜌̄𝑎 by substituting the

Fourier transform conventions for ℎ(r) and 𝜌(r) into Eqs. (7)

and (8) to obtain

⟨𝐶2
𝑎⟩flat

=
1

4𝐿4

∑︁
q

𝑞4⟨|ℎq |2⟩|𝐺𝑎 (q) |2, (21)

⟨𝜌2
𝑎⟩flat

=
1

𝐿4

∑︁
q

⟨|𝜌q |2⟩|𝐺𝑎 (q) |2, (22)

where 𝐺𝑎 (q) is the Fourier transform of the Gaussian weight

𝐺𝑎 (r), and |𝐺𝑎 (q) |2 = |𝐺𝑎 (𝑞) |2 = exp (−𝑞2𝑎2). See Ap-

pendix B for an example derivation.

In the continuum limit, these Fourier sums can be rewritten

as integrals, noting
∑

q =
(
𝐿

2𝜋

)2 ∫
dq in 2D [16]. Since the

integrands depend only on the magnitude of q, we can further

simplify
∫

dq = 2𝜋
∫ ∞
0
𝑞d𝑞, finding

⟨𝐶2
𝑎⟩flat

=
1

8𝜋

∫ ∞

0

𝑞5 𝑘𝐵𝑇

𝜅𝑞4 + 𝛾
|𝐺𝑎 (𝑞) |2d𝑞, (23)

⟨𝜌2
𝑎⟩flat

=
1

2𝜋

∫ ∞

0

𝑞
𝑘𝐵𝑇 (𝜅𝑞4 + 𝛾)
2𝑘 (𝜅𝑞4 + 𝛾)

|𝐺𝑎 (𝑞) |2d𝑞, (24)

where 𝜅 = 𝜅 + 2𝑑2𝑘 .

We reformulate Eq. (23) and Eq. (24) by substituting a

dimensionless parameter 𝑢 = 𝑞𝑎 and simplify as

⟨𝐶2
𝑎⟩flat

=
𝑘𝐵𝑇

8𝜋𝜅𝑎2

∫ ∞

0

𝑢
𝑢4

𝑢4 + 𝛾𝑎4

𝜅

exp(−𝑢2)d𝑢, (25)

⟨𝜌2
𝑎⟩flat

=
𝑘𝐵𝑇

4𝜋𝑘𝑎2

∫ ∞

0

𝑢
𝑢4 + 2𝑑2𝑘𝑢4

𝜅
+ 𝛾𝑎4

𝜅

𝑢4 + 𝛾𝑎4

𝜅

exp(−𝑢2)d𝑢.

(26)

The curvature and density variances of Eq. (25) and

Eq. (26) are numerically integrated by quadrature using the

scipy.integrate.quad [56] method in Python. We plot the

variances in Fig. 6 as a function of protein size for varying

membrane adhesion strengths. We also compare these results

to FSBD simulations of a fluctuating membrane bound to a

flat substrate, finding excellent agreement (Fig. 6). These

variances will control the SNR through Eqs. (14)–(15), and

thus the potential accuracy of sensing. How do they depend

on the protein size and membrane-substrate adhesion? In gen-

eral, larger protein sizes and stronger adhesion strengths allow

the protein to minimize the variance in curvature and 𝜌 sensed

locally. However, increasing membrane-substrate adhesion 𝛾

continually decreases the curvature variance ⟨𝐶2
𝑎⟩flat over or-

ders of magnitude, while the density variance ⟨𝜌2
𝑎⟩flat seems

to saturate. We can understand these behaviors by studying

some asymptotic limits where Eqs. (25)–(26) can be analyti-

cally evaluated.

In the absence of membrane-substrate adhesion, 𝛾 = 0, and

Eq. (25) and Eq. (26) are

⟨𝐶2
𝑎⟩flat

𝛾=0 =
𝑘𝐵𝑇

16𝜋𝑎2𝜅
, (27)

⟨𝜌2
𝑎⟩flat

𝛾=0 =
𝑘𝐵𝑇𝜅

8𝜋𝑎2𝑘𝜅
. (28)



8

10 15 20 25 30
Protein size a (nm)

10
1

10
0

10
1

C
2 a

 (
m

2 )

=0 J/m4

=1011 J/m4

=1012 J/m4

=1013 J/m4

Simulated

10 15 20 25 30
Protein size a (nm)

10
5

10
4

2 a

=0 J/m4

=1011 J/m4

=1012 J/m4

=1013 J/m4

Simulated

FIG. 6. Theoretically predicted variances in local curvature and local

lipid density deviation as sensed by proteins of varying sizes for a

membrane adhered to a flat substrate with different adhesion strengths

𝛾, as compared to variances obtained from FSBD simulations of a

membrane on a flat substrate. Simulated points are for 𝑎 = 16, 24

and 32 nm. Simulation parameters: 𝐿 = 900 nm, 𝑁 = 49. Other

parameters: Table I.

At the zero adhesion limit (freely fluctuating membrane), the

curvature and density variances sensed are both inversely pro-

portional to the protein size as 1/𝑎2. Eqs. (27)–(28) are also

applicable at relatively weak adhesion; for the standard param-

eters values chosen, these asymptotic formulas are reasonably

accurate up to adhesion strengths of 𝛾 ∼ 109-1010 J/m4 (Fig.

7).

We can also simplify the variances in Eqs. (25)–(26) in the

limit of high adhesion. The integrand in these equations is

suppressed exponentially when 𝑢 ≫ 1, so at sufficiently high

adhesion strengths,
𝛾𝑎4

𝜅
≫ 1 + 2𝑑2𝑘

𝜅
, we can neglect the terms

not proportional to 𝛾 in the numerator and denominators of

Eqs. (25)–(26). In this limit, we find

⟨𝐶2
𝑎⟩flat

high 𝛾 =
𝑘𝐵𝑇

8𝜋𝑎6𝛾
, (29)

⟨𝜌2
𝑎⟩flat

high 𝛾 =
𝑘𝐵𝑇

8𝜋𝑎2𝑘
. (30)

We see in these high-adhesion limits both of the key fea-

tures we observed in the numerical calculations of Fig. 6:

curvature variance depends strongly on both protein size and

adhesion, while the density variance does not. In the ab-

sence of adhesion, ⟨𝐶2
𝑎⟩ ∼ 1/𝑎2, while in the high-adhesion

regime, ⟨𝐶2
𝑎⟩ ∼ 1/𝑎6. As 𝛾 is increased, ⟨𝐶2

𝑎⟩ continues to

diminish, while ⟨𝜌2
𝑎⟩ saturates asymptotically to a fixed value.

This might be expected, as even if the membrane is effec-

tively frozen into a flat configuration (𝛾 → ∞), the lipids
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FIG. 7. Predicted SNR𝐶 and SNR𝜌 for beads of radii (𝑅𝐴, 𝑅𝐵) =

(0.5 𝜇m, 1.5 𝜇m) as a function of adhesion strength 𝛾, compared to

their zero and high adhesion limits. The curvature and 𝜌 variances

for the numerical SNR values are integrated by quadrature using Eqs.

(25)–(26). Theory parameters: Table I.

may still diffuse in the flat membrane, leading to lipid density

fluctuations. Interestingly, ⟨𝐶2
𝑎⟩ and ⟨𝜌2

𝑎⟩ lose their depen-

dence on 𝜅 in the high-adhesion regime. In this case, the cost

for deviating from a flat height is dominated by the adhesion

energy—but because bending is so strongly suppressed, the

primary contribution to fluctuations in lipid density is the area

compressibility modulus 𝑘 .

D. Determining curvature SNR and 𝜌 SNR for micron-sized

beads

With the results of the previous sections, we now have a

complete theory for computing SNR𝐶 and SNR𝜌 using Eqs.

(14)–(15) and the variances Eqs. (25)–(26). We choose the

radii of the beads 𝑅𝐴 = 0.5 𝜇m and 𝑅𝐵 = 1.5 𝜇m to corre-

spond to typical bead sizes in the experiments of [14, 15]. We

plot the SNR computed using numerical quadrature in Fig.

7. Consistent with our discussion of measured fluctuations

above, the SNR for curvature increases without bound as cur-

vature fluctuations are suppressed at high 𝛾, while the 𝜌 SNR

reaches an asymptotic limit. We can determine simple analyt-

ical forms for the SNR by using the low-𝛾 and high-𝛾 limits

for the variances derived above. The closest relevant limit

for understanding experiments on supported lipid bilayers on

beads [14, 15] is the limit of strong adhesion (high 𝛾).
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In the limit of high adhesion, Eq. (14) and Eq. (15) become

SNR𝐶, high 𝛾 =

4𝜋𝑎6𝛾( 1
𝑅𝐴

− 1
𝑅𝐵

)2

𝑘𝐵𝑇
, (31)

SNR𝜌, high 𝛾 =

16𝜋𝑎2𝑑2𝑘 ( 1
𝑅𝐴

− 1
𝑅𝐵

)2

𝑘𝐵𝑇
. (32)

What is the theoretically predicted SNR when we compare

two beads of experimentally relevant radii (𝑅𝐴, 𝑅𝐵) = (0.5 𝜇m,

1.5 𝜇m)? We choose a value of 𝛾 = 1013 J/m4 to represent

a fairly strong SLB adhesion (see Appendix F for calculated

estimates), and plot the SNR in Fig. 8, varying protein size and

membrane monolayer thickness. (We note that our estimate

for SLB adhesion does not put us in the asymptotic limit of

Eqs. (31)–(32); the full form must be used.) We would like

to highlight three elements of these central results. First, we

see that the SNR for sensing curvature is always, over our

parameter range, larger than for sensing density. This may

not be surprising, since our perturbation of the membrane

acts directly on the membrane height field through Eq. (1),

with density only correlated with this effect. Second, we see

that SNR𝜌 can be comparable to SNR𝐶 , especially for small

protein size 𝑎 and larger membrane thickness 𝑑; these are the

circumstances where the density difference 𝜌 is best able to

act as a proxy for the membrane curvature. Third, we should

comment on the overall scale: we see signal-to-noise ratios on

the order of one or higher. This suggests that single septins

sensing micron-scale curvature is at least reasonably plausible.

In the next section, we will ask whether this SNR is compatible

with the recent experimental observations of [15].

Fig. 8 varies monolayer thickness independently of other

parameters. Changing lipid types to vary monolayer thickness

will also potentially change the bending modulus 𝜅 and com-

pressibility modulus 𝑘 . We show a variant of Fig. 8 when 𝜅 is

also changed according to phenomenological laws connecting

𝜅 and 𝑑 in Appendix I.

E. Connecting SNR and membrane shape and density

fluctuations to experimental protein-bead association rates

To interpret what the SNR means, we make a correspon-

dence between the experimental measurements and our com-

puted distributions of curvature and lipid density. This requires

a few additional assumptions. We treat two separate cases. In

the first case, we assume that a single protein has a preference

to bind to a specific curvature or range of curvatures. This is

consistent with data showing that the adsorption of filament-

forming septins has a clear peak at a characteristic bead curva-

ture of 2 𝜇m−1 [11]. In our second case, we assume that single

proteins prefer to bind to beads with curvature above some

threshold value, so that the association rate is enhanced above

the threshold curvature, but saturates at sufficiently steep cur-

vatures. For example, if the threshold curvature is 0.5 𝜇m−1,

a single protein would distinguish between a flat membrane

and a bead of curvature 1 𝜇m−1, but would not be able to

distinguish between two beads both of which had curvatures

considerably above the threshold, such as 4 𝜇m−1 and 6 𝜇m−1.
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FIG. 8. (Top) SNR vs. protein size, with 𝑑 = 1 nm. (Bottom)

SNR vs. monolayer thickness, with 𝑎 = 16 nm, for experimentally

relevant micron-sized pairs of beads with diameters of (1 𝜇m, 3

𝜇m). As the monolayer thickness is increased, SNR𝜌 approaches

SNR𝐶 asymptotically. Adhesion strength 𝛾 = 1013 J/m4 is used to

numerically compute the variances for the SNR using Eqs. (25)–(26).

Theory parameters: Table I.

This is motivated by the recent work in [15], which notes

that the single-molecule binding rates of septin increase with

increasing bead curvature (measured up to 2 𝜇m−1). These

two assumptions have qualitatively distinct results, but cannot

yet be distinguished by experimental measurements because

single-molecule association rates have not been determined at

the highest curvatures, due to experimental limitations.

1. Proteins with a maximal association rate to a preferred

curvature

A protein, encountering the membrane, sees a local shape or

density drawn from a distribution 𝑃(𝐶𝑎 |𝑅) (i.e. the histograms

plotted in Fig. 4). We then assume that the protein binds with

a probability that is dependent on the curvature it senses. In

the extreme case, binding could happen only when the protein

senses its preferred curvature𝐶pref. We assume that for a given

sensed curvature 𝐶𝑎, the association rate has a basal level 𝐴0,

and a piece that is dependent on the sensed curvature, maximal

when 𝐶𝑎 = 𝐶pref, which we write as a Gaussian. Therefore,

𝐴(𝐶𝑎) = 𝐴0 + 𝐴𝐶 exp

(
−(𝐶𝑎 − 𝐶pref)2

2𝜎2
bind

)
. (33)
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Consequently, the association rates are maximal when the

protein senses its preferred curvature, and decreases when 𝐶𝑎

is steeper or shallower than 𝐶pref. Here, 𝜎2
bind

characterizes

how precisely an individual protein’s binding depends on cur-

vature and sets the range of apparent curvatures the protein

binds to.

Eq. (33) reflects the association rate for one value of 𝐶𝑎,

but proteins will sense a distribution of apparent curvatures

depending on the radius of the bead, 𝑃(𝐶𝑎 |𝑅). The conditional

probability density of local curvatures sensed given that the

membrane is adhered to a bead of radius 𝑅 is Gaussian,

𝑃(𝐶𝑎 |𝑅) =
1√︁

2𝜋⟨𝐶2
𝑎⟩

exp

(
−(𝐶𝑎 − 1/𝑅)2

2⟨𝐶2
𝑎⟩

)
, (34)

where ⟨𝐶2
𝑎⟩ is the curvature variance as derived in Eq. (25). In

this section, we drop the superscript “flat” label for simplicity,

but the variances ⟨𝐶2
𝑎⟩ are all computed assuming a flat sub-

strate approximation (as explained when proposing Eq. (14)).

Then, the average association rate of the protein to a bead of

radius 𝑅 would be

𝐴(𝑅) ≡
∫ ∞

−∞
d𝐶𝑎𝐴(𝐶𝑎)𝑃(𝐶𝑎 |𝑅). (35)

This integral can be evaluated analytically as

𝐴(𝑅) = 𝐴0 + 𝛽 exp
(
−SNReff

𝐶

)
(preferred curvature), (36)

where 𝛽 =
𝐴𝐶𝜎bind√︃
⟨𝐶2

𝑎 ⟩+𝜎2
bind

, and the effective curvature SNR is

SNReff
𝐶 =

(1/𝑅 − 𝐶pref)2

2(⟨𝐶2
𝑎⟩ + 𝜎2

bind
)
. (37)

In the limit 𝜎2
bind

→ 0, SNReff
𝐶

is exactly the SNR𝐶 de-

rived in Eq. (14), characterizing the ability of a protein as a

perfect detector to distinguish between the bead’s true curva-

ture 𝐶bead = 1/𝑅 and the protein’s preferred curvature 𝐶pref.

Somewhat counterintuitively, 𝐴(𝑅) in Eq. (36) is maximal

when SNReff
𝐶

→ 0. This is because, as always, the SNR be-

tween two beads indicates the protein’s ability to discriminate

between the two beads, and will be zero if the beads are the

same (or in this case, if the bead curvature and the preferred

curvature are equivalent).

Shi et al. report the association rates of a single septin

oligomer to beads of different curvatures [15], which we re-

plot in Fig. 9. We can extract the basal association rate 𝐴0

of Eq. (36) directly from their experiments on flat surfaces

(zero curvature). We assume that the preferred curvature of

a septin is at 2 𝜇m−1, which is where the association rate is

maximal among the available data, and is also the curvature

of maximal adsorption by septin filaments [11] (although the

competition effects found by [15] suggest that this maximum

is not straightforward when different bead sizes are present

in the same assay). This also sets the value of 𝛽, because

𝐴(𝑅 = 1/𝐶pref) = 𝐴0 + 𝛽. We use our default parameters

(Table I) to compute ⟨𝐶2
𝑎⟩, leaving only one fit parameter in

the model, 𝜎2
bind

. We fit Eq. (36) to the experimental data with

𝜎2
bind

as a fit parameter, and in Fig. 9, we compare the data

to our predicted association rates for varying bead curvatures.

Although the protein associates maximally as expected to the

chosen 𝐶pref = 2 𝜇m−1, it can also associate substantively to

a fairly broad range of bead curvatures between ∼ 0-4 𝜇m−1.

The width of this curve is limited by the unavoidable error in

sensing the curvature, ⟨𝐶2
𝑎⟩, which we computed above. The

best fit 𝜎2
bind

is negligible compared to ⟨𝐶2
𝑎⟩.
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FIG. 9. Preferred curvature model: association rates of a septin-sized

protein to various membrane-adhered bead curvatures, modeled with

Eq. (36) for 𝐶pref = 2 𝜇m−1 . This is compared to the experimental

data in Figure 2B of [15] (extracted using WebPlotDigitizer [57])

for single septin association rates. For an experimental basal rate

of 𝐴0 = 0.892 𝜇m−2 s−1 nM−1, we obtain the model parameter

𝛽 = 3.505 𝜇m−2 s−1 nM−1 by subtracting 𝐴0 from the maximal

association rate at the preferred curvature. The binding variance is

obtained as a fit parameter using non-linear least-squares fits (lmfit

[58] in Python), such that 𝜎2
bind

≈ 5 × 10−9⟨𝐶2
𝑎⟩. Parameters: Table

I.

In addition to the fit displayed in Fig. 9, we can more

directly map between the association rates we studied and the

SNR we computed in the earlier sections. Using Eq. (36), the

ratio between the protein’s association rate to a bead with its

preferred curvature and a bead of radius 𝑅 is

𝐴(𝑅 = 1/𝐶pref)
𝐴(𝑅) =

𝑤 + 1

𝑤 + exp(−SNReff
𝐶
)
, (38)

where 𝑤 = 𝐴0/𝛽. This ratio is maximized when 𝑤 → 0,

which would happen if the basal rate 𝐴0 is negligible. The

maximum possible association ratio when 𝑤 = 0 is{
𝐴(𝑅 = 1/𝐶pref)

𝐴(𝑅)

}
max

= exp(SNReff
𝐶 ). (39)

Our estimates for association rate in this section let us in-

terpret what the SNR means: a large SNR between beads of

radii 𝑅𝐴 and 𝑅𝐵 indicates that there can be a large ratio of as-

sociation rates between these two beads. However, if there is

a large nonspecific basal level of association, or if the specific

association to curvature is very weakly dependent on sensed
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curvature (large 𝜎2
bind

), then the ratio of association rates could

be much smaller than that predicted by the simplest SNR in

Eq. (10). The signal-to-noise ratio of Eq. (10) gives the best

case ability of proteins to distinguish between differing bead

shapes, assuming perfect detection of the membrane shape and

no non-specific binding.

What SNR does the data on single-septin binding to

membrane-coated beads imply? Using data from [15] (re-

plotted in Fig. 9), the ratio between the association rates of

a yeast septin to membrane-adhered beads of diameters 1 𝜇m

and 3 𝜇m (curvatures of 2 𝜇m−1 and 0.67 𝜇m−1) is{
𝐴(𝑅 = 0.5 𝜇m)
𝐴(𝑅 = 1.5 𝜇m)

}
experiment

≈ 2.5. (40)

The minimal SNR required by a protein to distinguish between

these two membrane-adhered beads with a selective associa-

tion ratio of 2.5 when 𝑤 = 0 is

SNReff
minimum ≈ ln(2.5) ≈ 0.9. (41)

However, since the experiments indicate a basal association

rate of 𝐴0 = 0.892 𝜇m−2 s−1 nM−1, we obtain a non-negligible

𝑤 = 𝐴0/𝛽 ≈ 0.254. Consequently, for an association ratio of

2.5, Eq. (38) gives the effective experimental curvature SNR:

SNReff
experiment ≈ 1.4. (42)

This SNR value is fairly close to the theoretical curvature

sensing limits we have derived (Fig. 8), suggesting that the

accuracy of septin’s discrimination between two curvatures

may be near the limit set by stochastic fluctuations. However,

as is apparent in Fig. 7, the theory SNR is strongly dependent

on adhesion between the membrane and substrate. Our best

estimate for membrane adhesion strength to a solid substrate

such as a bead is 𝛾 ∼ 1013 J/m4 (see Appendix F). For weaker

𝛾 values, the sensing limit would be set lower. For example,

if we used parameters appropriate to membrane-cytoskeleton

adhesion, where 𝛾 ∼ 109 J/m4 [59], we obtain SNR𝐶 ≈ 0.25

(see Appendix E). An SNR of 0.25 means that the association

ratio between targets of diameters 1 𝜇m and 3 𝜇m could be at

most about 1.3. This is not as preferentially selective as the

membrane-bead systems in [14, 15]; if these experiments were

repeated on a system with 𝛾 ≤ 109 J/m4 (e.g. a membrane

attached to the cell’s cortex or a giant unilamellar vesicle with

no adhesion, 𝛾 = 0), then we would expect a significantly lower

ratio of association rates. It is only the adhesion strength being

large in the experiments of [14, 15] that make them consistent

with our bounds. The enhancement of binding by 30% even at

weaker adhesion, though, suggests that at least some curvature

sensing by single proteins may be plausible in a broader range

of contexts than just strongly-adherent SLBs.

We have phrased everything so far in this section in terms

of sensing membrane curvature. However, we can derive an

effective lipid density sensing SNR in an exactly analogous

way. We find that

SNReff
𝜌 =

(2𝑑/𝑅 − 𝜌pref)2

2(⟨𝜌2
𝑎⟩ + 𝜎2

𝜌,bind
)
, (43)

and that the maximum possible ratio between a 𝜌-sensing

protein’s association rate to a membrane-adhered bead with its

preferred lipid density deviation and a different bead is{
𝐴(𝑅 = 2𝑑/𝜌pref)

𝐴(𝑅)

}
max

= exp(SNReff
𝜌 ). (44)

Fig. 8 would suggest that the theoretical lipid density sensing

limit is substantially lower than SNReff
experiment

≈ 1.4 when

𝑑 = 1 nm. However, this does not necessarily indicate that

𝜌 is an unfeasible metric to infer membrane shape, as 𝜌 SNR

can be appreciable when the membrane monolayer is made

thicker or more resistant to in-plane compression. Holding

the other parameters constant, we find that SNR𝜌 ≈ 1.4 when

𝑑 = 4 nm and 𝑘 = 0.1 J/m2 (a relatively small change from

our default parameters in Table I). In Appendix J, we plot the

ratio between SNR𝜌 and SNR𝐶 for different sets of physical

parameters and compare their relative sensing efficacy.

2. Proteins with enhanced binding above a threshold curvature

Instead of the protein binding when it measures a particular

curvature, we can loosen our requirements and assume that

the protein binds to the bead when it measures a local mem-

brane curvature 𝐶𝑎 greater than a threshold curvature 𝐶thresh.

This is motivated by the idea that nm-scale curvature can in-

duce defects in the lipid order [39], so rare fluctuations to very

steep curvatures could induce local defects in the lipid order,

allowing for easier insertion of the amphipathic helices of the

protein. Under this threshold assumption, the protein’s asso-

ciation rate to the bead will be proportional to the probability

that 𝐶𝑎 > 𝐶thresh, i.e. 𝑃(𝐶𝑎 > 𝐶thresh) =
∫ ∞
𝐶thresh

d𝐶𝑎𝑃(𝐶𝑎 |𝑅).
We define an association rate that depends on 𝐶thresh as

𝐴(𝑅) = 𝐴0 + 𝐴𝐶
∫ ∞

𝐶thresh

d𝐶𝑎𝑃(𝐶𝑎 |𝑅), (45)

where 𝑃(𝐶𝑎 |𝑅) is the conditional probability density of local

curvatures for a membrane adhered to a bead of radius 𝑅, as

in Eq. (34).

Evaluating this analytically, we obtain

𝐴(𝑅) = 𝐴0 +
𝐴𝐶

2
erfc

(
𝐶thresh − 1/𝑅√︁

2⟨𝐶2
𝑎⟩

)
(threshold), (46)

where the complementary error function is defined as erfc(𝑥) =
2√
𝜋

∫ ∞
𝑥
𝑒−𝑡

2

d𝑡 [60].

We can view Eq. (46) as the association rate as a function

of the bead curvature 𝐶bead = 1/𝑅. When 𝐶bead = 𝐶thresh,

erfc(0) = 1, and 𝐴(𝐶bead) = 𝐴0 + 𝐴𝐶/2. Therefore, 𝐶thresh

indicates the curvature at which the protein association rate’s

increase above the basal level is half-maximal.

In the simulated histograms in Fig. 4, we showed how beads

can have local curvature distributions that overlap consider-

ably, making discriminating between these two beads more

difficult. If the protein binds only at sufficiently large curva-

ture,𝐶𝑎 > 𝐶thresh, this means that proteins are probing the tails
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of these histograms. This has two effects. First, looking at the

tail of the distribution can highlight a small difference between

the means—a higher 𝐶thresh makes it less likely that a protein

incorrectly attributes a steep local membrane curvature to a

shallow bead’s curvature distribution. However, as 𝐶thresh is

increased above 𝐶bead, it is rarer and rarer that a curvature this

high is observed, so the curvature-dependent association rate

decreases, and eventually any specificity is lost because the

curvature-dependent association rate is smaller than the basal

rate. In Fig. 10, we compare the predicted association rates

of a septin-sized protein to beads of curvature 2 𝜇m−1 and

0.67 𝜇m−1. The association rates for both these beads are sup-

pressed at high 𝐶thresh values; however, the association to the

bead with steeper curvature (𝐶bead = 2 𝜇m−1) is considerably

higher over a broad range of 𝐶thresh.
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FIG. 10. Predicted association rates of a septin-sized protein to

membrane-adhered beads of curvature 2 𝜇m−1 and 0.67 𝜇m−1, as a

function of the protein’s threshold curvature 𝐶thresh, for a fixed 𝐴0

and 𝐴𝐶 . Theory parameters: Table I. The values used for 𝐴0 and 𝐴𝐶
are taken from the fit in Fig. 11.
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FIG. 11. Protein association rates predicted by the curvature threshold

model, as compared to the experimental single septin association rates

in Figure 2B of [15] for varying bead curvatures. The basal rate 𝐴0

is 0.892 𝜇m−2 s−1 nM−1. The model parameters, fitted using a non-

linear least-squares method (lmfit [58] in Python), are 𝐴𝐶 ≈ 5.05

𝜇m−2 s−1 nM−1 and 𝐶thresh ≈ 1.55 𝜇m−1. Parameters: Table I.

.

How does the threshold model compare to experiment? We

fit Eq. (46) to the experimental data in [15], using their basal

rate for 𝐴0. The variance ⟨𝐶2
𝑎⟩ is computed using our default

physical parameters (Table I), and we obtain 𝐶thresh as a fit

parameter. The data indicate that 𝐶thresh ≈ 1.55 𝜇m−1 when

the adhesion strength 𝛾 = 1013 J/m4. As plotted in Fig. 11,

the association rate increases sigmoidally as a function of bead

curvature, saturating when the bead curvature is sufficiently

greater than𝐶thresh. Therefore, a protein that is described by the

threshold model exhibits increased association to curvatures

that are above a threshold, but loses the ability to discriminate

between two bead curvatures that are substantially more than

the threshold curvature.

In the model of Section III E 1, where individual proteins

have a preferred curvature, the SNR controls the sharpness of

how the association rates can depend on bead curvature. In a

similar fashion, in the threshold model, the sharpness of the

transition in association rates is determined by the variance

in membrane curvatures sensed by the protein. In Eq. (46),

we see that the predicted association rate increases from its

basal level to its maximal level as the bead curvature 1/𝑅 is

increased—the value
√︁
⟨𝐶2

𝑎⟩ sets the scale of this transition.

The fit between experiment and data in Fig. 11 could be

improved if we made the transition sharper. If we increase

the adhesion 𝛾—corresponding to fluctuations that are more

suppressed—we do find a better fit (Appendix G). However,

this takes the adhesion beyond what we think is the likely range

(Appendix F).

IV. DISCUSSION

Our results identify the key elements that determine whether

it is physically plausible for a single protein to sense micron-

scale curvature via local membrane shape or lipid density.

Although real proteins often perturb the membrane locally

[12, 23, 61], which will lead to protein-protein interactions

once proteins have bound to the membrane [62–65] and which

may be relevant to later stages of septin assembly [15, 66],

our focus is on the first step of a single protein binding. The

perfect observer assumption allows us to obtain the ideal limits

to sensing curvature as constrained by the membrane’s prop-

erties. We can compare how well a particular protein—like

septin—performs with respect to this ideal limit. These lim-

its occur because even a perfect detection of the membrane’s

shape is subject to unavoidable thermal fluctuations. We iden-

tify a signal-to-noise ratio that describes the accuracy with

which a protein can discriminate between two different large-

scale curvatures solely by sampling the local properties of

the membrane. This SNR can be related to the relative as-

sociation rates of the protein to two membrane-coated beads

of different curvatures. The SNR naturally depends on the

curvature of the bead—larger bead radii lead to shallower cur-

vatures, which are more difficult to distinguish—but also on

the properties of the membrane and the protein. Of particu-

lar importance are the membrane-bead adhesion strength and

membrane bending stiffness, which suppress membrane fluc-

tuations, and the protein’s size. In addition, when sensing lipid
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densities, the membrane’s thickness and area compressibility

modulus (indicating its resistance to in-plane compression)

play an important role. Our estimates of SNR suggest that

micron-scale curvature sensing as observed for single septins

in [15] could feasibly occur either due to septin measuring the

local membrane shape or the local lipid density. However,

for consistency, we must assume both that the measurements

are near-perfect and that the membrane is strongly adherent

to its bead (𝛾 ≈ 1013 J/m4); lower adhesion strengths lead

to insufficient SNR to explain the experiments (Appendix E).

We would then expect that preferential binding as a function

of curvature would be much lower for giant unilamellar vesi-

cles that are not attached to a bead, though we note that there

may be confounding issues when changing vesicle size [67].

Although the importance of membrane-substrate adhesion in

biological processes is widely acknowledged [68–71], it re-

mains challenging to ascertain the range of adhesion strengths

that are applicable to any given system. Evidence suggests

that large vesicles exhibit weak adhesion to glass substrates,

while supported lipid bilayers with direct lipid-glass binding

can have stronger adhesion [41, 72]. Membranes supported

on glass beads generally exhibit strong adhesion; the hydration

layer between the membrane and bead is only a few nanometers

thick [73–75]. Given the orders-of-magnitude-broad range of

reported values, we have generally tried to show how our SNR

depends on adhesion. The value 𝛾 ≈ 1013 J/m4 was estimated

based on van der Waals interactions and hydration forces (Ap-

pendix F).

We have computed SNR𝐶 under the assumption of perfect

local detection of the curvature. However, there may be strong

biophysical constraints on curvature sensing beyond the sta-

tistical ones we have raised here. In particular, as noted by

[76], if a perfectly straight rod-shaped protein is placed on

top of a spherical membrane of micron-scale diameter, the

gap distance between the protein and the membrane is below

the angstrom scale for a protein of length ∼ 4 nm, such as

SpoVM. It is biophysically implausible that binding depends

on the direct measurement of this subangstrom gap. A simple

curvature sensing mechanism is not as immediately ruled out

for proteins that are larger, such as septin. For yeast septins

with an end-end length of ∼ 32 nm (emulated by our “sensing

radius” 𝑎 ∼ 16 nm), this gap is about 1 nm even for a bead that

is a micron in diameter. The clear relevance of amphipathic

helices for septins [13, 14] also suggests that curvature sensing

arises from sensing some aspect of lipid membrane structure,

and our SNR𝜌 estimate for septin supports this possibility. De-

spite SpoVM being only 4 nm in length, its amphipathic helix

has membrane insertion depths of ∼ 1 nm [77], indicating that

even small proteins may be sensitive to leaflet lipid proper-

ties. However, if we use the parameters appropriate to SpoVM

(𝑎 = 2 nm), we find a very small SNR ≈ 0.003 for curva-

ture and density sensing when distinguishing between beads

of diameters 1 𝜇m and 3 𝜇m, holding the other parameters

constant. This suggests that the binding on-rate for SpoVM

should not be significantly curvature dependent. SpoVM lo-

calization could then arise from a curvature sensitive off-rate.

Experiments on this point are mixed [17, 18].

We have primarily focused on proteins sensing the local

value of 𝜌, the difference in lipid densities between the up-

per and lower leaflets at the midsurface. While 𝜌 is a lipid

feature that clearly reflects the curvature, it is not the only

possibility. We can also generalize our results to describing

proteins that simply sense the projected density of the upper

leaflet 𝜌+, which might be more appropriate for proteins that

only embed amphipathic helices shallowly into the membrane.

We performed simulations and derived the theory for ⟨𝜌+2⟩
and SNR𝜌+ (Appendix H). We find that SNR𝜌 is greater than

SNR𝜌+ , and interestingly, in the high-adhesion limit, the vari-

ance in 𝜌+ is exactly twice the variance in 𝜌. It may also

be possible for proteins to effectively sense other membrane

properties, such as lipid tilt [78], which can be a more reliable

readout of bending moduli at small scales [79].

To compute the best possible accuracy of membrane cur-

vature sensing by proteins, we assumed that the protein is a

perfect sensor of local curvature or 𝜌, representing the mea-

surement by a weighted integral in Eqs. (7)–(8). There are

several important caveats to this approach. While we think that

the local average used here is the most natural measurement of

curvature, it is possible that a more complex observable could

be less noisy. For example, past modeling of concentration

sensing by a single receptor has shown that the best-achievable

accuracy is twice that of a naive average [26], and this differ-

ence can be even larger if there are multiple receptor types

[80]. This is a clear area for future research. We have also

neglected the anisotropy of the septin by choosing an isotropic

weight function 𝐺𝑎 (r), but expect this to play a small role in

setting SNR. We also note that binding uses effectively only

a single snapshot of the membrane state, neglecting potential

time-averaging. This differs from the Berg-Purcell approach

and generalizations, where noisy measurements are integrated

over time in order to better resolve them [24–26]. We are mo-

tivated in this by results suggesting that these time-averaging

schemes require energy dissipation and cannot be carried out in

equilibrium [81–83]; time-averaging is then likely not relevant

to understanding in vitro experiments of curvature sensing,

though it is an intriguing possibility within a living cell.

In Fig. 9 and Fig. 11, we have made predictions for how

we would expect association rates to depend on bead cur-

vature based on limited single-septin binding data. These

are somewhat speculative, because they depend strongly on

assumptions of how single proteins bind based on their in-

stantaneous measurement of curvature. We have made two

physically plausible assumptions, which make qualitatively

different predictions on how association rate will depend on

increasing bead curvature. These could be distinguished by

measuring single-molecule association rates at smaller bead

sizes, extending the results of [14, 15]—though this would be

experimentally difficult due to the small patch of membrane

resolved with these beads [15]. In addition, while both models

are roughly consistent with the existing experimental data, nei-

ther is a perfect fit. It is possible to improve the fit quality if the

membrane is more adherent than our expectations or there is

another reason why fluctuations are suppressed (Appendix G).

Greater availability of single-molecule binding data for other

proteins with strong curvature sensing abilities would allow us

to apply our models in a broader context.
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Another potentially important factor in improving the quan-

titative comparison between experiment and theory is to un-

derstand the extent to which diffusion of septin to the bead

influences binding. If there was no selectivity in binding, and

binding occurred immediately upon contact with a sphere of

radius 𝑅, the rate of binding would be 4𝜋𝐷𝑅 [24]—so the asso-

ciation rate (rate per surface area) computed by [14, 15] would

decrease for increasing radius 𝑅, as observed by [15]. How-

ever, the association rate observed is smaller than we would

expect from a diffusion-limited rate, so we have neglected these

factors. In future work we will consider complications arising

from competing diffusion and adsorption timescales [84].

What if the membranes are under tension? We expect that

a probe of local membrane tension [85, 86] may also be con-

strained by related fluctuation results, as probes of tension are

related to probing lipid structure and packing [86]. Added

tension on the membrane will suppress thermal fluctuations

[40]. Tension on the membrane due to osmotic effects may

play several other roles. As pointed out by Wasnik et al. in

analyzing SpoVM localization, in the presence of an osmotic

pressure difference across the membrane, the tension will be

different for different-sized vesicles due to the Young-Laplace

equation [87], with the tension increasing linearly with vesicle

radius. If this is the case, then the relevant distinction between

vesicles of different sizes may not be the shape, but the ten-

sion. In our view, then, we would expect that the averaged lipid

densities in the two leaflets 𝜌± could vary systematically with

radius in a more complex way than that given by our simple

𝜌 = 2𝑑/𝑅. If so, the osmotic pressure could lead to systematic

shifts between the histograms in Fig. 4, increasing the SNR

beyond our predictions here.

Basic considerations of physical and statistical bounds

limit the accuracy of a vast number of sensing processes

across biology, from chemotaxis to pattern formation and

differentiation. Our results suggest that similar physical

constraints may be relevant for curvature sensing by single

proteins—proteins like septin may be performing nearly as

well as possible, given the inevitable thermal fluctuations

of the membrane. These predictions, though, must be

tested against experiments, e.g. varying the membrane-bead

adhesion, membrane compressibility modulus, or bending

modulus, to be viewed confidently. Our results also have

broader implications for sensors of related properties, such

as fluorescent probes that reflect membrane structure or

tension [86]. We would predict that the distribution of signals

arising from these fluorescent probes of membrane structure

are limited by the thermal fluctuations in lipid density and

membrane shape, and could be fit to models extending our

work. These results may also provide inputs into probe design

for curvature or stress sensors. It is more advantageous to use

larger probe sizes for curvature sensors (∼ 𝑎6 dependence)

than for lipid density sensors (∼ 𝑎2 dependence) in the

high-adhesion limit, while density sensors can benefit from

greater membrane insertion depths (probing 𝜌 instead of 𝜌+).

As we have studied here, probe accuracies would also depend

on membrane-substrate adhesion strength, suggesting that

substrate types and preparations [88–90] may play a role in

curvature sensing experiments.
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APPENDIX

Appendix A: Fourier space conventions

Our Fourier modes are q =
2𝜋
𝐿
(𝑚, 𝑛) with 𝑚, 𝑛 in the range −(𝑁 − 1)/2, · · · , 0, · · · , (𝑁 − 1)/2. Since ℎ(r), 𝜌(r) and 𝜌̄(r)

must necessarily be real quantities, the modes must fulfill the condition ℎ∗q = ℎ−q, 𝜌∗q = 𝜌−q, and 𝜌̄∗q = 𝜌̄−q. Therefore, only half

the modes are independently evolved as a function of time, and the dependent modes are computed as complex conjugates of the

independent modes. We choose the independent modes analogously to [63]. In general, we would expect Fourier modes to be

complex, but because we are performing Fourier transforms with a finite set of modes, some modes are forced to be their own

complex conjugate, requiring them to be real. Aside from these explicitly real modes, other modes have both real and imaginary

components. The specific modes that are explicitly real depend on whether 𝑁 is chosen to be even [49] or odd [63, 91]. For

convenience, we choose 𝑁 to be an odd number, such that only a single mode corresponding to (𝑚 = 0, 𝑛 = 0) of ℎ𝑞 , 𝜌𝑞 and 𝜌̄𝑞
is explicitly real. As the membrane’s center of mass is not evolved in our system [92], these zeroth modes are not evolved in time

after their initial values are set (see Appendix C 2 for details). To perform Fourier transforms and their inverses (as in Eq. (3)),

we used the two-dimensional Fast Fourier Transform (FFT2) and Inverse Fast Fourier Transform (IFFT2) methods from Python’s

numpy package [93] (scaling by 𝑁2 to accommodate Python’s convention for the Inverse Discrete Fourier Transform).
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Appendix B: Variances in local curvature and 𝜌 derived analytically in Fourier-space

Consider the local membrane curvature sensed by a protein of size 𝑎, as in Eq. (7):

𝐶𝑎 =

∫
𝐿2

dr
−∇2ℎ(r)

2
𝐺𝑎 (r). (B1)

Using the Fourier-space representation of ℎ(r) and the relation 𝐺𝑎 (r) = 1
𝐿2

∑
q𝐺𝑎 (q)𝑒𝑖q·r, we obtain

𝐶𝑎 =

∫
𝐿2

dr
1

2𝐿2

∑︁
q

𝑞2ℎq𝑒
𝑖q·r 1

𝐿2

∑︁
q′
𝐺𝑎 (q′)𝑒𝑖q′ ·r

=
1

2𝐿4

∑︁
q,q′

𝑞2ℎq𝐺𝑎 (q′)
∫
𝐿2

dr𝑒𝑖q·r𝑒𝑖q
′ ·r

=
1

2𝐿4

∑︁
q,q′

𝑞2ℎq𝐺𝑎 (q′)𝐿2𝛿q′ ,−q

=
1

2𝐿2

∑︁
q

𝑞2ℎq𝐺𝑎 (−q), (B2)

where 𝛿q′ ,−q is a Kronecker delta function.

The variance in 𝐶𝑎 for a flat, fluctuating membrane is then derived as

⟨𝐶𝑎
2⟩flat

=

〈
1

2𝐿2

∑︁
q

𝑞2ℎq𝐺𝑎 (−q) 1

2𝐿2

∑︁
q′
𝑞′2ℎq′𝐺𝑎 (−q′)

〉

=
1

4𝐿4

∑︁
q,q′

𝑞2𝑞′2
〈
ℎqℎq′

〉
𝐺𝑎 (−q)𝐺𝑎 (−q′)

=
1

4𝐿4

∑︁
q

𝑞4
〈
ℎqℎ−q

〉
𝐺𝑎 (−q)𝐺𝑎 (q), (B3)

where in the last step we have noted that ⟨ℎqℎq′⟩ = 𝛿q,−q′ ⟨ℎqℎ−q⟩. Since ℎ−q = ℎ∗q and 𝐺𝑎 (−q) = 𝐺𝑎 (q)∗, this simplifies to

⟨𝐶𝑎
2⟩flat

=
1

4𝐿4

∑︁
q

𝑞4⟨|ℎq |2⟩|𝐺𝑎 (q) |2. (B4)

Similarly, the lipid density deviation sensed by a protein of size 𝑎 in Eq. (8) can be used to derive the variance in density

deviations for a flat membrane, as shown in Eq. (22).

Appendix C: Simulation algorithms

1. Derivation of equation of motion

a. Choosing thermal noises to obey detailed balance

We have written our equations of motion as

𝜕

𝜕𝑡

©­
«
ℎq

𝜌q

𝜌̄q

ª®
¬
= −𝐿2

©­­«

1
Ωℎ
𝜕𝐸/𝜕ℎ∗q

1
Ω𝜌
𝜕𝐸/𝜕𝜌∗q

1
Ω𝜌̄
𝜕𝐸/𝜕𝜌̄∗q

ª®®¬
+ ©­

«
𝜉q

𝜁q

𝜒q

ª®
¬
. (C1)

The correlations of the Gaussian Langevin noises can be written as

⟨𝜉q (𝑡)𝜉q′ (𝑡′)⟩ = 2𝐷ℎ𝛿q,−q′𝛿(𝑡 − 𝑡′), (C2)

⟨𝜁q (𝑡)𝜁q′ (𝑡′)⟩ = 2𝐷𝜌𝛿q,−q′𝛿(𝑡 − 𝑡′), (C3)

⟨𝜒q (𝑡)𝜒q′ (𝑡′)⟩ = 2𝐷 𝜌̄𝛿q,−q′𝛿(𝑡 − 𝑡′). (C4)
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This serves as a definition for 𝐷ℎ,𝜌,𝜌̄.

The amplitudes of the noises 𝐷ℎ, 𝐷𝜌, 𝐷 𝜌̄, which are analogous to diffusion coefficients in simple Brownian dynamics [94],

must obey a fluctuation-dissipation relationship. This can be found by writing down the Fokker-Planck equation [95] for the time

evolution of the probability distribution of the fields 𝑃({ℎq}, {𝜌q}, { 𝜌̄q}) as

𝜕𝑃

𝜕𝑡
=

∑︁
q

𝜕

𝜕ℎq

[
𝐿2

Ωℎ (𝑞)
𝜕𝐸

𝜕ℎ−q

𝑃 + 𝐷ℎ

𝜕𝑃

𝜕ℎ−q

]
+

∑︁
q

𝜕

𝜕𝜌q

[
𝐿2

Ω𝜌 (𝑞)
𝜕𝐸

𝜕𝜌−q

𝑃 + 𝐷𝜌

𝜕𝑃

𝜕𝜌−q

]
+

∑︁
q

𝜕

𝜕𝜌̄q

[
𝐿2

Ω𝜌̄ (𝑞)
𝜕𝐸

𝜕𝜌̄−q

𝑃 + 𝐷 𝜌̄

𝜕𝑃

𝜕𝜌̄−q

]
,

(C5)

where 𝐸 is the total membrane free energy defined in Eq. (4), and we have noted that ℎ∗q = ℎ−q, 𝜌∗q = 𝜌−q, 𝜌̄∗q = 𝜌̄−q for the

real-valued functions ℎ(r), 𝜌(r), 𝜌̄(r).
For the steady-state probability to have the Gibbs-Boltzmann form, 𝑃𝐺𝐵 ({ℎq}, {𝜌q}, { 𝜌̄q}) = 1

𝑍
exp(−𝐸/𝑘𝐵𝑇), it must set the

right hand side of this Fokker-Planck equation to zero. We note that 𝜕
𝜕ℎq

𝑃𝐺𝐵
= − 1

𝑘𝐵𝑇
𝜕𝐸
𝜕ℎq

𝑃𝐺𝐵. Plugging in the Gibbs-Boltzmann

solution to the Fokker-Planck equation, we find:

𝜕𝑃𝐺𝐵

𝜕𝑡
=

∑︁
q

𝜕

𝜕ℎq

[
𝐿2

Ωℎ (𝑞)
𝜕𝐸

𝜕ℎ−q

𝑃𝐺𝐵 − 𝐷ℎ

𝑘𝐵𝑇

𝜕𝐸

𝜕ℎ−q

𝑃𝐺𝐵

]
+

∑︁
q

𝜕

𝜕𝜌q

[
𝐿2

Ω𝜌 (𝑞)
𝜕𝐸

𝜕𝜌−q

𝑃𝐺𝐵 −
𝐷𝜌

𝑘𝐵𝑇

𝜕𝐸

𝜕𝜌−q

𝑃𝐺𝐵

]
+

∑︁
q

𝜕

𝜕𝜌̄q

[
𝐿2

Ω𝜌̄ (𝑞)
𝜕𝐸

𝜕𝜌̄−q

𝑃𝐺𝐵 −
𝐷 𝜌̄

𝑘𝐵𝑇

𝜕𝐸

𝜕𝜌̄−q

𝑃𝐺𝐵

]
.

(C6)

For the equation to be at steady-state at the Gibbs Boltzmann distribution, and the right hand side to be zero, we then need

𝐷ℎ =
𝑘𝐵𝑇𝐿

2

Ωℎ (𝑞)
, (C7)

𝐷𝜌 =
𝑘𝐵𝑇𝐿

2

Ω𝜌 (𝑞)
, (C8)

𝐷 𝜌̄ =
𝑘𝐵𝑇𝐿

2

Ω𝜌̄ (𝑞)
. (C9)

These are the Einstein relations for our system.

b. Deriving hydrodynamic mobilities for ℎ, 𝜌, and 𝜌̄

To obtain the mobilities Ω
−1
ℎ

, Ω−1
𝜌 and Ω

−1
𝜌̄ , we derive the dynamical equations for 𝜕ℎq/𝜕𝑡, 𝜕𝜌q/𝜕𝑡, and 𝜕𝜌̄q/𝜕𝑡 from the

hydrodynamic equations in the Seifert-Langer model [43] while neglecting inertial effects with the Stokes approximation. The

model assumes that the membrane is surrounded by fluid above and below the membrane. Our derivation here is a variant of that

presented in [43], to highlight how the Seifert-Langer results can be generalized to an arbitrary Hamiltonian.

We describe the fluid flow above and below the membrane using the incompressible Stokes equations with a fluid velocity

v±
𝑓
(𝑥, 𝑦, 𝑧), where ± indicates whether we are above (𝑧 > 0) or below (𝑧 < 0) the membrane. These equations are

∇ · v±𝑓 = 0, (C10)

𝜂∇2v±𝑓 = ∇𝑝±, (C11)

where 𝑝± is the pressure above/below the membrane.

The two monolayers of the membrane have in-plane velocity fields ṽ± (𝑥, 𝑦)—these are treated as completely two-dimensional.

The Stokes equations for the velocity fields of the monolayers are

−∇̃𝜎+ + 𝑇+ · ê𝑧 + 𝜇∇̃2ṽ+ − 𝑏(ṽ+ − ṽ−) = 0, (C12)

−∇̃𝜎− − 𝑇− · ê𝑧 + 𝜇∇̃2ṽ− + 𝑏(ṽ+ − ṽ−) = 0, (C13)

where a tilde denotes quantities in two dimensions, 𝜎± (𝑥, 𝑦) = −𝛿𝐸/𝛿𝜌± (𝑥, 𝑦) is the surface pressure due to varying densities

in the two leaflets, 𝑇± is the stress tensor of the surrounding fluid, i.e. 𝑇± · (±ê𝑧) is the force per unit area exerted by the outside
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fluid onto the monolayers, 𝜇 is the monolayer viscosity, and 𝑏 is the intermonolayer friction. The components of the stress tensor

𝑇± are

𝑇±
𝑖 𝑗 = −𝑝±𝛿𝑖 𝑗 + 𝜂(𝜕𝑖𝑣±𝑓 , 𝑗 + 𝜕 𝑗𝑣±𝑓 ,𝑖). (C14)

There is also a force balance equation in the vertical direction, written in real space as

−𝑇+
𝑧𝑧 (𝑥, 𝑦, 𝑧 = 0) + 𝑇−

𝑧𝑧 (𝑥, 𝑦, 𝑧 = 0) = −𝛿𝐸
𝛿ℎ
. (C15)

We assume a no-slip boundary condition between the membrane and the outside fluid—the velocity of the membrane must

match the external fluid velocity. In the plane of the membrane, this requires that the monolayer velocities match the in-plane

components of v±
𝑓

at 𝑧 = 0:

𝑣̃±𝑥 (𝑥, 𝑦) = 𝑣±𝑓 ,𝑥 (𝑥, 𝑦, 𝑧 = 0), (C16)

𝑣̃±𝑦 (𝑥, 𝑦) = 𝑣±𝑓 ,𝑦 (𝑥, 𝑦, 𝑧 = 0). (C17)

In addition, the 𝑧 velocity of the membrane 𝜕𝑡ℎ(𝑥, 𝑦) must match the external fluid flow in the 𝑧 direction, assuming that the fluid

does not penetrate the membrane. Therefore,

𝑣±𝑓 ,𝑧 (𝑥, 𝑦, 𝑧 = 0) = 𝜕𝑡ℎ(𝑥, 𝑦, 𝑡). (C18)

The leaflet densities obey (approximately; see [43]) an in-plane continuity equation,

𝜕𝜌±

𝜕𝑡
(𝑥, 𝑦, 𝑡) = −∇̃ · ṽ±. (C19)

We want to determine, from these hydrodynamic equations, what the equations of motion for the rescaled densities in the top

and bottom leaflets 𝜌± (𝑥, 𝑦, 𝑡) and the membrane height ℎ(𝑥, 𝑦, 𝑡) are. This requires us to simultaneously solve for the fluid flow

in-plane and out-of-plane. This is easier to do in Fourier space. We also follow Seifert-Langer by using an Ansatz that in-plane

flows are only in the e𝑥 direction.

We can then write the in-plane monolayer velocities in Fourier space as

𝑣̃±𝑥 =
1

𝐿2

∑︁
𝑞

𝑣̃±𝑞𝑒
𝑖𝑞𝑥 . (C20)

Given this form, the Stokes equations for the 𝑥 component of the in-plane velocity fields of the monolayers are, in real space,

−𝜕𝑥𝜎+ + 𝑇+
𝑥𝑧 + 𝜇∇̃2𝑣̃+𝑥 − 𝑏(𝑣̃+𝑥 − 𝑣̃−𝑥 ) = 0, (C21)

−𝜕𝑥𝜎− − 𝑇−
𝑥𝑧 + 𝜇∇̃2𝑣̃−𝑥 + 𝑏(𝑣̃+𝑥 − 𝑣̃−𝑥 ) = 0. (C22)

Then, in Fourier space, these can be written as

−𝑖𝑞𝜎+ (𝑞) + 𝑇+
𝑥𝑧 (𝑞) − 𝜇𝑞2𝑣̃+𝑞 − 𝑏(𝑣̃+𝑞 − 𝑣̃−𝑞 ) = 0, (C23)

−𝑖𝑞𝜎− (𝑞) − 𝑇−
𝑥𝑧 (𝑞) − 𝜇𝑞2𝑣̃−𝑞 + 𝑏(𝑣̃+𝑞 − 𝑣̃−𝑞 ) = 0, (C24)

where we have defined 𝜎±
= 1/𝐿2

∑
𝑞 𝜎

± (𝑞)𝑒𝑖𝑞𝑥 . The Fourier transforms of the surface pressure are:

𝜎± (𝑞) =
{
− 𝛿𝐸

𝛿𝜌± (𝑥, 𝑦)

}
𝑞

= −𝐿2 𝜕𝐸

𝜕𝜌±−𝑞
, (C25)

where {· · · }𝑞 is the Fourier transform, and the second equation can be derived from applying the chain rule on functional

derivatives to our convention for Fourier transforms. (Note 𝜌−𝑞 = (𝜌𝑞)∗ because 𝜌(𝑥, 𝑦) is a real function.)

The fluid velocity and pressure above and below the membrane can be written in the form

v±𝑓 (𝑥, 𝑦, 𝑧) =
1

𝐿2

∑︁
𝑞

[𝑤± (𝑧)e𝑥 + 𝑢± (𝑧)e𝑧]exp[𝑖𝑞𝑥], (C26)

𝑝± (𝑥, 𝑦, 𝑧) = 1

𝐿2

∑︁
𝑞

𝐵± (𝑧) exp[𝑖𝑞𝑥], (C27)
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where e𝑥 and e𝑧 are unit vectors in the 𝑥 and 𝑧 directions, and

𝑤± (𝑧) = [((±𝑤̄ − 𝑤) − 𝑖𝑢)𝑞𝑧 + 𝑤̄ ± 𝑤] exp[∓𝑞𝑧], (C28)

𝑢± (𝑧) = [(−𝑖(𝑤̄ ± 𝑤) ± 𝑢)𝑞𝑧 + 𝑢] exp[∓𝑞𝑧], (C29)

𝐵± (𝑧) = 2𝜂𝑞 [−𝑖(𝑤̄ ± 𝑤) ± 𝑢] exp[∓𝑞𝑧], (C30)

where 𝑤, 𝑤̄, and 𝑢 are constants to be solved for. Note that these constants will depend on 𝑞.

The boundary condition of Eq. (C16) then reduces to

𝑣̃±𝑥 (𝑥, 𝑦) = 𝑣±𝑓 ,𝑥 (𝑥, 𝑦, 𝑧 = 0) (C31)

=⇒ 1

𝐿2

∑︁
𝑞

𝑣̃±𝑞𝑒
𝑖𝑞𝑥

=
1

𝐿2

∑︁
𝑞

(𝑤̄ ± 𝑤)𝑒𝑖𝑞𝑥 (C32)

=⇒ 𝑣̃±𝑞 = 𝑤̄ ± 𝑤. (C33)

Similarly, the boundary condition of Eq. (C18) gives

𝜕𝑡ℎ(𝑥, 𝑦, 𝑡) = 𝑣±𝑓 ,𝑧 (𝑥, 𝑦, 𝑧 = 0) (C34)

=⇒ 1

𝐿2

∑︁
𝑞

𝜕𝑡ℎ𝑞 (𝑡)𝑒𝑖𝑞𝑥 =
1

𝐿2

∑︁
𝑞

𝑢± (𝑧 = 0)𝑒𝑖𝑞𝑥 (C35)

=⇒ 𝜕𝑡ℎ𝑞 (𝑡) = 𝑢, (C36)

where in the last equation, 𝑢 = 𝑢± (𝑧 = 0) is a constant.

We will now simplify the in-plane force balance equations (Eqs. (C23)–(C24)). To compute the surface pressure gradients,

we use the change of variables

𝜎± (𝑞) = −𝐿2

(
𝜕𝐸

𝜕𝜌±
∗

𝑞

)
= −𝐿2

(
𝜕𝐸

𝜕𝜌∗𝑞

𝜕𝜌∗𝑞

𝜕𝜌±
∗

𝑞

+ 𝜕𝐸

𝜕𝜌̄∗𝑞

𝜕𝜌̄∗𝑞

𝜕𝜌±
∗

𝑞

)
= −𝐿2

(
±1

2

𝜕𝐸

𝜕𝜌∗𝑞
+ 1

2

𝜕𝐸

𝜕𝜌̄∗𝑞

)
. (C37)

This means that the difference of surface pressures depends on the derivative of energy with the density difference 𝜌, i.e.

𝜎+ (𝑞) − 𝜎− (𝑞) = −𝐿2 𝜕𝐸
𝜕𝜌∗𝑞

, and relatedly the sum of the surface pressures will be related to the derivative with respect to 𝜌̄.

The next term in the force balance requires 𝑇±
𝑥𝑧 (𝑞)—the fluid’s stress tensor in Fourier space, evaluated at 𝑧 = 0. We will start

by evaluating 𝑇𝑥𝑧 (𝑥, 𝑦, 𝑧) in real space, plugging in our Ansatz for the fluid velocity (Eq. (C26)). The pressure, which only

contributes to the diagonal component of the stress tensor, does not show up in the 𝑥𝑧 component, and so𝑇±
𝑥𝑧 = 𝜂(𝜕𝑥𝑣±𝑓 ,𝑧+𝜕𝑧𝑣±𝑓 ,𝑥).

We find, then,

𝑇±
𝑥𝑧 (𝑥, 𝑦, 𝑧) =

1

𝐿2

∑︁
𝑞

𝜂

(
𝜕 [𝑢± (𝑧)𝑒𝑖𝑞𝑥]

𝜕𝑥
+ 𝜕 [𝑤

± (𝑧)𝑒𝑖𝑞𝑥]
𝜕𝑧

)

=⇒ 𝑇±
𝑥𝑧 (𝑥, 𝑦, 𝑧) =

1

𝐿2

∑︁
𝑞

𝜂 ( [(−𝑖(𝑤̄ ± 𝑤) ± 𝑢)𝑞𝑧 + 𝑢] exp[∓𝑞𝑧]𝑖𝑞 exp[𝑖𝑞𝑥]

+ [((∓𝑤̄ − 𝑤) − 𝑖𝑢)𝑞𝑧 + 𝑤̄ ± 𝑤] (∓𝑞) exp[∓𝑞𝑧] exp[𝑖𝑞𝑥]
+ [((∓𝑤̄ − 𝑤) − 𝑖𝑢)𝑞] exp[∓𝑞𝑧] exp[𝑖𝑞𝑥]) . (C38)

Evaluating this stress tensor at the membrane location, 𝑧 = 0,

𝑇±
𝑥𝑧 (𝑥, 𝑦, 𝑧 = 0) = 1

𝐿2

∑︁
𝑞

𝜂(𝑢𝑖𝑞𝑒𝑖𝑞𝑥 + (𝑤̄ ± 𝑤) (∓𝑞)𝑒𝑖𝑞𝑥 + ((∓𝑤̄ − 𝑤) − 𝑖𝑢)𝑞𝑒𝑖𝑞𝑥) (C39)

=
1

𝐿2

∑︁
𝑞

∓2𝜂𝑞(𝑤̄ ± 𝑤)𝑒𝑖𝑞𝑥 (C40)

=⇒ 𝑇±
𝑥𝑧 (𝑞) = ∓2𝜂𝑞(𝑤̄ ± 𝑤). (C41)

Adding the Fourier-space lateral force balance equations, Eq. (C23) and Eq. (C24), we can solve for 𝑤̄ by plugging in the
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expressions for 𝜎± (𝑞), 𝑇±
𝑥𝑧 (𝑞), and 𝑣̃±𝑞 derived above. Therefore,

− 𝑖𝑞𝜎+ (𝑞) − 𝑖𝑞𝜎− (𝑞) + 𝑇+
𝑥𝑧 (𝑞) − 𝑇−

𝑥𝑧 (𝑞) − 𝜇𝑞2 (𝑣̃+𝑞 + 𝑣̃−𝑞 ) = 0 (C42)

=⇒ 𝑖𝑞𝐿2 𝜕𝐸

𝜕𝜌∗𝑞
− 4𝜂𝑞𝑤̄ − 2𝜇𝑞2𝑤̄ = 0 (C43)

=⇒ 𝑤̄ =
𝑖𝑞

4𝜂𝑞 + 2𝜇𝑞2
𝐿2 𝜕𝐸

𝜕𝜌∗𝑞
. (C44)

Subtracting Eq. (C24) from Eq. (C23), we can solve for 𝑤 as

− 𝑖𝑞𝜎+ (𝑞) + 𝑖𝑞𝜎− (𝑞) + 𝑇+
𝑥𝑧 (𝑞) + 𝑇−

𝑥𝑧 (𝑞) − 𝜇𝑞2 (𝑣̃+𝑞 − 𝑣̃−𝑞 ) − 2𝑏(𝑣̃+𝑞 − 𝑣̃−𝑞 ) = 0 (C45)

=⇒ 𝑖𝑞𝐿2 𝜕𝐸

𝜕𝜌̄∗𝑞
− 4𝜂𝑞𝑤 − 2𝜇𝑞2𝑤 − 4𝑏𝑤 = 0 (C46)

=⇒ 𝑤 =
𝑖𝑞

4𝜂𝑞 + 2𝜇𝑞2 + 4𝑏
𝐿2 𝜕𝐸

𝜕𝜌̄∗𝑞
. (C47)

We can find the remaining parameter, 𝑢, and the corresponding dynamics of the height field, from the vertical force balance

equation (Eq. (C15)). In Fourier space, this equation is

−𝑇+
𝑧𝑧 (𝑞) + 𝑇−

𝑧𝑧 (𝑞) = −𝐿2 𝜕𝐸

𝜕ℎ∗𝑞
. (C48)

We obtain the (𝑧, 𝑧) component of the stress tensor as

𝑇±
𝑧𝑧 (𝑥, 𝑦, 𝑧) = −𝑝±𝛿𝑧𝑧 + 𝜂(𝜕𝑧𝑣±𝑓 ,𝑧 + 𝜕𝑧𝑣±𝑓 ,𝑧) (C49)

= −𝑝± (𝑥, 𝑦, 𝑧) + 2𝜂𝜕𝑧𝑣
±
𝑓 ,𝑧 (C50)

= − 1

𝐿2

∑︁
𝑞

𝐵±(𝑧)𝑒𝑖𝑞𝑥 + 2𝜂
1

𝐿2

∑︁
𝑞

𝜕 [𝑢± (𝑧)𝑒𝑖𝑞𝑥]
𝜕𝑧

. (C51)

At 𝑧 = 0, plugging in the formulas for 𝐵± (𝑧) and 𝑢± (𝑧),

𝑇±
𝑧𝑧 (𝑥, 𝑦, 𝑧 = 0) = 2𝜂

1

𝐿2

∑︁
𝑞

𝑞 [−𝑖(𝑤̄ ± 𝑤) ± 𝑢] exp[𝑖𝑞𝑥] + 2𝜂
1

𝐿2

∑︁
𝑞

𝑞(−𝑖(𝑤̄ ± 𝑤) exp[𝑖𝑞𝑥]) (C52)

= ∓ 1

𝐿2

∑︁
𝑞

2𝜂𝑞𝑢 exp[𝑖𝑞𝑥] (C53)

=⇒ 𝑇±
𝑧𝑧 (𝑞) = ∓2𝜂𝑞𝑢. (C54)

The force balance equations in the vertical direction then become

−𝑇+
𝑧𝑧 (𝑞) + 𝑇−

𝑧𝑧 (𝑞) = −𝐿2 𝜕𝐸

𝜕ℎ∗𝑞
(C55)

=⇒ 4𝜂𝑞𝑢 = −𝐿2 𝜕𝐸

𝜕ℎ∗𝑞
(C56)

=⇒ 𝑢 =
−1

4𝜂𝑞
𝐿2 𝜕𝐸

𝜕ℎ∗𝑞
. (C57)

Now that we have values for 𝑢, 𝑤, and 𝑤̄, we can find the equations of motion for ℎ𝑞 , 𝜌𝑞 , and 𝜌̄𝑞 . We already know that 𝜕𝑡ℎ𝑞 = 𝑢

from the boundary condition at the membrane. The other equations arise from applying the in-plane continuity equation, Eq.

(C19). If we plug in our Fourier transform representation of the functions, we see that

1

𝐿2

∑︁
𝑞

𝜕𝜌±𝑞
𝜕𝑡

𝑒𝑖𝑞𝑥 = − 1

𝐿2

∑︁
𝑞

𝑖𝑞𝑣̃±𝑞 (C58)

=⇒
𝜕𝜌±𝑞
𝜕𝑡

= −𝑖𝑞𝑣̃±𝑞 = −𝑖𝑞(𝑤̄ ± 𝑤). (C59)
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Using the definitions 𝜌𝑞 = (𝜌+𝑞 − 𝜌−𝑞 )/2, 𝜌̄𝑞 = (𝜌+𝑞 + 𝜌−𝑞 )/2, we then get

𝜕ℎ𝑞

𝜕𝑡
= 𝑢 = − 1

4𝜂𝑞
𝐿2 𝜕𝐸

𝜕ℎ∗𝑞
, (C60)

𝜕𝜌𝑞

𝜕𝑡
=

1

2

(
𝜕𝜌+𝑞
𝜕𝑡

−
𝜕𝜌−𝑞
𝜕𝑡

)
= −𝑖𝑞𝑤 =

𝑞2

4𝜂𝑞 + 2𝜇𝑞2 + 4𝑏
𝐿2 𝜕𝐸

𝜕𝜌∗𝑞
, (C61)

𝜕𝜌̄𝑞

𝜕𝑡
=

1

2

(
𝜕𝜌+𝑞
𝜕𝑡

+
𝜕𝜌−𝑞
𝜕𝑡

)
= −𝑖𝑞𝑤̄ =

𝑞2

4𝜂𝑞 + 2𝜇𝑞2
𝐿2 𝜕𝐸

𝜕𝜌̄∗𝑞
. (C62)

Equating Eqs. (C60)–(C62) to the deterministic part of our equations of motion in Eq. (C1) gives us the hydrodynamic

mobilities,

1

Ωℎ

=
1

4𝜂𝑞
, (C63)

1

Ω𝜌

=
𝑞2

4𝜂𝑞 + 2𝜇𝑞2 + 4𝑏
, (C64)

1

Ω𝜌̄

=
𝑞2

4𝜂𝑞 + 2𝜇𝑞2
. (C65)

The first two of these mobilities could be derived simply by requiring that the deterministic equations of motion matched those

of Seifert and Langer. The third is not quite the result of Seifert and Langer, as we have neglected inertia in the 𝜌̄ mode. Although

this assumption influences the dynamics, the resultant thermal equilibrium distribution of 𝜌̄ does not change.

c. Deriving the equations of motion using functional derivatives of the membrane energy 𝐸

The membrane energy 𝐸 in Eq. (4) may be expressed as

𝐸 =

∑︁
q

1

2

1

𝐿2
(𝜅𝑞4ℎqℎ−q − 2𝑘𝑑𝑞2𝜌−qℎq − 2𝑘𝑑𝑞2ℎ−q𝜌q + 2𝑘𝜌q𝜌−q + 2𝑘 𝜌̄q 𝜌̄−q) + 𝐸adh.

We show here that we get the Seifert-Langer equations of motion back in the limit of zero adhesion (𝐸adh = 0). Differentiating

𝐸 with respect to 𝜌−j, such that j is an arbitrary Fourier index,

𝜕𝐸

𝜕𝜌−j

=

∑︁
q

1

2

1

𝐿2
(−2𝑘𝑑𝑞2ℎq𝛿−j,−q − 2𝑘𝑑𝑞2ℎ−q𝛿−j,q + 2𝑘𝜌q𝛿−j,−q + 2𝑘𝜌−q𝛿−j,q), (C66)

where 𝛿−j,−q and 𝛿−j,q are Kronecker delta terms.

Consequently,

𝜕𝐸

𝜕𝜌−j

=
1

2𝐿2
(−2𝑘𝑑𝑗2ℎj − 2𝑘𝑑𝑗2ℎj + 2𝑘𝜌j + 2𝑘𝜌j). (C67)

Since j is an arbitrary Fourier index, we may equivalently reformulate in terms of q (noting that 𝜕𝐸
𝜕𝜌−j

=
𝜕𝐸
𝜕𝜌∗

j

) as

𝜕𝐸

𝜕𝜌∗q
=

1

𝐿2
(−2𝑘𝑑𝑞2ℎq + 2𝑘𝜌q). (C68)

Similarly, it can be shown that

𝜕𝐸

𝜕𝜌̄∗q
=

1

𝐿2
(2𝑘 𝜌̄q), (C69)

𝜕𝐸

𝜕ℎ∗q
=

1

𝐿2
(𝜅𝑞4ℎq + 2𝑘𝑑𝑞2𝜌q). (C70)
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Substituting Eqs. (C68)–(C70) as appropriate to the dynamical equations in Eqs. (C60)–(C62), we have

𝜕

𝜕𝑡

©­«
ℎq

𝜌q

𝜌̄q

ª®¬
≡ −M

©­«
ℎq

𝜌q

𝜌̄q

ª®¬
= −

©­­­«

𝜅𝑞4

4𝜂𝑞

−𝑞𝑘𝑑
2𝜂

0

−𝑘𝑑𝑞4

2𝑏+2𝜂𝑞+𝜇𝑞2

𝑘𝑞2

2𝑏+2𝜂𝑞+𝜇𝑞2 0

0 0
𝑘𝑞2

2𝜂𝑞+𝜇𝑞2

ª®®®¬
©­«
ℎq

𝜌q

𝜌̄q

ª®¬
. (C71)

These are (except for the 𝜌̄ mode, as noted above) the equations of motion from [43], who have neglected membrane-substrate

adhesion (𝛾 = 0). It is also straightforward to show that if we have adhesion to a flat surface, then 𝐸adh =
𝛾

2

∫
drℎ2 (r) =

𝛾

2𝐿2

∑
q |ℎq |2, which will lead to an added term 𝛾/4𝜂𝑞 to the Mℎℎ term as shown in Eq. (C86).

2. Numerical evaluation of the equation of motion

To numerically solve the stochastic equations of motion in Eq. (C1), we take the simplest approach, the Euler-Maruyama

method [96]. Let us take the dynamics of the height variable ℎq as an example. Integrating from a time 𝑡 to 𝑡 + Δ𝑡, this equation

becomes

ℎq (𝑡 + Δ𝑡) − ℎq (𝑡) = −
∫ 𝑡+Δ𝑡

𝑡

d𝑡′
𝐿2

Ωℎ

𝜕𝐸

𝜕ℎ∗q
+

∫ 𝑡+Δ𝑡

𝑡

d𝑡′𝜉q (𝑡′). (C72)

The term without the Langevin noise can be approximated simply with the usual Euler rule, and we define a new function

Ξq (Δ𝑡) ≡
∫ 𝑡+Δ𝑡
𝑡

d𝑡′𝜉q (𝑡′), so we have

ℎq (𝑡 + Δ𝑡) = ℎq (𝑡) − Δ𝑡
𝐿2

Ωℎ

𝜕𝐸

𝜕ℎ∗q
+ Ξq (Δ𝑡). (C73)

Here, Ξ(Δ𝑡) is a Gaussian random variable with mean zero and a variance that will depend on the timestep Δ𝑡. We can compute

its variance straightforwardly by using the correlation of 𝜉q (𝑡) given above, ⟨𝜉q (𝑡)𝜉q′ (𝑡′)⟩ = 2𝐷ℎ𝛿q,−q′𝛿(𝑡 − 𝑡′), such that

⟨|Ξq (Δ𝑡) |2⟩ = ⟨Ξq (Δ𝑡)Ξ−q (Δ𝑡)⟩ =
〈∫ 𝑡+Δ𝑡

𝑡

d𝑡𝜉q (𝑡)
∫ 𝑡 ′+Δ𝑡 ′

𝑡 ′
d𝑡′𝜉−q (𝑡′)

〉

=

∫ 𝑡+Δ𝑡

𝑡

∫ 𝑡 ′+Δ𝑡 ′

𝑡 ′

〈
𝜉q (𝑡)𝜉−q (𝑡′)

〉
d𝑡d𝑡′

=

∫ 𝑡+Δ𝑡

𝑡

∫ 𝑡 ′+Δ𝑡

𝑡 ′
2𝐷ℎ𝛿(𝑡 − 𝑡′)d𝑡d𝑡′

=
2𝑘𝐵𝑇𝐿

2

Ωℎ

∫ 𝑡+Δ𝑡

𝑡

d𝑡

=
2𝑘𝐵𝑇𝐿

2

Ωℎ

Δ𝑡. (C74)

Similarly, to integrate over the Langevin noises associated to fluctuations in lipid densities, we define Θq (Δ𝑡) ≡
∫ 𝑡+Δ𝑡
𝑡

d𝑡′𝜁q (𝑡′)
and Υq (Δ𝑡) ≡

∫ 𝑡+Δ𝑡
𝑡

d𝑡′𝜒q (𝑡′) and derive

⟨|Θq (Δ𝑡) |2⟩ =
2𝑘𝐵𝑇𝐿

2

Ω𝜌

Δ𝑡, (C75)

⟨|Υq (Δ𝑡) |2⟩ =
2𝑘𝐵𝑇𝐿

2

Ω𝜌̄

Δ𝑡. (C76)

In ordinary Brownian dynamics, we would generate a real random variable with a variance given by Eqs. (C74)–(C76) in

order to evolve the equations of motion. However, our Fourier modes are complex, except for q = (0, 0) (see Appendix A).

We sample the real and imaginary parts of our Fourier modes separately, with variances so that their absolute value obeys Eqs.
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(C74)–(C76), such that

Re[Ξq (Δ𝑡)]; Im[Ξq (Δ𝑡)] ∼ N
(
0,
𝑘𝐵𝑇𝐿

2

Ωℎ

Δ𝑡

)
, (C77)

Re[Θq (Δ𝑡)]; Im[Θq(Δ𝑡)] ∼ N
(
0,
𝑘𝐵𝑇𝐿

2

Ω𝜌

Δ𝑡

)
, (C78)

Re[Υq (Δ𝑡)]; Im[Υq(Δ𝑡)] ∼ N
(
0,
𝑘𝐵𝑇𝐿

2

Ω𝜌̄

Δ𝑡

)
, (C79)

where N(𝜇, 𝜎2) is a Gaussian distribution with mean 𝜇 and variance 𝜎2. This is essentially the approach used by [50, 91, 97],

etc.

The equation evolving the membrane’s height in Fourier space, Eq. (C73), includes a term −𝜕𝐸
𝜕ℎ∗q

, which includes the forces

acting on the membrane from both deformation forces (bending and monolayer compression) in addition to the forces due to

membrane-bead adhesion. The deformation forces are as shown earlier in Eq. (C70). When we simulate a membrane-bead

system, we explicitly compute the force due to membrane-bead adhesion by Fast Fourier transforming the functional derivative

−𝛿𝐸adh/𝛿ℎ(r), which is computed in real space. Therefore at time 𝑡,

−𝜕𝐸
𝜕ℎ∗q

=
1

𝐿2
(−𝜅𝑞4ℎq (𝑡) + 2𝑘𝑑𝑞2𝜌q (𝑡)) +

1

𝐿2

{
−𝛿𝐸adh (r)
𝛿ℎ(r)

}
q

, (C80)

where {· · · }q indicates the Fourier transform performed using our convention (analogous to Eq. (3)), noting the discretization

dr = d𝑥d𝑦 = (𝐿/𝑁)2. The numerical algorithm for evolving ℎq is obtained by writing Eq. (C73) explicitly as

ℎq (𝑡 + Δ𝑡) = ℎq (𝑡) + Δ𝑡
𝐿2

Ωℎ

[
1

𝐿2
(−𝜅𝑞4ℎq (𝑡) + 2𝑘𝑑𝑞2𝜌q (𝑡)) +

1

𝐿2

{
−𝛿𝐸adh (r)
𝛿ℎ(r)

}
q

]
+ Ξq (Δ𝑡) (C81)

= ℎq (𝑡) +
Δ𝑡

4𝜂𝑞

[
−𝜅𝑞4ℎq (𝑡) + 2𝑘𝑑𝑞2𝜌q (𝑡) +

{
−𝛿𝐸adh (r)
𝛿ℎ(r)

}
q

]
+ Ξq (Δ𝑡). (C82)

Similarly, the numerical algorithms for evolving 𝜌q and 𝜌̄q can be written as

𝜌q (𝑡 + Δ𝑡) = 𝜌q (𝑡) +
Δ𝑡𝑞2

4𝑏 + 4𝜂𝑞 + 2𝜇𝑞2

[
2𝑘𝑑𝑞2ℎq (𝑡) − 2𝑘𝜌q (𝑡)

]
+ Θq (Δ𝑡), (C83)

𝜌̄q (𝑡 + Δ𝑡) = 𝜌̄q (𝑡) +
Δ𝑡𝑞2

4𝜂𝑞 + 2𝜇𝑞2

[
−2𝑘 𝜌̄q (𝑡)

]
+ Υq (Δ𝑡). (C84)

With the exception of q = (0, 0), for both the real and imaginary components of the remaining independent modes, the thermal

noise Ξq (Δ𝑡) is sampled from a Gaussian distribution with a mean of zero and variance 𝐿2𝑘𝐵𝑇Δ𝑡
4𝜂𝑞

, Θq (Δ𝑡) is sampled from a

Gaussian distribution with mean zero and variance
𝐿2𝑘𝐵𝑇𝑞

2
Δ𝑡

4𝑏+4𝜂𝑞+2𝜇𝑞2 , and Υq (Δ𝑡) is sampled from a Gaussian distribution with mean

zero and variance
𝐿2𝑘𝐵𝑇𝑞

2
Δ𝑡

4𝜂𝑞+2𝜇𝑞2 .

To allow for faster simulation equilibration, we set the membrane’s initial height field ℎ(r) at 𝑡 = 0 to be equal to the bead’s

height ℎbead (r), and then Fast Fourier Transform this to obtain ℎq (𝑡 = 0). The lipid density 𝜌q is initialized at zero and allowed

to evolve due to its coupling with membrane height; 𝜌̄q is also initialized at zero. After initializing ℎq, 𝜌q and 𝜌̄q, the zeroth

modes of each of these variables are not evolved further either due to the deterministic or stochastic contributions. To avoid

division by zero when 𝑞 = 0, the zeroth modes of the mobilities 1/Ωℎ = 1/4𝜂𝑞 and 1/Ω𝜌̄ = 𝑞2/(2𝜂𝑞 + 𝜇𝑞2) must be set to zero

when evaluating these algorithms. After each successive Δ𝑡, the arrays computed for ℎq (𝑡 + Δ𝑡), 𝜌q (𝑡 + Δ𝑡), and 𝜌̄q (𝑡 + Δ𝑡) are

inverse Fast Fourier transformed to store their corresponding real-space values.

a. Choosing parameters appropriately for simulation convergence

Choosing a small Δ𝑡 is necessary for simulation convergence, but a Δ𝑡 that is too small prolongs the computation time required

since a greater number of timesteps must be simulated for the same 𝑡sim. The following are useful guidelines when assessing

whether a chosen set of dynamical parameters are practically feasible for the desired simulation.
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Consider the dynamical equations for evolving ℎ𝑞 , 𝜌𝑞 , and 𝜌̄ for a membrane adhered to a planar substrate,

𝜕

𝜕𝑡

©­«
ℎq

𝜌q

𝜌̄q

ª®¬
≡ −M ©­«
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, (C86)

where we note the inclusion of adhesion strength 𝛾 in Mℎℎ.

The eigenvalues for M can be obtained symbolically by matrix diagonalization (we used the sympy package in Python). This

results in three sets of eigenvalues, which we denote as 𝜆1 (𝑞), 𝜆2 (𝑞), and 𝜆3 (𝑞). These eigenvalues correspond to the relaxation

frequencies of the modes 𝑞. We plot the relaxation times 𝜏𝑞 = 1/𝜆(𝑞) in Fig. 12. For 𝜏1 and 𝜏2, the presence of strong adhesion

can allow the low-𝑞 (large wavelength) modes to relax orders of magnitude more quickly.

For simulation convergence, the total simulation time 𝑡sim must be at least a few times longer than the relaxation time of the

slowest relaxing mode. Also, the timestep Δ𝑡 must be a fraction of the relaxation time of the fastest relaxing mode for numerical

stability of the integration algorithm,

𝜆slowest𝑡sim ≳ 5–10,

𝜆fastestΔ𝑡 ≪ 1.

Practically, it suffices to have 𝜆fastestΔ𝑡 ≈ 0.2. 𝜆slowest and 𝜆fastest can be obtained as the minimum and maximum values of 𝜆𝑖 (𝑞).

(a) (b) (c)

FIG. 12. A comparison of the relaxation times 𝜏 = 1/𝜆(𝑞) for 𝜆1 (𝑞), 𝜆2 (𝑞), and 𝜆3 (𝑞), demonstrating the effects of adhesion on the relaxation

of modes. The presence of membrane-substrate adhesion (𝛾 = 1013 J/m4) results in faster relaxation of low-𝑞 modes for two of the eigenvalues,

while the third eigenvalue is independent of adhesion.

Appendix D: Cross-sectional profiles of simulated membranes adhered to a small bead with different adhesion strengths

To perfectly adhere a membrane onto a hemispherical bead and the flat substrate around it would require large bending forces

at the periphery of the bead due to the sharp curve. If the membrane-substrate adhesion strength is too weak, the membrane does

not exactly follow the bead shape, even on average. We show in Fig. 13 that, for a small bead of 𝑅 = 200 nm, the simulated

membrane’s curvature at the center of the bead deviates from 𝐶bead = 1/𝑅 when 𝛾 is weak. This discrepancy between bead

shape and the average membrane shape is most relevant at small bead sizes and at weak adhesion strengths, and leads to the

deviation between theory and simulated SNR in Fig. 5. We note that the membrane’s average profile can be below the “bead

height” line at 𝛾 = 1011 J/m4 in Fig. 13. The bead height line indicates the energy minimum of the harmonic potential—this does

not necessarily indicate that the membrane is crossing the bead itself. At these low adhesions, using a more complex potential

with a hard core might be necessary in order to prevent the membrane from penetrating the bead. However, we expect that the

distributions of height from the harmonic potential are a good approximation to distributions for fluctuations in the vicinity of

the substrate [41].

Appendix E: SNR𝐶 and SNR𝜌 in the low-adhesion regime

In the main text, we primarily use our best estimate of 𝛾 for the supported lipid bilayer systems of [14, 15]. Here, we show

some corresponding plots of SNR in the low-adhesion regime. Membrane-cytoskeleton confinement in cells have reported
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FIG. 13. Cross-sectional profile of bead height for a bead of diameter 0.4 𝜇m and the mean height of a simulated membrane adhered to this

bead. (Left): with weak adhesion (𝛾 = 1011 J/m4), the simulated membrane overestimates the curvature at the center of the bead due to a

height discrepancy of 4.073 nm at the bead center. (Right): with stronger adhesion (𝛾 = 1013 J/m4), the membrane wraps around the bead

more effectively, with a negligible -0.003 nm central overhang.

𝛾 ∼ 109 J/m4 [59]. This corresponds to SNR𝐶 ≈ 0.25 (as shown in Fig. 14). Assuming a negligible basal association rate, Eq.

(39) implies a maximal association ratio of exp(0.25) = 1.3 to the preferred radius when distinguishing between cells of radii

(𝑅𝐴, 𝑅𝐵) = (0.5, 1.5) 𝜇m.
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FIG. 14. Sensing SNR in the low-adhesion regime for 𝛾 = 109 J/m4. (Top) SNR vs. protein size (when 𝑑 = 1 nm) and (Bottom) SNR vs.

monolayer thickness (when 𝑎 = 16 nm) for (𝑅𝐴, 𝑅𝐵) = (0.5 𝜇m, 1.5 𝜇m). The curvature and 𝜌 variances for these SNR values are computed

with Eq. (25) and Eq. (26).

Appendix F: Justification for adhesion strength 𝛾

We estimate the membrane-substrate adhesion parameter 𝛾 in our model using the approach of [42]. They model the energy

per unit area of membrane at height ℎ as

𝑉 = − 𝐴

12𝜋

(
1

ℎ2
− 1

(ℎ + 𝛿)2

)
+ 𝛽𝑒−𝛼ℎ, (F1)

where the first term is the van der Waals interaction between a bilayer of thickness 𝛿 = 3.8 nm and the substrate, with

𝐴 ≈ 2.6 × 10−21 J as the Hamaker constant [75, 98]. The second term is a phenomenological form for the hydration force with

𝛽 ≈ 0.93 J/m2 and 𝛼−1 ≈ 0.22 nm. Instead of this complex potential, we have used a harmonic approximation to it about an

equilibrium height ℎ0,

𝑉 (ℎ) ≈ 𝑉0 +
1

2
𝑉 ′′ (ℎ0) (ℎ − ℎ0)2, (F2)

where 𝑉 ′′ (ℎ0) = 𝛾, corresponding to our adhesion strength. Note, again, that 𝑉 here is an energy per unit area, so 𝛾 has units

of J/m4. Using the parameter values of [42], stated above, we find that the minimum energy distance is ℎ0 ≈ 3.02 nm, and find

𝑉 ′′ (ℎ0) ≈ 1.6×1013 J/m4. We view this as the roughly correct order of magnitude for a supported lipid bilayer, which is strongly

adherent to the substrate. However, it is possible that this adhesion energy could be a little higher in some SLBs. Experimental
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data indicates that the hydration layer can be as thin as 1 nm [74]; if this arose from a larger Hamaker constant or lower repulsion

energy, that would increase the value of 𝛾. There is also evidence suggesting that adhesion strengths can vary over orders of

magnitude in different contexts. Large membrane vesicles adhere to glass substrates relatively weakly, with corresponding 𝛾

values of 107 J/m4 [41], and whole-cell experiments have reported membrane-cytoskeleton adhesion strengths in the order of

109 − 1010 J/m4 [59].

Appendix G: Curvature threshold model at higher membrane adhesion strengths

Although we choose 𝛾 = 1013 J/m4 as a realistic estimate of the adhesion strength relevant to the experimental membrane-bead

system, it is useful to examine the model’s fit to the data for higher adhesion strengths. In Fig. 15, we choose 𝛾 = 1015 J/m4 and

observe a nearly perfect fit to the data in [15] with a lower 𝐶thresh = 0.733 𝜇m−1 (compared to 𝐶thresh = 1.55 𝜇m−1 at 𝛾 = 1013

J/m4, Fig. 11). This does not necessarily indicate that the experimental system is subject to such strong adhesion strengths, but

only that minimizing the curvature variance improves the fit to the data. Therefore, sources of membrane fluctuation suppression

other than adhesion (such as membrane tension; see Discussion) may also contribute to improved fits to the data.
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FIG. 15. Curvature threshold model fits to experimental data in [15] for varying bead curvatures when 𝛾 = 1015 J/m4. With 𝐴0 = 0.892 𝜇m−2

s−1 nM−1, the fit parameters obtained with non-linear least squares fits are: 𝐴𝐶 ≈ 3.505 𝜇m−2 s−1 nM−1 and 𝐶thresh ≈ 0.733 𝜇m−1. Other

physical parameters: Table I.

Appendix H: Sensing lipid densities projected by the upper monolayer

Instead of sensing the lipid density deviation 𝜌 between the upper and lower monolayer at the midsurface, we investigate here

whether the protein might comparably infer differences in bead sizes by sensing the density 𝜌+ projected solely by the upper

monolayer at the midsurface. Using the definitions for 𝜌 and 𝜌̄, we have

𝜌 + 𝜌̄ =

(
𝜌+ − 𝜌−

2

)
+

(
𝜌+ + 𝜌−

2

)
= 𝜌+. (H1)

The mean squared value of 𝜌+q is then derived as

𝜌+q = 𝜌q + 𝜌̄q (H2)

=⇒ ⟨|𝜌+q |
2⟩ = ⟨|𝜌q |2⟩ + ⟨| 𝜌̄q |2⟩ + ⟨𝜌q 𝜌̄−q⟩ + ⟨𝜌−q 𝜌̄q⟩ (H3)

= ⟨|𝜌q |2⟩ + ⟨| 𝜌̄q |2⟩, (H4)

where the last step is true because ⟨𝜌q⟩ = ⟨𝜌̄q⟩ = 0 for a membrane associated to a flat substrate, and 𝜌q and 𝜌̄−q are independent

given the flat-membrane energy of Eq. (17).

From Eq. (19) and Eq. (20), we obtain, for a flat membrane,

⟨|𝜌+q |
2⟩ = 𝐿2𝑘𝐵𝑇

(
𝜅𝑞4 + 𝛾

2𝑘 (𝜅𝑞4 + 𝛾)
+ 1

2𝑘

)
. (H5)
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In the continuum limit, the variance in 𝜌+ sensed by a protein of size 𝑎 is

⟨𝜌+𝑎
2⟩ = 1

𝐿4

∑︁
q

⟨|𝜌+q |
2⟩|𝐺𝑎 (q) |2

=
1

2𝜋

∫ ∞

0

𝑞𝑘𝐵𝑇

(
𝜅𝑞4 + 𝛾

2𝑘 (𝜅𝑞4 + 𝛾)
+ 1

2𝑘

)
|𝐺𝑎 (𝑞) |2d𝑞. (H6)

Substituting a dimensionless parameter 𝑢 = 𝑞𝑎, and since |𝐺𝑎 (𝑞) |2 = exp(−𝑞2𝑎2), it can be shown that

⟨𝜌+𝑎
2⟩ = 𝑘𝐵𝑇

4𝜋𝑘𝑎2

∫ ∞

0

𝑢
©­«
𝑢4 + 2𝑑2𝑘𝑢4

𝜅
+ 𝛾𝑎4

𝜅

𝑢4 + 𝛾𝑎4

𝜅

+ 1
ª®¬

exp(−𝑢2)d𝑢 (H7)

= ⟨𝜌2
𝑎⟩ +

𝑘𝐵𝑇

4𝜋𝑘𝑎2

∫ ∞

0

𝑢 exp(−𝑢2)d𝑢 (H8)

= ⟨𝜌2
𝑎⟩ +

𝑘𝐵𝑇

8𝜋𝑘𝑎2
, (H9)

where ⟨𝜌2
𝑎⟩ is as in Eq. (26). We see that the variance in 𝜌+𝑎 is always greater than the variance in 𝜌𝑎 by the simple additive

factor 𝑘𝐵𝑇/8𝜋𝑘𝑎2.

In the absence of membrane-substrate adhesion,

⟨𝜌+2

𝑎 ⟩𝛾=0 =
𝑘𝐵𝑇 (𝑑2𝑘 + 𝜅)

4𝜋𝑎2𝑘𝜅
. (H10)

In the high-adhesion limit,

⟨𝜌+𝑎
2⟩high 𝛾 =

𝑘𝐵𝑇

4𝜋𝑎2𝑘
= 2⟨𝜌2

𝑎⟩high 𝛾 (H11)

=⇒ SNR𝜌+ , high𝛾 =
1

2
SNR𝜌, high𝛾 . (H12)

In deriving the SNR for 𝜌+, we have used the result that the mean value of 𝜌+ is the same as the mean value for 𝜌. We can see

that the steady state solution for the average density is 𝜌̄q = 0, as obtained by solving 𝜕𝐸
𝜕𝜌∗q

= 0. Therefore, 𝜌+ has the same mean

value as 𝜌, but a greater variance in its distributions.
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FIG. 16. Lipid density SNR for 𝜌 and 𝜌+ for varying membrane adhesion strengths, in comparison to their high-adhesion limits. The SNR is

computed as in Eq. (15) and the corresponding flat membrane variances for ⟨𝜌2
𝑎⟩ and ⟨𝜌+2

𝑎 ⟩ are computed by numerical quadrature. Theory

parameters: Table I.

We plot the theoretical SNR resulting from a protein probing 𝜌 or 𝜌+ in Fig. 16. We see that the difference between probing 𝜌

and 𝜌+ becomes largest at high adhesion, where the SNR of probing 𝜌 is twice that of probing 𝜌+, as discussed in the main text

and seen in Eq. (H12).

To simulate fluctuations in 𝜌+, we use the relation 𝜌+q = 𝜌q + 𝜌̄q in conjunction with the algorithms in Eq. (C83) and Eq.

(C84). We plot these histograms in Fig. 17, and see, as we expect, that the mean value of 𝜌𝑎 and 𝜌+𝑎 agree, but the variance of

𝜌+𝑎 is larger. For the parameters in Table I, simulations of membranes adhered to beads of diameters 0.4 𝜇m and 1.4 𝜇m show

𝜌+𝑎 variances of 2.07 × 10−5 and 2.08 × 10−5, respectively. This is in good agreement with the flat membrane theory variance of

Eq. (H7), which is approximately 2.11 × 10−5 as computed by numerical quadrature.
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FIG. 17. Histograms (normalized as probability densities) from simulations of beads of diameters 0.4 𝜇m (left) and 1.4 𝜇m (right), with

𝛾 = 1013 J/m4. In each case, 𝜌𝑎 and 𝜌+𝑎 have the same mean values at steady-state, but 𝜌+𝑎 has more variance. Parameters: Table I.

Appendix I: Dependence of bilayer bending modulus on monolayer thickness and area compressibility modulus

In addition to understanding how curvature sensing efficacy depends explicitly on each physical parameter in our model, it

may also be of interest to consider instances when these parameters are coupled. Phenomenological evidence based on a polymer

brush model [52, 99] suggests that the membrane bilayer’s bending modulus is coupled to the monolayer’s thickness and area

compressibility modulus as

𝜅bilayer =

𝐾𝐴𝑑
2
bilayer

𝛼
=
𝑘𝑑2

3
, (I1)

where 𝛼 = 24 is obtained as a fit parameter from data corresponding to various lipid species, 𝐾𝐴 = 2𝑘 is the bilayer’s area

compressibility modulus, and 𝑑bilayer = 2𝑑.

The renormalized membrane bending modulus can then be expressed as

𝜅 = 𝜅bilayer + 2𝑑2𝑘 =
7𝑘𝑑2

3
. (I2)

As shown in Fig. 18, this formulation allows us to compute the SNR without explicitly choosing a bending modulus by

substituting 𝜅 = 𝑘𝑑2/3 in Eq. (25) and Eq. (26). However, this 𝛼 = 24 is phenomenological and may not apply to all

lipid species. Understanding, e.g. the role of lipid type on driving different association rates to beads may require systematic

characterization of both 𝜅 and 𝑑 for different lipid mixtures.

FIG. 18. SNR𝐶 and SNR𝜌 for beads of diameter Δ = (1 𝜇m, 3 𝜇m) as a function of the monolayer thickness 𝑑 when the membrane bending

modulus is coupled to the monolayer’s thickness and area compressibility modulus as 𝜅 = 𝑘𝑑2/3.

Appendix J: Relative efficacy of lipid density sensing and curvature sensing

To better understand the relationship between various physical parameters and the relative sensing efficacy of lipid density

sensing in comparison to local curvature sensing, we plot the ratio between SNR𝜌 and SNR𝐶 in Fig. 19 for beads of diameter 1

𝜇m and 3 𝜇m. At low 𝛾, density sensing is a fairly effective sensing strategy compared to local curvature sensing, with the
𝑆𝑁𝑅𝜌

𝑆𝑁𝑅𝐶

ratio approaching a value of 1 for thicker membranes with larger 𝑑. As 𝛾 is increased, the variance in 𝜌 saturates and curvature
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sensing becomes significantly more effective as a sensing strategy. For smaller proteins, density sensing serves as a passable

proxy for curvature sensing even at relatively high adhesion strengths, in contrast to larger proteins, for which SNR𝜌/SNR𝐶

decays more prominently as a function of 𝛾.

10
9

10
10

10
11

10
12

10
13

10
14

10
15

Membrane adhesion strength  (J/m4)

0.0

0.2

0.4

0.6

SN
R

/S
N

R
C

Protein size a
a = 8 nm
a = 16 nm
a = 24 nm
a = 32 nm

10
9

10
10

10
11

10
12

10
13

10
14

10
15

Membrane adhesion strength  (J/m4)

0.0

0.2

0.4

0.6

0.8

1.0

SN
R

/S
N

R
C

Monolayer thickness d
d = 1 nm
d = 2 nm
d = 3 nm
d = 4 nm

10
9

10
10

10
11

10
12

10
13

10
14

10
15

Membrane adhesion strength  (J/m4)

0.0

0.2

0.4

0.6

SN
R

/S
N

R
C

Monolayer compressibility modulus
k = 0.04 J/m2

k = 0.06 J/m2

k = 0.08 J/m2

k = 0.1 J/m2

10
9

10
10

10
11

10
12

10
13

10
14

10
15

Membrane adhesion strength  (J/m4)

0.0

0.2

0.4

0.6

SN
R

/S
N

R
C

Bending modulus 
 = 10 kBT
 = 20 kBT
 = 30 kBT
 = 40 kBT

FIG. 19. Ratios between the theoretically predicted 𝜌 SNR and curvature SNR for beads of diameter (1 𝜇m, 3 𝜇m) for various physical

parameters as a function of increasing 𝛾. For each plot, only the depicted parameters are varied, while the other parameters are the same as

those referenced in Table I.

Appendix K: Fourier Monte Carlo simulations

We develop here an alternative method to simulate coupled fluctuations in the membrane’s height and lipid densities based

on a Fourier Monte Carlo (FMC) algorithm [51], and use it to ensure our FSBD algorithm is correctly reproducing the thermal

equilibrium. For large membranes and membrane-adhered beads, FMC takes a much longer time than our FSBD algorithms to

satisfactorily simulate, since a larger number of modes entails a substantial increase in the number of Monte Carlo steps (MCS)

required for convergence. Therefore, we only use the FMC method to corroborate our FSBD simulations for small system-sizes.

In Table III, we compare SNR𝐶 and SNR𝜌 for a pair of beads with small radii, as obtained from FSBD and FMC simulations.

For beads as small as these, the simulated membrane has deviations from the simple theory result, as in Fig. 5, but nonetheless

FSBD and FMC are in excellent agreement.

Bead diameters: (0.1, 0.2) 𝜇m FSBD FMC

SNR𝐶 500.7 ± 3.1 506.8 ± 2.0

SNR𝜌 93.4 ± 0.3 93.9 ± 0.4

Bead diameters: (0.2, 0.3) 𝜇m FSBD FMC

SNR𝐶 9.18 ± 0.05 9.31 ± 0.08

SNR𝜌 1.68 ± 0.01 1.73 ± 0.02

TABLE III. Comparison of FSBD and FMC simulations for small system sizes. Parameters: 𝐿 = 400 nm, 𝑁 = 21, 𝛾 = 1013 J/m4. FSBD:

𝑡sim = 0.016 s, Δ𝑡 = 3.2 ns. FMC: 5 × 107 attempts (Monte Carlo steps = attempts/𝑁2). The error bars denote standard errors, and were

computed using the block averaging method (see Fig. 5 caption). The data were separated into 𝑁block = 5 blocks for both FSBD and FMC

data, truncating the initial 40% of FMC data to allow for equilibriation burn-in.

In the FMC approach, we propose changes to only a single Fourier mode chosen at random for each attempt, compute the

resultant change in the membrane energy, and use an acceptance criterion in accordance with the Metropolis rule to determine
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whether to accept or reject the proposed change. The size of the proposed change varies with each attempt; as we show

subsequently, the proposed changes are scaled such that on average, 50% of the proposals are accepted.

For a flat membrane subject to adhesion, the membrane energy is computed as

𝐸tot =

∑︁
q

1

2𝐿2

(
(𝜅𝑞4 + 𝛾) |ℎq |2 − 2𝑘𝑑𝑞2𝜌∗qℎq − 2𝑘𝑑𝑞2ℎ∗q𝜌q + 2𝑘 |𝜌q |2 + 2𝑘 | 𝜌̄q |2

)
. (K1)

For a membrane-adhered bead, the energy due to the harmonic potential must be explicitly accounted for, such that

𝐸tot =

∑︁
q

1

2𝐿2

(
𝜅𝑞4 |ℎq |2 − 2𝑘𝑑𝑞2𝜌∗qℎq − 2𝑘𝑑𝑞2ℎ∗q𝜌q + 2𝑘 |𝜌q |2 + 2𝑘 | 𝜌̄q |2

)
+ 𝐸adh. (K2)

where the adhesion energy is computed as a sum over the lattice in real-space as 𝐸adh =
(𝐿/𝑁 )2

2

∑
r 𝛾(ℎ(r) − ℎbead (r))2.

A single independent mode q is selected at random (with the exception of the zeroth mode, which does not evolve), and changes

to this mode are computed for the real and imaginary components of this mode q, for each Monte Carlo attempt, as

ℎq,new = ℎq + 2𝑠ℎ

√︃
⟨|ℎq |2⟩(rand − 0.5) + 2𝑖𝑠ℎ

√︃
⟨|ℎq |2⟩(rand − 0.5), (K3)

𝜌q,new = 𝜌q + 2𝑠𝜌

√︃
⟨|𝜌q |2⟩(rand − 0.5) + 2𝑖𝑠𝜌

√︃
⟨|𝜌q |2⟩(rand − 0.5), (K4)

𝜌̄q,new = 𝜌̄q + 2𝑠𝜌̄

√︃
⟨| 𝜌̄q |2⟩(rand − 0.5) + 2𝑖𝑠𝜌̄

√︃
⟨| 𝜌̄q |2⟩(rand − 0.5), (K5)

where rand indicates a random number between 0 and 1. Each use of rand here is a different random number, so the real and

imaginary parts are updated with independent random values. ⟨|ℎq |2⟩,⟨|𝜌q |2⟩, and ⟨| 𝜌̄q |2⟩ are as derived in Eqs. (18)–(20).

𝑠ℎ, 𝑠𝜌, and 𝑠𝜌̄ are scaling factors that can be varied to influence how frequently the proposed changes are accepted. For the

simulations in Table III, the scaling factors 𝑠ℎ = 0.95, 𝑠𝜌 = 1.3, and 𝑠𝜌̄ = 1.3 resulted in approximately 50% acceptance.

To update the dependent modes, we conjugate the independent modes to ensure that the height and density variables in

real-space are real-valued (see Appendix A). Therefore, ℎ−q,new = ℎ∗q,new, and similarly for the other fields. Subsequently,

ℎq,new, 𝜌q,new, and 𝜌̄q,new are inverse Fast Fourier transformed to obtain their corresponding real-space values.

We change one mode q at a time, and also only change one of the three fields ℎq, 𝜌q, and 𝜌̄q at a time. (We propose changes

first for ℎq, then for 𝜌q, then 𝜌̄q.) The usual Metropolis acceptance criterion is used, and applied after each change—i.e. we

update the three fields separately, not simultaneously. This Metropolis criterion is:

rand < exp

(−(𝐸tot, new − 𝐸tot)
𝑘𝐵𝑇

)
. (K6)

If this condition is fulfilled, then the change is accepted, and 𝐸tot and the corresponding height and density variables are

updated to their new values and iterated for use in the next attempt.
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Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,

A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, Nature Methods 17, 261 (2020).

[57] A. Rohatgi, Webplotdigitizer: Version 4.6. (https://automeris.io/webplotdigitizer/) (2022).

[58] M. Newville, T. Stensitzki, D. B. Allen, M. Rawlik, A. Ingargiola, and A. Nelson, Astrophysics Source Code Library , ascl (2016).

[59] A. Biswas, A. Alex, and B. Sinha, Biophysical journal 113, 1768 (2017).

[60] K. B. Oldham, J. C. Myland, and J. Spanier, in An Atlas of Functions (Springer, 2008) pp. 405–415.

[61] M. G. Ford, I. G. Mills, B. J. Peter, Y. Vallis, G. J. Praefcke, P. R. Evans, and H. T. McMahon, Nature 419, 361 (2002).

[62] B. J. Reynwar, G. Illya, V. A. Harmandaris, M. M. Müller, K. Kremer, and M. Deserno, Nature 447, 461 (2007).

[63] J. K. Sigurdsson, F. L. Brown, and P. J. Atzberger, Journal of Computational Physics 252, 65 (2013).

[64] B. J. Reynwar and M. Deserno, Soft Matter 7, 8567 (2011).

[65] A. Mahapatra, D. Saintillan, and P. Rangamani, Soft Matter 17, 8373 (2021).

[66] A. A. Bridges, H. Zhang, S. B. Mehta, P. Occhipinti, T. Tani, and A. S. Gladfelter, Proceedings of the National Academy of Sciences 111,

2146 (2014).

[67] R. Jin, R. Cao, and T. Baumgart, Scientific Reports 12, 1 (2022).

[68] K. Sengupta and A.-S. Smith, in Physics of Biological Membranes (Springer, 2018) pp. 499–535.

[69] V. D. Gordon, T. O’Halloran, and O. Shindell, Physical Chemistry Chemical Physics 17, 15522 (2015).

[70] R. O. Hynes, Trends in Genetics 15, M33 (1999).

[71] M. P. Sheetz, Nature Reviews Molecular Cell Biology 2, 392 (2001).



31

[72] T. Ursell, A. Agrawal, and R. Phillips, Biophysical journal 101, 1913 (2011).

[73] T. H. Anderson, Y. Min, K. L. Weirich, H. Zeng, D. Fygenson, and J. N. Israelachvili, Langmuir 25, 6997 (2009).

[74] T. J. Zwang, W. R. Fletcher, T. J. Lane, and M. S. Johal, Langmuir 26, 4598 (2010).

[75] J. N. Israelachvili, Intermolecular and surface forces (Academic press, 2011).

[76] K. C. Huang and K. S. Ramamurthi, Molecular microbiology 76, 822 (2010).

[77] R. L. Gill, J.-P. Castaing, J. Hsin, I. S. Tan, X. Wang, K. C. Huang, F. Tian, and K. S. Ramamurthi, Proceedings of the National Academy

of Sciences 112, E1908 (2015).

[78] M. C. Watson, E. S. Penev, P. M. Welch, and F. L. Brown, The Journal of Chemical Physics 135, 244701 (2011).

[79] M. C. Watson, E. G. Brandt, P. M. Welch, and F. L. Brown, Physical Review Letters 109, 028102 (2012).

[80] A. Hopkins and B. A. Camley, Physical Review Research 2, 043146 (2020).

[81] P. Mehta and D. J. Schwab, Proceedings of the National Academy of Sciences 109, 17978 (2012).

[82] C. C. Govern and P. R. ten Wolde, Physical review letters 113, 258102 (2014).

[83] A. H. Lang, C. K. Fisher, T. Mora, and P. Mehta, Physical Review Letters 113, 148103 (2014).

[84] N. J. Alvarez, L. M. Walker, and S. L. Anna, Physical Review E 82, 011604 (2010).

[85] M. Pinot, S. Vanni, E. Ambroggio, D. Guet, B. Goud, and J.-B. Manneville, bioRxiv , 389627 (2018).

[86] A. Colom, E. Derivery, S. Soleimanpour, C. Tomba, M. D. Molin, N. Sakai, M. González-Gaitán, S. Matile, and A. Roux, Nature
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