Physical limits to membrane curvature sensing by a single protein
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Membrane curvature sensing is essential for a diverse range of biological processes. Recent experiments have
revealed that a single nanometer-sized septin protein has different binding rates to membrane-coated glass beads
of one micron and three micron diameters, even though the septin is orders of magnitude smaller than the beads.
This sensing ability is especially surprising since curvature-sensing proteins must deal with persistent thermal
fluctuations of the membrane, leading to discrepancies between the bead’s curvature and the local membrane
curvature sensed instantaneously by a protein. Using continuum models of fluctuating membranes, we investigate
whether it is feasible for a protein acting as a perfect observer of the membrane to sense micron-scale curvature
either by measuring local membrane curvature or by using bilayer lipid densities as a proxy. To do this, we
develop algorithms to simulate lipid density and membrane shape fluctuations. We derive physical limits to
the sensing efficacy of a protein in terms of protein size, membrane thickness, membrane bending modulus,
membrane-substrate adhesion strength, and bead size. To explain the experimental protein-bead association
rates, we develop two classes of predictive models: i) for proteins that maximally associate to a preferred
curvature, and ii) for proteins with enhanced association rates above a threshold curvature. We find that the
experimentally observed sensing efficacy is close to the theoretical sensing limits imposed on a septin-sized
protein. Protein-membrane association rates may depend on the curvature of the bead, but the strength of this

dependence is limited by the fluctuations in membrane height and density.

I. INTRODUCTION

Membrane curvature is ubiquitous throughout cell biology
[1-4]: proteins that sense membrane curvatures can help lo-
cate the axis of cell division, determine cell polarity, facilitate
membrane remodeling, and serve as a cue for intracellular sig-
naling [5—-10]. These proteins often act in tandem by binding
with each other to sense curvature cooperatively. However,
in the case of septin proteins, recent experiments have shown
that in addition to sensing curvatures via cooperative filament
formation [11, 12], even a single septin protein can distin-
guish between micron-scale membrane curvatures, preferen-
tially binding to membranes adhered to glass beads of different
radii with different association rates [13—15]. How do proteins
only a few nanometers in size effectively sense membrane cur-
vatures that are hundreds of times larger than themselves, on
the order of micrometers? This sensing ability is even more
remarkable because biological membranes undergo persistent
thermally-driven undulations [16]. Even if a protein could per-
fectly measure the instantaneous shape of the membrane at the
nanometer scale, these undulations drive the membrane away
from its average shape, confounding the protein’s attempts to
measure the membrane’s curvature. How can a protein reliably
make a measurement of micron-scale curvature in this noisy
environment?

The current strongest evidence that protein-membrane bind-
ing can be curvature-dependent at the single molecule level is
presented by the experiments in Figure 2B of [15]. The au-
thors measure the single-molecule association rates of septin
to membrane-coated beads, and find that the association rate
increases monotonically with bead curvature. These experi-
ments are performed with non-polymerizable septins, ruling
out the possibility of septin forming larger filaments. There
is also indirect evidence that SpoVM may have curvature-
dependent binding rates, though there are conflicting results
on whether the on-rates or off-rates are more sensitive to cur-
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FIG. 1. Thermal fluctuations of the membrane lead to discrepancies
between the average membrane shape and the instantaneous local
nanometer-scale membrane shape present at the protein’s location,
even if the protein perfectly observes the local shape.

vature [17, 18]. We note that many experiments conducted on
the curvature sensitivity of septins [11, 14, 15] measure the to-
tal adsorption of septins onto the membrane, which is highest
at intermediate bead curvatures [11]. These experiments do
not tell us whether a single septin has a binding preference, as
the adsorption depends on septin-septin interactions and other
complex factors [15]. We focus on the sensitivity of single
molecules to membrane curvature, because this is where we
expect physical constraints to play the largest role: it is more
difficult for a single septin to detect the curvature than for a
longer polymerized filament to do so.

Although there are descriptions of molecular mechanisms
employed by proteins when sensing nanometer-scale curva-
tures [19], curvature sensing at the micron-scale is less well-
understood [20]. Previous theoretical studies have modeled
the thermodynamics of curvature sensing [21] and the effects
of helix insertion on the membrane’s energy [22, 23]. Here, we
take a qualitatively different approach: we ask how precisely



a protein could measure the micron-scale curvature of a mem-
brane if it made a perfect measurement of local membrane
shape or local lipid density, subject to the inevitable thermal
fluctuations of the membrane. This gives us the fundamental
physical limits to curvature sensing for an idealized protein,
akin to Berg and Purcell’s classic work on the limits of lig-
and concentration sensing for a perfect detector of a finite size
[24], and later follow-ups [25-28]. Our result builds on the
larger literature of sensing limits in different contexts, includ-
ing gradient sensing [29-33], flow sensing [34], and sensing
the mechanical properties of heterogeneous materials [35, 36].
To quantify curvature sensing in this way, we define a signal-
to-noise ratio (SNR) to indicate how well a protein is able to
extract useful information about the membrane’s shape despite
stochasticity. To support our analytical models, we develop al-
gorithms to simulate membranes with fluctuating height and
lipid densities. Curvature induces deviations in the packing of
lipids in the membrane bilayer, and proteins with amphipathic
helices insert themselves into bilayers [37, 38]. We study the
possibility that proteins that sense micron-scale curvature may
be using lipid packing as a proxy to sense membrane shape
[39].

We then show how our model can be fit to the single-
molecule association rate measurements of septin in [15]. Our
results show that septin may be functioning near its physical
limits in these experiments. We also find that the ability of
a single septin to discriminate between different micron-sized
beads requires the membrane to be strongly adherent to the
bead, suggesting that in vivo, single-molecule association is
not the likely driving factor of the observed curvature sensitiv-
ity of septin localization, and instead septin-septin interactions
must play the key role.

II. MODELS AND SIMULATION METHODS
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FIG. 2. Snapshots of thermally-fluctuating simulated membranes: i)
(left) a freely fluctuating flat membrane with no membrane-substrate
adhesion, and ii) (right) a membrane adhered to a bead of radius
R = 500 nm with adhesion strength y = 10'3 J/m*. System size is
L =1.6 um. Note that due to the large difference in size scales and
strong membrane-substrate adhesion, fluctuations are not apparent in
the plot on the right. Simulation parameters: Table 1.

A. Modeling membrane, bead, and membrane-bead adhesion

We represent the shape of the membrane in terms of its
height i(r) above a two-dimensional plane as a function of
position r = (x, y), i.e. using Monge gauge [40]. To induce a
curvature similar to the bead of [14, 15], we model a substrate
with a spherical bump of radius R on a flat surface (Fig. 2). The
adhesion energy between the bead and membrane is harmonic,

Eaan = %/dl’(l’l(l’) - hbead(r))z’ (1)

where y is the strength of membrane-substrate adhesion,
hpead (r) traces the height of the bead at each position in the
xy plane and serves as the equilibrium height, and the integral
f dr is over the xy plane. This harmonic potential approxi-
mates more detailed potentials such as the Mie potential of [41]
or van der Waals interactions [42] (see Appendix F). The height
field Apead(T) is Apead(r) = YR2 — 252 + 2s(x +y) —x2 — 2
with s = L/2 for r within a distance R of the bead center
(s,5). We set hpeaa(r) = 0 outside this region, where the
membrane is adherent to a flat substrate.

B. Energy of membrane height and density changes

In addition to the membrane height, we also characterize
the membrane by the lipid densities in each leaflet. We use
the Seifert-Langer model [43, 44] to represent how the mem-
brane’s height couples to lipid densities. Due to membrane
curvature, the lipid densities measured at different depths into
the membrane bilayer will differ. We define the scaled lipid
densities of the upper and lower monolayers at the midsurface,
o = (Y*/¢o — 1), where y* are the number densities pro-
jected onto the bilayer midsurface and ¢¢ is the equilibrium
number density of a flat membrane. The lipid density deviation
between the upper and lower monolayers at the midsurface is
p = (p* —p7)/2, and the average density is p = (o™ +p7)/2.
As shown in Fig. 3, when the membrane is bent to a positive
curvature and the lipids allowed to laterally relax, the den-
sity projected by the upper leaflet at the midsurface is greater
than that projected by the lower leaflet. (This is in contrast
to the density profile when momentarily bending the mem-
brane, where the midsurface densities are equal and the upper
and lower leaflets are stretched and compressed at the neutral
surfaces, respectively [45].)

The membrane’s total free energy E consists of the sum of
the Helfrich free energy due to bending the membrane [46], the
energy due to lipid density deviations of the upper and lower
membrane monolayers away from their ideal values [43], and
the adhesion energy in Eq. (1),

E-= / dr{g(ZH)z + g[(p+ —2dH)?
+(p™ +2dH)"1| + Ears ()

where « is the membrane bending modulus, H is the mean
curvature of the membrane such that 2H = —V?A(r), and k is
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FIG. 3. A curved membrane induces deviations in the packing of
lipids in the bilayer. When the membrane is flat, the number densi-
ties of lipids projected by the two monolayers at the midsurface are
equivalent. However, when the membrane is curved and its lipids are
allowed to laterally relax to their minimum energy value, the upper
(+) and lower (—) monolayers project different densities at the midsur-
face. The steeper the curvature, the greater the difference between the
scaled densities p* and p~. At steady-state, the neutral surface lipid
number densities ¢ = ¢~. The distance between the midsurface and
either neutral surface is d.

the monolayer area compressibility modulus. (p* — 2dH) and
(p~ + 2dH) represent the deformations away from the ideal
lipid density in the upper and lower membrane monolayers,
respectively. d is the “monolayer thickness”, i.e. the distance
between the bilayer midsurface and either neutral surface. The
sign conventions used for the mean curvature H in Eq. (2)
are as in [44]. Since we do not model asymmetries in lipid
composition [47], we assume zero spontaneous curvature.

The membrane bending energy includes a term V2h(r),
which can be more easily dealt with in Fourier space. We
choose our Fourier conventions to represent a finite system
size of dimensions L X L, with the Fourier wave-vector q =
2T”(m,n) such that —(N —1)/2 < (m,n) < (N —1)/2 for
N x N modes/lattice points, assuming N is odd. The Fourier
transform pair for the membrane’s height is then

iq. 1 .
hq = /L drh(r)e™ ", h(r) = - ; hge'™,  (3)

and similarly for the transform pairs pgq, o(r) and pg, p(r).
Additional comments on the treatment of variables in Fourier
space are included in Appendix A.

The total free energy E in Eq. (2) is computed by summing
the contributions due to each Fourier mode as

*

hq

1 1 _
E= EZ E(hqququ)E ,‘zq +Eadh9 (4)
q Pq
Rq* —2kdg®> 0O
E=|-2kdg®> 2k 0. (5)
0 0 2k

In Eq. (5), g is the magnitude of the Fourier wavevector q.
The renormalized bending modulus is & = « + 2d%k, which
describes the response of the membrane over short times when
lipids cannot laterally relax. A typical value of « is about 20
kpT. The strength of membrane substrate adhesion y can vary

over orders of magnitude in different contexts. To best model
the experiments in [14, 15], we use a fairly strong y ~ 10'3
J/m*, unless otherwise stated. This is our estimate of adhesion
strengths of supported lipid bilayers (SLBs) on glass substrates
(see Discussion and Appendix F). The other parameter values
used in the model are included in Table I.

C. Dynamics and simulation of fluctuating membranes

A membrane that is deformed away from its equilibrium
state will relax over time. The dynamics of this process are
controlled by the viscosity of the fluid outside the membrane,
the membrane’s own viscosity, and the drag between the two
leaflets [43, 45, 48]. To these relaxation dynamics, we add
a stochastic term obeying a fluctuation-dissipation relation-
ship, which ensures that the system will evolve into thermal
equilibrium. The resulting stochastic dynamical equations for
evolving hq, pq and pq in time are (Appendix C)

1 *
5 [t 2 an/ahg &y
5 |Pa|= L7 | 2, 9E/0Pq | +{ Lq ), (6)
Pq QLﬁaE/a,az; Xq

where @, = 1/4nq, Q,7' = ¢*/(4b +4ng +2uq?), and
Qﬁ_l = ¢%/(4nqg +2ug?). These Q™! values play the role
of hydrodynamic mobilities for a membrane with monolayer
viscosity p and intermonolayer friction b embedded in a fluid
of viscosity 7, setting the time derivative of a field w in terms
of the force-like term —L20E/ dwg. Thermal fluctuations are
accounted for with the stochastic terms &g, {q and xq (Ap-
pendix C). The deterministic components in the equations for

oh 1) . . .
—31 and % are consistent with the Seifert-Langer model, and

ot

we derive % from the hydrodynamic equations in [43] while
neglecting inertial effects. While we present these hydrody-
namic equations of motion for generality, our focus is on the
equilibrium properties of the system, which are independent
of the dynamic parameters i, u, b, etc. We will use this
dynamical model to sample from the equilibrium thermal dis-
tributions of A(r), p(r) and p(r). A full understanding of the
dynamics of this problem should also include the effect of the
presence of the substrate near to the surface, which will alter
the hydrodynamic response [48, 49].

To simultaneously simulate the fluctuations of membrane
height and lipid density, we extend the Fourier-space Brown-
ian Dynamics (FSBD) approach [50]—so we will often refer
to our simulations as FSBD simulations as well. We simulate
the membrane by numerically integrating Eq. (6) in Fourier-
space, adding the appropriate thermal noise to each Fourier
mode of hq, pq and pq over the simulation timestep At. In-
verse Fourier transforms are used to obtain the corresponding
h(r), p(r) and p(r). The amplitude of the thermal noise is
controlled by the system temperature and the mobility terms
Q! and is chosen to ensure that the probability distributions
of the membrane’s height and lipid densities obey the Gibbs-
Boltzmann form at steady-state. The simulation algorithms,
their derivations, and guidelines for choosing a manageable



timestep for simulation convergence are included in Appendix
C. To ensure that our approach creates the correct equilibrium
distribution, we compared with an extension of the Fourier
Monte Carlo method [51] (Appendix K).

D. Modeling a protein as a perfect observer

To understand what limits a protein’s ability to sense mem-
brane curvature even in ideal circumstances, we treat the pro-
tein as a perfect observer, making a precise measurement of the
membrane curvature at the protein scale. The perfect observer
assumption means that the protein does not affect the mem-
brane in any way: it is a mere spectator. By a measurement
“at the protein scale,” we describe an average over a region
of the membrane of roughly the protein’s size a. The local
membrane curvature and local lipid density deviation sensed
by the protein can be defined as

w2

Co= / arG . (r) 0, )
L2 2

pa = /L RUACHE) ®)

where G,(r) is a two-dimensional Gaussian weight centered
at the protein location, such that

1 —|r - Iprot |2
G,(r) = T exp oy . 9)
We will always choose the protein to be located at the top of
the spherical bead, rpror = (L/2,L/2).

In our FSBD simulations, the integrals in Eqs. (7)—(8) are
evaluated by summing over discrete membrane lattice points.
Membrane curvatures are computed from hq noting that the
Fourier transform of the curvature is {—%Vzh(r)}.1 = %qth,
then using the inverse Fast Fourier Transform to reconstruct
the curvature field —1V2h(r).

E. Model parameters and notation

The parameters in Table I are applicable unless otherwise
stated for a particular result or figure. Table II is a summary
of the notation we use for relevant variables.

The values used for k£ and u are consistent with typical values
in [52] and [53]. The solvent fluid viscosity 7, the membrane
monolayer viscosity u, and the intermonolayer friction b are
dynamical parameters that represent dissipative mechanisms,
and do not influence the equilibrium distribution, which only
depends on the energy of a particular state. (This is why we can
reproduce our FSBD results with Monte Carlo methods in Ap-
pendix K.) However, the dynamic parameters do determine the
rate at which disturbances relax and the magnitude of thermal
fluctuations—so they influence the stability properties of the
numerical algorithm and the equilibration time required. Our
approach has been to begin with somewhat-realistic dynamic
parameters, and then tune them to allow for easier convergence
(see Appendix C2 a).
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FIG. 4. Probability densities from FSBD simulations of local mem-
brane curvatures and local lipid density deviations sensed by a protein
of size a = 16 nm positioned at the top of membrane-adhered beads
of different diameters. Membrane-substrate adhesion y = 1013 J/m*.
When the histogram distributions associated to different beads over-
lap considerably, there is more uncertainty about which bead resulted
in a particular local membrane curvature or density deviation sensed
by the protein. Timesteps Az = 3.2 ns, total time tg,, = 0.016 sec-
onds. Other parameters: Table I.

III. RESULTS

A. Simulations of membrane-adhered beads

We simulate fluctuating membranes adhered to beads of
varying radii, where the bead curvature is Cpeaq = 1/R. In Fig.
4, we show the distribution of local membrane curvature C,
and local lipid density deviation p,, that would be sensed over a
protein scale of @ = 16 nm such that 2a roughly corresponds to
the footprint of a yeast septin rod, which has an end-end length
of ~ 32 nm [13]. We have chosen the membrane-substrate
adhesion appropriate for a supported lipid bilayer, which is
strongly adherent (Appendix F). These distributions show the
extent to which different beads could be distinguished by a
protein: when there is significant overlap between two distri-
butions, even a perfect detector would struggle to distinguish
between beads of these radii. As the bead radius is increased,
the average curvatures and density deviations sensed by the
protein decrease in magnitude—as we would expect, because
the bead is made locally flatter. The distributions for larger
beads overlap more substantially, so a protein that measures
a particular curvature or density value in this regime is sub-
jected to more ambiguity as to which bead the measurement
corresponds to.



Parameter Notation| Value
Protein size (sensing radius) a 16 nm
Membrane-substrate adhesion strength b% 103 yym?®
Membrane bending modulus K 20 kpT
Monolayer area compressibility modulus k 0.07 J/m?
Monolayer thickness d 1 nm
Temperature T 310K
Monolayer viscosity u 1073 kg/s
Solvent fluid viscosity n 0.02 Pa-s
Intermonolayer friction b 107 J-s/m*
Simulation timestep At 3.2 ns
Total simulation time tsim 0.016 s
Edge length of simulated membrane L 1600 nm
Lattice points/Fourier modes per side N 73

TABLE I. Parameters used for theory and FSBD simulations unless otherwise stated.

Description Symbol| Definition
Two dimensional position on the membrane surface r (x,y)
Fourier-space wave-vector representing the membrane q ZT” (m,n)
Magnitude of q q 2Tﬂ Vm? + n?
Renormalized membrane bending modulus R K+ 2d%k
Equilibrium number density of lipids for a flat membrane 0 -
Number density of lipids projected by the upper/lower leaflet onto the upper/lower neutral surface| ¢* -
Number density of lipids projected by the upper/lower leaflet onto the midsurface = -
Scaled lipid density projected by the upper/lower leaflet onto the midsurface o* vE/po — 1
Deviation between lipid densities p* and p~ at the midsurface o (Pt -p7)/2
Average scaled lipid density at the midsurface o (pT+p07)/2
Local membrane curvature sensed by a protein of size a Cq Eq. (7)
Local lipid density deviation sensed by a protein of size a Pa Eq. (8)
Protein kernel: two dimensional Gaussian weight centered at the protein’s location Ga(r) Eq. (9)
Radius of a membrane-coated glass bead R -
Curvature of a membrane-coated glass bead Chead 1/R

TABLE II. Symbols and definitions for relevant variables

B. Quantifying sensing efficacy with signal-to-noise ratio

If a particular local curvature or density deviation is sampled
from the distributions in Fig. 4, can the bead size correspond-
ing to the sampled measurement be reliably determined? This
can be challenging due to overlapping distributions, since each
bead size is associated to a multiplicity of instantaneous C,
and p, values. We summarize the way that thermal fluctua-
tions of the membrane could confound even a perfect detector
of curvature or lipid density in distinguishing between two
membrane-adhered beads of different sizes with a signal-to-
noise ratio (SNR) of

RY
SNR = WA= 1) (10)
O-A+O—B

where p4 and up are the average membrane curvature C, or
lipid density deviation p, for two beads A and B, and a‘f‘ and
0'123 are the corresponding variances of the membrane curvature
or density deviation sensed by the protein. The motivation for
this definition is to measure the distance between the means
of two histograms in Fig. 4 in terms of their variance. If
we define a variable X which is the difference between the

measured variable on bead A and the measured variable on
bead B, the SNR between A and B is (X)?/[(X?) - (X)?],
which gives Eq. (10) because the variance of two independent
variables adds. The greater this SNR value is, the better a pro-
tein can distinguish between the two beads. SNR approaches
zero either if the beads are near-identical (us ~ up) or the
noise o-i + 0'12; is overwhelming. For our preferred curvature
model, we show in Section III E that—with some additional
assumptions—this SNR controls the largest possible ratio of
association rates of the protein to a bead of a given curvature
as compared to a bead with the protein’s preferred curvature,
and use this to estimate the experimental SNR.

We use our FSBD simulation to compute the SNR for pairs
of beads in Fig. 5, keeping the difference between their diam-
eters to be 200 nm. The smaller the beads, the better a protein
can distinguish between two similarly sized beads (i.e. higher
SNR). For beads on the micron-scale, the SNR is much smaller
than 1 when the beads are similarly sized (such as 1.2 ym and
1.4 pm diameters). This is true for both the SNR of curva-
ture sensing, SNR¢, and the SNR of density sensing, SNR,,.
The decrease in SNR is largely driven by the decreasing sig-
nal: large beads have curvatures 1/R that are both increasingly
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FIG. 5. Sensing SNR for pairs of membrane-adhered beads with diameters ranging from 0.4 um to 1.4 um, with each pair having diameters
separated by 0.2 um. (Top-left) SNR¢ with y = 10'3 J/m*. (Top-right) SNR¢ with y = 10'! J/m*. (Bottom-left) SNR,, with y = 10'3 J/m*.
(Bottom-right) SNR,, with y = 10'! J/m*. Other parameters: Table 1. Errors were computed with the block averaging method [54]. For each
pair of beads, the simulated curvature and p trajectories were separated into Nyjocx = 4 blocks and the mean and variance computed for each
block to obtain SNRy; ok, Which was averaged across the blocks to obtain the SNR plotted. The error bars indicate standard errors, computed
by dividing the standard deviation of SNRpjock across the blocks by v/Npjock-

close to zero curvature, so the term (4 — ug)? will shrink. As
we will see later (Fig. 8), for beads where the radii differ sig-
nificantly, e.g. 1 micron vs. 3 micron diameters, the SNR can
be appreciable. Changing the membrane-substrate adhesion
energy from a weakly-adherent membrane value (y = 10!
J/m*) to one appropriate to a SLB (y = 10'3 J/m*) increases
the SNR.

To gain an understanding of how the SNR depends on the
protein size, the mechanical properties of the membrane, the
geometry of the bead, and the membrane-bead adhesion, we
develop a theoretical model for the SNR in the next section,
Sec. III C. We plot this theoretical result against the simulation
result and see good agreement, especially at strong membrane-
substrate adhesion (Fig. 5). When the adhesion is weak and
the bead pairs are large, the SNR is low; therefore, small differ-
ences arising from different instances of the same simulation
can be more pronounced. The deviation at small bead sizes
(~ 200-300 nm radii) and weak adhesion (y ~ 10" J/m*)
is expected, and arises from the membrane not following the
bead perfectly (Appendix D).

C. Analytical calculation of the SNR

To find an analytical form for the SNR written in Eq. (10),
we need the average values of curvature and density deviation
on a bead as well as their standard deviations.

If the membrane is strongly adherent to the bead, on average

its shape will just be the bead’s shape, (h(r)) = hpeaq(r). The
averaged mean curvature for a membrane adhered to a bead
is then —%Vzhbead(r). At the top of the bead (r = rpy), the
curvature is then

(Ca) ~ 1/R, (11)
where R is the bead’s radius. Our assumption that the mem-
brane follows the shape of the bead can be checked with sim-
ulation: we see that it is reasonable at sufficiently large bead
sizes and strong membrane-substrate adhesion (Appendix D).

Given that the membrane is deformed to follow the bead, we

can find the value of p(r) that would minimize the energy of
the membrane, solving for pq such that dE /dpy = 0 (using Eq.
(4)). This would be the steady-state pq, holding the membrane
shape fixed. We find

py = dq’hy. (12)
Inverting the Fourier transform, we see that the density at the
protein’s location is

” 2d
.Ob5 (rprot) = _dvzh(rprot) = ? (13)
To approximate the standard deviation of the observed curva-
ture and density histograms, we start by noting that in Fig. 4,
the width of the histograms is broadly consistent across many
different bead diameters. o4 and o do not strongly depend

on bead size. In fact, for a large enough bead, the variances of



the observed curvature are essentially those for a membrane
adherent on a flat substrate with the same adhesion strength —
the protein scale is much smaller than the size of the bead, and
locally the bead surface is nearly flat. We then propose as an
estimate of the SNR:

SNR,~ = M (14)
C ek
(ﬂ _ 2d )2
_ “Ra Rp
SNR, = (15)
where R 4 and Rp are bead radii for beads A and B, and (C2 )Mt
and (p2 )4 are the membrane curvature and density variances

sensed by a protein of size a when the membrane is bound to a
flat substrate. These variances can be worked out analytically
in some cases, and by simple numerical quadrature in others.

1. Variances of membrane height and density when bound to a flat
substrate

For a planar membrane adhered to a flat substrate Apeaq = O,
the adhesion energy of Eq. (1) is just a simple harmonic
penalty, Eqan = 3 [ drh(r)? = 377 2q |hq|?. Then, the com-
plete energy of Eq. (4) is simply represented as

h

11 _ 4
E‘ﬂat = EE Z(hq’ pq,pq)a eq ’ (16)
q Pq
Rg*+y -2kdg* 0
& =|-2kdq? 2k 0]. a7
0 0 2k

Using Wick’s theorem [55], the variances of the Fourier modes
of height and density are

L%kgT
2\ _ 712 -1 _ B
(lhgl*) = L°kgTE,, = P (18)
2 2 -1 2 (Zdzk + K)f14 +y
= L2kpT&) = LPhkpT——— 22 7 (19
. L%*kgT
(Pql) = L*kpTES) = 2: , (20)

where the subscripts hh, pp, and pp denote elements of the
matrix inverse &'

2. Variances of curvature and densities sensed by a protein

Assuming that the protein is a perfect sensor of the mem-
brane curvature and density, the curvature and density devia-
tion sensed by the protein can be determined by the weighted
integrals over the membrane in Egs. (7)—(8). Since these inte-
grals are linear in the height and density fields, it is relatively
simple to compute the variance of the protein-sensed curva-
ture C, and protein-sensed densities p,, 0, by substituting the

Fourier transform conventions for 4(r) and p(r) into Egs. (7)
and (8) to obtain

1
(€M =7 D haP)Ga@P D)
q
1
0™ = 73 2 ApaPGa(@P, (22)
q

where G ,(q) is the Fourier transform of the Gaussian weight
Ga(r), and [Go(Q) = |Ga(q)|* = exp(-g°a®). See Ap-
pendix B for an example derivation.

In the continuum limit, these Fourier sums can be rewritten
as integrals, noting Y4 = (ﬁ)2 [ dq in 2D [16]. Since the
integrands depend only on the magnitude of q, we can further
simplify [ dq =27 [~ qdg, finding

1 . kpT
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where & = k +2d%k.
We reformulate Eq. (23) and Eq. (24) by substituting a
dimensionless parameter u = ga and simplify as

1Gal(g)Pdg,  (24)
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The curvature and density variances of Eq. (25) and

Eq. (26) are numerically integrated by quadrature using the
scipy.integrate.quad [56] method in Python. We plot the
variances in Fig. 6 as a function of protein size for varying
membrane adhesion strengths. We also compare these results
to FSBD simulations of a fluctuating membrane bound to a
flat substrate, finding excellent agreement (Fig. 6). These
variances will control the SNR through Egs. (14)—(15), and
thus the potential accuracy of sensing. How do they depend
on the protein size and membrane-substrate adhesion? In gen-
eral, larger protein sizes and stronger adhesion strengths allow
the protein to minimize the variance in curvature and p sensed
locally. However, increasing membrane-substrate adhesion y
continually decreases the curvature variance (C2)™ over or-
ders of magnitude, while the density variance (p2 )1 seems
to saturate. We can understand these behaviors by studying
some asymptotic limits where Egs. (25)—(26) can be analyti-
cally evaluated.

In the absence of membrane-substrate adhesion, y = 0, and
Eq. (25) and Eq. (26) are

kgT

2\flat _ B
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< 2\flat _ kBTI? (28)
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FIG. 6. Theoretically predicted variances in local curvature and local
lipid density deviation as sensed by proteins of varying sizes for a
membrane adhered to a flat substrate with different adhesion strengths
v, as compared to variances obtained from FSBD simulations of a
membrane on a flat substrate. Simulated points are for a = 16, 24
and 32 nm. Simulation parameters: L = 900 nm, N = 49. Other
parameters: Table 1.

At the zero adhesion limit (freely fluctuating membrane), the
curvature and density variances sensed are both inversely pro-
portional to the protein size as 1/a”. Eqs. (27)—~(28) are also
applicable at relatively weak adhesion; for the standard param-
eters values chosen, these asymptotic formulas are reasonably
accurate up to adhesion strengths of y ~ 10°-10'° J/m* (Fig.
7).

We can also simplify the variances in Eqgs. (25)—(26) in the
limit of high adhesion. The integrand in these equations is
suppressed exponentially when u > 1, so at sufficiently high
adhesion strengths, 77‘14 > 1+ %, we can neglect the terms
not proportional to y in the numerator and denominators of
Egs. (25)—(26). In this limit, we find

kgT
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(Colny = oy (29)
kgT
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Padhighy = g G0

We see in these high-adhesion limits both of the key fea-
tures we observed in the numerical calculations of Fig. 6:
curvature variance depends strongly on both protein size and
adhesion, while the density variance does not. In the ab-
sence of adhesion, (C2) ~ 1/a?, while in the high-adhesion
regime, (C2) ~ 1/a®. As y is increased, (C2) continues to
diminish, while (pi) saturates asymptotically to a fixed value.
This might be expected, as even if the membrane is effec-
tively frozen into a flat configuration (y — o), the lipids
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Numerical
—— High Adhesion Limit
—— Zero Adhesion Limit

=N
(=]
(N

(=

Curvature SNR

10> 10° 10" 10" 10" 10" 10" 10’

Membrane adhesion strength y (J/m?#)

5

(Ra, Rg) = (0.5 um, 1.5 um)

0.35/ —— Numerical
—— High Adhesion Limit

(Y 0.3071 —— Zero Adhesion Limit
Z
O 0.25
Q020
0.15
10> 10° 10" 10" 10" 10" 10" 10"

Membrane adhesion strength y (J/m?*)

FIG. 7. Predicted SNRc and SNR,, for beads of radii (R4, Rp) =
(0.5 um, 1.5 pm) as a function of adhesion strength y, compared to
their zero and high adhesion limits. The curvature and p variances
for the numerical SNR values are integrated by quadrature using Eqgs.
(25)—(26). Theory parameters: Table I.

may still diffuse in the flat membrane, leading to lipid density
fluctuations. Interestingly, (C2) and (p2) lose their depen-
dence on « in the high-adhesion regime. In this case, the cost
for deviating from a flat height is dominated by the adhesion
energy—but because bending is so strongly suppressed, the
primary contribution to fluctuations in lipid density is the area
compressibility modulus k.

D. Determining curvature SNR and p SNR for micron-sized
beads

With the results of the previous sections, we now have a
complete theory for computing SNR¢ and SNR,, using Eqs.
(14)—(15) and the variances Eqgs. (25)-(26). We choose the
radii of the beads R4 = 0.5 ym and Rp = 1.5 um to corre-
spond to typical bead sizes in the experiments of [14, 15]. We
plot the SNR computed using numerical quadrature in Fig.
7. Consistent with our discussion of measured fluctuations
above, the SNR for curvature increases without bound as cur-
vature fluctuations are suppressed at high y, while the p SNR
reaches an asymptotic limit. We can determine simple analyt-
ical forms for the SNR by using the low-y and high-y limits
for the variances derived above. The closest relevant limit
for understanding experiments on supported lipid bilayers on
beads [14, 15] is the limit of strong adhesion (high ).



In the limit of high adhesion, Eq. (14) and Eq. (15) become

amaty (i - )

SNRc, high y = ks , 31
16na’d*k (7= — =)*
SNRy, high y = kB’;A Re (32)

What is the theoretically predicted SNR when we compare
two beads of experimentally relevant radii (R4, Rg) = (0.5 um,
1.5 um)? We choose a value of y = 10'® J/m* to represent
a fairly strong SLB adhesion (see Appendix F for calculated
estimates), and plot the SNR in Fig. 8, varying protein size and
membrane monolayer thickness. (We note that our estimate
for SLB adhesion does not put us in the asymptotic limit of
Egs. (31)—(32); the full form must be used.) We would like
to highlight three elements of these central results. First, we
see that the SNR for sensing curvature is always, over our
parameter range, larger than for sensing density. This may
not be surprising, since our perturbation of the membrane
acts directly on the membrane height field through Eq. (1),
with density only correlated with this effect. Second, we see
that SNR,, can be comparable to SNR¢, especially for small
protein size a and larger membrane thickness d; these are the
circumstances where the density difference p is best able to
act as a proxy for the membrane curvature. Third, we should
comment on the overall scale: we see signal-to-noise ratios on
the order of one or higher. This suggests that single septins
sensing micron-scale curvature is at least reasonably plausible.
In the next section, we will ask whether this SNR is compatible
with the recent experimental observations of [15].

Fig. 8 varies monolayer thickness independently of other
parameters. Changing lipid types to vary monolayer thickness
will also potentially change the bending modulus « and com-
pressibility modulus k. We show a variant of Fig. 8 when « is
also changed according to phenomenological laws connecting
k and d in Appendix I.

E. Connecting SNR and membrane shape and density
fluctuations to experimental protein-bead association rates

To interpret what the SNR means, we make a correspon-
dence between the experimental measurements and our com-
puted distributions of curvature and lipid density. This requires
a few additional assumptions. We treat two separate cases. In
the first case, we assume that a single protein has a preference
to bind to a specific curvature or range of curvatures. This is
consistent with data showing that the adsorption of filament-
forming septins has a clear peak at a characteristic bead curva-
ture of 2 ,um‘1 [11]. In our second case, we assume that single
proteins prefer to bind to beads with curvature above some
threshold value, so that the association rate is enhanced above
the threshold curvature, but saturates at sufficiently steep cur-
vatures. For example, if the threshold curvature is 0.5 ,um‘l,
a single protein would distinguish between a flat membrane
and a bead of curvature 1 ym~!, but would not be able to
distinguish between two beads both of which had curvatures
considerably above the threshold, such as 4 yum~' and 6 um~".
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FIG. 8. (Top) SNR vs. protein size, with d = 1 nm. (Bottom)
SNR vs. monolayer thickness, with a = 16 nm, for experimentally
relevant micron-sized pairs of beads with diameters of (1 ym, 3
um). As the monolayer thickness is increased, SNR,, approaches
SNR( asymptotically. Adhesion strength y = 1013 J/m* is used to
numerically compute the variances for the SNR using Eqs. (25)—(26).
Theory parameters: Table I.

This is motivated by the recent work in [15], which notes
that the single-molecule binding rates of septin increase with
increasing bead curvature (measured up to 2 um~'). These
two assumptions have qualitatively distinct results, but cannot
yet be distinguished by experimental measurements because
single-molecule association rates have not been determined at
the highest curvatures, due to experimental limitations.

1. Proteins with a maximal association rate to a preferred
curvature

A protein, encountering the membrane, sees a local shape or
density drawn from a distribution P(C,|R) (i.e. the histograms
plotted in Fig. 4). We then assume that the protein binds with
a probability that is dependent on the curvature it senses. In
the extreme case, binding could happen only when the protein
senses its preferred curvature Cpyrer. We assume that for a given
sensed curvature C,, the association rate has a basal level Ag,
and a piece that is dependent on the sensed curvature, maximal
when C,; = Cprer, which we write as a Gaussian. Therefore,

_ _ 2
(Ca Cpref) ) (33)

2
20hina

A(Cy) = Ag+ Ac exp




Consequently, the association rates are maximal when the
protein senses its preferred curvature, and decreases when C,
is steeper or shallower than Cpr. Here, ofin q characterizes
how precisely an individual protein’s binding depends on cur-
vature and sets the range of apparent curvatures the protein
binds to.

Eq. (33) reflects the association rate for one value of C,,
but proteins will sense a distribution of apparent curvatures
depending on the radius of the bead, P(C,|R). The conditional
probability density of local curvatures sensed given that the
membrane is adhered to a bead of radius R is Gaussian,

~(Ca —1/R)*

P(CalR) = T

1
, (34
\2r(C2) =P ( ) GY

where (Cﬁ) is the curvature variance as derived in Eq. (25). In
this section, we drop the superscript “flat” label for simplicity,
but the variances (C2) are all computed assuming a flat sub-
strate approximation (as explained when proposing Eq. (14)).
Then, the average association rate of the protein to a bead of
radius R would be

A(R) = /_deaA(Ca)P(CalR). (35)

0

This integral can be evaluated analytically as
A(R) = Ag + Bexp (—SNReCff) (preferred curvature), (36)

A Obind

, and the effective curvature SNR is
J(CE)+o

where 8 =
bind

1/R = Cpref)?
SNRCCH_ ( / pref) (37)
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In the limit o2, ; — 0, SNRE is exactly the SNR¢ de-
rived in Eq. (14), characterizing the ability of a protein as a
perfect detector to distinguish between the bead’s true curva-
ture Cpeag = 1/R and the protein’s preferred curvature Cper.
Somewhat counterintuitively, A(R) in Eq. (36) is maximal
when SNR%ff — 0. This is because, as always, the SNR be-
tween two beads indicates the protein’s ability to discriminate
between the two beads, and will be zero if the beads are the
same (or in this case, if the bead curvature and the preferred
curvature are equivalent).

Shi et al. report the association rates of a single septin
oligomer to beads of different curvatures [15], which we re-
plot in Fig. 9. We can extract the basal association rate Ag
of Eq. (36) directly from their experiments on flat surfaces
(zero curvature). We assume that the preferred curvature of
a septin is at 2 um‘l, which is where the association rate is
maximal among the available data, and is also the curvature
of maximal adsorption by septin filaments [11] (although the
competition effects found by [15] suggest that this maximum
is not straightforward when different bead sizes are present
in the same assay). This also sets the value of 3, because
A(R = 1/Cprer) = Ap + 8. We use our default parameters

(Table T) to compute (C2), leaving only one fit parameter in
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the model, o’én 4 We fit Eq. (36) to the experimental data with

oﬁin 4 as a fit parameter, and in Fig. 9, we compare the data
to our predicted association rates for varying bead curvatures.
Although the protein associates maximally as expected to the
chosen Cprer = 2 um~!, it can also associate substantively to
a fairly broad range of bead curvatures between ~ 0-4 ym™!.
The width of this curve is limited by the unavoidable error in
sensing the curvature, (Cg), which we computed above. The

best fit o2 is negligible compared to (C3).
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FIG. 9. Preferred curvature model: association rates of a septin-sized
protein to various membrane-adhered bead curvatures, modeled with
Eq. (36) for Cpyper = 2 /lm_1 . This is compared to the experimental
data in Figure 2B of [15] (extracted using WebPlotDigitizer [57])
for single septin association rates. For an experimental basal rate
of Ag = 0.892 um~2 s~! nM~!, we obtain the model parameter
B =3.505 yum~2 s~! nM~! by subtracting Ag from the maximal
association rate at the preferred curvature. The binding variance is
obtained as a fit parameter using non-linear least-squares fits (lmfit
[58] in Python), such that ~ 5% 10‘9<C§). Parameters: Table
L
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In addition to the fit displayed in Fig. 9, we can more
directly map between the association rates we studied and the
SNR we computed in the earlier sections. Using Eq. (36), the
ratio between the protein’s association rate to a bead with its
preferred curvature and a bead of radius R is

A(R = l/cpref) _
A(R)

w+1
w+ exp(—SNReCff)’

(38)

where w = Ag/B. This ratio is maximized when w — 0,
which would happen if the basal rate Ag is negligible. The
maximum possible association ratio when w = 0 is

{M} = exp(SNRE). (39)
A(R) max

Our estimates for association rate in this section let us in-
terpret what the SNR means: a large SNR between beads of
radii R4 and Rp indicates that there can be a large ratio of as-
sociation rates between these two beads. However, if there is
a large nonspecific basal level of association, or if the specific
association to curvature is very weakly dependent on sensed



curvature (large a'gm +) then the ratio of association rates could
be much smaller than that predicted by the simplest SNR in
Eq. (10). The signal-to-noise ratio of Eq. (10) gives the best
case ability of proteins to distinguish between differing bead
shapes, assuming perfect detection of the membrane shape and
no non-specific binding.

What SNR does the data on single-septin binding to
membrane-coated beads imply? Using data from [15] (re-
plotted in Fig. 9), the ratio between the association rates of
a yeast septin to membrane-adhered beads of diameters 1 um
and 3 um (curvatures of 2 um~! and 0.67 um™") is

{A(R = 0.5 um) ~2.5. (40)

A(R = 1.5 ym) }experiment
The minimal SNR required by a protein to distinguish between
these two membrane-adhered beads with a selective associa-
tion ratio of 2.5 when w = 0 is

SNRef

minimum

~In(2.5) ~ 0.9. (41)

However, since the experiments indicate a basal association
rate of Ag = 0.892 um~2 s~ nM~!, we obtain a non-negligible
w = Ag/B =~ 0.254. Consequently, for an association ratio of
2.5, Eq. (38) gives the effective experimental curvature SNR:

SNRz)f(fpcriment ~ 1.4, 42)

This SNR value is fairly close to the theoretical curvature
sensing limits we have derived (Fig. 8), suggesting that the
accuracy of septin’s discrimination between two curvatures
may be near the limit set by stochastic fluctuations. However,
as is apparent in Fig. 7, the theory SNR is strongly dependent
on adhesion between the membrane and substrate. Our best
estimate for membrane adhesion strength to a solid substrate
such as a bead is y ~ 103 J/m* (see Appendix F). For weaker
v values, the sensing limit would be set lower. For example,
if we used parameters appropriate to membrane-cytoskeleton
adhesion, where ¥ ~ 10° J/m* [59], we obtain SNR¢ ~ 0.25
(see Appendix E). An SNR of 0.25 means that the association
ratio between targets of diameters 1 ym and 3 um could be at
most about 1.3. This is not as preferentially selective as the
membrane-bead systems in [14, 15]; if these experiments were
repeated on a system with y < 10° J/m* (e.g. a membrane
attached to the cell’s cortex or a giant unilamellar vesicle with
no adhesion, y = 0), then we would expect a significantly lower
ratio of association rates. It is only the adhesion strength being
large in the experiments of [14, 15] that make them consistent
with our bounds. The enhancement of binding by 30% even at
weaker adhesion, though, suggests that at least some curvature
sensing by single proteins may be plausible in a broader range
of contexts than just strongly-adherent SLBs.

We have phrased everything so far in this section in terms
of sensing membrane curvature. However, we can derive an
effective lipid density sensing SNR in an exactly analogous
way. We find that

SNRef = (2d/R - ppref)2
2(4pa) + T i)

¢ 3)
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and that the maximum possible ratio between a p-sensing
protein’s association rate to a membrane-adhered bead with its
preferred lipid density deviation and a different bead is

{ A(R = 2d/ppref)

_ eff
AR) }max = exp(SNR}"). (44)

Fig. 8 would suggest that the theoretical lipid density sensing

limit is substantially lower than SNRZfr ) ~ 1.4 when
Xperiment

d = 1 nm. However, this does not necessarily indicate that
p is an unfeasible metric to infer membrane shape, as p SNR
can be appreciable when the membrane monolayer is made
thicker or more resistant to in-plane compression. Holding
the other parameters constant, we find that SNR, ~ 1.4 when
d = 4 nm and k = 0.1 J/m? (a relatively small change from
our default parameters in Table I). In Appendix J, we plot the
ratio between SNRp and SNR¢ for different sets of physical
parameters and compare their relative sensing efficacy.

2. Proteins with enhanced binding above a threshold curvature

Instead of the protein binding when it measures a particular
curvature, we can loosen our requirements and assume that
the protein binds to the bead when it measures a local mem-
brane curvature C, greater than a threshold curvature Cipyesh.
This is motivated by the idea that nm-scale curvature can in-
duce defects in the lipid order [39], so rare fluctuations to very
steep curvatures could induce local defects in the lipid order,
allowing for easier insertion of the amphipathic helices of the
protein. Under this threshold assumption, the protein’s asso-
ciation rate to the bead will be proportional to the probability
that C4 > Cieshs i-¢. P(Ca > Cuwest) = [, dCaP(CylR).
We define an association rate that depends on Cihresh as

(e8]

A(R) =Ap+Ac / dC,P(C,4|R), (45)

Ciresh

where P(C,|R) is the conditional probability density of local
curvatures for a membrane adhered to a bead of radius R, as
in Eq. (34).

Evaluating this analytically, we obtain

Cthresh - 1/R
V2C2)

where the complementary error function is defined as erfc(x) =
& [ e di (601,

We can view Eq. (46) as the association rate as a function
of the bead curvature Cpeaqg = 1/R. When Cpead = Cihreshs
erfc(0) = 1, and A(Cheaqd) = Ag + Ac /2. Therefore, Cipresh
indicates the curvature at which the protein association rate’s
increase above the basal level is half-maximal.

In the simulated histograms in Fig. 4, we showed how beads
can have local curvature distributions that overlap consider-
ably, making discriminating between these two beads more
difficult. If the protein binds only at sufficiently large curva-
ture, C,; > Cinresh, this means that proteins are probing the tails

A(R) = Ag + ATCerfc ( ) (threshold), (46)



of these histograms. This has two effects. First, looking at the
tail of the distribution can highlight a small difference between
the means—a higher Cyesn makes it less likely that a protein
incorrectly attributes a steep local membrane curvature to a
shallow bead’s curvature distribution. However, as Cipresh 1S
increased above Cpeagd, it is rarer and rarer that a curvature this
high is observed, so the curvature-dependent association rate
decreases, and eventually any specificity is lost because the
curvature-dependent association rate is smaller than the basal
rate. In Fig. 10, we compare the predicted association rates
of a septin-sized protein to beads of curvature 2 yum~' and
0.67 um~'. The association rates for both these beads are sup-
pressed at high Cyyesn Values; however, the association to the
bead with steeper curvature (Cpead = 2 ,um‘l) is considerably
higher over a broad range of Ciyresh.
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FIG. 10. Predicted association rates of a septin-sized protein to
membrane-adhered beads of curvature 2 yum~! and 0.67 um~1, as a
function of the protein’s threshold curvature Cipesp, for a fixed Ag
and Ac. Theory parameters: Table I. The values used for Ag and A¢
are taken from the fit in Fig. 11.
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FIG. 11. Protein association rates predicted by the curvature threshold
model, as compared to the experimental single septin association rates
in Figure 2B of [15] for varying bead curvatures. The basal rate Ay
15 0.892 ym_z s~1 nM~!. The model parameters, fitted using a non-
linear least-squares method (1mfit [58] in Python), are A¢c = 5.05
,um‘2 s~ ! nM~! and Cihresh = 1.55 ,um_l. Parameters: Table 1.
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How does the threshold model compare to experiment? We
fit Eq. (46) to the experimental data in [15], using their basal
rate for Ag. The variance (Cﬁ) is computed using our default
physical parameters (Table I), and we obtain Cyesp as a fit
parameter. The data indicate that Cypresy = 1.55 ym" when
the adhesion strength y = 10'3 J/m*. As plotted in Fig. 11,
the association rate increases sigmoidally as a function of bead
curvature, saturating when the bead curvature is sufficiently
greater than Cyyesh. Therefore, a protein that is described by the
threshold model exhibits increased association to curvatures
that are above a threshold, but loses the ability to discriminate
between two bead curvatures that are substantially more than
the threshold curvature.

In the model of Section III E 1, where individual proteins
have a preferred curvature, the SNR controls the sharpness of
how the association rates can depend on bead curvature. In a
similar fashion, in the threshold model, the sharpness of the
transition in association rates is determined by the variance
in membrane curvatures sensed by the protein. In Eq. (46),
we see that the predicted association rate increases from its
basal level to its maximal level as the bead curvature 1/R is

increased—the value v/(C2) sets the scale of this transition.
The fit between experiment and data in Fig. 11 could be
improved if we made the transition sharper. If we increase
the adhesion y—corresponding to fluctuations that are more
suppressed—we do find a better fit (Appendix G). However,
this takes the adhesion beyond what we think is the likely range
(Appendix F).

IV. DISCUSSION

Our results identify the key elements that determine whether
it is physically plausible for a single protein to sense micron-
scale curvature via local membrane shape or lipid density.
Although real proteins often perturb the membrane locally
[12, 23, 61], which will lead to protein-protein interactions
once proteins have bound to the membrane [62—65] and which
may be relevant to later stages of septin assembly [15, 66],
our focus is on the first step of a single protein binding. The
perfect observer assumption allows us to obtain the ideal limits
to sensing curvature as constrained by the membrane’s prop-
erties. We can compare how well a particular protein—like
septin—performs with respect to this ideal limit. These lim-
its occur because even a perfect detection of the membrane’s
shape is subject to unavoidable thermal fluctuations. We iden-
tify a signal-to-noise ratio that describes the accuracy with
which a protein can discriminate between two different large-
scale curvatures solely by sampling the local properties of
the membrane. This SNR can be related to the relative as-
sociation rates of the protein to two membrane-coated beads
of different curvatures. The SNR naturally depends on the
curvature of the bead—Iarger bead radii lead to shallower cur-
vatures, which are more difficult to distinguish—but also on
the properties of the membrane and the protein. Of particu-
lar importance are the membrane-bead adhesion strength and
membrane bending stiffness, which suppress membrane fluc-
tuations, and the protein’s size. In addition, when sensing lipid



densities, the membrane’s thickness and area compressibility
modulus (indicating its resistance to in-plane compression)
play an important role. Our estimates of SNR suggest that
micron-scale curvature sensing as observed for single septins
in [15] could feasibly occur either due to septin measuring the
local membrane shape or the local lipid density. However,
for consistency, we must assume both that the measurements
are near-perfect and that the membrane is strongly adherent
to its bead (y ~ 10'3 J/m*); lower adhesion strengths lead
to insufficient SNR to explain the experiments (Appendix E).
We would then expect that preferential binding as a function
of curvature would be much lower for giant unilamellar vesi-
cles that are not attached to a bead, though we note that there
may be confounding issues when changing vesicle size [67].
Although the importance of membrane-substrate adhesion in
biological processes is widely acknowledged [68-71], it re-
mains challenging to ascertain the range of adhesion strengths
that are applicable to any given system. Evidence suggests
that large vesicles exhibit weak adhesion to glass substrates,
while supported lipid bilayers with direct lipid-glass binding
can have stronger adhesion [41, 72]. Membranes supported
on glass beads generally exhibit strong adhesion; the hydration
layer between the membrane and bead is only a few nanometers
thick [73-75]. Given the orders-of-magnitude-broad range of
reported values, we have generally tried to show how our SNR
depends on adhesion. The value y ~ 10'® J/m* was estimated
based on van der Waals interactions and hydration forces (Ap-
pendix F).

We have computed SNR¢ under the assumption of perfect
local detection of the curvature. However, there may be strong
biophysical constraints on curvature sensing beyond the sta-
tistical ones we have raised here. In particular, as noted by
[76], if a perfectly straight rod-shaped protein is placed on
top of a spherical membrane of micron-scale diameter, the
gap distance between the protein and the membrane is below
the angstrom scale for a protein of length ~ 4 nm, such as
SpoVM. It is biophysically implausible that binding depends
on the direct measurement of this subangstrom gap. A simple
curvature sensing mechanism is not as immediately ruled out
for proteins that are larger, such as septin. For yeast septins
with an end-end length of ~ 32 nm (emulated by our “sensing
radius” a ~ 16 nm), this gap is about 1 nm even for a bead that
is a micron in diameter. The clear relevance of amphipathic
helices for septins [13, 14] also suggests that curvature sensing
arises from sensing some aspect of lipid membrane structure,
and our SNR,, estimate for septin supports this possibility. De-
spite SpoVM being only 4 nm in length, its amphipathic helix
has membrane insertion depths of ~ 1 nm [77], indicating that
even small proteins may be sensitive to leaflet lipid proper-
ties. However, if we use the parameters appropriate to SpoVM
(a = 2 nm), we find a very small SNR ~ 0.003 for curva-
ture and density sensing when distinguishing between beads
of diameters 1 um and 3 um, holding the other parameters
constant. This suggests that the binding on-rate for SpoVM
should not be significantly curvature dependent. SpoVM lo-
calization could then arise from a curvature sensitive off-rate.
Experiments on this point are mixed [17, 18].

We have primarily focused on proteins sensing the local
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value of p, the difference in lipid densities between the up-
per and lower leaflets at the midsurface. While p is a lipid
feature that clearly reflects the curvature, it is not the only
possibility. We can also generalize our results to describing
proteins that simply sense the projected density of the upper
leaflet p*, which might be more appropriate for proteins that
only embed amphipathic helices shallowly into the membrane.

We performed simulations and derived the theory for (p+2>
and SNR,+ (Appendix H). We find that SNR,, is greater than
SNR,+, and interestingly, in the high-adhesion limit, the vari-
ance in p* is exactly twice the variance in p. It may also
be possible for proteins to effectively sense other membrane
properties, such as lipid tilt [78], which can be a more reliable
readout of bending moduli at small scales [79].

To compute the best possible accuracy of membrane cur-
vature sensing by proteins, we assumed that the protein is a
perfect sensor of local curvature or p, representing the mea-
surement by a weighted integral in Eqgs. (7)—(8). There are
several important caveats to this approach. While we think that
the local average used here is the most natural measurement of
curvature, it is possible that a more complex observable could
be less noisy. For example, past modeling of concentration
sensing by a single receptor has shown that the best-achievable
accuracy is twice that of a naive average [26], and this differ-
ence can be even larger if there are multiple receptor types
[80]. This is a clear area for future research. We have also
neglected the anisotropy of the septin by choosing an isotropic
weight function G,(r), but expect this to play a small role in
setting SNR. We also note that binding uses effectively only
a single snapshot of the membrane state, neglecting potential
time-averaging. This differs from the Berg-Purcell approach
and generalizations, where noisy measurements are integrated
over time in order to better resolve them [24-26]. We are mo-
tivated in this by results suggesting that these time-averaging
schemes require energy dissipation and cannot be carried out in
equilibrium [81-83]; time-averaging is then likely not relevant
to understanding in vitro experiments of curvature sensing,
though it is an intriguing possibility within a living cell.

In Fig. 9 and Fig. 11, we have made predictions for how
we would expect association rates to depend on bead cur-
vature based on limited single-septin binding data. These
are somewhat speculative, because they depend strongly on
assumptions of how single proteins bind based on their in-
stantaneous measurement of curvature. We have made two
physically plausible assumptions, which make qualitatively
different predictions on how association rate will depend on
increasing bead curvature. These could be distinguished by
measuring single-molecule association rates at smaller bead
sizes, extending the results of [14, 15]—though this would be
experimentally difficult due to the small patch of membrane
resolved with these beads [15]. In addition, while both models
are roughly consistent with the existing experimental data, nei-
ther is a perfect fit. It is possible to improve the fit quality if the
membrane is more adherent than our expectations or there is
another reason why fluctuations are suppressed (Appendix G).
Greater availability of single-molecule binding data for other
proteins with strong curvature sensing abilities would allow us
to apply our models in a broader context.



Another potentially important factor in improving the quan-
titative comparison between experiment and theory is to un-
derstand the extent to which diffusion of septin to the bead
influences binding. If there was no selectivity in binding, and
binding occurred immediately upon contact with a sphere of
radius R, the rate of binding would be 47 D R [24]—so the asso-
ciation rate (rate per surface area) computed by [14, 15] would
decrease for increasing radius R, as observed by [15]. How-
ever, the association rate observed is smaller than we would
expect from a diffusion-limited rate, so we have neglected these
factors. In future work we will consider complications arising
from competing diffusion and adsorption timescales [84].

What if the membranes are under tension? We expect that
a probe of local membrane tension [85, 86] may also be con-
strained by related fluctuation results, as probes of tension are
related to probing lipid structure and packing [86]. Added
tension on the membrane will suppress thermal fluctuations
[40]. Tension on the membrane due to osmotic effects may
play several other roles. As pointed out by Wasnik et al. in
analyzing SpoVM localization, in the presence of an osmotic
pressure difference across the membrane, the tension will be
different for different-sized vesicles due to the Young-Laplace
equation [87], with the tension increasing linearly with vesicle
radius. If this is the case, then the relevant distinction between
vesicles of different sizes may not be the shape, but the ten-
sion. In our view, then, we would expect that the averaged lipid
densities in the two leaflets p* could vary systematically with
radius in a more complex way than that given by our simple
p = 2d/R. If so, the osmotic pressure could lead to systematic
shifts between the histograms in Fig. 4, increasing the SNR
beyond our predictions here.

Basic considerations of physical and statistical bounds
limit the accuracy of a vast number of sensing processes
across biology, from chemotaxis to pattern formation and
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constraints may be relevant for curvature sensing by single
proteins—proteins like septin may be performing nearly as
well as possible, given the inevitable thermal fluctuations
of the membrane. These predictions, though, must be
tested against experiments, e.g. varying the membrane-bead
adhesion, membrane compressibility modulus, or bending
modulus, to be viewed confidently. Our results also have
broader implications for sensors of related properties, such
as fluorescent probes that reflect membrane structure or
tension [86]. We would predict that the distribution of signals
arising from these fluorescent probes of membrane structure
are limited by the thermal fluctuations in lipid density and
membrane shape, and could be fit to models extending our
work. These results may also provide inputs into probe design
for curvature or stress sensors. It is more advantageous to use
larger probe sizes for curvature sensors (~ a® dependence)
than for lipid density sensors (~ a” dependence) in the
high-adhesion limit, while density sensors can benefit from
greater membrane insertion depths (probing p instead of p*).
As we have studied here, probe accuracies would also depend
on membrane-substrate adhesion strength, suggesting that
substrate types and preparations [88-90] may play a role in
curvature sensing experiments.
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APPENDIX
Appendix A: Fourier space conventions

Our Fourier modes are q = 2T’T(m,n) with m, n in the range —(N — 1)/2,---,0,--- , (N = 1)/2. Since h(r), p(r) and p(r)
must necessarily be real quantities, the modes must fulfill the condition g = h_q, pq = p-q. and pg = p—q. Therefore, only half
the modes are independently evolved as a function of time, and the dependent modes are computed as complex conjugates of the
independent modes. We choose the independent modes analogously to [63]. In general, we would expect Fourier modes to be
complex, but because we are performing Fourier transforms with a finite set of modes, some modes are forced to be their own
complex conjugate, requiring them to be real. Aside from these explicitly real modes, other modes have both real and imaginary
components. The specific modes that are explicitly real depend on whether N is chosen to be even [49] or odd [63, 91]. For
convenience, we choose N to be an odd number, such that only a single mode corresponding to (m = 0,n = 0) of A, p, and p,
is explicitly real. As the membrane’s center of mass is not evolved in our system [92], these zeroth modes are not evolved in time
after their initial values are set (see Appendix C 2 for details). To perform Fourier transforms and their inverses (as in Eq. (3)),
we used the two-dimensional Fast Fourier Transform (FFT2) and Inverse Fast Fourier Transform (IFFT2) methods from Python’s
numpy package [93] (scaling by N? to accommodate Python’s convention for the Inverse Discrete Fourier Transform).



Appendix B: Variances in local curvature and p derived analytically in Fourier-space

Consider the local membrane curvature sensed by a protein of size a, as in Eq. (7):

_ —V2h(r)
Ca = '/Lz drTGa(r).

Using the Fourier-space representation of 4(r) and the relation G,(r) = # 2q Ga(q)e'™, we obtain

1 or 1 e
Ca = ‘/derqutheqrEZGa(q )6 ar
q q
1 ) o
=— > q"heG (q’)/ dre'dTe'e T
2L4 é = L2

1 2 N2
= 714 E 4 h¢Ga(q )L 6¢,~q
9.9’

1

=57 Z ¢*heGa(—q),
q

where d¢/,_q is a Kronecker delta function.
The variance in C,, for a flat, fluctuating membrane is then derived as

1 1 , ,
(CH™ = {575 D, 07 haGa(~0) 575 D4 hy Ga(~4)
q q
1 , ,
= 5 274" (haha) Ga(-0)Gu(~q)
.9’

1

= m Z q4 </’lq/’l—q> Ga(_q)Ga(q)’
q
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(BI)

(B2)

(B3)

where in the last step we have noted that (hq/q) = 6q,—q' (hqf—q)- Since h_q = hg and G4(—q) = G,(q)", this simplifies to

(€A™ = 2 3 g g PIGa@P.
q

(B4)

Similarly, the lipid density deviation sensed by a protein of size a in Eq. (8) can be used to derive the variance in density

deviations for a flat membrane, as shown in Eq. (22).

Appendix C: Simulation algorithms
1. Derivation of equation of motion

a. Choosing thermal noises to obey detailed balance

We have written our equations of motion as

1 %
5 (ha 2 gaE/[)hg £
5 Pq =-L Q_paE/apq +|4q -
Pq QLﬁaE/aﬁ;; Xq

The correlations of the Gaussian Langevin noises can be written as
(€q(éq (1)) =2Dpbq,—q0(t = 1),

<§q(t)§q’(t,)> =2D,0q,—q0(t - ),
<Xq(t))(q’(tl)> = 2D/§6q,—q'6(t — t').

(ChH

(C2)
(C3)
(C4)
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This serves as a definition for Dy, ,, 5.

The amplitudes of the noises Dy, Dy, Dy, which are analogous to diffusion coefficients in simple Brownian dynamics [94],
must obey a fluctuation-dissipation relationship. This can be found by writing down the Fokker-Planck equation [95] for the time
evolution of the probability distribution of the fields P({q}, {pq}, {Pq}) as

2 2
_zzi[L 9E b p } Z—[ +Dp5_P]+Za [L 08 pip, 22|
! 0hq | Qn(q) Oh—q dpq | 2(q) ap q dp-q| 44 9pq [25(q) Op—q 0p—q

(C5)

where E is the total membrane free energy defined in Eq. (4), and we have noted that hy = h_q, pg = p-q, Pq = p-q for the

real-valued functions A4(r), p(r), o(r).
For the steady-state probability to have the Gibbs-Boltzmann form, PGB({hq} {pq}. {Pq}) = % exp(—E/kpT), it must set the

right hand side of this Fokker-Planck equation to zero. We note that 57 9_pGB _ k;T gf PCB_ Plugging in the Gibbs-Boltzmann
solution to the Fokker-Planck equation, we find:

oPYE Z a | L*> OE pGe_ Dn OE PGB’

gt~ 4 dhg | Qulg) g kT 0h_q
o | L* OE D, OE ]
Za_ o - pGB _ - p 5 pGB| 4 (C6)
4 dpq |2 (q) dp—q BT 0p-q |
9 [ L OE poe_ Do OF PGBi
q 0pq | 25(q) 0p—q kpT dp—-q .

For the equation to be at steady-state at the Gibbs Boltzmann distribution, and the right hand side to be zero, we then need

kpTL?
- i C7)
"= Q) (
kpTL?
= , (C8)
P Qp(CI)
kpTL?
D;=——_. (€9
P Qs(q)

These are the Einstein relations for our system.

b. Deriving hydrodynamic mobilities for h, p, and p

To obtain the mobilities QZI, Q;l and Q;)l, we derive the dynamical equations for dhq/0t, 0pq/0t, and dpg/0t from the
hydrodynamic equations in the Seifert-Langer model [43] while neglecting inertial effects with the Stokes approximation. The
model assumes that the membrane is surrounded by fluid above and below the membrane. Our derivation here is a variant of that
presented in [43], to highlight how the Seifert-Langer results can be generalized to an arbitrary Hamiltonian.

We describe the fluid flow above and below the membrane using the incompressible Stokes equations with a fluid velocity
V]i( (x,y, z), where + indicates whether we are above (z > 0) or below (z < 0) the membrane. These equations are

V. V;—Z =0, (C10)
nvzv; =Vp*, (C11)
where p* is the pressure above/below the membrane.

The two monolayers of the membrane have in-plane velocity fields ¥* (x, y)—these are treated as completely two-dimensional.
The Stokes equations for the velocity fields of the monolayers are

Vot +T* &, + uV* ¥+t —b(F -v7) =0, (C12)
Vo =T &, +uV*¥ +b(F" -¥7) =0, (C13)
where a tilde denotes quantities in two dimensions, o*(x,y) = —0E/5p*(x, y) is the surface pressure due to varying densities

in the two leaflets, T* is the stress tensor of the surrounding fluid, i.e. T* - (£&,) is the force per unit area exerted by the outside
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fluid onto the monolayers, u is the monolayer viscosity, and b is the intermonolayer friction. The components of the stress tensor
T are
TS = —piéij + 77(6[\1?]- + ajv;i’i). (C14)
There is also a force balance equation in the vertical direction, written in real space as

oF
—T;Z(x,y,z:0)+Tz_z(x,y,z=0):—E. (C15)

We assume a no-slip boundary condition between the membrane and the outside fluid—the velocity of the membrane must
match the external fluid velocity. In the plane of the membrane, this requires that the monolayer velocities match the in-plane
components of V;i atz =0:

70, y) =vE (x,y,2=0), (C16)
75 y) = v (x,y,2=0). (C17)

In addition, the z velocity of the membrane 9, h(x, y) must match the external fluid flow in the z direction, assuming that the fluid
does not penetrate the membrane. Therefore,

v (6, y,2=0) = d:h(x,y,1). (C18)

The leaflet densities obey (approximately; see [43]) an in-plane continuity equation,

+

65[_ (x,y,1) ==V -¥*. (C19)

We want to determine, from these hydrodynamic equations, what the equations of motion for the rescaled densities in the top
and bottom leaflets p*(x, y, #) and the membrane height i (x, y, t) are. This requires us to simultaneously solve for the fluid flow
in-plane and out-of-plane. This is easier to do in Fourier space. We also follow Seifert-Langer by using an Ansatz that in-plane
flows are only in the e, direction.

We can then write the in-plane monolayer velocities in Fourier space as

+ 1 ~+ 1
Vi = ﬁ Z vy ettt (C20)
q

Given this form, the Stokes equations for the x component of the in-plane velocity fields of the monolayers are, in real space,
—0y0t + T, + V25t — b(3t - 57) = 0, (C21)
—0x0" =Ty, + uV*5; +b(it - 73) = 0. (C22)
Then, in Fourier space, these can be written as
~iqo™(q) +T3-(q) = ng*vy = b(7g = 75) =0, (€23)
—iqo™(q) = Ty, (q) — ug*vy + (¥} — ;) =0, (C24)
where we have defined o* = 1/L* Y q o*(g)e'?*. The Fourier transforms of the surface pressure are:

a'i(q):{ SE } , OE

-—— =-L"—, (C25)
sp*(x,¥) ), dp=,
where {---}, is the Fourier transform, and the second equation can be derived from applying the chain rule on functional
derivatives to our convention for Fourier transforms. (Note p_, = (p4)" because p(x, y) is a real function.)

The fluid velocity and pressure above and below the membrane can be written in the form

1
Vi(ey2) = 5 ) I (@er +ut(2)eclexpliga]. (C26)
q

1
P*(x.y.2) = 75 ) B (2) expligx]. (€27
q
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where e, and e, are unit vectors in the x and z directions, and

w*(z) = [((2Ww — w) —iu)gz + w £ w] exp[Fqz], (C28)
u*(z) = [(=i(w £ w) £ u)qz + u] exp[Fqz], (C29)
B*(2) = 2nq[-i(w £ w) + u] exp[Fqz], (C30)

where w, w, and u are constants to be solved for. Note that these constants will depend on g.
The boundary condition of Eq. (C16) then reduces to

TR y) =vi (x,y,2=0) (C31)
= % Z f)gei‘” = % Z(W +w)e'd* (C32)
q:> ﬁjzv&i—qu. (C33)
Similarly, the boundary condition of Eq. (C18) gives
Orh(x,y, 1) =v} (x,,2=0) (C34)
= % D ihy(1)e' 1 = % D ut(z=0)e' (C35)
' — 0hy(t) = u, ' (C36)

where in the last equation, u = u*(z = 0) is a constant.
We will now simplify the in-plane force balance equations (Egs. (C23)—(C24)). To compute the surface pressure gradients,
we use the change of variables

ot (q) = -L? ( OF ) =-17

Ipg dpg 0pg 9Py 0pg dpy

OE Opy;  OE 0p, ,( 10E 10E
=-L*|+= = ) C37
5 > ) (C37)

This means that the difference of surface pressures depends on the derivative of energy with the density difference p, i.e.
ot (q) -0 (q) = —LZ%, and relatedly the sum of the surface pressures will be related to the derivative with respect to p.
q
The next term in the force balance requires 77, (¢)—the fluid’s stress tensor in Fourier space, evaluated at z = 0. We will start
by evaluating Ty, (x,y, z) in real space, plugging in our Ansatz for the fluid velocity (Eq. (C26)). The pressure, which only
contributes to the diagonal component of the stress tensor, does not show up in the xz component, and so 7}, = n(ﬁxv;—'c .+0; v;—'c o)
We find, then,

1 olu* igx olw* igx
TE(x,y,2) = EZ"( [u ge ], 9w ;zz)e ]
q
1
= a9 =1 D n ([(=i(% + w) £ u)gz +u] exp[Fqzliq expligx]
q
+ [(FW —w) —iu)qz +w = w](Fq) exp[Fqz] expligx]

+ [((#w — w) —iu)q] exp[Fqz] expligx]) . (C38)

Evaluating this stress tensor at the membrane location, z = 0,

1 ) . )
Ty, (x,y,2=0) = E Z n(uige'?™ + (w £ w)(Fq)e'? + ((Fw — w) — iu)ge'?™) (C39)
q
1 )
= Z F2nq(Ww + w)e'?* (C40)
q
= Ti,(q) = F2ng(w £ w). (C41)

Adding the Fourier-space lateral force balance equations, Eq. (C23) and Eq. (C24), we can solve for w by plugging in the



expressions for 0*(g), Ty, (q), and ¥ derived above. Therefore,
. + . - + - 20+ | 5—\
- lqa— (q) - lqa— (CI) + sz(q) - sz(q) - ,Uq (Vq + Vq) - 0

oE
= iquw —dngw — 2/1q2vT/ =0
q

iq , OF

— W= — .
4nq +2uq* " 0py

Subtracting Eq. (C24) from Eq. (C23), we can solve for w as

- iqo*(q) +iqo™(q) +TE,(q) + T (q) — ug* (7 — ;) = 2b(¥; = 9,) = 0

E
—4ngw — 2uq*w —4bw =0

op,

= iqL’®

iq 12 OE

- w=— —.
4ng +2uqg*+4b  dp;
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(C42)

(C43)

(C44)

(C45)

(C46)

(C47)

We can find the remaining parameter, u, and the corresponding dynamics of the height field, from the vertical force balance

equation (Eq. (C15)). In Fourier space, this equation is

O
oy

~T}.(q) +T.,(q) = -L*

We obtain the (z, z) component of the stress tensor as

Tziz(x» y,2) = _piézz + n(azv;,z + azviz)
= —p*(x,y,2) + 200,75

1 PN 1 d[u*(z)e'1*]
- E + igx - E o e 1
=1 4 B=(2)e +217L2 4 oz .

At z = 0, plugging in the formulas for B*(z) and u*(z),
+ 1 . . 1 o .
TZ (v, 2= 0) = 2075 3 ql=iGv £ w) = ul expligx] + 275 ) q(=i(W + w) expligx])
q q
1 .
= +E Z 2nqu expligx]
q

= T..(q) = F2nqu.

The force balance equations in the vertical direction then become

OE
~T}(q) + T, (q) = —L* —
a4 Z ahq
OE
dnqu = -L?
= g o,
-1
= u=—1L° OE .
dng  Ohy

(C48)

(C49)
(C50)

(C51)

(C52)

(C53)

(C54)

(C55)

(C56)

(C57)

Now that we have values for u, w, and w, we can find the equations of motion for /4, p,, and p,. We already know that 6;h, = u
from the boundary condition at the membrane. The other equations arise from applying the in-plane continuity equation, Eq.

(C19). If we plug in our Fourier transform representation of the functions, we see that

+
i aﬁeiqx = _L igvE
L? ot L? 4
q q

0p

- B_tq = —iqvy = —ig(W = w).

(C58)

(C59)
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Using the definitions p, = (o3 — p,)/2, pq = (pg + py) /2, we then get

dhy 1 ,0E

g oL g2 08 C60
or T Tanq - om (0
o 1 (0pt Op; 2 OE

%q 1P _Pa)_ - 42 OF (C61)
ar 2\ or ot 4ng +2uqg*+4b  dp;

05 1 ({0pF Op, 2 OE

%q _1(%a  Pa) _ o= 4 20F (C62)
or 2\ ot ot dng +2uq*  0py

Equating Eqgs. (C60)—(C62) to the deterministic part of our equations of motion in Eq. (C1) gives us the hydrodynamic
mobilities,

1
__ (C63)

Qn  4nq

1 2
L q i (C64)
Q, 4nqg+2uq*®+4b

1 q°
_— = C65
Q5  4ng +2uq? (C65)

The first two of these mobilities could be derived simply by requiring that the deterministic equations of motion matched those
of Seifert and Langer. The third is not quite the result of Seifert and Langer, as we have neglected inertia in the p mode. Although
this assumption influences the dynamics, the resultant thermal equilibrium distribution of o does not change.

¢. Deriving the equations of motion using functional derivatives of the membrane energy E

The membrane energy E in Eq. (4) may be expressed as
E—Zli(i *hah—q — 2kdg®p_qhq — 2kdq*h +2k +2kpgf-q) + E
= 22 q Nqh—q q P-qllq q N-qPq PqP—q PqP-q adh-
q

We show here that we get the Seifert-Langer equations of motion back in the limit of zero adhesion (E,gy, = 0). Differentiating
E with respect to p_j, such that j is an arbitrary Fourier index,

OE 11
ﬁj = Z EE(_zkquhqd_j’_q - 2kdq2h_q5_j,q +2kpqd_j,—q +2kp_q0_j,q)» (C66)
B q
where 6_j _q and 6_j q are Kronecker delta terms.
Consequently,
OE 1
3 m(—21cc1]'2hj — 2kdj?hi + 2kpj + 2kpj). (C67)
-
Since j is an arbitrary Fourier index, we may equivalently reformulate in terms of q (noting that BBTEJ- = 35*) as
- i
OE 1
Fyc E(—deqth +2kpq)- (C68)
q
Similarly, it can be shown that
OE 1 _
o5 12 (2kpg), (C69)
q
OE |
o = E(Kq“hq +2kdq’pq)- (C70)
q
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Substituting Eqs. (C68)—(C70) as appropriate to the dynamical equations in Egs. (C60)—(C62), we have

Rq* —-qkd 0

h h dnq 21 h
9 ou) = - pg | = - | ke’ 2 0 ||rq (©71)
ot gq - gq - 2b+2nq+uqg? 2b+2nq+uqg? 2 gq '
q q q q
0 0 2nq+uq?

These are (except for the p mode, as noted above) the equations of motion from [43], who have neglected membrane-substrate
adhesion (y = 0). It is also straightforward to show that if we have adhesion to a flat surface, then Engn = % f dri?(r) =

% 2q |hq|2, which will lead to an added term y/4nq to the My, term as shown in Eq. (C86).

2. Numerical evaluation of the equation of motion

To numerically solve the stochastic equations of motion in Eq. (C1), we take the simplest approach, the Euler-Maruyama
method [96]. Let us take the dynamics of the height variable hq as an example. Integrating from a time ¢ to ¢ + At, this equation
becomes

t+At LZ aE t+At
hq(t + At) — he(t) = —/ dr' — — +/ dr'éq(1'). (C72)
t Qp 8hq t

The term without the Langevin noise can be approximated simply with the usual Euler rule, and we define a new function
A
Eq(Ar) = ftH ! dt’'éq(t'), so we have

L? 0E
h At) =h — At— —— + 54 (A?). C73
q(t+Ar) q(1) tQh 3ha + Eq(Ar) ( )

Here, E(At) is a Gaussian random variable with mean zero and a variance that will depend on the timestep At. We can compute
its variance straightforwardly by using the correlation of £q() given above, (&q()éq (")) = 2D p0q,-q0(¢ = t'), such that

t+At t'+At’
(IEq(ANP) = (Bq(ANE_ (A1) = < f degq (1) / dt’f—q(t’)>
t+Ar t'+At’
:/ / (Eq()é_q(1)) dedt’

t+At t'+At
= / / 2Dy 6(t —t')dedt’
t t’

2k TLZ t+At
=8 / dr
Q J;

_ 2kpTL?
==,

At. (C74)

Similarly, to integrate over the Langevin noises associated to fluctuations in lipid densities, we define ©4(Af) = ft AL dr’ £q(t)
and Yq(Ar) = /IHN dt’ xq(¢") and derive

2k pTL?
(18q(AD)]?) = =2 Ay, (C75)
QP
2k gTL?
(Yq(an) = XLy, ©76)
Q;

In ordinary Brownian dynamics, we would generate a real random variable with a variance given by Egs. (C74)—(C76) in
order to evolve the equations of motion. However, our Fourier modes are complex, except for q = (0, 0) (see Appendix A).
We sample the real and imaginary parts of our Fourier modes separately, with variances so that their absolute value obeys Eqs.
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(C74)~(C76), such that

2
Re[Eq(A1)];Im[Eq(AN)] ~ N (0, kBQT L At), (C77)
h
2
Re[@q(AN)]; Im[O4(A1)] ~ N (0, k’g L At), (C78)
‘0
2
Re[Yq(AD)]:Im[Yq(AD)] ~ N (0, kBQT L At), (C79)
%]

where N (u, 0?) is a Gaussian distribution with mean u and variance o->. This is essentially the approach used by [50, 91, 97],
etc.

The equation evolving the membrane’s height in Fourier space, Eq. (C73), includes a term %, which includes the forces

q

acting on the membrane from both deformation forces (bending and monolayer compression) in addition to the forces due to
membrane-bead adhesion. The deformation forces are as shown earlier in Eq. (C70). When we simulate a membrane-bead
system, we explicitly compute the force due to membrane-bead adhesion by Fast Fourier transforming the functional derivative
—68E,an/dh(r), which is computed in real space. Therefore at time ¢,

-0F

- (C80)
ony

- g0+ ka0 + o | )
q

L? Sh(r)

where {- - } indicates the Fourier transform performed using our convention (analogous to Eq. (3)), noting the discretization
dr = dxdy = (L/N)?. The numerical algorithm for evolving hq is obtained by writing Eq. (C73) explicitly as

L1, 5 1 (=6Eaan(r) _
hq(t + A[) = /’lq([) +AtQ_h ﬁ(—KC] /’lq(t) +2kdq pq(t)) + E {T(r) . + :.q(At) (C81)
At - —0E an(T)
= hq(t) + — |—&Rq*hq(t) + 2kdq® py (1) + {— + Eq(Ar). (C82)
T dng [ “ “ Sh(r) Jo| "7
Similarly, the numerical algorithms for evolving pq and pq can be written as
ool + AN = pa(i) 4 — DL [2kdq?hy (1) — 2kpg(1)] + O (A1) (C83)
4 4 4b +4ng + 2uqg? 4 4 4 ’

4t + A1) = a0+ —T [ oka(0)] + Yg(AD) (C84)

P =p ———— |-2kp .

¢ 7 dng +2uq? ! !

With the exception of q = (0, 0), for both the real and imaginary components of the remaining independent modes, the thermal
noise Eq(At) is sampled from a Gaussian distribution with a mean of zero and variance inggm , ©q(Ar) is sampled from a
Gaussian distribution with mean zero and variance %, and Y (Ar) is sampled from a Gaussian distribution with mean
zero and variance M.

nq+2uq

To allow for faster simulation equilibration, we set the membrane’s initial height field /(r) at r = O to be equal to the bead’s
height Apeaq (1), and then Fast Fourier Transform this to obtain Aq(# = 0). The lipid density pq is initialized at zero and allowed
to evolve due to its coupling with membrane height; pgq is also initialized at zero. After initializing hq, pq and pg, the zeroth
modes of each of these variables are not evolved further either due to the deterministic or stochastic contributions. To avoid
division by zero when ¢ = 0, the zeroth modes of the mobilities 1/, = 1/4nq and 1/Q5 = ¢°/(2ng + pg*) must be set to zero
when evaluating these algorithms. After each successive At, the arrays computed for hq(t + At), pq(t + At), and pqy(t + At) are
inverse Fast Fourier transformed to store their corresponding real-space values.

a. Choosing parameters appropriately for simulation convergence

Choosing a small At is necessary for simulation convergence, but a Az that is too small prolongs the computation time required
since a greater number of timesteps must be simulated for the same f,. The following are useful guidelines when assessing
whether a chosen set of dynamical parameters are practically feasible for the desired simulation.
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Consider the dynamical equations for evolving h, pg4, and p for a membrane adhered to a planar substrate,

o [P hq
% Pq|= -M Pa (C85)
Pq Pq
Rq*+y —qgkd 0
47]q4 2772
_ —kdg kq
M= 2b+2ng+ug?  2b+2ng+pg? 0 > (C86)
0 0 _kq® _

2nq+uq?
where we note the inclusion of adhesion strength y in Myy,.

The eigenvalues for M can be obtained symbolically by matrix diagonalization (we used the sympy package in Python). This
results in three sets of eigenvalues, which we denote as 11(¢g), 142(q), and 23(g). These eigenvalues correspond to the relaxation
frequencies of the modes g. We plot the relaxation times 7, = 1/A(q) in Fig. 12. For 71 and 1, the presence of strong adhesion
can allow the low-g (large wavelength) modes to relax orders of magnitude more quickly.

For simulation convergence, the total simulation time 7, must be at least a few times longer than the relaxation time of the
slowest relaxing mode. Also, the timestep Af must be a fraction of the relaxation time of the fastest relaxing mode for numerical
stability of the integration algorithm,

/lslowesttsim 2z 5_10,

/lfastestAt < 1

Practically, it suffices to have AggestAt = 0.2. Agiowest aNd Agastest Can be obtained as the minimum and maximum values of 4;(q).

-7 e

7 e With adhesion y m 107° e With adhesion y ™ %g: 18*7 e Adhesion independent
210 Without adhesion 2 Without adhesion D 2.4x10_. °
<] Q.6 8 22x10._ .
g g 10 3 2x10 ‘.
O 5| e » .
=10 . - <= 18x10 ~
f\ Y 110 7 - ~
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FIG. 12. A comparison of the relaxation times 7 = 1/4(q) for 11(q), 12(q), and A3(q), demonstrating the effects of adhesion on the relaxation
of modes. The presence of membrane-substrate adhesion (y = 1013 J/m*) results in faster relaxation of low-¢ modes for two of the ei genvalues,
while the third eigenvalue is independent of adhesion.

Appendix D: Cross-sectional profiles of simulated membranes adhered to a small bead with different adhesion strengths

To perfectly adhere a membrane onto a hemispherical bead and the flat substrate around it would require large bending forces
at the periphery of the bead due to the sharp curve. If the membrane-substrate adhesion strength is too weak, the membrane does
not exactly follow the bead shape, even on average. We show in Fig. 13 that, for a small bead of R = 200 nm, the simulated
membrane’s curvature at the center of the bead deviates from Cpeag = 1/R when y is weak. This discrepancy between bead
shape and the average membrane shape is most relevant at small bead sizes and at weak adhesion strengths, and leads to the
deviation between theory and simulated SNR in Fig. 5. We note that the membrane’s average profile can be below the “bead
height” line at y = 10! J/m* in Fig. 13. The bead height line indicates the energy minimum of the harmonic potential—this does
not necessarily indicate that the membrane is crossing the bead itself. At these low adhesions, using a more complex potential
with a hard core might be necessary in order to prevent the membrane from penetrating the bead. However, we expect that the
distributions of height from the harmonic potential are a good approximation to distributions for fluctuations in the vicinity of
the substrate [41].

Appendix E: SNR¢ and SNR,, in the low-adhesion regime

In the main text, we primarily use our best estimate of y for the supported lipid bilayer systems of [14, 15]. Here, we show
some corresponding plots of SNR in the low-adhesion regime. Membrane-cytoskeleton confinement in cells have reported
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FIG. 13. Cross-sectional profile of bead height for a bead of diameter 0.4 ym and the mean height of a simulated membrane adhered to this
bead. (Left): with weak adhesion (y = 10! J/m*), the simulated membrane overestimates the curvature at the center of the bead due to a
height discrepancy of 4.073 nm at the bead center. (Right): with stronger adhesion (y = 1013 J/m*), the membrane wraps around the bead
more effectively, with a negligible -0.003 nm central overhang.

y ~ 10° J/m* [59]. This corresponds to SNR¢ ~ 0.25 (as shown in Fig. 14). Assuming a negligible basal association rate, Eq.
(39) implies a maximal association ratio of exp(0.25) = 1.3 to the preferred radius when distinguishing between cells of radii
(Ra,Rp) =(0.5,1.5) um.

(Ra, Rg) = (0.5 um, 1.5 um) (Ra, Rg) = (0.5 um, 1.5 um)

0.40
0.25] — Gurvature SNR 0.35 —— Curvature SNR
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6 8 10 12 14 16 10 15 20 25 30 35 40
Protein size a (nm) Monolayer thickness d (nm)

FIG. 14. Sensing SNR in the low-adhesion regime for y = 10° J/m*. (Top) SNR vs. protein size (when d = 1 nm) and (Bottom) SNR vs.
monolayer thickness (when a = 16 nm) for (R4, Rp) = (0.5 um, 1.5 ym). The curvature and p variances for these SNR values are computed
with Eq. (25) and Eq. (26).

Appendix F: Justification for adhesion strength y

We estimate the membrane-substrate adhesion parameter y in our model using the approach of [42]. They model the energy
per unit area of membrane at height % as

A (1 1
=—— | - —— | +Be ", F1
1271(h2 (h+6)2) p &)
where the first term is the van der Waals interaction between a bilayer of thickness 6 = 3.8 nm and the substrate, with
A ~ 2.6 x 102! J as the Hamaker constant [75, 98]. The second term is a phenomenological form for the hydration force with
B ~ 0.93 J/m? and @' ~ 0.22 nm. Instead of this complex potential, we have used a harmonic approximation to it about an

equilibrium height Ay,
1 44
V(h) % Vo + 5V (ho) (h = ho)?, (F2)

where V"' (hg) = vy, corresponding to our adhesion strength. Note, again, that V here is an energy per unit area, so y has units
of J/m*. Using the parameter values of [42], stated above, we find that the minimum energy distance is /o ~ 3.02 nm, and find
V" (ho) ~ 1.6x 103 J/m*. We view this as the roughly correct order of magnitude for a supported lipid bilayer, which is strongly
adherent to the substrate. However, it is possible that this adhesion energy could be a little higher in some SLBs. Experimental
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data indicates that the hydration layer can be as thin as 1 nm [74]; if this arose from a larger Hamaker constant or lower repulsion
energy, that would increase the value of y. There is also evidence suggesting that adhesion strengths can vary over orders of
magnitude in different contexts. Large membrane vesicles adhere to glass substrates relatively weakly, with corresponding y
values of 107 J/m* [41], and whole-cell experiments have reported membrane-cytoskeleton adhesion strengths in the order of
107 - 10" J/m* [59].

Appendix G: Curvature threshold model at higher membrane adhesion strengths

Although we choose y = 10'3 J/m* as a realistic estimate of the adhesion strength relevant to the experimental membrane-bead
system, it is useful to examine the model’s fit to the data for higher adhesion strengths. In Fig. 15, we choose y = 103 J/m* and
observe a nearly perfect fit to the data in [15] with a lower Cipresn = 0.733 ,um_1 (compared to Cipresh = 1.55 ,um‘1 aty = 1013
J/m*, Fig. 11). This does not necessarily indicate that the experimental system is subject to such strong adhesion strengths, but
only that minimizing the curvature variance improves the fit to the data. Therefore, sources of membrane fluctuation suppression
other than adhesion (such as membrane tension; see Discussion) may also contribute to improved fits to the data.

y =105 J/m*

$

N
1

Model: Curvature Threshold
@ Experimental Data

Association rate
(um=2 s~ nM~1)
N
1

o

T T

0 2 4
Bead curvature (um™1)

FIG. 15. Curvature threshold model fits to experimental data in [15] for varying bead curvatures when y = 101> J/m*. With Ay = 0.892 yum~2
s~! nM~1, the fit parameters obtained with non-linear least squares fits are: Ac =~ 3.505 um™2 s~! nM~! and Cypyreh ~ 0.733 um™~'. Other
physical parameters: Table I.

Appendix H: Sensing lipid densities projected by the upper monolayer

Instead of sensing the lipid density deviation p between the upper and lower monolayer at the midsurface, we investigate here
whether the protein might comparably infer differences in bead sizes by sensing the density p* projected solely by the upper
monolayer at the midsurface. Using the definitions for p and p, we have

p+p_:(p Ep)+(p ;p)zpﬁ HI)

The mean squared value of pg is then derived as

p:i = pPq * Pq (H2)
= (lp§*) = lpal®) + (|5q*) + (Pah-q) + (P—qPq) (H3)
= (lpqgl*) + (154*), (H4)

where the last step is true because (pq) = {(pq) = 0 for a membrane associated to a flat substrate, and pq and p_4 are independent
given the flat-membrane energy of Eq. (17).
From Eq. (19) and Eq. (20), we obtain, for a flat membrane,

/?q4+y 1

+12 2
0 =LkpT| ———— + —|.
(lpgl™y B 2k(kg* +v) 2k

(H5)
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In the continuum limit, the variance in p* sensed by a protein of size a is
1
2 2
03’y = 73 D MgPIGa (P
q

o =4
Rq" +y 1 2
= — kgT | ———— + —| |G dg. H6
o ), Ikm (2k(l<q4+7) o | 1Ga(@)l"dg (H6)

Substituting a dimensionless parameter u = ga, and since |G (g)|> = exp(—g*a?), it can be shown that

00 4, 2d%kut | ya
w2, _ ksT wHTt e o

(") = 47rka2/0 u T + 1 |exp(—u“)du (H7)

kgT o
= <p3>+47ria2/0 uexp(—u®)du (HS8)

kgT
2

= + , H9
Pa)+ g oa (H9)

where (p2) is as in Eq. (26). We see that the variance in p;, is always greater than the variance in p, by the simple additive
factor kT /8mka>.

In the absence of membrane-substrate adhesion,

2 kpT (d*k + «)
0= ">, - H10
(Pa 10 dratkk (H10)
In the high-adhesion limit,
2 kBT 2
(P& Mhighy = P 2{p dhigh y (H11)
1
= SNRy+. highy = 5SNRy, highy- (H12)

In deriving the SNR for p*, we have used the result that the mean value of p* is the same as the mean value for p. We can see
that the steady state solution for the average density is pq = 0, as obtained by solving 9E _ (), Therefore, p* has the same mean

9pq
value as p, but a greater variance in its distributions.
(Ra, Rg) = (0.5 um, 1.5 um)
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FIG. 16. Lipid density SNR for p and p* for varying membrane adhesion strengths, in comparison to their high-adhesion limits. The SNR is

computed as in Eq. (15) and the corresponding flat membrane variances for (pi) and (pﬁ) are computed by numerical quadrature. Theory
parameters: Table I.

We plot the theoretical SNR resulting from a protein probing p or p* in Fig. 16. We see that the difference between probing p
and p* becomes largest at high adhesion, where the SNR of probing p is twice that of probing p*, as discussed in the main text
and seen in Eq. (H12).

To simulate fluctuations in p*, we use the relation pg = pg + pq in conjunction with the algorithms in Eq. (C83) and Eq.
(C84). We plot these histograms in Fig. 17, and see, as we expect, that the mean value of p, and p} agree, but the variance of
p4 is larger. For the parameters in Table I, simulations of membranes adhered to beads of diameters 0.4 ym and 1.4 ym show
o} variances of 2.07 x 1073 and 2.08 x 1073, respectively. This is in good agreement with the flat membrane theory variance of
Eq. (H7), which is approximately 2.11 X 107> as computed by numerical quadrature.
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FIG. 17. Histograms (normalized as probability densities) from simulations of beads of diameters 0.4 um (left) and 1.4 um (right), with
y = 1013 J/m®. In each case, p, and o} have the same mean values at steady-state, but p}; has more variance. Parameters: Table I.

Appendix I: Dependence of bilayer bending modulus on monolayer thickness and area compressibility modulus

In addition to understanding how curvature sensing efficacy depends explicitly on each physical parameter in our model, it
may also be of interest to consider instances when these parameters are coupled. Phenomenological evidence based on a polymer
brush model [52, 99] suggests that the membrane bilayer’s bending modulus is coupled to the monolayer’s thickness and area
compressibility modulus as

2
s _ KAdbilayer _ k_d2 (Il)
bilayer — o = 3
where @ = 24 is obtained as a fit parameter from data corresponding to various lipid species, K4 = 2k is the bilayer’s area
compressibility modulus, and dpiayer = 2d.
The renormalized membrane bending modulus can then be expressed as

Tkd?

3 12)

K = Kbilayer + 2d%k =

As shown in Fig. 18, this formulation allows us to compute the SNR without explicitly choosing a bending modulus by

substituting k = kd?/3 in Eq. (25) and Eq. (26). However, this @ = 24 is phenomenological and may not apply to all

lipid species. Understanding, e.g. the role of lipid type on driving different association rates to beads may require systematic
characterization of both « and d for different lipid mixtures.

SNR(14m, 3um) vs. d when K = kd?/3

3
<l
Y ?2
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1.0 1.5 2.0 25 3.0 3.5 4.0
Monolayer thickness d (nm)

FIG. 18. SNR¢ and SNR,, for beads of diameter A = (1 um, 3 um) as a function of the monolayer thickness d when the membrane bending
modulus is coupled to the monolayer’s thickness and area compressibility modulus as « = kd?/3.

Appendix J: Relative efficacy of lipid density sensing and curvature sensing

To better understand the relationship between various physical parameters and the relative sensing efficacy of lipid density

sensing in comparison to local curvature sensing, we plot the ratio between SNR,, and SNR¢ in Fig. 19 for beads of diameter 1

. . . . . . . SNR,
umand 3 um. Atlow y, density sensing is a fairly effective sensing strategy compared to local curvature sensing, with the < R::

ratio approaching a value of 1 for thicker membranes with larger d. As vy is increased, the variance in p saturates and curvature
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sensing becomes significantly more effective as a sensing strategy. For smaller proteins, density sensing serves as a passable
proxy for curvature sensing even at relatively high adhesion strengths, in contrast to larger proteins, for which SNR,/SNR¢c
decays more prominently as a function of 7y.

0.6 1.0
O 0 0.8
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FIG. 19. Ratios between the theoretically predicted p SNR and curvature SNR for beads of diameter (1 um, 3 um) for various physical
parameters as a function of increasing y. For each plot, only the depicted parameters are varied, while the other parameters are the same as

those referenced in Table 1.

Appendix K: Fourier Monte Carlo simulations

We develop here an alternative method to simulate coupled fluctuations in the membrane’s height and lipid densities based
on a Fourier Monte Carlo (FMC) algorithm [51], and use it to ensure our FSBD algorithm is correctly reproducing the thermal
equilibrium. For large membranes and membrane-adhered beads, FMC takes a much longer time than our FSBD algorithms to
satisfactorily simulate, since a larger number of modes entails a substantial increase in the number of Monte Carlo steps (MCS)
required for convergence. Therefore, we only use the FMC method to corroborate our FSBD simulations for small system-sizes.

In Table I1I, we compare SNR¢ and SNR,, for a pair of beads with small radii, as obtained from FSBD and FMC simulations.
For beads as small as these, the simulated membrane has deviations from the simple theory result, as in Fig. 5, but nonetheless
FSBD and FMC are in excellent agreement.

Bead diameters: (0.1, 0.2) um| FSBD FMC
SNR¢ 500.7 £ 3.1{506.8 + 2.0
SNR, 934+03(939+04

Bead diameters: (0.2, 0.3) um| FSBD FMC
SNR¢ 9.18 £ 0.05(9.31 £ 0.08
SNR,, 1.68 £ 0.01]1.73 £ 0.02

TABLE III. Comparison of FSBD and FMC simulations for small system sizes. Parameters: L = 400 nm, N =21,y = 10'3 J/m*. FSBD:
fim = 0.016 s, At = 3.2 ns. FMC: 5 x 107 attempts (Monte Carlo steps = attempts/Nz). The error bars denote standard errors, and were
computed using the block averaging method (see Fig. 5 caption). The data were separated into Nypjocx = 5 blocks for both FSBD and FMC
data, truncating the initial 40% of FMC data to allow for equilibriation burn-in.

In the FMC approach, we propose changes to only a single Fourier mode chosen at random for each attempt, compute the
resultant change in the membrane energy, and use an acceptance criterion in accordance with the Metropolis rule to determine
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whether to accept or reject the proposed change. The size of the proposed change varies with each attempt; as we show
subsequently, the proposed changes are scaled such that on average, 50% of the proposals are accepted.
For a flat membrane subject to adhesion, the membrane energy is computed as

1 ~ * * -
Ewof = Z T ((Kq“ +y)|hq|* = 2kdq’ pihg — 2kdg” hypy + 2k |pg|* + 2k|pq|2). (K1)
q

For a membrane-adhered bead, the energy due to the harmonic potential must be explicitly accounted for, such that

1 ~ % * —
Ew= Y T (Kq4|hq|2 — 2kdgPp;hq — 2kdqPHspq + 2kl pg | + 2k|pq|2) + Eqan. (K2)
q

2
where the adhesion energy is computed as a sum over the lattice in real-space as Engy = % S e v (h(r) = hpeaa(r))>.
A single independent mode q is selected at random (with the exception of the zeroth mode, which does not evolve), and changes
to this mode are computed for the real and imaginary components of this mode q, for each Monte Carlo attempt, as

hanew = hq + 25n+/(|hq|?) (rand — 0.5) + 2is4[{|hq|?) (rand — 0.5), (K3)
Panew = Pq + 28p+/{|pq|?) (rand — 0.5) + 2is,+/{|pg|*) (rand - 0.5), (K4)
Panew = Pq + 255~/ (|Pq]?) (rand — 0.5) + 2is54/(|f¢|*) (rand — 0.5), (K5)

where rand indicates a random number between 0 and 1. Each use of rand here is a different random number, so the real and
imaginary parts are updated with independent random values. (|hq|2),(|pq|2), and (|,5q|2) are as derived in Egs. (18)—(20).
Sh, Sp, and s; are scaling factors that can be varied to influence how frequently the proposed changes are accepted. For the
simulations in Table III, the scaling factors s, = 0.95, s, = 1.3, and s5 = 1.3 resulted in approximately 50% acceptance.

To update the dependent modes, we conjugate the independent modes to ensure that the height and density variables in
real-space are real-valued (see Appendix A). Therefore, h_g new = hfl’new, and similarly for the other fields. Subsequently,
Ng,new» Pg,new> and Pq new are inverse Fast Fourier transformed to obtain their corresponding real-space values.

We change one mode q at a time, and also only change one of the three fields hq, pq, and pq at a time. (We propose changes
first for hg, then for pq, then pgq.) The usual Metropolis acceptance criterion is used, and applied after each change—i.e. we
update the three fields separately, not simultaneously. This Metropolis criterion is:

_(Etot, new — Etot)

rand < exp T
B

(K6)

If this condition is fulfilled, then the change is accepted, and E\y and the corresponding height and density variables are
updated to their new values and iterated for use in the next attempt.
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