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The growing use of renewable energy sources such as wind and solar in distribution networks (DNs) poses a
challenge for DN protection. Inverter-based resources (IBRs) have fault responses that differ from conventional
generators, which can have a significant impact on how the DN is protected and lead to misoperations, such
as blinding. Use of simplified inverter models may result in incorrect relay settings and relay misoperations.
This paper leverages a comprehensive grid-following inverter with dynamic reactive current (DRC) limiting
model. The inverter with DRC model is combined with distribution system equations, to form a nonlinear
differential and algebraic equations (NDAE) model, in which the fault response is verified. The grid-following
inverter with DRC limiting is then implemented in a distribution system with protection elements and compared
with a simplified fault response model based on frozen control. The system is tested under varying irradiance
conditions, as well as varying dynamic factor K of the DRC limiting model. The effect of the DRC current
limiting model on protection blinding is investigated as well. The case study reveals that precise modeling of
the PV inverter including the DRC limiter is indeed required to properly identify and predict blinding scenarios
in the DN.

1. Introduction

Modeling of power electronics inverters with current limiting strate-
gies is important for understanding the transient fault response of
the network, ensure system protection, and avoid relay misoperations.
With the recent integration of inverter-based resources (IBRs) into
the distribution network (DN), traditional protection systems can face
challenges in maintaining safe and reliable operation of the grid. IBR
integration affects the fault currents of the system due to limited
inverter current contribution during faults [1], and causes bidirectional
current flows that impact the protection system. In addition, if there
is a large number of inverters integrated into the DNs, the increase
in fault current may cause misoperation of the protective devices [2],
particularly overcurrent relays (OCR), which are typically used in DNs
to protect from faults [3]. The OCR continuously monitors the current
and if the current exceeds the specified setpoint, called pickup setting,
the relay sends a trip signal to the circuit breaker. Greater penetration
of IBRs can reduce upstream fault currents below the pickup setting,

causing blinding misoperations [4], which is the focus of the present
study. In addition to greater IBR penetration, PV irradiance, which
varies throughout the day, may also cause significant changes in fault
currents and this effect is also investigated in this work. Accurate fault
analysis is required to determine OCR settings, thus modeling of the
inverter and its fault response, is of great importance for protection
studies considering distribution networks with IBRs.

Modeling of grid-following inverter controls includes the phase-
locked loop (PLL), LCL filter, power controller, and current controller
generally designed in the dq (direct-quadrature or synchronous) ref-
erence frame [5-8]. The works in [5-8] do not include fault studies,
however they focus on the dynamical models of inverter control and
the response to step disturbances resulting from inverter power com-
mands. Model nonlinearities are bypassed by linearizing the nonlinear
equations around an equilibrium point. Also, the aforementioned works
do not place particular emphasis on the distribution network and how
the bus voltages, which amount to algebraic states of the network,
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vary when IBRs are integrated. In [9], although the nonlinearities
in the IBRs integrated DN are considered, the developed model only
studies dynamic stability under relatively small disturbances, such as a
trip of lines, and step change in loads. In addition, the work in [9]
mentions that the proposed model cannot be used to perform short
circuit analysis. The short circuit response of inverters and their current
limiting capability have been previously studied; see e.g., [1,10-15].
The fault current contribution from inverters is typically limited to 1.2—
1.5 times the rated current. Although studies on inverter short circuit
contribution exist, such as the ones mentioned previously, most of these
works lack in standardizing the inverter model and current limiting
strategies for fault studies. In general, during faults, the inverter must
provide fault current as a function of the terminal voltage at the point
of common coupling (PCC). Specifically, the dynamic reactive current
(DRC) limiting model for the inverter postulates reactive current injec-
tion which is proportional to the voltage deviation from the nominal
voltage during the fault [16]. The proportionality between the inverter
reactive current injection and the voltage deviation at the PCC is
defined by the dynamic factor K. While the current limiting of inverters
has been modeled and studied, the applicability of such models for
fault studies, and by extension for protection studies, are recently
receiving wider attention. For example, the optimization based solver
developed in [12] performs short-circuit analysis of inverter-integrated
DNs but only considers a constant current source model for the inverter.
CYME distribution analysis software, recently introduced a nonlinear
inverter fault response model in version 9.3, whereas previous versions
contained only constant current and voltage source behind impedance
models. Studying the effect of inverter nonlinear models on protection
systems is a growing area of interest, explained more in the next
paragraph.

There are studies which investigate phenomena such as harmonic
pollution [17], fault impedance [18], and transformer inrush [19], and
their effects on overcurrent protection. Similarly, the effect of IBRs
on network protection is a growing research area, but with respect to
dynamic current limiting and OCR-based protection, it is not yet very
well studied. The work in [11] studies the impact of IBRs on protection
but lacks insight on the impact to OCRs and blinding misoperations.
The fault response of solar DERs is explored in [10], but very little focus
is placed on the protection. The work in [20] investigates the effect
of negative sequence current injection on impedance-based protection,
compared to conventional generators. The effect of nonlinear IBR fault
models on incremental quantities-based protection is studied in [21].
The aforementioned papers study the effect of nonlinear IBR models
on certain protection elements, however, the effects of the PV inverter
dynamic current limiter on OCRs for DN, considering varying solar
irradiance, as well as varying dynamic factor K, remains a desired study
topic.

This paper develops a detailed nonlinear differential and algebraic
equation (NDAE) model of a grid-following inverter interacting with a
distribution system. Commercial simulation tools are usually limited to
one inverter model with a few control types, as well current limiting
strategies which cannot be modified by the user. When compared to
commercial simulation, the NDAE model allows any different inverter
model and control, as well as fault limiting strategies and can be tested
on different distribution networks. A detailed DRC control and limiter
model is incorporated together with legacy short-circuit response char-
acterized by frozen control for comparison purposes. The grid-following
inverter model also includes a PLL, LCL filter, power controller, and
current controller. Subsequently, this paper leverages the detailed grid-
following inverter model, which is extended to include a PV system, to
present an analysis of blinding misoperations in protection systems.

The contributions of this work are summarized as follows:

» Development of a comprehensive NDAE model that includes dis-
tribution system dynamics and a grid-following inverter with DRC
limiting.
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Fig. 1. Grid following inverter schematic.

Simulation of balanced faults with the NDAE model on a 5-bus
distribution system using MATLAB’s ordinary differential equa-
tions (ODE) solver and comparison with the Simulink model.
Simulink implementation of grid-following inverter for a solar PV
system, connected to 5-bus distribution system with protection
elements.

Study of the effect of DRC limiting model on protection blinding
while considering varying solar irradiance and different K-factor
of the DRC limiter.

2. NDAE modeling of the inverter-integrated distribution system

Consider an n-bus, 3-phase distribution system modeled as a tree
network with set of edges denoted by €. Bus-1 (root node) is the slack
bus. The inverter is connected to a bus designated as the point of com-
mon coupling (PCC) through an LCL filter. In this work, we leverage
the dynamics of the grid-following inverter model depicted in Fig. 1
represented in a local dg synchronous reference frame. The dynamics of
the rest of the system (that generically includes loads, transformers, and
lines) are represented in a global synchronous reference frame DQ. The
transformation angles the define the respective synchronous reference
frames are given in the sequel. The overall system dynamics depend
on the dynamics of the inverter combined with the current limiting
strategy, as well as the connected load, transformer, and distribution
lines between them. The various elements of the NDAE model are
presented next.

2.1. Inverter

In this section, the detailed analytical model of the inverter and its
controls including the current limiting strategies are developed.

2.1.1. Phase-Locked Loop (PLL)

The PLL is necessary to measure the actual frequency of the system.
This work adopts a dg-based PLL [5]. The PLL synchronizes the esti-
mated frequency wpy;, to the grid synchronous frequency and produces
the angle 6§ for the dq transformation. The PLL aligns the d or q axis to
the measured voltage and correspondingly sets v, or v,, to zero upon
synchronization. In this paper, it is assumed that the PLL will set v,;, = 0
at steady-state. The equations pertaining to the PLL block are

Uod,f = @ PLLVod — @cPLLVod, f (1a)
Bpy, = —Voq s (1b)
oprp, = @, = kppr1Veq 5+ KipL @prr, (1)

6= wp L~ o, ad

where v,, , is the filtered d-axis voltage component; o, pr, is the cut-off
frequency of the PLL low-pass filter; ®@p;; is an auxiliary state; wpy;, is
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the estimated PLL frequency; w, is the nominal grid synchronous fre-
quency; k,pr . and k; p;; are the gains of the PI controller. The dynamic

state vector corresponding to the PLL block is xpy; = [v,4, 7 PerLs S]T.

2.1.2. LCL filter

The LCL filter in Fig. 1 consists of the filter inductance L, filter
capacitance Cy, filter resistance R, the coupling inductance L, and
resistance R,, and a damping resistor R,. The differential equations
are obtained by applying Kirchoff’s voltage law (KVL) between nodes
at the input, output, and filter capacitor branches of the LCL filter in
Fig. 1. The KVL equations in phase domain (abc) are converted to dq
frame using the transformation discussed in [22, Ch. 3] to yield the
equations pertaining to the LCL filter as follows [5]

; 1 X .
lig = L_f(vid —Voq — Ryijg) + wpppiy (2a)
.1 . .
lig = 7~ (Wig = Uog = Rylig) = @prpiia (2b)
f
: 1 . .
tod = 7~ (Woa = Vpcca = Reloa) + @priiog (20)
c
; 1 . .
lvq = L_(qu - UPCC,q - Rcloq) —®prrloq (Zd)
c
. 1 . , ; :
Uod = C—f(’fd —loa) + @prrUog + Ry(liy —iog) (2e)
1

» @f

voq = C_f(iiq - ioq) —@prrU t+ Rd(iiq -
where i;;, are the dg frame input currents of the filter. Assuming that
the system is lossless, we consider that the commanded voltages v}, —
depicted as outputs of the current controller in Fig. 1 and discussed
in Section 2.1.5—appear at the input of the filter inductor, that is,
vy 1g = Vidg- The output currents and the output voltages of the inverter
in dq frame are denoted as i,,, and v,,,, respectively. The voltages
Vo4, are fed back to the power controller for the reference currents
calculations (cf. the next section). The bus voltages at PCC are defined
as Upcc 44- The PCC will be any bus j = 2, ..., n of the network where an
IBR is connected to. The dynamic state vector for the LCL filter block

. X L T
is defined as x; cr, = [ijg: iigs foa> ng: Vod» Uog)

2.1.3. Power controller
The power controller regulates the output power by computing

the output current references i’ " based on feedback from the output

voltages v,,, using the instantaneous power theory [1]. The equations
pertaining to the power controller are
A 2 1
log = 3 —(UodPref + anQref) (3a)
302 402
od oq
A 2 1
log = 3 2—(quPref = Vg Oref) (3b)
302 402
od oq

where P, O, are the real and reactive power reference set points.
The outputs of the power controller are as follows

2= hig F g — i (4a)
e c
Log = lig tiog —lgg (4b)

Under faulted conditions, the current references i,,,
justed, as described next.

need to be ad-

2.1.4. Current limiter

To protect the power electronics from damage due to over voltage or
over currents during faults, the inverter output current should be lim-
ited. The current references produced by the power controller [cf. (4)]
are not applied during faults and the inverter acts like a current source
subject to the following current limiting strategies:

» Frozen control: In this current limiting strategy, the inverter re-
mains connected to the system and continues to feed its pre-fault

. ref _ -
output current, i.e, ity = fogq prefault-
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Fig. 2. Grid code requirement for reactive current injection during faults.

» Dynamic reactive current control: The inverter remains con-
nected to the network and injects reactive current to the system.
+0?

rated

: . e P
First, the inverter rated current is defined as I,,q = \['L,
3Vpec LL rated

where Vpoe L raed 1S the rated line-to-line voltage at the PCC.
During faults, the inverter has the capability to provide current
larger than its rated value by a factor typically in the range of 1.2—
1.5. In the present paper, the maximum injected current during
faults is defined as I}, = 1.21,eq-

Typical grid code requirement for positive-sequence reactive current
(i,¢) injection is shown in Fig. 2. The premise is to ensure that inverters
contribute reactive current during faults, with the purpose of providing
voltage support. The per-unit change in terminal voltage at the PCC

2 2
V/ Ubcc.atVpcc g~ Viom VpcC L rated .
L — 4 _ where V,,, = T‘”‘e When 4v,, is
within +5% (cf. the deadband in Fig. 2), the inverter does not alter the
current references computed by the power controller, that is, i;‘g;l will
take the values calculated in (4). When the per-unit voltage deviation
at the PCC 4v,, is outside of the deadband, the inverter injects positive

sequence reactive current proportionally to 4v,,. The slope is denoted

is Av,, =

Vaom

by dynamic factor K in Fig. 2. The reactive current injection is

Ireactive = iod,prefaull - KAUpu \/Elrated (5a)

if:if = min {max {ireaclive’ _\/Ellimit } ’ \/Ellimil } (5b)

where the factor \/5 accounts for the transformation from phase frame
quantities (I,,q and Ij;n;i) to dg frame quantities (i,,;) following the dg
transformation definition given in [22, Ch. 3]. Eq. (5a) adjusts the pre-
fault reactive current reference (if non-zero) by adding a component
that follows the requirement of Fig. 2. Eq. (5b) projects the reactive
current reference to respect the limit given by I;;,.

The available active current injection is given by

! = sign(f,) min { lingle A/ (V22 = (5552 } )

Eq. (6) prescribes that the active current reference produced by (4b)
either remains unchanged or it is reduced so that together with if}flf the
current limit is respected. The output currents i;fif are given as the input
to the current controller to calculate the commanded voltages v} 4g 35
discussed next.

2.1.5. Current controller

The current controller takes the difference between the output
currents if}fifq obtained after applying the current limiting strategy and
the input currents of the filter to calculate the commanded voltages

vy e The dynamic equations that describe the behavior of the current

controller include the state variables y,, as follows

Fa =10 =i (72)
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Ty =it~ iy (7b)

The outputs of the current controller are defined as

U:':(d = _waniiq + kicﬁdyd + kpc,d }.'d + Uod (83)
U = 0y Lsiiq + Kie ¥y + Kpe gy + Uog (8b)
where k;. 4, and k. ,, are the gains of the PI controller. The outputs

v:."dq of the current controller appear at the input of the LCL filter,

i.e., v;y, = v*, . The dynamic state vector corresponding to the current
idq idq T
controller block is defined as xcc = [r,.7,]
Next, the equations for source, transformer, line, and load in the

global synchronous reference frame DQ are discussed.
2.2. Source

The slack bus is a positive sequence voltage source denoted as
01 ape (1) = [V cos i, V, cos(w,t —120°), V; cos(w,t+120°)]7. Three-phase
variables of the network are transformed to a global synchronous DQ
frame rotating at the grid nominal frequency w, with initial angle
0° [22]. The slack bus voltage equations in global DQ frame are given
as

v1p = —V2V, sin(0) (9a)
Vip = \/EVS cos(0) (9b)

The source also includes an equivalent system impedance modeling the
grid behind the substation. If the short-circuit MVA is given, then the
equivalent positive-sequence impedance can be calculated [23]. The
impedance can be modeled in the same fashion as a distribution line,
as described in the sequel.

2.3. Transformer

Consider a grounded wye-grounded wye step-down transformer be-
tween bus i and bus j. The differential equation pertaining to variables
of phase a is obtained by applying KVL between nodes i and j as follows
Vjg = nirv,.’a — Ryiry 4 — Lriry 4 and likewise for phases b and ¢, where
n, is the transformer ratio, iy X is the current on the low-voltage side,
and Ry + jw,Ly is the leakage impedance referred to the low-voltage
side. The dynamics in the abc frame are then converted to the global
DQ frame by applying the transformation given in [22, Ch. 3] and are

given as follows:

: 1 . Yi.p .

Irx,p = L_(_RTITXA,D + _;l —v;p)+@uirx o (10a)
T t

; 1 . i,0 .

irxo= L_(_RT’TX,Q + - U;0) = @WuiTx.p (10b)
T t

The dynamic state vector corresponding to the transformer is x; =

. ) T
[’TX,D» ’TX,Q]
2.4. Distribution line

Consider a line connected between bus i and bus j. Self and mutual
impedances between phases are respectively denoted as Ry 4+ j®, Ly 4
and R,, + jo,Ly,, where ¢,y € {a,b,c} and ¢ # w. The present
section gives for simplicity the dynamical model of a symmetrical line,
where the self and mutual reactances are defined as L, = %
and L, = Latoetle gnq likewise for the resistances R, and R,,. The
differential equation for phase a of the line is obtained from KVL as
Via=Vja = Ryliineat Rudiine.s + Runfline.c + Lsitine.a + Linftine,p + Lifiine,c; and
likewise for phases b and ¢. The dynamics are converted to the global
DQ frame by applying the transformation in [22, Ch. 3]. The resulting
equations are

1

Uine,D = 3 (=Riinelline,p + Vi.p — Vj,p) + @pliine,0 (11a)
line
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Fig. 3. 5-Bus distribution system.

1

line
where Ry;,.+j®,Lj,. = (R,—R,,)+jw,(L;—L,,) is the positive-sequence
impedance of the line. The dynamic state vector corresponding to the

1. . — . . T
ne 18 Xjjpe = [’1ine,D=lline,Q] .

lineo = (—=Riinelline,0 + Vi,0 = Vj,0) — @uiline,D (11b)

2.5. Load

The differential equations for a load connected to bus i are obtained
in the abc frame by applying KVL between bus i and the ground, and
then converted to the global DQ frame [5]. Supposing a load given by
Rypaq + j@, Loy is connected per phase, the resulting dynamical model
is

; 1 X .

load,D = oo (= Rigadtioad,p + Vi,p) + @nlioad,0 (12a)
Oal

: 1 . .

Hoad,0 = Ll P (_Rloadlload,Q + Ui,Q) — Wylioad, D (12b)
0a

The dynamic state vector corresponding to the load is x4

. . T
[' load, D> lload,Q]
2.6. Algebraic equations of the system

In this section, the algebraic equations describing relationships
among the state variables and the bus voltages are discussed. The
algebraic equations include the relations among the currents of the
inverter, load, and line are determined by Kirchoff’s Current law (KCL)
at each bus. In addition, the algebraic equations for transforming
the dq synchronous reference frame that is local to each inverter to
the global DQ frame are needed. This is because the inverter output
currents are represented in the dq frame local to the inverter as shown
in Sections 2.1.2 and 2.1.4, and the current injections to each node
are represented in the global DQ frame. Note that for simplicity, the
Egs. (13)-(16) are written assuming only one inverter is connected to
the system.

The dq frame to DQ frame transformation is given next [6]
iop = €0S(=6)ioq + sin(—6)iy, (13a)
igp = = SiN(=8)iyy + cOS(=8)i,, (13b)

The PCC bus voltage in the inverter’s LCL filter dynamics in Sec-
tion 2.1.2 is in dq frame, but the bus voltages of the system are
calculated in the global DQ frame. The global DQ frame to dg frame
transformation equations are given by [6]

(14a)
(14b)

Upccd = COS(—5)UPCC,D — sin(—ﬁ)vPCC’Q
Upccyg = sin(—&)uPCC’D + cos(—&)vPCC’Q
Assume that the inverter and a load are connected to bus j. The KCL

equation represented in the global synchronous reference frame DQ for
the non-faulted bus j is given as

iij,po ~ Z ijk.00 = iopQ ~ iload,DQ (15)
jke&

where the left hand side of (15) includes the currents of distribution
lines and transformer connected to bus j. For a faulted bus j where
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Fig. 4. Simulink PV Inverter and protection system.

the inverter and a load are connected, the KCL equation the global DQ
frame is stated as

iij,po — Z ik, 00 = loDQ ~ lload,pQ T ifault,DQ (16)
jkee

where i, po is the fault current. The overall NDAE model of the

inverter-based distribution system is summarized as

x = f(x,a,u)
0=g(x,a)

NDAE: (17a)

(17b)

where the dynamic state vector is x = [Xpy ., X.c1» XcC» Xloads X7 Xlinel |3
the algebraic variables are included in a = [{v;p,v j.Q};l:r UpcC s
UpcCgr fop» Topl”s and the vector u = [Py, Q|7 is defined. The non-
linear vector-valued functions f and g respectively collect the dynamic
and algebraic equations of the system.

3. Numerical results for the NDAE model

In this section, simulation results for the inverter-integrated distri-
bution system NDAE model are presented.

The 5-bus distribution network depicted in Fig. 3 is modeled, con-
sisting of a 13-kV slack bus (designated as 000) with a grid resis-
tance of 0.237 Q and grid inductance of 0.0082 H. A 13 kV/480
V grounded wye-grounded wye step-down transformer is connected
between buses 100 and 200 with resistance and inductance of 4.15 mQ
and 357 mH, respectively, referred to the low-voltage side. The positive-
sequence impedance of the lines is determined from configuration 601
of the IEEE-13 test feeder. Line lengths for lines 000-100, 200-300, and
300-400, are 800 ft, 300 ft, and 300 ft, respectively. We consider constant
impedance loads of 650 kW and 15 kvar on bus 300 and 450 kW and 15
kvar on bus 400. A 900-kW inverter at unity power factor is connected
on bus 300. The LCL parameters of the inverter are given in Table 1.
The proportional and integral constants of the PLL block are 0.6 and
20 respectively. The proportional and integral constants of the current
controller block are k,. , = 10, k;. 4, = 300, k,. , = 20, and k;., = 50.
The dynamic factor is set to K = 2. MATLAB’s odelbi solver is used.
The NDAE simulation is performed for a timespan of 0.6 s and step
size 1 ps, and the LLLG fault at bus 400 is applied at + = 0.3 s. The
transformation to convert the variables from the DQ global frame to
abc is given in [22].

To verify the accuracy of the NDAE simulation, a simulink switching
model of the inverter for a solar PV system connected to the 5-bus DN is
setup as shown in Fig. 4. The two models are validated with the same
LLLG fault at 0.3 s The inverter output current and the inverter PCC
voltage (bus 300) in abc frame from the NDAE and Simulink simulations

Voltage magnitude at bus 300 30I51verter output current magnitude

—

=

0.2 0.4 0.6
Time (s)

400

0
1000
-2000 |

-3000O

”—phase b

.

ase C

ph:
o

Tlme (s)

(a) Voltage at Bus 300 (b) Inverter (DRC) output current

Fig. 5. NDAE simulations for a LLLG fault at bus 400.

Voltage magnitude at bus 300 Inverter output current

y W I“" ”,ww s
=i \( [U,N\; = 2 i
S ( ’ i \W‘.M““;‘JJM NLZZZJ N VM y‘l Ilm‘m

(a) Voltage at Bus 300 (b) Inverter (DRC) output current

Fig. 6. Simulink simulations for a LLLG fault at bus 400.

are shown in Figs. 5 and 6, respectively. Under fault conditions, if
the change in PCC voltage is more than 5%, the inverter must inject
reactive current up to the maximum transient current capacity Iy
according to the DRC control discussed in Section 2.1.4. From the
figures, it is seen that during fault conditions, the inverter injects
current close to the maximum transient current limit, but does not
exceed this value. The pre- and post-fault PCC voltage and current
magnitudes for the NDAE and Simulink simulations are listed in Ta-
ble 2. The inverter output current magnitude error between the NDAE
and Simulink simulations is 2.7% (pre-fault) and 5% (post-fault). The
PCC voltage magnitude error for the two simulations is 0.2% (pre-fault)
and 16.5% (post-fault). The post-fault error is due to ripple voltage in
Simulink’s switching model which was observed to be approximately
28 V.

The inverter-integrated DN model is further extended with protec-
tion elements in the sequel.
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Table 1
LCL filter parameters.
Lf Rf Le Re cf Rd
600 pH 1 pQ 10 pH 1 pQ 10 pF 1pQ
Table 2
PCC voltage and inverter current magnitudes for NDAE and simulink simulations.
Fault condition Voltage/current NDAE Simulink
Pre-fault PCC voltage 394V 395V
Inverter current 1500 A 1580 A
Post-fault PCC voltage 167 V 200 V
Inverter current 1825 A 1800 A

Ip Current Current

Iep  Ipp

(a) Complete Blinding (b) Backup Blinding

Fig. 7. Blinding misoperations.

4. Protection system study

Protection misoperations for OCRs in DNs are well known as blind-
ing and sympathetic-tripping, and they can be categorized as a failure-
to-trip and as an undesired-trip, respectively. There must also be coor-
dination between OCRs, where for every protection zone, there is a
designated primary and backup relay. For each primary backup pair,
there must be a minimum delay, called the coordination time interval
(CTI), which is held in between the operation time of relays. For
electronic relays, the CTI is taken as 0.2 s. Discrimination time is
defined as At = T, — T, where T, and T, are the operation times of
the backup and primary relays, respectively. To coordinate the relays,
the following should hold true: T, —T, > CT1, that is the discrimination
time should always be greater than or equal to the CTI. The operating
time T of a relay is defined in Eq. (18), where T DS is the time dial
setting, I is the fault current, I, is the pickup setting, and A, B, and p
are the relay curve characteristic coefficients.

T=TDS|—A 4B 18)

I P
() -1

There are two types of blinding misoperations, namely, complete
blinding and backup blinding, as shown in Fig. 7. Complete blinding
occurs when there is a fault current which is lower in magnitude
compared to the pickup setting, meaning the relay will not operate
for that fault current. Backup protection blinding can be defined as
a failure-to-trip within a specified time, for a relay which is acting
as backup protection. This time can be referred to as the blinding
threshold, and for a well coordinated relay pair, it would hold that
CTI < At < ty;,4- Blinding is more likely to occur due to increased IBR
currents, which reduce the fault current contributed by the upstream
line [24, Fig. 4], potentially moving fault currents below the pickup
setting, or causing delayed operation past the threshold for blinding.
This work studies the impact of the current limiting model on potential
backup blinding events.

5. DN & PV inverter system for protection study

The distribution network used in this study is same as shown in
Fig. 3. The line and load parameters are the same as presented in
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Fig. 9. Discrimination times.

Section 3. The protection elements added to the network are described
next. Lines 200-300 and 300-400 each have an OCR placed at the send-
ing bus. The relays follow the IEEE Moderately Inverse characteristic
with coefficients A = 0.0515, B = 0.114, and p = 0.02, taken from IEEE
Standard C37.112-201 [25]. The relay on line 200-300 is R1, and the
relay on line 300400 is R2. The CT ratio for R1 is 1800 : 1, and the
ratio for R2 is 900 : 1. The pickup currents for R1 and R2 are 1.6 and
3 p.u., respectively, and the TDS is set to 0.131 and 0.05, respectively.

The grid-following inverter, rated at 900 kW, is extended with a PV
system. The inverter filter parameters are listed in Table 1. The active
power reference to the inverter comes from the active power output of
the PV array. The reactive power setpoint is set to zero during normal
operation.

6. Simulation results with protection system

The distribution network, PV inverter system, and inverter control
with current limiting have all been implemented in MATLAB/Simulink
with a discrete time-step of 1 ps. For this study, relay R2 is bypassed,
to emulate the failure of the primary protection, and to observe the
operation time of the backup protection R1. The complete system is
tested by placing a three-phase fault on bus 400, at t = 3 s and removing
the fault at + = 3.8 s. Relay R1 is also reset at t = 3.8 s.

Fault ride through standards, such as the German grid code [26],
state that inverters must remain connected for up to 0.7 s for a 45%
voltage drop, and may require sustained connection for up to 1.5 s
depending on the voltage drop. A simple fault ride through strategy is
implemented in the PV inverter, where after 150 ms any voltage drop
below 30% will cause the inverter to disconnect [26]. If the fault is
cleared and the voltage recovers above 90%, the inverter is connected
back to the network.

The fault is applied and the discrimination time is recorded, for
frozen-control and DRC limiting with dynamic factors K = 2 and
K = 6. The K factor controls the rate of how much reactive current
is injected for a given voltage drop, with K = 2 and K = 6 being the
typical minimum and maximum values, respectively. Additionally, the
irradiance is varied in five discrete points {650, 700, 800, 900, 1000}
W/m?. In the present case study, we consider t,,,; to be 0.5 s, thus
any discrimination time greater than 0.5 s is considered to be backup
protection blinding.

Fig. 8 depicts the actual operation times for backup relay R1 (blue)
and the expected operation time of primary relay R2 (orange), for the
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P (W)

Fig. 10. Power measurement with irradiance 1000 W/m? and K = 6.

irradiance case of 1000 W/m?; 1 means the breaker is closed and 0
means the breaker is open. Operation time for R2 is said to be expected
because the relay is bypassed but the time is still computed and plotted.
Inverter power measurements are shown in Fig. 10. At 0.5 s the
inverter is connected to the network and the active power goes to 900
kW. At 3 s, the fault is applied and the reactive power injection by the
inverter can be observed. At 3.56 s, the backup relay opens and the
voltage drops below 30%, at which point the inverter stops operating.
After 3.8 s, when the fault is removed and the breaker is reset (closed),
the voltage goes above 90% and the inverter is connected again.
Results of the discrimination times for frozen control and DRC
limiting are shown in Fig. 9, where the left axis has the DRC dis-
crimination times and the right y-axis has the frozen discrimination
times. For frozen control, the discrimination times are all between
the CTI and t,;,,;, 0.2 s and 0.5 s respectively, and it can be said
that the relay settings are reasonably coordinated. Both DRC lines,
K = 2 and K = 6, are following the same trend, where as the
irradiance increases, discrimination time also increases. This is because
as irradiance increases, so does the PV current contribution, which
decreases the current contributed through line 200-300. The trend of
the line for K = 2 looks similar to that of K = 6, with a vertical
shift upwards. Higher currents, in the case of K = 6, will result in
faster operation times of the backup relay, thus lower discrimination
times. Conversely, lower currents, in the case of K = 2, will result in
delayed or longer operation times, thus increased discrimination times.

Electric Power Systems Research 224 (2023) 109609

For dynamic factor K = 6 and the last two irradiance points, the
discrimination time has exceeded the blinding threshold, potentially
affecting the safe DN operation. With dynamic factor of K = 2, the
relay settings under all irradiance cases have resulted in blinding. From
these results, it is evident that protection system which is coordinated
through fault analysis performed with simplified fault response models,
may face misoperations when the actual nonlinear fault response occurs
in the network. Further, it is concluded that considering the dynamic
factor setting is also critical in the fault analysis used for protection
settings coordination.

The transient responses for frozen-control, and dynamic-control
with K = 2 and K = 6 modes, are shown in Fig. 11. In Fig. 11a,
the response for frozen control, the current magnitude during the
fault remains very close to the prefault magnitude. In Fig. 11b and
¢, under DRC control, it can be seen the current magnitude during
fault is increased in compared to the prefault magnitude. Fig. 12 shows
the current through line 200-300, without the inverter, and with the
inverter under irradiance values of 650 W/m? and 1000 W/m?2. The
impact of the inverter current on the upstream line 200-300 is evident
by comparing the no inverter plot to the ones with inverter. With the
inverter connected, the upstream current is reduced, which is the cause
of the delayed operation of backup relay R1.

7. Conclusions and future work

A nonlinear differential and algebraic equation model for inverters
with DRC limiting connected to a distribution network under faulted
conditions is developed. The PV inverter control system with DRC
limiter has been implemented in Simulink and coupled with a 5-
bus distribution network, which has a protection system consisting of
two OCRs. Discrimination times are recorded for various irradiance
scenarios for fault response following frozen control as well as dynamic
control with K = 2 and with K = 6. It is observed that increasing
irradiance causes increased discrimination time between primary and
backup relays for dynamic limiting mode. Further, if K factor for the
inverter current limiter is changed, discrimination times can increase,
potentially causing blinding scenarios. It is thus of critical importance
to properly model the current limiter when performing fault analysis,
to protect the network from potential blinding events.
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Fig. 11. Inverter output current for different current limiting modes.
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Fig. 12. Impact of the inverter current on the upstream line 200-300.
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Future research includes analysis of larger networks, introducing
unbalanced faults, and investigating DRC limiter strategies with simul-
taneous positive- and negative-sequence current control.
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